JP6708180B2 - 演奏解析方法、演奏解析装置およびプログラム - Google Patents

演奏解析方法、演奏解析装置およびプログラム Download PDF

Info

Publication number
JP6708180B2
JP6708180B2 JP2017143981A JP2017143981A JP6708180B2 JP 6708180 B2 JP6708180 B2 JP 6708180B2 JP 2017143981 A JP2017143981 A JP 2017143981A JP 2017143981 A JP2017143981 A JP 2017143981A JP 6708180 B2 JP6708180 B2 JP 6708180B2
Authority
JP
Japan
Prior art keywords
performance
tendency
information
candidate
music
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017143981A
Other languages
English (en)
Other versions
JP2019028107A5 (ja
JP2019028107A (ja
Inventor
陽 前澤
陽 前澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2017143981A priority Critical patent/JP6708180B2/ja
Priority to CN201880049017.2A priority patent/CN110959172B/zh
Priority to PCT/JP2018/027837 priority patent/WO2019022117A1/ja
Publication of JP2019028107A publication Critical patent/JP2019028107A/ja
Priority to US16/751,694 priority patent/US11600252B2/en
Publication of JP2019028107A5 publication Critical patent/JP2019028107A5/ja
Application granted granted Critical
Publication of JP6708180B2 publication Critical patent/JP6708180B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0008Associated control or indicating means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10GREPRESENTATION OF MUSIC; RECORDING MUSIC IN NOTATION FORM; ACCESSORIES FOR MUSIC OR MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR, e.g. SUPPORTS
    • G10G1/00Means for the representation of music
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0033Recording/reproducing or transmission of music for electrophonic musical instruments
    • G10H1/0041Recording/reproducing or transmission of music for electrophonic musical instruments in coded form
    • G10H1/0058Transmission between separate instruments or between individual components of a musical system
    • G10H1/0066Transmission between separate instruments or between individual components of a musical system using a MIDI interface
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0091Means for obtaining special acoustic effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/36Accompaniment arrangements
    • G10H1/40Rhythm
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/091Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for performance evaluation, i.e. judging, grading or scoring the musical qualities or faithfulness of a performance, e.g. with respect to pitch, tempo or other timings of a reference performance
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/161Note sequence effects, i.e. sensing, altering, controlling, processing or synthesising a note trigger selection or sequence, e.g. by altering trigger timing, triggered note values, adding improvisation or ornaments or also rapid repetition of the same note onset
    • G10H2210/165Humanizing effects, i.e. causing a performance to sound less machine-like, e.g. by slightly randomising pitch or tempo
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/375Tempo or beat alterations; Music timing control
    • G10H2210/385Speed change, i.e. variations from preestablished tempo, tempo change, e.g. faster or slower, accelerando or ritardando, without change in pitch
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/311Neural networks for electrophonic musical instruments or musical processing, e.g. for musical recognition or control, automatic composition or improvisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Auxiliary Devices For Music (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electrophonic Musical Instruments (AREA)

Description

本発明は、楽曲の演奏を解析する技術に関する。
例えば特許文献1には、楽曲の演奏音を表す音響信号を処理することで、演奏音のうち任意の楽器の音色を他の楽器の音色に変更する技術が開示されている。また、特許文献1には、特定の音楽的な表情が付与された音響信号を生成する技術が開示されている。
国際公開第2010/095622号
現実の楽曲の演奏においては、演奏者に特有の傾向(音楽的な表情または演奏の癖)が演奏音に付与される。演奏者による演奏の傾向を推定できれば、例えば楽曲のうち特定の傾向で演奏された区間について、特許文献1により特定の音楽的な表情を付与するといった処理が実現され得る。以上の事情を考慮して、本発明は、演奏者による演奏の傾向を推定することを目的とする。
以上の課題を解決するために、本発明の好適な態様に係る演奏解析方法は、コンピュータが、利用者による楽曲の演奏に関する観測演奏情報と、特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報とから、前記利用者の演奏傾向を特定する。また、本発明の好適な態様に係るプログラムは、利用者による楽曲の演奏に関する観測演奏情報と、特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報とから、前記利用者の演奏傾向を特定する演奏解析部としてコンピュータを機能させる。
本発明の第1実施形態に係る演奏解析装置の構成を示すブロック図である。 楽曲情報および単位情報の模式図である。 演奏情報生成部の構成を示すブロック図である。 特徴情報の説明図である。 楽曲情報編集の内容を示すフローチャートである。 第3実施形態に係る演奏解析装置の構成を示すブロック図である。
<第1実施形態>
図1は、本発明の第1実施形態に係る演奏解析装置100の構成を示すブロック図である。図1に例示される通り、第1実施形態の演奏解析装置100は、制御装置11と記憶装置12と演奏装置13とを具備するコンピュータシステムで実現される。例えばパーソナルコンピュータ等の各種の機器が演奏解析装置100として利用される。
制御装置11は、例えばCPU(Central Processing Unit)等の処理回路を含んで構成される。例えば単数または複数のチップで制御装置11が実現される。記憶装置12は、制御装置11が実行するプログラムと制御装置11が使用する各種のデータとを記憶する。例えば半導体記録媒体および磁気記録媒体等の公知の記録媒体、または複数種の記録媒体の組合せが、記憶装置12として任意に採用される。
本実施形態の記憶装置12は、楽曲の内容を表す楽曲情報Sを記憶する。本実施形態の楽曲情報Sは、楽曲を構成する複数の音符の各々について音高と強度と発音期間(発音時刻および継続長)とを指定する。音高および強度を指定して発音または消音を指示する指示データと、各指示データの発音時点を指定する時間データとが時系列に配列されたMIDI(Musical Instrument Digital Interface)形式のファイル(SMF:Standard MIDI File)が楽曲情報Sの好適例である。
図2に例示される通り、楽曲情報Sは、複数(M個)の部分(以下「単位情報」という)U〜Uに区分される。任意の1個の単位情報U(m=1〜M)は、楽曲を時間軸上で区分したM個の単位期間Q〜Qのうち第m番目の単位期間Q内の演奏の内容を指定する。すなわち、単位情報Uは、楽曲の単位期間Qに含まれる1個以上の音符の各々について音高と強度と発音期間とを指定する。各単位期間Qは、例えば楽曲の所定の音価(例えば8分音符)に相当する時間長の期間である。
図1の演奏装置13は、利用者が楽曲の演奏に利用する入力機器である。例えば利用者が操作する複数の鍵が配列された鍵盤楽器型の演奏機器(例えばMIDI楽器)が好適に利用される。演奏装置13は、利用者による操作に連動して指示情報Zを順次に出力する。指示情報Zは、楽曲を構成する複数の音符の各々について生成され、当該音符の音高と強度とを指定して発音または消音を指示するデータ(例えばMIDIイベントデータ)である。
第1実施形態の演奏解析装置100は、利用者が演奏装置13により楽曲を演奏したときの当該演奏の傾向(以下「演奏傾向」という)Eを推定する。演奏傾向Eは、演奏者に特有の音楽的な表情または演奏の癖である。演奏傾向Eの特定は、単位期間Q毎に実行される。相異なる単位期間Qに対応するM個の演奏傾向E〜Eの時系列は、利用者が楽曲を演奏したときの演奏傾向の時間的な遷移を意味する。第1実施形態の演奏解析装置100は、相異なる複数種(K種類)の演奏傾向(以下「候補傾向」という)の何れかを利用者による演奏傾向Eとして推定する。
図1に例示される通り、第1実施形態の制御装置11は、記憶装置12に記憶されたプログラムを実行することで、指示情報Zから演奏傾向Eを推定するための複数の要素(演奏推定部21、演奏観測部22および傾向特定部23)として機能する。なお、制御装置11の一部の機能を専用の電子回路により実現してもよい。
図1に例示される通り、演奏推定部21は、相異なる候補傾向C(k=1〜K)に対応するK個の推定演奏情報y 〜y を生成する。候補傾向Cに対応する推定演奏情報y は、当該候補傾向Cに関する変数である。第1実施形態の推定演奏情報y は、例えば、当該候補傾向Cのもとで楽曲を演奏したときの演奏速度(テンポ)である。単位期間Q毎にK個の推定演奏情報y 〜y が生成される。すなわち、推定演奏情報y は単位期間Q毎に変化し得る。
第1実施形態の演奏推定部21は、図1に例示される通り、相異なる候補傾向Cに対応するK個の演奏情報生成部G〜Gを具備する。任意の1個の演奏情報生成部Gは、候補傾向Cに対応する推定演奏情報y を楽曲情報Sから単位期間Q毎に生成する。
図3は、任意の1個の演奏情報生成部Gの構成を示すブロック図である。図3に例示される通り、第1実施形態の演奏情報生成部Gは、係数特定部31と演算処理部32とを具備する。
第1実施形態の推定演奏情報y は、以下の数式(1)で表現される自己回帰過程により生成される。
Figure 0006708180
図3の係数特定部31は、単位期間Qにおける線形予測係数(自己回帰係数)amj を楽曲情報Sから特定する。演奏情報生成部Gの係数特定部31は、候補傾向Cが反映されたニューラルネットワークNを含んで構成される。ニューラルネットワークNは、候補傾向Cに沿う多数の教師データを利用した機械学習によりモデルパラメータθ(θa,θb)が設定された数理モデルである。具体的には、数式(1)により算定される推定演奏情報y と候補傾向Cに沿う演奏を表す演奏情報(教師データ)との誤差が最小化されるようにモデルパラメータθが設定される。したがって、第1実施形態のニューラルネットワークNは、機械学習に利用された多数の教師データから抽出される候補傾向Cのもとで楽曲情報Sにとって妥当な線形予測係数amj (am1 ,am2 ,am3 ,…,amP )を出力する。
図3に例示される通り、第1実施形態のニューラルネットワークNは、第1ニューラルネットワークNaと第2ニューラルネットワークNbとで構成される。第1ニューラルネットワークNaおよび第2ニューラルネットワークNbの各々は、例えば、畳込み層と最大値プーリング層を含む複数層の積層にバッチ正規化層と全結合層とを接続した畳込みニューラルネットワーク(CNN:Convolutional Neural Network)である。活性化関数にはLeaky ReLU(Rectified Linear Unit)が好適である。ただし、ニューラルネットワークN(Na,Nb)の構造および活性化関数の種類は任意である。
第1ニューラルネットワークNaは、図4に例示される通り、線形予測係数amj を特定すべき単位期間Q(一の単位期間の例示)における特徴情報F を楽曲情報Sから特定する。具体的には、第1ニューラルネットワークNaは、単位期間Qを含む解析期間Aに対応する複数(2W+1個)の単位情報Um−w〜Um+wから、当該単位期間Qの特徴情報F を生成する。解析期間Aは、単位期間Qの過去(前方)の単位期間Qm−wから後方の単位期間Qm+wまでの期間である。
図4に例示される通り、特徴情報F は、解析期間A内の複数の単位情報Um−w〜Um+wにそれぞれ対応する複数の特徴量Φm−w〜Φm+wの系列である。第1ニューラルネットワークNaのモデルパラメータθaは、複数の単位情報の時系列と特徴情報とを含む多数の教師データを利用した機械学習により設定される。したがって、第1ニューラルネットワークNaは、多数の教師データから抽出される傾向のもとで複数の単位情報Um−w〜Um+wにとって妥当な特徴情報F を出力する。特徴情報F は、解析期間A内の演奏内容の音楽的な特徴を要約した情報に相当する。具体的には、楽曲内の音符の時系列に加えて種々の音楽的な表現を表す特徴情報F が生成される。特徴情報F に反映される音楽的な表現(コンテキスト)としては、楽曲内の調号、拍点の位置、強弱記号(例えばクレッシェンド)および速度記号(例えばリタルダンド)等が例示される。
図3の第2ニューラルネットワークNbは、第1ニューラルネットワークNaにより生成された特徴情報F と、単位期間Qの過去の期間におけるP個(Pは2以上の自然数)の推定演奏情報ym−1 〜ym−P とから、単位期間Qの線形予測係数amj を特定する。第2ニューラルネットワークNbのモデルパラメータθbは、特徴情報および複数の演奏情報の時系列を含むベクトルと線形予測係数とを含む多数の教師データを利用した機械学習により設定される。したがって、第2ニューラルネットワークNbは、候補傾向Cのもとで特徴情報F とP個の推定演奏情報ym−1 〜ym−P とにとって妥当な線形予測係数amj を出力する。以上の説明から理解される通り、第1実施形態では、単位期間Qの過去におけるP個の推定演奏情報ym−1 〜ym−P が、当該単位期間Qにおける推定演奏情報y の特定のためにフィードバックされる。
図3の演算処理部32は、係数特定部31が特定した線形予測係数amj と過去のP個の推定演奏情報ym−1 〜ym−P とについて前述の数式(1)の演算を実行することで、単位期間Qの推定演奏情報y を生成する。以上の説明から理解される通り、第1実施形態の演奏情報生成部Gは、楽曲情報S(複数の単位情報Um−w〜Um+w)と過去のP個の推定演奏情報ym−1 〜ym−P とをニューラルネットワークNに付与することで、候補傾向Cが反映された推定演奏情報y を単位期間Qについて生成する。単位期間Qに対応する特徴情報F と過去のP個の推定演奏情報ym−1 〜ym−P とから推定演奏情報y を特定する処理は、楽曲内のM個の単位期間Q〜Qの各々について時系列の順番で逐次的に実行される。以上の処理により演奏情報生成部Gが生成するM個の推定演奏情報y 〜y の時系列は、候補傾向Cのもとで楽曲を演奏したときの演奏速度の時間変化に相当する。
以上の説明から理解される通り、第1実施形態の演奏推定部21は、相異なる候補傾向Cが反映されたK個のニューラルネットワークN〜Nの各々に楽曲情報Sを付与することで、各候補傾向Cのもとで楽曲を演奏したときの推定演奏情報y を生成する。
図1の演奏観測部22は、演奏装置13により供給される複数の指示情報Zの時系列から観測演奏情報x(x〜x)を順次に生成する。観測演奏情報xは、楽曲の演奏の傾向に関する変数である。第1実施形態の観測演奏情報xは、推定演奏情報y と同様に、楽曲の演奏速度である。観測演奏情報xは、単位期間Q毎に順次に生成される。すなわち、観測演奏情報xは単位期間Q毎に変化し得る。以上の説明から理解される通り、K個の推定演奏情報y 〜y のうち、利用者の演奏傾向に類似する候補傾向Cに対応した推定演奏情報y は、演奏観測部22が生成する観測演奏情報xに類似するという傾向がある。
傾向特定部23は、演奏推定部21が生成したK個の推定演奏情報y 〜y と演奏観測部22が生成した観測演奏情報xとから利用者の演奏傾向Eを推定する。具体的には、傾向特定部23は、K個の推定演奏情報y 〜y の各々と観測演奏情報xとを対比する。そして、傾向特定部23は、K個の推定演奏情報y 〜y のうち観測演奏情報xに相関する推定演奏情報y に対応する候補傾向Cを、利用者の演奏傾向Eとして特定する。傾向特定部23による演奏傾向Eの特定は、単位期間Q毎に順次に実行される。
第1実施形態の傾向特定部23は、候補傾向Cと楽曲情報Sとが付与された条件のもとで観測演奏情報xが観測される事後確率p(x|U,C)に応じて演奏傾向Eを特定する。事後確率p(x|U,C)は、単位情報Umが指定する音符を候補傾向Cのもとで演奏したときに観測演奏情報xが観測される条件付確率である。具体的には、傾向特定部23は、以下の数式(2)で表現される通り、K種類の候補傾向C〜Cのうち、事後確率p(x|U,C)が最大となる候補傾向Cを、利用者の演奏傾向Eとして選択する。なお、事後確率p(x|U,C)の確率分布は、例えば正規分布である。以上の説明から理解される通り、第1実施形態の制御装置11は、利用者による楽曲の演奏に関する観測演奏情報xから演奏傾向Eを特定する要素(演奏解析部)として機能する。
Figure 0006708180
図5は、制御装置11が利用者の演奏傾向Eを推定する処理(以下「演奏解析処理」という)の内容を例示するフローチャートである。例えば演奏解析装置100に対する利用者からの指示を契機として図5の演奏解析処理が開始される。
演奏解析処理を開始すると、制御装置11は、楽曲内のM個の単位期間Q〜Qのうち未選択の最先の単位期間Qを選択する(S1)。制御装置11は、演奏推定処理S2と演奏観測処理S3と傾向特定処理S4とを単位期間Qについて実行する。演奏推定処理S2は演奏推定部21が実行し、演奏観測処理S3は演奏観測部22が実行し、傾向特定処理S4は傾向特定部23が実行する。なお、演奏観測処理S3の実行後に演奏推定処理S2を実行してもよい。
演奏推定処理S2は、楽曲情報Sと過去のP個の推定演奏情報ym−1 〜ym−P とを各ニューラルネットワークNに付与することで、相異なる候補傾向Cに対応するK個の推定演奏情報y 〜y を単位期間Qについて生成する処理(S21−S23)である。なお、楽曲内の先頭の単位期間Qが選択された段階では、初期値として用意された推定演奏情報yが楽曲情報Sとともに各ニューラルネットワークNに付与される。
具体的には、演奏情報生成部Gの係数特定部31は、楽曲情報Sのうち単位期間Qの周辺の解析期間Aに対応する複数の単位情報Um−w〜Um+wに応じた特徴情報F を、第1ニューラルネットワークNaにより生成する(S21)。係数特定部31は、特徴情報F と過去のP個の推定演奏情報ym−1 〜ym−P とに応じた線形予測係数amj を、第2ニューラルネットワークNbにより特定する(S22)。そして、演算処理部32は、線形予測係数amj と過去のP個の推定演奏情報ym−1 〜ym−P とから単位期間Qの推定演奏情報y を生成する(S23)。
演奏観測処理S3は、演奏装置13が出力する複数の指示情報Zの時系列から単位期間Qの観測演奏情報xを生成する処理である。傾向特定処理S4は、演奏推定処理S2で生成されたK個の推定演奏情報y 〜y と、演奏観測処理S3で生成された観測演奏情報xとから利用者の演奏傾向Eを推定する処理である。
傾向特定処理S4を実行すると、制御装置11は、楽曲内の全部(M個)の単位期間Q〜Qについて以上の処理(S2〜S4)が完了したか否かを判定する(S5)。未処理の単位期間Qがある場合(S5:NO)、制御装置11は、現時点で選択されている単位期間Qの直後の単位期間Qm+1を新たに選択して(S1)、演奏推定処理S2と演奏観測処理S3と傾向特定処理S4とを実行する。他方、楽曲内の全部の単位期間Q〜Qについて処理が完了すると(S5:YES)、制御装置11は、図5の演奏解析処理を終了する。演奏解析処理を終了する時点では、楽曲の全区間にわたる演奏傾向E〜Eが特定される。
以上に説明した通り、第1実施形態では、利用者による楽曲の演奏に関する観測演奏情報xから利用者の演奏傾向Eを特定することが可能である。第1実施形態では、相異なる候補傾向Cのもとで楽曲を演奏したときのK個の推定演奏情報y 〜y の各々が観測演奏情報xと対比される。したがって、K種類の候補傾向C〜Cの何れかを利用者の演奏傾向Eとして特定できる。
第1実施形態によれば、候補傾向Cが反映されたニューラルネットワークNに楽曲の楽曲情報Sを付与することで、当該候補傾向Cのもとで当該楽曲を演奏したときの推定演奏情報y を適切に生成することが可能である。また、候補傾向Cと楽曲情報Sとが付与された条件のもとで推定演奏情報y が観測される事後確率p(x|U,C)に応じて、K種類の候補傾向C〜Cの何れかが利用者の演奏傾向Eとして特定される。したがって、K種類の候補傾向C〜Cのうち最尤の演奏傾向Eを適切に特定することが可能である。
<第2実施形態>
本発明の第2実施形態を説明する。なお、以下に例示する各形態において作用または機能が第1実施形態と同様である要素については、第1実施形態の説明で使用した符号を流用して各々の詳細な説明を適宜に省略する。
第1実施形態の傾向特定部23は、前掲の数式(2)の通り、候補傾向Cと楽曲情報Sとが付与された条件のもとで観測演奏情報xが観測される事後確率p(x|U,C)が最大となる候補傾向Cを利用者の演奏傾向Eとして選択した。第2実施形態の傾向特定部23は、以下の数式(3)で表現される通り、事後確率p(x|U,C)と候補傾向Cの生起確率πとに応じて、K種類の候補傾向C〜Cの何れかを利用者の演奏傾向Eとして選択する。
Figure 0006708180
生起確率πは、候補傾向Cが生起される確率であり、候補傾向C毎に個別に設定される。具体的には、多数の演奏者の演奏について観測され易い候補傾向Cの生起確率πは大きい数値に設定され、演奏者が少数に限定される一般的でない候補傾向Cの生起確率πは小さい数値に設定される。例えば演奏解析装置100の提供者が、楽曲の演奏傾向の統計資料を参照して、各候補傾向Cの生起確率πを適切に設定する。なお、各候補傾向Cの生起確率πを、演奏解析装置100の利用者から指示された数値に設定してもよい。
数式(3)から理解される通り、第2実施形態の傾向特定部23は、K種類の候補傾向C〜Cのうち、事後確率p(x|U,C)と生起確率πとの積を最大化する候補傾向Cを、利用者の演奏傾向Eとして選択する。したがって、生起確率πが大きい候補傾向Cほど利用者の演奏傾向Eとして選択され易いという傾向がある。
傾向特定部23の動作以外は第1実施形態と同様である。したがって、第2実施形態においても第1実施形態と同様の効果が実現される。また、第2実施形態では、事後確率p(x|U,C)に加えて各候補傾向Cの生起確率πが演奏傾向Eの特定に加味される。したがって、K種類の候補傾向C〜Cの各々が現実の演奏の場面で観測され易いか否かという傾向のもとで、利用者の演奏傾向Eを高精度に推定できるという利点がある。
<第3実施形態>
図6は、第3実施形態における演奏解析装置100の構成を示すブロック図である。図6に例示される通り、第3実施形態の演奏推定部21は、演奏に関する特定の傾向(以下「基準傾向」という)CREFのもとで楽曲を演奏したときの推定演奏情報ymを単位期間Q毎に生成する。具体的には、第3実施形態の演奏推定部21は、第1実施形態における任意の1個の演奏情報生成部Gと同様の構成であり、基準傾向CREFが反映されたニューラルネットワークNを具備する。すなわち、演奏推定部21は、楽曲情報S(複数の単位情報Um−w〜Um+w)と過去のP個の推定演奏情報ym−1〜ym−PとをニューラルネットワークNに付与することで、基準傾向CREFが反映された推定演奏情報yを単位期間Qについて生成する。演奏観測部22の構成および動作は第1実施形態と同様である。
傾向特定部23は、演奏推定部21が生成した推定演奏情報yと演奏観測部22が生成した観測演奏情報xとを対比することで、利用者の演奏傾向Eを特定する。第3実施形態の演奏傾向Eは、推定演奏情報yと観測演奏情報xとの相関(例えば類似性)の指標である。すなわち、利用者の演奏の傾向と基準傾向CREFとの近似の度合を示す評価値が、演奏傾向Eとして特定される。例えば、模範的な演奏の傾向を基準傾向CREFとして設定すれば、利用者の演奏の習熟度(模範的な演奏にどれほど近いか)の指標として演奏傾向Eを利用できる。
以上の説明から理解される通り、第3実施形態によれば、利用者の演奏と基準傾向CREFとの関係の指標を演奏傾向Eとして特定できる。なお、第3実施形態の例示から理解される通り、相異なる候補傾向Cに対応するK個の推定演奏情報y 〜y を生成する構成、および、K種類の候補傾向C〜Cの何れかを利用者の演奏傾向Eとして選択する構成は、本発明において必須ではない。
<変形例>
以上に例示した各態様に付加される具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2個以上の態様を、相互に矛盾しない範囲で適宜に併合してもよい。
(1)単位期間Q毎にK種類の候補傾向C〜Cの何れかを選択する構成(第1実施形態または第2実施形態)では、演奏傾向Eとして選択される候補傾向Cが単位期間Q毎に変更され得る。他方、K種類の候補傾向C〜Cのなかには遷移し易い組合せと遷移し難い組合せとがある。以上の事情を考慮すると、任意の2種類の候補傾向Cの一方から他方に遷移する確率(以下「遷移確率」という)τを演奏傾向Eの特定に加味する構成も好適である。
具体的には、K種類の候補傾向C〜Cから2種類を選択する組合せ毎に、当該組合せの一方の候補傾向Ck1から他方の候補傾向Ck2に遷移する遷移確率τが設定される(k1=1〜K,k2=1〜K)。例えば、K種類の候補傾向C〜Cから重複を許容して2種類の候補傾向Cを選択する全通りの組合せについて遷移確率τが設定される。組合せの一方の候補傾向Ck1から他方の候補傾向Ck2に遷移し易いほど、当該組合せの遷移確率τは大きい数値に設定される。
傾向特定部23は、事後確率p(x|U,C)に加えて遷移確率τも加味して、K種類の候補傾向C〜Cの何れかを利用者の演奏傾向Eとして選択する。具体的には、傾向特定部23は、直前の演奏傾向Em−1として選択された候補傾向Cからの遷移確率τが高い候補傾向Cほど、単位期間Qの演奏傾向Eとして選択され易くなるように、K種類の候補傾向Cの何れかを演奏傾向Eとして選択する。以上の構成によれば、現実の演奏における傾向の遷移を反映した自然な組合せで演奏傾向Eを遷移させることが可能である。なお、事後確率p(x|U,C)と遷移確率τとに加えて第2実施形態の生起確率πを加味して利用者の演奏傾向Eを特定してもよい。
(2)前述の各形態では、単位期間Qを中心とした解析期間Aを例示したが、単位期間Qと解析期間Aとの関係は以上の例示に限定されない。解析期間A内において単位期間Qの過去に位置する単位期間の個数と後方に位置する単位期間の個数とを相違させてもよい。
(3)例えば移動体通信網またはインターネット等の通信網を介して端末装置(例えば携帯電話機またはスマートフォン)と通信するサーバ装置により演奏解析装置100を実現することも可能である。具体的には、演奏解析装置100は、端末装置から受信した指示情報Zと楽曲情報Sとから演奏傾向Eを順次に特定し、各演奏傾向Eを端末装置に送信する。なお、端末装置内の演奏観測部22が生成した観測演奏情報xを端末装置から演奏解析装置100に送信する構成では、演奏解析装置100から演奏観測部22が省略される。
(4)前述の各形態では、楽曲の演奏速度を推定演奏情報y として例示したが、推定演奏情報y が表す変数は以上の例示に限定されない。例えば、楽曲の演奏強度など、演奏者毎に相違し得る音楽的な表情に関する任意の変数が、推定演奏情報y として利用される。観測演奏情報xについても同様に、演奏速度には限定されない。すなわち、音楽的な表情に関する各種の変数(例えば演奏強度)が観測演奏情報xとして利用される。
(5)以上に例示した形態から、例えば以下の構成が把握される。
<態様1>
本発明の好適な態様(態様1)に係る演奏解析方法は、コンピュータが、利用者による楽曲の演奏に関する観測演奏情報と、特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報とから、前記利用者の演奏傾向を特定する。以上の態様によれば、利用者による楽曲の演奏に関する観測演奏情報から当該利用者の演奏傾向を特定することが可能である。
<態様2>
態様1の好適例(態様2)において、前記演奏傾向の特定は、相異なる複数の候補傾向の各々について、当該候補傾向のもとで前記楽曲を演奏したときの推定演奏情報を生成する演奏推定処理と、前記複数の候補傾向についてそれぞれ生成された複数の推定演奏情報の各々と前記観測演奏情報とを対比することで、前記複数の候補傾向の何れかを前記利用者の演奏傾向として特定する傾向特定処理とを含む。以上の態様では、相異なる候補傾向のもとで楽曲を演奏したときの複数の推定演奏情報の各々が観測演奏情報と対比される。したがって、複数の候補傾向の何れかを利用者の演奏傾向として特定することが可能である。
<態様3>
態様2の好適例(態様3)において、前記演奏推定処理では、前記複数の候補傾向の各々について、当該候補傾向が反映されたニューラルネットワークに、前記楽曲の内容を表す楽曲情報を付与することで、前記推定演奏情報を生成する。以上の態様では、候補傾向が反映されたニューラルネットワークに楽曲情報を付与することで、当該候補傾向のもとで楽曲を演奏したときの推定演奏情報を適切に生成することが可能である。
<態様4>
態様2または態様3の好適例(態様4)において、前記傾向特定処理では、前記各候補傾向と前記楽曲情報とが付与された条件のもとで前記観測演奏情報が観測される事後確率に応じて、前記複数の候補傾向の何れかを前記利用者の演奏傾向として特定する。以上の態様によれば、複数の候補傾向のうち最尤の演奏傾向を適切に特定することが可能である。
<態様5>
態様4の好適例(態様5)において、前記傾向特定処理では、前記各候補傾向に対応する事後確率と当該候補傾向の生起確率とに応じて、前記複数の候補傾向の何れかを前記利用者の演奏傾向として特定する。以上の態様によれば、例えば、複数の候補傾向の各々が現実の演奏の場面で観測され易いか否かという傾向のもとで、利用者の演奏傾向を高精度に推定できるという利点がある。
<態様6>
態様1の好適例(態様6)において、前記演奏傾向の特定は、特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報を生成する演奏推定処理と、前記推定演奏情報と前記観測演奏情報とを対比することで前記利用者の演奏傾向を特定する傾向特定処理とを含む。以上の態様によれば、利用者の演奏と特定の傾向との関係の指標を演奏傾向として特定できる。
<態様7>
本発明の好適な態様(態様7)に係るプログラムは、利用者による楽曲の演奏に関する観測演奏情報と、特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報とから、前記利用者の演奏傾向を特定する演奏解析部としてコンピュータを機能させる。以上の態様によれば、利用者による楽曲の演奏に関する観測演奏情報から当該利用者の演奏傾向を特定することが可能である。
態様7に係るプログラムは、例えばコンピュータが読取可能な記録媒体に格納された形態で提供されてコンピュータにインストールされる。記録媒体は、例えば非一過性(non-transitory)の記録媒体であり、CD-ROM等の光学式記録媒体(光ディスク)が好例であるが、半導体記録媒体や磁気記録媒体等の公知の任意の形式の記録媒体を包含し得る。なお、非一過性の記録媒体とは、一過性の伝搬信号(transitory, propagating signal)を除く任意の記録媒体を含み、揮発性の記録媒体を除外するものではない。また、通信網を介した配信の形態でプログラムをコンピュータに提供してもよい。
100…演奏解析装置、11…制御装置、12…記憶装置、13…演奏装置、21…演奏推定部、22…演奏観測部、23…傾向特定部、31…係数特定部、32…演算処理部。

Claims (8)

  1. 用者による楽曲の演奏に関する観測演奏情報と、特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報とから、前記利用者の演奏傾向を特定する
    コンピュータにより実現される演奏解析方法。
  2. 前記演奏傾向の特定は、
    相異なる複数の候補傾向の各々について、当該候補傾向のもとで前記楽曲を演奏したときの推定演奏情報を生成する演奏推定処理と、
    前記複数の候補傾向についてそれぞれ生成された複数の推定演奏情報の各々と前記観測演奏情報とを対比することで、前記複数の候補傾向の何れかを前記利用者の演奏傾向として特定する傾向特定処理とを含む
    請求項1の演奏解析方法。
  3. 前記演奏推定処理においては、前記複数の候補傾向の各々について、当該候補傾向が反映された学習モデルに、前記楽曲の内容を表す楽曲情報を付与することで、前記推定演奏情報を生成する
    請求項2の演奏解析方法。
  4. 前記傾向特定処理においては、前記各候補傾向と前記楽曲情報とが付与された条件のもとで前記観測演奏情報が観測される事後確率に応じて、前記複数の候補傾向の何れかを前記利用者の演奏傾向として特定する
    請求項2または請求項3の演奏解析方法。
  5. 前記傾向特定処理においては、前記各候補傾向に対応する事後確率と当該候補傾向の生起確率とに応じて、前記複数の候補傾向の何れかを前記利用者の演奏傾向として特定する
    請求項4の演奏解析方法。
  6. 前記演奏傾向の特定は、
    特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報を生成する演奏推定処理と、
    前記推定演奏情報と前記観測演奏情報とを対比することで前記利用者の演奏傾向を特定する傾向特定処理とを含む
    請求項1の演奏解析方法。
  7. 利用者による楽曲の演奏に関する観測演奏情報と、特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報とから、前記利用者の演奏傾向を特定する
    演奏解析装置。
  8. 利用者による楽曲の演奏に関する観測演奏情報と、特定の傾向のもとで前記楽曲を演奏したときの推定演奏情報とから、前記利用者の演奏傾向を特定する演奏解析部としてコンピュータを機能させるプログラム。
JP2017143981A 2017-07-25 2017-07-25 演奏解析方法、演奏解析装置およびプログラム Active JP6708180B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017143981A JP6708180B2 (ja) 2017-07-25 2017-07-25 演奏解析方法、演奏解析装置およびプログラム
CN201880049017.2A CN110959172B (zh) 2017-07-25 2018-07-25 演奏解析方法、演奏解析装置以及存储介质
PCT/JP2018/027837 WO2019022117A1 (ja) 2017-07-25 2018-07-25 演奏解析方法およびプログラム
US16/751,694 US11600252B2 (en) 2017-07-25 2020-01-24 Performance analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143981A JP6708180B2 (ja) 2017-07-25 2017-07-25 演奏解析方法、演奏解析装置およびプログラム

Publications (3)

Publication Number Publication Date
JP2019028107A JP2019028107A (ja) 2019-02-21
JP2019028107A5 JP2019028107A5 (ja) 2020-04-30
JP6708180B2 true JP6708180B2 (ja) 2020-06-10

Family

ID=65040186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143981A Active JP6708180B2 (ja) 2017-07-25 2017-07-25 演奏解析方法、演奏解析装置およびプログラム

Country Status (4)

Country Link
US (1) US11600252B2 (ja)
JP (1) JP6708180B2 (ja)
CN (1) CN110959172B (ja)
WO (1) WO2019022117A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708179B2 (ja) * 2017-07-25 2020-06-10 ヤマハ株式会社 情報処理方法、情報処理装置およびプログラム
JP6724938B2 (ja) * 2018-03-01 2020-07-15 ヤマハ株式会社 情報処理方法、情報処理装置およびプログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577561B2 (ja) * 1995-12-28 2004-10-13 カシオ計算機株式会社 演奏分析装置及び演奏分析方法
US6236966B1 (en) * 1998-04-14 2001-05-22 Michael K. Fleming System and method for production of audio control parameters using a learning machine
AUPP547898A0 (en) * 1998-08-26 1998-09-17 Canon Kabushiki Kaisha System and method for automatic music generation
TW594670B (en) * 2000-09-19 2004-06-21 Victor Company Of Japan A performance information recording device, performance information-compression equipment, and a telephone terminal unit
JP4111004B2 (ja) * 2003-02-28 2008-07-02 ヤマハ株式会社 演奏練習装置および演奏練習プログラム
JP2006030414A (ja) * 2004-07-13 2006-02-02 Yamaha Corp 音色設定装置及びプログラム
JP4457983B2 (ja) * 2005-06-27 2010-04-28 ヤマハ株式会社 演奏操作援助装置及びプログラム
JP5206378B2 (ja) * 2008-12-05 2013-06-12 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
JP5283289B2 (ja) 2009-02-17 2013-09-04 国立大学法人京都大学 音楽音響信号生成システム
JP5958041B2 (ja) * 2012-04-18 2016-07-27 ヤマハ株式会社 表情演奏リファレンスデータ生成装置、演奏評価装置、カラオケ装置及び装置
JP5935503B2 (ja) * 2012-05-18 2016-06-15 ヤマハ株式会社 楽曲解析装置および楽曲解析方法
EP2772904B1 (en) * 2013-02-27 2017-03-29 Yamaha Corporation Apparatus and method for detecting music chords and generation of accompaniment.
WO2014189137A1 (ja) * 2013-05-23 2014-11-27 ヤマハ株式会社 演奏解析方法及び演奏解析装置
KR101459324B1 (ko) * 2013-08-28 2014-11-07 이성호 음원 평가방법 및 이를 이용한 음원의 평가장치
JP2015191183A (ja) * 2014-03-28 2015-11-02 パイオニア株式会社 演奏評価システム、サーバ装置、端末装置、演奏評価方法及びコンピュータプログラム
CN106340286B (zh) * 2016-09-27 2020-05-19 华中科技大学 一种通用的实时乐器演奏评价系统

Also Published As

Publication number Publication date
CN110959172A (zh) 2020-04-03
US20200160820A1 (en) 2020-05-21
WO2019022117A1 (ja) 2019-01-31
CN110959172B (zh) 2023-10-31
US11600252B2 (en) 2023-03-07
JP2019028107A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
US10657934B1 (en) Enhancements for musical composition applications
JP6708179B2 (ja) 情報処理方法、情報処理装置およびプログラム
CN110246472B (zh) 一种音乐风格的转换方法、装置及终端设备
JP6724938B2 (ja) 情報処理方法、情報処理装置およびプログラム
WO2021166531A1 (ja) 推定モデル構築方法、演奏解析方法、推定モデル構築装置、および演奏解析装置
JP6708180B2 (ja) 演奏解析方法、演奏解析装置およびプログラム
CN111837184A (zh) 声音处理方法、声音处理装置及程序
Foulon et al. Automatic classification of guitar playing modes
JP7343012B2 (ja) 情報処理装置および情報処理方法
US11942106B2 (en) Apparatus for analyzing audio, audio analysis method, and model building method
WO2021166745A1 (ja) アレンジ生成方法、アレンジ生成装置、及び生成プログラム
JP7428182B2 (ja) 情報処理装置および方法、並びにプログラム
Srivatsan et al. Checklist models for improved output fluency in piano fingering prediction
JP6838357B2 (ja) 音響解析方法および音響解析装置
JP6596346B2 (ja) カラオケシステム
JP2007240552A (ja) 楽器音認識方法、楽器アノテーション方法、及び楽曲検索方法
US20230410676A1 (en) Information processing system, electronic musical instrument, information processing method, and machine learning system
JP7528971B2 (ja) 情報処理方法、情報処理システムおよびプログラム
Miranda et al. i-Berlioz: Towards interactive computer-aided orchestration with temporal control
Franjou Arty: Expressive timbre transfer using articulation detection for guitar
JP2023106169A (ja) 信号処理装置、及び信号処理方法
JP2019139061A (ja) コード提示方法およびプログラム
CN118379977A (zh) 一种音色匹配模型训练方法及音色自动匹配方法
JP4760348B2 (ja) 楽曲選択装置および楽曲選択用コンピュータプログラム
CN116917981A (zh) 音响解析方法、音响解析系统及程序

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R151 Written notification of patent or utility model registration

Ref document number: 6708180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151