JP6702742B2 - Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method - Google Patents

Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method Download PDF

Info

Publication number
JP6702742B2
JP6702742B2 JP2016015825A JP2016015825A JP6702742B2 JP 6702742 B2 JP6702742 B2 JP 6702742B2 JP 2016015825 A JP2016015825 A JP 2016015825A JP 2016015825 A JP2016015825 A JP 2016015825A JP 6702742 B2 JP6702742 B2 JP 6702742B2
Authority
JP
Japan
Prior art keywords
fuel cell
independently
hydrogen peroxide
metal complex
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016015825A
Other languages
Japanese (ja)
Other versions
JP2017135061A (en
Inventor
誠司 小江
誠司 小江
正志 浅野
正志 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Kyushu University NUC
Original Assignee
JNC Corp
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, Kyushu University NUC filed Critical JNC Corp
Priority to JP2016015825A priority Critical patent/JP6702742B2/en
Publication of JP2017135061A publication Critical patent/JP2017135061A/en
Application granted granted Critical
Publication of JP6702742B2 publication Critical patent/JP6702742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、酸素と過酸化水素の両方を還元できる金属錯体に関し、特に、燃料電池用触媒として機能する金属錯体に関する。更に、該金属錯体を燃料電池用触媒に用いた燃料電池および発電方法に関する。 The present invention relates to a metal complex capable of reducing both oxygen and hydrogen peroxide, and more particularly to a metal complex functioning as a fuel cell catalyst. Further, the invention relates to a fuel cell and a power generation method using the metal complex as a catalyst for a fuel cell.

水素−酸素燃料電池のカソードでは酸素を還元している。現在、カソードには白金触媒が用いられている。カソードにおける酸素の還元反応は4電子還元で水を与えるが、還元が十分でないと2電子還元を起こし過酸化水素(H)を生じる。過酸化水素は燃料電池において触媒やプロトン透過膜(電解質膜)を劣化させる要因となる。 Oxygen is reduced at the cathode of the hydrogen-oxygen fuel cell. Currently, a platinum catalyst is used for the cathode. The reduction reaction of oxygen at the cathode gives water by 4-electron reduction, but if the reduction is not sufficient, 2-electron reduction occurs and hydrogen peroxide (H 2 O 2 ) is produced. Hydrogen peroxide becomes a factor that deteriorates the catalyst and the proton permeable membrane (electrolyte membrane) in the fuel cell.

酸素を還元する金属錯体は非特許文献1に報告されており、それらを用いた燃料電池は非特許文献2及び特許文献1に記載されている。そして、過酸化水素を生じない燃料電池として、錯体触媒を固定したカソードを用いた燃料電池が開発されている。 Non-Patent Document 1 reports a metal complex that reduces oxygen, and Non-Patent Document 2 and Patent Document 1 describe a fuel cell using them. As a fuel cell that does not generate hydrogen peroxide, a fuel cell that uses a cathode on which a complex catalyst is fixed has been developed.

国際公開第2010/143663号International Publication No. 2010/143663

Angew.Chem.Int.Ed.,published onlineAngew. Chem. Int. Ed. , Published online Angew.Chem.Int.Ed.,2011,50,11202−11205Angew. Chem. Int. Ed. , 2011, 50, 11202-11205

白金は高価であり代替触媒が求められているが、白金触媒だけでは過酸化水素の発生を抑えることは困難であり、過酸化水素を効率よく還元できる電極触媒が求められている。また、金属錯体を用いた触媒は選択性が高いが、活性および安定性に問題がある。 Although platinum is expensive and an alternative catalyst is required, it is difficult to suppress the generation of hydrogen peroxide only with a platinum catalyst, and an electrode catalyst that can efficiently reduce hydrogen peroxide is required. Further, a catalyst using a metal complex has high selectivity, but has problems in activity and stability.

従って、本発明は、酸素と過酸化水素の両方を還元する能力を有し、燃料電池用触媒として機能する金属錯体、およびそれをカソード電極に用いた燃料電池を提供することを目的とする。 Therefore, it is an object of the present invention to provide a metal complex having the ability to reduce both oxygen and hydrogen peroxide and functioning as a fuel cell catalyst, and a fuel cell using the same as a cathode electrode.

本発明者らは、上記課題を検討した結果、特定の異種二核金属錯体が酸素と過酸化水素の両者を還元できることを見出し、前記触媒をカソードに固定した燃料電池を作製し、酸素ガスおよび過酸化水素のどちらを用いても燃料電池として機能することを確認した。更に、過酸化水素を含む酸素ガスを用いても電池性能は落ちないことを確認し、本発明を完成させた。 As a result of studying the above problems, the present inventors have found that a specific heterobinuclear metal complex can reduce both oxygen and hydrogen peroxide, and produced a fuel cell in which the catalyst is fixed to the cathode, and oxygen gas and It was confirmed that both hydrogen peroxide functions as a fuel cell. Furthermore, it was confirmed that the battery performance did not deteriorate even when oxygen gas containing hydrogen peroxide was used, and the present invention was completed.

すなわち、本発明は下記の通りである。
1.下記式(1)で表される金属錯体および下記式(2)で表される金属錯体を用いて、酸素および過酸化水素を還元する方法。
That is, the present invention is as follows.
1. A method of reducing oxygen and hydrogen peroxide using a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2).

Figure 0006702742
Figure 0006702742

式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。 In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

Figure 0006702742
Figure 0006702742

式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
2.過酸化水素の還元反応が、下記の工程で示される前記1に記載の方法。
(工程A)上記式(2)で表される異種二核ペルオキソ錯体[M−O]を還元し異種二核中間体[M]を生成する工程。
[M−O]+(H+2e)→[M]+2H
(工程B)過酸化水素(H)に異種二核中間体[M]を作用させ、異種二核ペルオキソ錯体[M−O]を再生する工程。
+[M]→[M−O]+2H
3.下記式(2)で表される異種二核ペルオキソ錯体[M−O]を含むカソード電極を用いることを特徴とする水素−過酸化水素燃料電池。
In Formula (2), l, m, and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
2. The method according to 1 above, wherein the reduction reaction of hydrogen peroxide is shown in the following steps.
(Step A) A step of reducing the heterogeneous binuclear peroxo complex [MO 2 ] represented by the above formula (2) to produce a heterogeneous binuclear intermediate [M * ].
[M−O 2 ]+(H + +2e )→[M * ]+2H 2 O
(Step B) A step of reacting hydrogen peroxide (H 2 O 2 ) with a hetero binuclear intermediate [M * ] to regenerate the hetero binuclear peroxo complex [MO 2 ].
H 2 O 2 + [M * ] → [M-O 2] + 2H +
3. Hydrogen characterized by using a cathode comprising a heterologous binuclear peroxo complex represented by the following formula (2) [M-O 2 ] - hydrogen peroxide the fuel cell.

Figure 0006702742
Figure 0006702742

式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
4.下記式(1)で表される金属錯体および下記式(2)で表される金属錯体を含むカソード電極を用い、カソードガスとして過酸化水素を含むことを特徴とする水素−過酸化水素燃料電池。
In Formula (2), l, m, and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
4. A hydrogen- hydrogen peroxide fuel cell comprising a cathode electrode containing a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2), and containing hydrogen peroxide as a cathode gas. ..

Figure 0006702742
Figure 0006702742

式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。 In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

Figure 0006702742
Figure 0006702742

式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
5.下記式(1)で表される金属錯体および下記式(2)で表される金属錯体から選択される少なくとも一つを含有する燃料電池用電極触媒を用いた発電方法。
In Formula (2), l, m, and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
5. A power generation method using a fuel cell electrode catalyst containing at least one selected from a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2).

Figure 0006702742
Figure 0006702742

式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。 In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

Figure 0006702742
Figure 0006702742

式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。 In Formula (2), l, m, and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

本発明の酸素および過酸化水素を還元する方法は、酸素と過酸化水素を両方還元できるニッケル・ルテニウム錯体を電極材料に用いることにより、燃料電池用電極において、過酸化水素が発生しても性能低下しない電極触媒を提供できる。そのため、現行の水素−酸素燃料電池の問題を解決することが可能であり、電気エネルギーの効率向上に寄与する効果は大きい。 INDUSTRIAL APPLICABILITY The method for reducing oxygen and hydrogen peroxide of the present invention uses a nickel-ruthenium complex capable of reducing both oxygen and hydrogen peroxide as an electrode material, so that even if hydrogen peroxide is generated in a fuel cell electrode, performance is improved. An electrode catalyst that does not deteriorate can be provided. Therefore, it is possible to solve the problem of the current hydrogen-oxygen fuel cell, and the effect of contributing to the improvement of the efficiency of electric energy is great.

図1は、[NiII(N)RuII(HO)(η−CMe)](NO)を電極触媒に用いた水素−過酸化水素燃料電池評価実験の結果を示す。FIG. 1 shows a hydrogen-hydrogen peroxide fuel cell evaluation experiment using [Ni II (N 2 S 2 )Ru II (H 2 O)(η 5 -C 5 Me 5 )](NO 3 ) as an electrode catalyst. The results are shown. 図2は、[NiII(N)RuII(HO)(η−CMe)](NO)と白金との混合物を電極触媒に用いた水素−酸素燃料電池評価実験の結果を示す。FIG. 2 shows a hydrogen-oxygen fuel cell using a mixture of [Ni II (N 2 S 2 )Ru II (H 2 O)(η 5 -C 5 Me 5 )](NO 3 ) and platinum as an electrode catalyst. The result of an evaluation experiment is shown. 図3は、[NiII(N)RuII(HO)(η−CMe)](NO)と白金との混合物を電極触媒に用いた水素−酸素/過酸化水素燃料電池評価実験の結果を示す。FIG. 3 shows hydrogen-oxygen/peroxide using a mixture of [Ni II (N 2 S 2 )Ru II (H 2 O)(η 5 -C 5 Me 5 )](NO 3 ) and platinum as an electrocatalyst. The result of a hydrogen oxide fuel cell evaluation experiment is shown.

以下、本発明を更に詳しく説明するが、本発明の範囲はそれに限定されない。 Hereinafter, the present invention will be described in more detail, but the scope of the present invention is not limited thereto.

本発明の異種二核錯体を用いて水素および一酸化炭素を酸化する方法および燃料電池は、出発物質として、下記式(1)及び下記式(2)で表される異種二核錯体を用いる。 The method for oxidizing hydrogen and carbon monoxide using the heterobinuclear complex and the fuel cell of the present invention use the heterobinuclear complex represented by the following formulas (1) and (2) as a starting material.

Figure 0006702742
Figure 0006702742

前記式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。 In the above formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

Figure 0006702742
Figure 0006702742

前記式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。 In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

前記異種二核錯体を用いたときの過酸化水素の還元反応は、下記の工程で示される。
(工程A)前記式(2)で表される異種二核ペルオキソ錯体[M−O]を還元し異種二核中間体[M]を生成する工程。
[M−O]+(H+2e)→[M]+2H
(工程B)過酸化水素(H)に異種二核中間体[M]を作用させ、異種二核ペルオキソ錯体[M−O]を再生する工程。
+[M]→[M−O]+2H
The reduction reaction of hydrogen peroxide when using the heterogeneous binuclear complex is shown in the following steps.
(Step A) to produce the formula (2) reducing the heterologous binuclear peroxo complex [M-O 2] represented by the heterologous binuclear intermediates [M *].
[M−O 2 ]+(H + +2e )→[M * ]+2H 2 O
(Step B) A step of reacting hydrogen peroxide (H 2 O 2 ) with a hetero binuclear intermediate [M * ] to regenerate the hetero binuclear peroxo complex [MO 2 ].
H 2 O 2 + [M * ] → [M-O 2] + 2H +

Figure 0006702742
Figure 0006702742

前記式(1)及び式(2)で表される本願発明に使用する金属錯体の製造方法は特に限定されるものではなく、金属錯体に配位する配位子に応じて適宜好ましい製造方法を従来公知の方法から選択し、または、組み合わせて用いればよい。また、上記金属錯体として市販されているものを利用しても差し支えない。 The method for producing the metal complex represented by Formula (1) and Formula (2) used in the present invention is not particularly limited, and a preferable production method is appropriately selected depending on the ligand coordinated to the metal complex. It may be selected from conventionally known methods or used in combination. Also, commercially available metal complexes may be used.

(燃料電池用電極触媒)
本発明に係る燃料電池用電極触媒は、上記金属錯体を含有している。本発明に係る燃料電池用電極触媒は、どのような燃料電池にも好ましく用いることができるが、特に固体高分子型燃料電池により好ましく用いることができる。
(Fuel cell electrode catalyst)
The fuel cell electrode catalyst according to the present invention contains the above metal complex. The fuel cell electrode catalyst according to the present invention can be preferably used in any fuel cell, and particularly preferably used in a polymer electrolyte fuel cell.

固体高分子型燃料電池は、一般的には電解質膜をアノードとカソードとで挟んで構成され、燃料である水素等と酸化剤である酸素(または空気)から電気化学反応を用いて電気と熱エネルギーを取り出す。このとき、カソード(正極または空気極ともいう)では酸化剤の還元が起こる。 A polymer electrolyte fuel cell is generally configured by sandwiching an electrolyte membrane between an anode and a cathode, and uses an electrochemical reaction from hydrogen, which is a fuel, and oxygen (or air), which is an oxidant, to generate electricity and heat. Extract energy. At this time, the oxidant is reduced at the cathode (also referred to as the positive electrode or the air electrode).

燃料としては、水素の他、ガソリン、メタノール、ジエチルエーテルまたは炭化水素等を用いることもでき、これらを水素に改質して燃料電池に供給する。また、メタノールまたはジエチルエーテル等を直接燃料として供給可能な直接型の燃料電池にも、本発明に係る燃料電池用電極触媒を用いることができる。 As the fuel, in addition to hydrogen, gasoline, methanol, diethyl ether, hydrocarbon or the like can be used, and these are reformed into hydrogen and supplied to the fuel cell. Further, the fuel cell electrode catalyst according to the present invention can also be used in a direct fuel cell capable of supplying methanol, diethyl ether, or the like as a direct fuel.

本発明に掛かる燃料電池用電極触媒は、Ni/Ru金属錯体から選ばれる1以上の金属錯体を含有していればよい。従って、本発明に係る燃料電池用電極触媒は、前記金属錯体から選ばれる単一の金属錯体を含有していてもよいし、前記金属錯体から選ばれる2種類以上の金属錯体を含有していてもよい。 The fuel cell electrode catalyst according to the present invention may contain at least one metal complex selected from Ni/Ru metal complexes. Therefore, the fuel cell electrode catalyst according to the present invention may contain a single metal complex selected from the above metal complexes, or may contain two or more kinds of metal complexes selected from the above metal complexes. Good.

また、本発明に係る燃料電池用電極触媒は、上記金属錯体のみを含有していてもよいし、必要に応じて他の成分を含有していてもよい。 Further, the fuel cell electrode catalyst according to the present invention may contain only the above metal complex, or may contain other components as necessary.

かかる他の成分としては、例えば、バルカン(Cabot社製)、カーボンブラック、アセチレンブラック、ファーネスブラック、グラファイト、カーボンナノチューブ、カーボンナノファイバー、黒煙、炭素繊維および活性炭等の触媒担持体;ポリアセチレン、ポリピロール、ポリチオール、ポリイミダゾール、ポリピリジン、ポリアニリンおよびポリチオフェン等の導電性高分子を挙げることができる。 Examples of such other components include catalyst supports such as vulcan (manufactured by Cabot), carbon black, acetylene black, furnace black, graphite, carbon nanotubes, carbon nanofibers, black smoke, carbon fibers and activated carbon; polyacetylene, polypyrrole. Examples thereof include conductive polymers such as polythiol, polyimidazole, polypyridine, polyaniline and polythiophene.

他の成分が含有される場合の上記燃料電池用電極触媒に含有される分子性金属錯体と、上記他の成分との割合も特に限定されるものではないが、分子性金属錯体に対する上記触媒担持体の割合は好ましくは0重量%以上50重量%以下であり、分子性金属錯体に対する上記導電性高分子の割合は好ましくは0重量%以上50重量%以下である。 The ratio of the molecular metal complex contained in the fuel cell electrode catalyst when the other component is contained and the other component is not particularly limited, but the catalyst is supported on the molecular metal complex. The ratio of the body is preferably 0% by weight or more and 50% by weight or less, and the ratio of the conductive polymer to the molecular metal complex is preferably 0% by weight or more and 50% by weight or less.

さらに、本発明に係る燃料電池用電極触媒には、必要に応じてナフィオン(登録商標)、フレミオン(登録商標)、アシプレックス(登録商標)等のプロトン伝導性高分子電解質が含有されていてもよい。 Further, the fuel cell electrode catalyst according to the present invention may contain a proton conductive polymer electrolyte such as Nafion (registered trademark), Flemion (registered trademark), Aciplex (registered trademark), if necessary. Good.

(本発明に係る燃料電池用電極触媒の利用)
本発明に係る燃料電池用電極触媒は、安価、かつ、触媒能力の制御が容易にできることから、これを用いた燃料電池用電極、燃料電池、及び、発電方法に好ましく用いることができる。それゆえ、本発明には、上記燃料電池用電極触媒を用いた燃料電池用電極、燃料電池、及び、発電方法も含まれる。
(Use of Fuel Cell Electrode Catalyst According to the Present Invention)
Since the fuel cell electrode catalyst according to the present invention is inexpensive and can easily control the catalyst ability, it can be preferably used for a fuel cell electrode, a fuel cell, and a power generation method using the same. Therefore, the present invention also includes a fuel cell electrode using the above fuel cell electrode catalyst, a fuel cell, and a power generation method.

(燃料電池用電極)
本発明に係る燃料電池用電極は、上記燃料電池用電極触媒を含有するものであれば特に限定されるものではなく、燃料電池の種類に応じて、従来公知の様々な構成を備えうる。
(Fuel cell electrode)
The fuel cell electrode according to the present invention is not particularly limited as long as it contains the fuel cell electrode catalyst, and may have various conventionally known configurations depending on the type of the fuel cell.

例えば、固体高分子型燃料電池を例として挙げれば、本発明に係る燃料電池用電極は、カソード用の、触媒層付ガス拡散層電極として構成することができる。かかる触媒層付ガス拡散層電極では、上記燃料電池用電極触媒を含有する触媒層は、ガス拡散層上に積層されている。上記ガス拡散層は、カーボンクロスまたはカーボンペーパー等のような多孔質カーボン等からなっており、ガス流路から供給された燃料または酸素(空気)を拡散させ効率よく触媒に供給するようになっている。 For example, taking a polymer electrolyte fuel cell as an example, the fuel cell electrode according to the present invention can be configured as a gas diffusion layer electrode with a catalyst layer for a cathode. In such a gas diffusion layer electrode with a catalyst layer, the catalyst layer containing the fuel cell electrode catalyst is laminated on the gas diffusion layer. The gas diffusion layer is made of porous carbon or the like such as carbon cloth or carbon paper, etc., so that the fuel or oxygen (air) supplied from the gas flow path is diffused and efficiently supplied to the catalyst. There is.

かかるガス拡散層上に形成された触媒層は、例えば、上記燃料電池用電極触媒を、溶液、懸濁液、スラリーまたはペースト等として、上記ガス拡散層に塗布し、乾燥させることにより形成される。ここで、上記燃料電池用電極触媒を、溶液、懸濁液、スラリーまたはペースト等とするための媒体も特に限定されるものではなく、従来公知の媒体から適宜選択して用いればよい。塗布量は0.1〜10mg/mとすることが好ましく、より好ましくは0.5〜5mg/mである。 The catalyst layer formed on the gas diffusion layer is formed, for example, by applying the fuel cell electrode catalyst as a solution, a suspension, a slurry or a paste to the gas diffusion layer and then drying it. .. Here, the medium for making the above-mentioned fuel cell electrode catalyst into a solution, suspension, slurry, paste or the like is not particularly limited, and may be appropriately selected and used from conventionally known media. The coating amount is preferably set to 0.1 to 10 mg / m 2, more preferably from 0.5 to 5 mg / m 2.

なお、上記触媒層は、上記燃料電池用電極触媒に加え、必要に応じて、上記触媒担持体、導電性高分子またはアイオノマー等を含有していてもよい。上記触媒担持体、導電性高分子またはアイオノマー等は、上記燃料電池用電極触媒の溶液、懸濁液、スラリーまたはペースト等に添加してもよいし、上記燃料電池用電極触媒の溶液、懸濁液、スラリーまたはペースト等とは別に、溶液、懸濁液、溶液、スラリーまたはペースト等として、触媒層を塗布する前、同時、又は後に塗布してもよい。 In addition to the fuel cell electrode catalyst, the catalyst layer may contain the catalyst carrier, a conductive polymer, an ionomer, or the like, if necessary. The catalyst carrier, the conductive polymer or the ionomer may be added to the solution, suspension, slurry or paste of the fuel cell electrode catalyst, or the fuel cell electrode catalyst solution, suspension. Apart from the liquid, slurry or paste, etc., it may be applied as a solution, suspension, solution, slurry or paste etc. before, simultaneously with or after the catalyst layer is applied.

(燃料電池)
本発明に係る燃料電池の構成は、通常燃料電池に採用される構成であれば特に限定されるものではないが、例えば、少なくとも電解質膜、アノードおよびカソードを備え、電解質膜をアノードとカソードとで挟んだ構造を有している。
(Fuel cell)
The configuration of the fuel cell according to the present invention is not particularly limited as long as it is a configuration normally adopted in a fuel cell. For example, at least an electrolyte membrane, an anode and a cathode are provided, and the electrolyte membrane includes an anode and a cathode. It has a sandwiched structure.

かかる燃料電池は、例えば、上述したように、カソード用の触媒層付ガス拡散層電極およびアノード用の触媒層付ガス拡散層電極を作製し、これらの触媒層付ガス拡散層電極の間に、触媒層が電解質膜を挟んで対向するように電解質膜を挟み、膜電極接合体(MEA)を作製すればよい。かかる膜電極接合体を燃料電池セルに組み込んで使用することができる。 Such a fuel cell, for example, as described above, produces a gas diffusion layer electrode with a catalyst layer for a cathode and a gas diffusion layer electrode with a catalyst layer for an anode, and between these gas diffusion layer electrodes with a catalyst layer, A membrane electrode assembly (MEA) may be produced by sandwiching the electrolyte membrane so that the catalyst layers face each other across the electrolyte membrane. Such a membrane electrode assembly can be incorporated into a fuel cell and used.

ここで、本発明に係る燃料電池は、上記燃料電池用電極触媒を、カソードに含有していればよい。対向する電極触媒には、従来公知の触媒を用いればよく、例えば、白金単体、白金合金等を含有する触媒を用いればよい。 Here, the fuel cell according to the present invention may include the above-mentioned fuel cell electrode catalyst in the cathode. As the facing electrode catalyst, a conventionally known catalyst may be used, and for example, a catalyst containing a simple substance of platinum or a platinum alloy may be used.

上記電解質膜は、水素イオン伝導性の高い高分子膜であれば特に限定されるものではなく、ナフィオン(登録商標)、フレミオン(登録商標)またはアシプレックス(登録商標)のパーフルオロスルホン酸系のプロトン交換膜等、通常用いられる電解質膜を用いればよい。 The electrolyte membrane is not particularly limited as long as it is a polymer membrane having high hydrogen ion conductivity, and is made of Nafion (registered trademark), Flemion (registered trademark) or Aciplex (registered trademark) perfluorosulfonic acid type. A commonly used electrolyte membrane such as a proton exchange membrane may be used.

(発電方法)
本発明に係る発電方法は、上記燃料電池用電極触媒を用いて、燃料の酸化反応を行う工程、および/または、上記燃料電池用電極触媒を用いて、酸化剤の還元反応を行う工程を含んでいればよい。すなわち、本発明に係る発電方法は、上記燃料電池用電極触媒を用いて、燃料の酸化反応を行う工程、および、上記燃料電池用電極触媒を用いて、酸化剤の還元反応を行う工程の両方を含んでいてもよいし、いずれか一方を含んでいてもよい。
(Power generation method)
A power generation method according to the present invention includes a step of performing a fuel oxidation reaction using the fuel cell electrode catalyst, and/or a step of performing an oxidant reduction reaction using the fuel cell electrode catalyst. All you have to do is That is, the power generation method according to the present invention includes both a step of performing a fuel oxidation reaction using the fuel cell electrode catalyst and a step of performing a reduction reaction of an oxidant using the fuel cell electrode catalyst. May be included, or either one may be included.

より具体的には、例えば、本発明に係る発電方法は、上記燃料電池用電極触媒を用いて水素分子から電子を放出させて水素イオンとする工程、および/または、上記燃料電池用電極触媒を用いて、酸素分子、水素イオンおよび電子を反応させて水を生成する工程を含む。 More specifically, for example, the power generation method according to the present invention includes a step of releasing electrons from hydrogen molecules into hydrogen ions by using the fuel cell electrode catalyst, and/or the fuel cell electrode catalyst. And the step of reacting molecular oxygen, hydrogen ions and electrons to produce water.

本発明に係る発電方法は、従来公知の方法により行えばよく、特に限定されるものではないが、一例を説明すると、燃料電池のアノード側に水素ガスを、カソード側に酸素を供給する。このとき水素ガスおよび酸素はバブラーを通して加湿してもよい。この際、本発明における電極触媒を用いると、カソード側に過酸化水素を供給してもよく、過酸化水素の濃度が好ましくは10%〜30%、より好ましくは25〜30%であれば、燃料電池として機能する。 The power generation method according to the present invention may be performed by a conventionally known method and is not particularly limited, but to explain one example, hydrogen gas is supplied to the anode side and oxygen is supplied to the cathode side of the fuel cell. At this time, hydrogen gas and oxygen may be humidified through a bubbler. At this time, when the electrode catalyst of the present invention is used, hydrogen peroxide may be supplied to the cathode side, and if the concentration of hydrogen peroxide is preferably 10% to 30%, more preferably 25% to 30%, Functions as a fuel cell.

アノード側から水素ガスが供給されると、水素ガスが上記燃料電池用電極触媒の作用によって水素分子から電子を放出して水素イオンとなる。この水素イオンは電解質膜を通過して対向するカソードに移動する。カソードでは、上記燃料電池用電極触媒の作用により、移動してきた水素イオンと、カソードに供給される酸素分子とが反応して水を生成する。このとき、電線に生じる電子の流れが直流電流として取り出される。 When hydrogen gas is supplied from the anode side, the hydrogen gas releases electrons from hydrogen molecules by the action of the fuel cell electrode catalyst to become hydrogen ions. The hydrogen ions pass through the electrolyte membrane and move to the opposite cathode. At the cathode, due to the action of the fuel cell electrode catalyst, the moving hydrogen ions react with oxygen molecules supplied to the cathode to generate water. At this time, the flow of electrons generated in the electric wire is extracted as a direct current.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明の範囲はそれに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited thereto.

(材料および方法)
全ての実験は、標準のシュレンク技術及びグローブボックスを用いることによってN又はAr雰囲気下で実施した。
(Materials and methods)
All experiments were performed under N 2 or Ar atmosphere by using standard Schlenk technique and glove box.

[NiII(N)RuII(HO)(η−CMe)](NO)及び[NiII(N)RuIV(η−O)(η−CMe)](NO)は、文献(Chem.Asian J. 2012,7,1394−1400)に記載の方法により[NiII(N)RuII(HO)(η−CMe)](NO)及び[NiII(N)RuIV(η−O)(η−CMe)](NO)において記述されている方法によって調製した(N=N、N’−dimethyl−3,7−diazanonane−1,9−dithiolato)。 [Ni II (N 2 S 2 ) Ru II (H 2 O) (η 5 -C 5 Me 5)] (NO 3) and [Ni II (N 2 S 2 ) Ru IV (η 2 -O 2) ( [eta 5 -C 5 Me 5 ]](NO 3 ) is [Ni II (N 2 S 2 )Ru II (H 2 O) by the method described in the literature (Chem. Asian J. 2012, 7, 1394-1400). ) (η 5 -C 5 Me 5 )] (NO 3) and [Ni II (N 2 S 2 ) Ru IV (η 2 -O 2) (η 5 -C 5 Me 5)] described in (NO 3) It was prepared by the method (N 2 S 2 = N, N'-dimethyl-3,7-diazanonane-1,9-dithiolato).

ガス、Oガスは、太陽東洋酸素株式会社から購入した。Hはシグマアルドリッチジャパンから購入した(純度30%)。HOは、和光純薬工業株式会社から購入した。これらは、更に精製することなしに使用した。 H 2 gas and O 2 gas were purchased from Taiyo Toyo Oxygen Co., Ltd. H 2 O 2 was purchased from Sigma-Aldrich Japan (purity 30%). H 2 O was purchased from Wako Pure Chemical Industries, Ltd. These were used without further purification.

・赤外スペクトル
KBrディスク中に含まれる固体化合物の赤外スペクトルは、25℃で2cm−1の標準解像度を用いて400から4000cm−1までの領域をサーモ・ニコレーNEXUS8700FR−IR計器で測定した。
And infrared spectrum of the solid compound contained in the infrared spectrum in KBr disc was measured area from 400 using a standard resolution of 2 cm -1 at 25 ° C. until 4000 cm -1 in Thermo Nicolet NEXUS8700FR-IR instrument.

・紫外線可視スペクトル
紫外線可視スペクトルは、25℃にて日本分光V−670 UV−Visible−NIR分光計(セルの長さ1.0cm)で測定した。
-UV visible spectrum The UV visible spectrum was measured with a JASCO V-670 UV-Visible-NIR spectrometer (cell length 1.0 cm) at 25°C.

・元素分析データ
元素分析データは、パーキンエルマー2400IIシリーズCHNS/O分析器によって得た。
Elemental analysis data Elemental analysis data was obtained with a Perkin Elmer 2400II series CHNS/O analyzer.

・X線結晶学的解析
測定は、共焦点単色化Mo−Ka放射光(l=0.7107Å)を備えたリガク/MSCサターンCCD回析装置で行った。データを集め、CrystalClaerプログラム(リガク社)を用いて処理した。全ての計算は、モレキュラー・ストラクチャー・コーポレーションのteXan結晶学ソフトウェア・パッケージを用いて実施した。
-X-ray crystallographic analysis The measurement was performed with a Rigaku/MSC Saturn CCD diffractometer equipped with confocal monochromatic Mo-Ka synchrotron radiation (l = 0.7107Å). Data were collected and processed using the CrystalClaer program (Rigaku). All calculations were performed using Molecular Structure Corporation's teXan crystallography software package.

[実施例1]ニッケル・ルテニウムアクア錯体[NiII(N)RuII(HO)(η−CMe)](NO)を用いたOの触媒的還元反応
[NiII(N)RuII(HO)(η−CMe)](NO)(3.0mg)を含むメタノール溶液(200μL)に18(5mL)を加えた(N=N、N’−dimethyl−3,7−diazanonane−1,9−dithiolato)。その溶液にヒドロキノン(5.5mg)を含むメタノール溶液(60μL)およびNaBH(1.9mg)のメタノール溶液(100μL)、HBF(6.8μL)を加え、6時間撹拌した。得られた溶液にカリボール(17mg)を加え、生じた沈殿をろ別した。得られた溶液をGS−MSで分析することにより、H 18Oを定量し、TONを算出した(TON=0.1)。
Example 1 Catalytic reduction reaction of O 2 using nickel-ruthenium aqua complex [Ni II (N 2 S 2 )Ru II (H 2 O)(η 5 -C 5 Me 5 )](NO 3 ). 18 O 2 (5 mL) was added to a methanol solution (200 μL) containing [Ni II (N 2 S 2 )Ru II (H 2 O)(η 5 -C 5 Me 5 )](NO 3 ) (3.0 mg). (N 2 S 2 =N, N′-dimethyl-3,7-diazanone-1,9-dithiolato). A methanol solution (60 μL) containing hydroquinone (5.5 mg), a methanol solution of NaBH 4 (1.9 mg) (100 μL), and HBF 4 (6.8 μL) were added to the solution, and the mixture was stirred for 6 hours. Calibor (17 mg) was added to the obtained solution, and the generated precipitate was filtered off. The resulting solution by analyzing at GS-MS, to quantitate the H 2 18 O, was calculated TON (TON = 0.1).

[実施例2]ニッケル・ルテニウムペルオキソ錯体[NiII(N)RuIV(η−O)(η−CMe)](NO)を用いたHの触媒的還元反応
[NiII(N)RuIV(η−O)(η−CMe)](NO) (3.0mg)のメタノール溶液(200μL)にヒドロキノン(5.5mg)のメタノール溶液(100μL)および2% H 18/HO(60μL)、HBF(6.8μL)を加え、6時間撹拌した。得られた溶液にカリボール(17mg)を加え、生じた沈殿をろ別した。得られた溶液をGS−MSで分析することにより、H 18Oを定量し、TONを算出した(TON=1.3)。
EXAMPLE 2 Nickel-ruthenium peroxo complex [Ni II (N 2 S 2 ) Ru IV (η 2 -O 2) (η 5 -C 5 Me 5)] the of H 2 O 2 was used (NO 3) catalytic reduction [Ni II (N 2 S 2 ) Ru IV (η 2 -O 2) (η 5 -C 5 Me 5)] (NO 3) (3.0mg) in methanol (200 [mu] L) in hydroquinone ( 5.5 mg) of a methanol solution (100 μL), 2% H 2 18 O 2 /H 2 O (60 μL) and HBF 4 (6.8 μL) were added, and the mixture was stirred for 6 hours. Calibor (17 mg) was added to the obtained solution, and the generated precipitate was filtered off. The resulting solution by analyzing at GS-MS, to quantitate the H 2 18 O, was calculated TON (TON = 1.3).

[実施例3]ニッケル・ルテニウムペルオキソ錯体をアノード触媒に用いた水素−過酸化水素燃料電池評価実験
[NiII(N)RuIV(η−O)(η−CMe)](NO)(5mg)をカーボンブラック(5mg)と混合し、カーボンクロス上に塗布することで、カソード電極を作成した。アノード電極としてはPt/C(10mg)をカーボンクロス上に塗布したものを用いた。以上の電極を用いて電池を作成し、アノード側から水素、カソードガス側から空気下で過酸化水素水(30%)をフィード(1mL/min)し、60℃での燃料電池評価を行った結果、図1に示すように電池として機能した。
[Example 3] Hydrogen using nickel-ruthenium peroxo complex to the anode catalyst - hydrogen peroxide fuel cell evaluation experiments [Ni II (N 2 S 2 ) Ru IV (η 2 -O 2) (η 5 -C 5 Me 5 )] (NO 3 ) (5 mg) was mixed with carbon black (5 mg) and applied on carbon cloth to form a cathode electrode. A carbon cloth coated with Pt/C (10 mg) was used as the anode electrode. A battery was prepared by using the above electrodes, hydrogen was fed from the anode side, and hydrogen peroxide solution (30%) was fed (1 mL/min) from the cathode gas side under air, and the fuel cell was evaluated at 60°C. As a result, it functioned as a battery as shown in FIG.

[実施例4]ニッケル・ルテニウムペルオキソ錯体と白金の混合物をアノード触媒に用いた燃料電池評価実験
(1)水素−酸素燃料電池評価
[NiII(N)RuIV(η−O)(η−CMe)](NO)(2.5mg)をカーボンブラック(2.5mg)およびPt/C(5mg)と混合し、カーボンクロス上に塗布することで、カソード電極を作成した。アノード電極としてはPt/C(10mg)をカーボンクロス上に塗布したものを用いた。以上の電極を用いて電池を作成し、アノードガスとして水素、カソードガスとして酸素を用い、60℃での燃料電池評価を行った結果、図2に示すように電池として機能した。
[Example 4] The mixture fuel cell experiments using the anode catalyst of the nickel-ruthenium peroxo complexes and platinum (1) hydrogen - oxygen fuel cell evaluation [Ni II (N 2 S 2 ) Ru IV (η 2 -O 2 )(Η 5 -C 5 Me 5 )](NO 3 ) (2.5 mg) was mixed with carbon black (2.5 mg) and Pt/C (5 mg), and the mixture was coated on carbon cloth to form a cathode electrode. It was created. A carbon cloth coated with Pt/C (10 mg) was used as the anode electrode. A battery was prepared using the above electrodes, and hydrogen was used as the anode gas and oxygen was used as the cathode gas, and the fuel cell was evaluated at 60° C. As a result, the battery functioned as shown in FIG.

(2)水素−酸素/過酸化水素燃料電池評価
(1)で[NiII(N)RuIV(η−O)(η−CMe)](NO)とPt/Cを用いて作成したカソード電極を用いた電池を用い、アノード側から水素、カソードガス側から空気下で過酸化水素水(30%)をフィード(1mL/min)し、60℃での燃料電池評価を行った結果、図3に示すように電池として機能した。
(2) hydrogen - oxygen / hydrogen peroxide the fuel cell evaluation (1) [Ni II (N 2 S 2 ) Ru IV (η 2 -O 2) (η 5 -C 5 Me 5)] and (NO 3) Using a battery using a cathode electrode prepared using Pt/C, hydrogen peroxide solution (30%) was fed (1 mL/min) from the anode side under hydrogen and from the cathode gas side under air (at 1 mL/min). As a result of the evaluation of the fuel cell, it functioned as a cell as shown in FIG.

Claims (5)

下記式(1)で表される金属錯体および下記式(2)で表される金属錯体を用いて、酸素および過酸化水素を還元する方法。
Figure 0006702742
式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
Figure 0006702742
式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
A method of reducing oxygen and hydrogen peroxide using a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2).
Figure 0006702742
In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
Figure 0006702742
In Formula (2), l, m, and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
過酸化水素の還元反応が、下記の工程で示される請求項1に記載の方法。
(工程A)上記式(2)で表される異種二核ペルオキソ錯体[M−O]を還元し異種二核中間体[M]を生成する工程。
[M−O]+(H+2e)→[M]+2H
(工程B)過酸化水素(H)に異種二核中間体[M]を作用させ、異種二核ペルオキソ錯体[M−O]を再生する工程。
+[M]→[M−O]+2H
The method according to claim 1, wherein the reduction reaction of hydrogen peroxide is represented by the following steps.
(Step A) A step of reducing the heterogeneous binuclear peroxo complex [MO 2 ] represented by the above formula (2) to produce a heterogeneous binuclear intermediate [M * ].
[M−O 2 ]+(H + +2e )→[M * ]+2H 2 O
(Step B) A step of reacting hydrogen peroxide (H 2 O 2 ) with a hetero binuclear intermediate [M * ] to regenerate the hetero binuclear peroxo complex [MO 2 ].
H 2 O 2 + [M * ] → [M-O 2] + 2H +
下記式(2)で表される異種二核ペルオキソ錯体[M−O]を含むカソード電極を用いることを特徴とする水素−過酸化水素燃料電池。
Figure 0006702742
式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
Hydrogen characterized by using a cathode comprising a heterologous binuclear peroxo complex represented by the following formula (2) [M-O 2 ] - hydrogen peroxide the fuel cell.
Figure 0006702742
In Formula (2), l, m, and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
下記式(1)で表される金属錯体および下記式(2)で表される金属錯体を含むカソード電極を用い、カソードガスとして過酸化水素を含むことを特徴とする水素−過酸化水素燃料電池。
Figure 0006702742
式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
Figure 0006702742
式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
A hydrogen-hydrogen peroxide fuel cell comprising a cathode electrode containing a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2), and containing hydrogen peroxide as a cathode gas. ..
Figure 0006702742
In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
Figure 0006702742
In Formula (2), l, m, and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
下記式(1)で表される金属錯体および下記式(2)で表される金属錯体から選択される少なくとも一つを含有する請求項4に記載の燃料電池用の電極触媒を用いた、水素−過酸化水素燃料電池による発電方法。
Figure 0006702742
式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
Figure 0006702742
式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
Hydrogen using the electrode catalyst for a fuel cell according to claim 4, containing at least one selected from the metal complex represented by the following formula (1) and the metal complex represented by the following formula (2). -Power generation method using hydrogen peroxide fuel cell .
Figure 0006702742
In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
Figure 0006702742
In Formula (2), l, m, and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
JP2016015825A 2016-01-29 2016-01-29 Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method Active JP6702742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015825A JP6702742B2 (en) 2016-01-29 2016-01-29 Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015825A JP6702742B2 (en) 2016-01-29 2016-01-29 Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method

Publications (2)

Publication Number Publication Date
JP2017135061A JP2017135061A (en) 2017-08-03
JP6702742B2 true JP6702742B2 (en) 2020-06-03

Family

ID=59502809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015825A Active JP6702742B2 (en) 2016-01-29 2016-01-29 Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method

Country Status (1)

Country Link
JP (1) JP6702742B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460089B2 (en) 2019-03-14 2024-04-02 国立大学法人 東京大学 ammonia fuel cell

Also Published As

Publication number Publication date
JP2017135061A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
Gewirth et al. Electroreduction of dioxygen for fuel-cell applications: materials and challenges
Poux et al. Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction
Yang et al. PGM-Free Fe/N/C and ultralow loading Pt/C hybrid cathode catalysts with enhanced stability and activity in PEM fuel cells
Negro et al. Toward Pt-free anion-exchange membrane fuel cells: Fe–Sn carbon nitride–graphene core–shell electrocatalysts for the oxygen reduction reaction
Cheng et al. A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells
Alcaide et al. Performance of carbon-supported PtPd as catalyst for hydrogen oxidation in the anodes of proton exchange membrane fuel cells
Beltrán-Gastélum et al. Evaluation of PtAu/MWCNT (multiwalled carbon nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell
KR101624641B1 (en) Electrode catalyst for fuel cell, manufacturing method thereof, membrane electrode assembly and fuel cell including the same
Chang et al. Rational design of septenary high-entropy alloy for direct ethanol fuel cells
KR20130087292A (en) Composite, catalyst including the composite, fuel cell including the same, and lithium air battery including the same
Qu et al. Mild synthesis of layer-by-layer SnO2 nanosheet/Pt/graphene composites as catalysts for ethanol electro-oxidation
KR20140070246A (en) Electrode catalyst for fuel cell, method for preparing the same, electrode for fuel cell including the electrode catalyst, and fuel cell including the same
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
JP2009238442A (en) Method of manufacturing ptru catalyst, catalyst manufactured by the manufacturing method, and fuel cell and membrane electrode assembly using the catalyst
JP6702742B2 (en) Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method
CN104810529B (en) Nano metal material that a kind of surface cyaniding is modified and preparation method thereof
JP5058805B2 (en) Method for producing noble metal fine particles
KR101391707B1 (en) Pemfc containing complex catalyst and preparing method for the complex catalyst
JP7462261B2 (en) CO2 reduction electrode catalyst, method for manufacturing CO2 reduction electrode catalyst, CO2 reduction electrode, and CO2 reduction system
JP2006134835A (en) Fuel cell and membrane electrode assembly
JPWO2004019436A1 (en) Polymer electrolyte fuel cell
JP6726633B2 (en) Proton conductor and fuel cell
JP2005342579A (en) Catalyst material and its production method, catalyst electrode, and electrochemical device
JP6702741B2 (en) Method for oxidizing hydrogen and carbon monoxide using different binuclear complex, fuel cell and power generation method
JP4565961B2 (en) Method for producing fuel electrode catalyst for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6702742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250