JP2017135061A - Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell, and power generation method - Google Patents

Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell, and power generation method Download PDF

Info

Publication number
JP2017135061A
JP2017135061A JP2016015825A JP2016015825A JP2017135061A JP 2017135061 A JP2017135061 A JP 2017135061A JP 2016015825 A JP2016015825 A JP 2016015825A JP 2016015825 A JP2016015825 A JP 2016015825A JP 2017135061 A JP2017135061 A JP 2017135061A
Authority
JP
Japan
Prior art keywords
fuel cell
independently
hydrogen peroxide
metal complex
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016015825A
Other languages
Japanese (ja)
Other versions
JP6702742B2 (en
Inventor
誠司 小江
Seiji Oe
誠司 小江
正志 浅野
Masashi Asano
正志 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Kyushu University NUC
Original Assignee
JNC Corp
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, Kyushu University NUC filed Critical JNC Corp
Priority to JP2016015825A priority Critical patent/JP6702742B2/en
Publication of JP2017135061A publication Critical patent/JP2017135061A/en
Application granted granted Critical
Publication of JP6702742B2 publication Critical patent/JP6702742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal complex functioning as a catalyst for a fuel cell having capability of reducing both of oxygen and hydrogen peroxide, and also to provide the fuel cell using the same for a cathode electrode.SOLUTION: There are provided a method for reducing oxygen and hydrogen peroxide using a metal complex represented in a formula (1) and a fuel cell using them for a cathode. (1 to n are each independently an integer selected from 2 to 4 and each R is independently a 1-5C alkyl group).SELECTED DRAWING: None

Description

本発明は、酸素と過酸化水素の両方を還元できる金属錯体に関し、特に、燃料電池用触媒として機能する金属錯体に関する。更に、該金属錯体を燃料電池用触媒に用いた燃料電池および発電方法に関する。   The present invention relates to a metal complex that can reduce both oxygen and hydrogen peroxide, and more particularly to a metal complex that functions as a catalyst for a fuel cell. Furthermore, the present invention relates to a fuel cell and a power generation method using the metal complex as a fuel cell catalyst.

水素−酸素燃料電池のカソードでは酸素を還元している。現在、カソードには白金触媒が用いられている。カソードにおける酸素の還元反応は4電子還元で水を与えるが、還元が十分でないと2電子還元を起こし過酸化水素(H)を生じる。過酸化水素は燃料電池において触媒やプロトン透過膜(電解質膜)を劣化させる要因となる。 Oxygen is reduced at the cathode of the hydrogen-oxygen fuel cell. Currently, a platinum catalyst is used for the cathode. The reduction reaction of oxygen at the cathode gives water by 4-electron reduction, but if the reduction is not sufficient, 2-electron reduction occurs and hydrogen peroxide (H 2 O 2 ) is generated. Hydrogen peroxide is a factor that degrades a catalyst and a proton permeable membrane (electrolyte membrane) in a fuel cell.

酸素を還元する金属錯体は非特許文献1に報告されており、それらを用いた燃料電池は非特許文献2及び特許文献1に記載されている。そして、過酸化水素を生じない燃料電池として、錯体触媒を固定したカソードを用いた燃料電池が開発されている。   Metal complexes that reduce oxygen are reported in Non-Patent Document 1, and fuel cells using them are described in Non-Patent Document 2 and Patent Document 1. As a fuel cell that does not generate hydrogen peroxide, a fuel cell using a cathode to which a complex catalyst is fixed has been developed.

国際公開第2010/143663号International Publication No. 2010/143663

Angew.Chem.Int.Ed.,published onlineAngew. Chem. Int. Ed. , Published online Angew.Chem.Int.Ed.,2011,50,11202−11205Angew. Chem. Int. Ed. , 2011, 50, 11202-11205

白金は高価であり代替触媒が求められているが、白金触媒だけでは過酸化水素の発生を抑えることは困難であり、過酸化水素を効率よく還元できる電極触媒が求められている。また、金属錯体を用いた触媒は選択性が高いが、活性および安定性に問題がある。   Platinum is expensive and an alternative catalyst is required. However, it is difficult to suppress the generation of hydrogen peroxide with only a platinum catalyst, and an electrode catalyst capable of efficiently reducing hydrogen peroxide is required. Moreover, although the catalyst using a metal complex has high selectivity, there exists a problem in activity and stability.

従って、本発明は、酸素と過酸化水素の両方を還元する能力を有し、燃料電池用触媒として機能する金属錯体、およびそれをカソード電極に用いた燃料電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a metal complex that has the ability to reduce both oxygen and hydrogen peroxide and functions as a catalyst for a fuel cell, and a fuel cell using the metal complex as a cathode electrode.

本発明者らは、上記課題を検討した結果、特定の異種二核金属錯体が酸素と過酸化水素の両者を還元できることを見出し、前記触媒をカソードに固定した燃料電池を作製し、酸素ガスおよび過酸化水素のどちらを用いても燃料電池として機能することを確認した。更に、過酸化水素を含む酸素ガスを用いても電池性能は落ちないことを確認し、本発明を完成させた。   As a result of examining the above problems, the present inventors have found that a specific heterobinuclear metal complex can reduce both oxygen and hydrogen peroxide, and produced a fuel cell in which the catalyst is fixed to a cathode. It was confirmed that either hydrogen peroxide can function as a fuel cell. Furthermore, it was confirmed that the battery performance did not deteriorate even when oxygen gas containing hydrogen peroxide was used, and the present invention was completed.

すなわち、本発明は下記の通りである。
1.下記式(1)で表される金属錯体および下記式(2)で表される金属錯体を用いて、酸素および過酸化水素を還元する方法。
That is, the present invention is as follows.
1. A method of reducing oxygen and hydrogen peroxide using a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2).

Figure 2017135061
Figure 2017135061

式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。   In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

Figure 2017135061
Figure 2017135061

式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
2.過酸化水素の還元反応が、下記の工程で示される前記1に記載の方法。
(工程A)上記式(2)で表される異種二核ペルオキソ錯体[M−O]を還元し異種二核中間体[M]を生成する工程。
[M−O]+(H+2e)→[M]+2H
(工程B)過酸化水素(H)に異種二核中間体[M]を作用させ、異種二核ペルオキソ錯体[M−O]を再生する工程。
+[M]→[M−O]+2H
3.下記式(2)で表される異種二核ペルオキソ錯体[M−O]を含むカソード電極を用いることを特徴とする水素−過酸化水素燃料電池。
In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
2. 2. The method according to 1 above, wherein the reduction reaction of hydrogen peroxide is shown in the following steps.
(Step A) A step of reducing the heterobinuclear peroxo complex [M-O 2 ] represented by the above formula (2) to produce a heterobinuclear intermediate [M * ].
[M−O 2 ] + (H + + 2e ) → [M * ] + 2H 2 O
(Step B) A step of allowing a heterobinuclear intermediate [M * ] to act on hydrogen peroxide (H 2 O 2 ) to regenerate the heterobinuclear peroxo complex [M-O 2 ].
H 2 O 2 + [M * ] → [M−O 2 ] + 2H +
3. A hydrogen-hydrogen peroxide fuel cell characterized by using a cathode electrode containing a heterobinuclear peroxo complex [M-O 2 ] represented by the following formula (2).

Figure 2017135061
Figure 2017135061

式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
4.下記式(1)で表される金属錯体および下記式(2)で表される金属錯体を含むカソード電極を用い、カソードガスとして過酸化水素を含むことを特徴とする水素−酸素燃料電池。
In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
4). A hydrogen-oxygen fuel cell comprising a cathode complex containing a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2), and containing hydrogen peroxide as a cathode gas.

Figure 2017135061
Figure 2017135061

式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。   In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

Figure 2017135061
Figure 2017135061

式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
5.下記式(1)で表される金属錯体および下記式(2)で表される金属錯体から選択される少なくとも一つを含有する燃料電池用電極触媒を用いた発電方法。
In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
5. A power generation method using a fuel cell electrode catalyst comprising at least one selected from a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2).

Figure 2017135061
Figure 2017135061

式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。   In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

Figure 2017135061
Figure 2017135061

式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。   In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

本発明の酸素および過酸化水素を還元する方法は、酸素と過酸化水素を両方還元できるニッケル・ルテニウム錯体を電極材料に用いることにより、燃料電池用電極において、過酸化水素が発生しても性能低下しない電極触媒を提供できる。そのため、現行の水素−酸素燃料電池の問題を解決することが可能であり、電気エネルギーの効率向上に寄与する効果は大きい。   The method for reducing oxygen and hydrogen peroxide according to the present invention uses a nickel-ruthenium complex capable of reducing both oxygen and hydrogen peroxide as an electrode material, so that performance can be achieved even when hydrogen peroxide is generated in a fuel cell electrode. An electrode catalyst that does not decrease can be provided. Therefore, it is possible to solve the problem of the current hydrogen-oxygen fuel cell, and the effect of contributing to the improvement of electric energy efficiency is great.

図1は、[NiII(N)RuII(HO)(η−CMe)](NO)を電極触媒に用いた水素−過酸化水素燃料電池評価実験の結果を示す。FIG. 1 shows a hydrogen-hydrogen peroxide fuel cell evaluation experiment using [Ni II (N 2 S 2 ) Ru II (H 2 O) (η 5 -C 5 Me 5 )] (NO 3 ) as an electrode catalyst. Results are shown. 図2は、[NiII(N)RuII(HO)(η−CMe)](NO)と白金との混合物を電極触媒に用いた水素−酸素燃料電池評価実験の結果を示す。FIG. 2 shows a hydrogen-oxygen fuel cell using a mixture of [Ni II (N 2 S 2 ) Ru II (H 2 O) (η 5 -C 5 Me 5 )] (NO 3 ) and platinum as an electrode catalyst. The result of an evaluation experiment is shown. 図3は、[NiII(N)RuII(HO)(η−CMe)](NO)と白金との混合物を電極触媒に用いた水素−酸素/過酸化水素燃料電池評価実験の結果を示す。FIG. 3 shows hydrogen-oxygen / peroxide using a mixture of [Ni II (N 2 S 2 ) Ru II (H 2 O) (η 5 -C 5 Me 5 )] (NO 3 ) and platinum as an electrode catalyst. The result of a hydrogen oxide fuel cell evaluation experiment is shown.

以下、本発明を更に詳しく説明するが、本発明の範囲はそれに限定されない。   Hereinafter, the present invention will be described in more detail, but the scope of the present invention is not limited thereto.

本発明の異種二核錯体を用いて水素および一酸化炭素を酸化する方法および燃料電池は、出発物質として、下記式(1)及び下記式(2)で表される異種二核錯体を用いる。   The method for oxidizing hydrogen and carbon monoxide using the heterobinuclear complex of the present invention and the fuel cell use heterobinuclear complexes represented by the following formulas (1) and (2) as starting materials.

Figure 2017135061
Figure 2017135061

前記式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。   In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.

Figure 2017135061
Figure 2017135061

前記式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。   In said Formula (2), l, m, and n are the integers of 2-4 each independently. Each R is independently an alkyl group having 1 to 5 carbon atoms.

前記異種二核錯体を用いたときの過酸化水素の還元反応は、下記の工程で示される。
(工程A)前記式(2)で表される異種二核ペルオキソ錯体[M−O]を還元し異種二核中間体[M]を生成する工程。
[M−O]+(H+2e)→[M]+2H
(工程B)過酸化水素(H)に異種二核中間体[M]を作用させ、異種二核ペルオキソ錯体[M−O]を再生する工程。
+[M]→[M−O]+2H
The reduction reaction of hydrogen peroxide when using the heterobinuclear complex is shown in the following steps.
(Step A) A step of reducing the heterobinuclear peroxo complex [M-O 2 ] represented by the formula (2) to produce a heterobinuclear intermediate [M * ].
[M−O 2 ] + (H + + 2e ) → [M * ] + 2H 2 O
(Step B) A step of allowing a heterobinuclear intermediate [M * ] to act on hydrogen peroxide (H 2 O 2 ) to regenerate the heterobinuclear peroxo complex [M-O 2 ].
H 2 O 2 + [M * ] → [M−O 2 ] + 2H +

Figure 2017135061
Figure 2017135061

前記式(1)及び式(2)で表される本願発明に使用する金属錯体の製造方法は特に限定されるものではなく、金属錯体に配位する配位子に応じて適宜好ましい製造方法を従来公知の方法から選択し、または、組み合わせて用いればよい。また、上記金属錯体として市販されているものを利用しても差し支えない。   The production method of the metal complex used in the present invention represented by the formula (1) and the formula (2) is not particularly limited, and a suitable production method is appropriately selected according to the ligand coordinated to the metal complex. It may be selected from conventionally known methods or used in combination. In addition, a commercially available metal complex may be used.

(燃料電池用電極触媒)
本発明に係る燃料電池用電極触媒は、上記金属錯体を含有している。本発明に係る燃料電池用電極触媒は、どのような燃料電池にも好ましく用いることができるが、特に固体高分子型燃料電池により好ましく用いることができる。
(Electrocatalyst for fuel cell)
The fuel cell electrode catalyst according to the present invention contains the metal complex. The fuel cell electrode catalyst according to the present invention can be preferably used for any fuel cell, but can be particularly preferably used for a polymer electrolyte fuel cell.

固体高分子型燃料電池は、一般的には電解質膜をアノードとカソードとで挟んで構成され、燃料である水素等と酸化剤である酸素(または空気)から電気化学反応を用いて電気と熱エネルギーを取り出す。このとき、カソード(正極または空気極ともいう)では酸化剤の還元が起こる。   A polymer electrolyte fuel cell is generally configured by sandwiching an electrolyte membrane between an anode and a cathode. Electricity and heat are generated by using an electrochemical reaction from hydrogen or the like as a fuel and oxygen (or air) as an oxidant. Extract energy. At this time, reduction of the oxidant occurs at the cathode (also referred to as positive electrode or air electrode).

燃料としては、水素の他、ガソリン、メタノール、ジエチルエーテルまたは炭化水素等を用いることもでき、これらを水素に改質して燃料電池に供給する。また、メタノールまたはジエチルエーテル等を直接燃料として供給可能な直接型の燃料電池にも、本発明に係る燃料電池用電極触媒を用いることができる。   As fuel, gasoline, methanol, diethyl ether, hydrocarbons, or the like can be used in addition to hydrogen, and these are reformed into hydrogen and supplied to the fuel cell. Further, the fuel cell electrode catalyst according to the present invention can also be used in a direct fuel cell capable of supplying methanol or diethyl ether directly as fuel.

本発明に掛かる燃料電池用電極触媒は、Ni/Ru金属錯体から選ばれる1以上の金属錯体を含有していればよい。従って、本発明に係る燃料電池用電極触媒は、前記金属錯体から選ばれる単一の金属錯体を含有していてもよいし、前記金属錯体から選ばれる2種類以上の金属錯体を含有していてもよい。   The electrode catalyst for fuel cells according to the present invention only needs to contain one or more metal complexes selected from Ni / Ru metal complexes. Therefore, the fuel cell electrode catalyst according to the present invention may contain a single metal complex selected from the metal complexes, or two or more metal complexes selected from the metal complexes. Also good.

また、本発明に係る燃料電池用電極触媒は、上記金属錯体のみを含有していてもよいし、必要に応じて他の成分を含有していてもよい。   Moreover, the electrode catalyst for fuel cells which concerns on this invention may contain only the said metal complex, and may contain the other component as needed.

かかる他の成分としては、例えば、バルカン(Cabot社製)、カーボンブラック、アセチレンブラック、ファーネスブラック、グラファイト、カーボンナノチューブ、カーボンナノファイバー、黒煙、炭素繊維および活性炭等の触媒担持体;ポリアセチレン、ポリピロール、ポリチオール、ポリイミダゾール、ポリピリジン、ポリアニリンおよびポリチオフェン等の導電性高分子を挙げることができる。   Examples of such other components include catalyst carriers such as Vulcan (manufactured by Cabot), carbon black, acetylene black, furnace black, graphite, carbon nanotube, carbon nanofiber, black smoke, carbon fiber and activated carbon; polyacetylene, polypyrrole , Conductive polymers such as polythiol, polyimidazole, polypyridine, polyaniline and polythiophene.

他の成分が含有される場合の上記燃料電池用電極触媒に含有される分子性金属錯体と、上記他の成分との割合も特に限定されるものではないが、分子性金属錯体に対する上記触媒担持体の割合は好ましくは0重量%以上50重量%以下であり、分子性金属錯体に対する上記導電性高分子の割合は好ましくは0重量%以上50重量%以下である。   The ratio of the molecular metal complex contained in the fuel cell electrode catalyst and the other components when other components are contained is not particularly limited, but the catalyst is supported on the molecular metal complex. The ratio of the body is preferably 0% by weight to 50% by weight, and the ratio of the conductive polymer to the molecular metal complex is preferably 0% by weight to 50% by weight.

さらに、本発明に係る燃料電池用電極触媒には、必要に応じてナフィオン(登録商標)、フレミオン(登録商標)、アシプレックス(登録商標)等のプロトン伝導性高分子電解質が含有されていてもよい。   Furthermore, the fuel cell electrode catalyst according to the present invention may contain a proton conductive polymer electrolyte such as Nafion (registered trademark), Flemion (registered trademark), and Aciplex (registered trademark) as necessary. Good.

(本発明に係る燃料電池用電極触媒の利用)
本発明に係る燃料電池用電極触媒は、安価、かつ、触媒能力の制御が容易にできることから、これを用いた燃料電池用電極、燃料電池、及び、発電方法に好ましく用いることができる。それゆえ、本発明には、上記燃料電池用電極触媒を用いた燃料電池用電極、燃料電池、及び、発電方法も含まれる。
(Utilization of fuel cell electrode catalyst according to the present invention)
Since the fuel cell electrode catalyst according to the present invention is inexpensive and can easily control the catalyst capacity, it can be preferably used in a fuel cell electrode, a fuel cell, and a power generation method using the same. Therefore, the present invention also includes a fuel cell electrode, a fuel cell, and a power generation method using the fuel cell electrode catalyst.

(燃料電池用電極)
本発明に係る燃料電池用電極は、上記燃料電池用電極触媒を含有するものであれば特に限定されるものではなく、燃料電池の種類に応じて、従来公知の様々な構成を備えうる。
(Fuel cell electrode)
The fuel cell electrode according to the present invention is not particularly limited as long as it contains the fuel cell electrode catalyst, and may have various conventionally known configurations depending on the type of fuel cell.

例えば、固体高分子型燃料電池を例として挙げれば、本発明に係る燃料電池用電極は、カソード用の、触媒層付ガス拡散層電極として構成することができる。かかる触媒層付ガス拡散層電極では、上記燃料電池用電極触媒を含有する触媒層は、ガス拡散層上に積層されている。上記ガス拡散層は、カーボンクロスまたはカーボンペーパー等のような多孔質カーボン等からなっており、ガス流路から供給された燃料または酸素(空気)を拡散させ効率よく触媒に供給するようになっている。   For example, taking a polymer electrolyte fuel cell as an example, the fuel cell electrode according to the present invention can be configured as a gas diffusion layer electrode with a catalyst layer for a cathode. In such a gas diffusion layer electrode with a catalyst layer, the catalyst layer containing the fuel cell electrode catalyst is laminated on the gas diffusion layer. The gas diffusion layer is made of porous carbon or the like such as carbon cloth or carbon paper, and diffuses the fuel or oxygen (air) supplied from the gas flow path and efficiently supplies it to the catalyst. Yes.

かかるガス拡散層上に形成された触媒層は、例えば、上記燃料電池用電極触媒を、溶液、懸濁液、スラリーまたはペースト等として、上記ガス拡散層に塗布し、乾燥させることにより形成される。ここで、上記燃料電池用電極触媒を、溶液、懸濁液、スラリーまたはペースト等とするための媒体も特に限定されるものではなく、従来公知の媒体から適宜選択して用いればよい。塗布量は0.1〜10mg/mとすることが好ましく、より好ましくは0.5〜5mg/mである。 The catalyst layer formed on the gas diffusion layer is formed, for example, by applying the fuel cell electrode catalyst as a solution, suspension, slurry, paste, or the like to the gas diffusion layer and drying it. . Here, the medium for making the fuel cell electrode catalyst into a solution, suspension, slurry, paste or the like is not particularly limited, and may be appropriately selected from conventionally known media. The coating amount is preferably set to 0.1 to 10 mg / m 2, more preferably from 0.5 to 5 mg / m 2.

なお、上記触媒層は、上記燃料電池用電極触媒に加え、必要に応じて、上記触媒担持体、導電性高分子またはアイオノマー等を含有していてもよい。上記触媒担持体、導電性高分子またはアイオノマー等は、上記燃料電池用電極触媒の溶液、懸濁液、スラリーまたはペースト等に添加してもよいし、上記燃料電池用電極触媒の溶液、懸濁液、スラリーまたはペースト等とは別に、溶液、懸濁液、溶液、スラリーまたはペースト等として、触媒層を塗布する前、同時、又は後に塗布してもよい。   In addition to the fuel cell electrode catalyst, the catalyst layer may contain the catalyst support, a conductive polymer, an ionomer, or the like, if necessary. The catalyst carrier, conductive polymer or ionomer may be added to the solution, suspension, slurry or paste of the fuel cell electrode catalyst, or the solution or suspension of the fuel cell electrode catalyst. Apart from the liquid, slurry or paste, the catalyst layer may be applied before, simultaneously with, or after application as a solution, suspension, solution, slurry or paste.

(燃料電池)
本発明に係る燃料電池の構成は、通常燃料電池に採用される構成であれば特に限定されるものではないが、例えば、少なくとも電解質膜、アノードおよびカソードを備え、電解質膜をアノードとカソードとで挟んだ構造を有している。
(Fuel cell)
The configuration of the fuel cell according to the present invention is not particularly limited as long as it is a configuration normally employed in a fuel cell. For example, the fuel cell includes at least an electrolyte membrane, an anode, and a cathode, and the electrolyte membrane is composed of an anode and a cathode. It has a sandwiched structure.

かかる燃料電池は、例えば、上述したように、カソード用の触媒層付ガス拡散層電極およびアノード用の触媒層付ガス拡散層電極を作製し、これらの触媒層付ガス拡散層電極の間に、触媒層が電解質膜を挟んで対向するように電解質膜を挟み、膜電極接合体(MEA)を作製すればよい。かかる膜電極接合体を燃料電池セルに組み込んで使用することができる。   Such a fuel cell, for example, as described above, produces a gas diffusion layer electrode with a catalyst layer for a cathode and a gas diffusion layer electrode with a catalyst layer for an anode, and between these gas diffusion layer electrodes with a catalyst layer, A membrane electrode assembly (MEA) may be produced by sandwiching the electrolyte membrane so that the catalyst layers face each other with the electrolyte membrane interposed therebetween. Such a membrane electrode assembly can be used by being incorporated in a fuel cell.

ここで、本発明に係る燃料電池は、上記燃料電池用電極触媒を、カソードに含有していればよい。対向する電極触媒には、従来公知の触媒を用いればよく、例えば、白金単体、白金合金等を含有する触媒を用いればよい。   Here, the fuel cell according to the present invention only needs to contain the fuel cell electrode catalyst in the cathode. A conventionally known catalyst may be used as the opposing electrode catalyst, for example, a catalyst containing platinum alone or a platinum alloy may be used.

上記電解質膜は、水素イオン伝導性の高い高分子膜であれば特に限定されるものではなく、ナフィオン(登録商標)、フレミオン(登録商標)またはアシプレックス(登録商標)のパーフルオロスルホン酸系のプロトン交換膜等、通常用いられる電解質膜を用いればよい。   The electrolyte membrane is not particularly limited as long as it is a polymer membrane having high hydrogen ion conductivity, and is a Nafion (registered trademark), Flemion (registered trademark) or Aciplex (registered trademark) perfluorosulfonic acid-based one. A commonly used electrolyte membrane such as a proton exchange membrane may be used.

(発電方法)
本発明に係る発電方法は、上記燃料電池用電極触媒を用いて、燃料の酸化反応を行う工程、および/または、上記燃料電池用電極触媒を用いて、酸化剤の還元反応を行う工程を含んでいればよい。すなわち、本発明に係る発電方法は、上記燃料電池用電極触媒を用いて、燃料の酸化反応を行う工程、および、上記燃料電池用電極触媒を用いて、酸化剤の還元反応を行う工程の両方を含んでいてもよいし、いずれか一方を含んでいてもよい。
(Power generation method)
The power generation method according to the present invention includes a step of performing a fuel oxidation reaction using the fuel cell electrode catalyst and / or a step of performing a reduction reaction of an oxidant using the fuel cell electrode catalyst. Just go out. That is, the power generation method according to the present invention includes both a step of performing a fuel oxidation reaction using the fuel cell electrode catalyst and a step of performing a reduction reaction of an oxidant using the fuel cell electrode catalyst. May be included, or any one of them may be included.

より具体的には、例えば、本発明に係る発電方法は、上記燃料電池用電極触媒を用いて水素分子から電子を放出させて水素イオンとする工程、および/または、上記燃料電池用電極触媒を用いて、酸素分子、水素イオンおよび電子を反応させて水を生成する工程を含む。   More specifically, for example, the power generation method according to the present invention includes a step of releasing electrons from hydrogen molecules to form hydrogen ions using the fuel cell electrode catalyst, and / or the fuel cell electrode catalyst. And a step of generating water by reacting oxygen molecules, hydrogen ions and electrons.

本発明に係る発電方法は、従来公知の方法により行えばよく、特に限定されるものではないが、一例を説明すると、燃料電池のアノード側に水素ガスを、カソード側に酸素を供給する。このとき水素ガスおよび酸素はバブラーを通して加湿してもよい。この際、本発明における電極触媒を用いると、カソード側に過酸化水素を供給してもよく、過酸化水素の濃度が好ましくは10%〜30%、より好ましくは25〜30%であれば、燃料電池として機能する。   The power generation method according to the present invention may be performed by a conventionally known method, and is not particularly limited. For example, hydrogen gas is supplied to the anode side of the fuel cell and oxygen is supplied to the cathode side. At this time, hydrogen gas and oxygen may be humidified through a bubbler. At this time, if the electrode catalyst in the present invention is used, hydrogen peroxide may be supplied to the cathode side, and the concentration of hydrogen peroxide is preferably 10% to 30%, more preferably 25 to 30%. Functions as a fuel cell.

アノード側から水素ガスが供給されると、水素ガスが上記燃料電池用電極触媒の作用によって水素分子から電子を放出して水素イオンとなる。この水素イオンは電解質膜を通過して対向するカソードに移動する。カソードでは、上記燃料電池用電極触媒の作用により、移動してきた水素イオンと、カソードに供給される酸素分子とが反応して水を生成する。このとき、電線に生じる電子の流れが直流電流として取り出される。   When hydrogen gas is supplied from the anode side, the hydrogen gas releases electrons from the hydrogen molecules by the action of the fuel cell electrode catalyst to become hydrogen ions. The hydrogen ions pass through the electrolyte membrane and move to the opposite cathode. At the cathode, the hydrogen ions that have moved and oxygen molecules supplied to the cathode react to generate water by the action of the fuel cell electrode catalyst. At this time, the flow of electrons generated in the electric wire is taken out as a direct current.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明の範囲はそれに限定されない。   The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited thereto.

(材料および方法)
全ての実験は、標準のシュレンク技術及びグローブボックスを用いることによってN又はAr雰囲気下で実施した。
(Materials and methods)
All experiments were performed under N 2 or Ar atmosphere by using standard Schlenk techniques and glove boxes.

[NiII(N)RuII(HO)(η−CMe)](NO)及び[NiII(N)RuIV(η−O)(η−CMe)](NO)は、文献(Chem.Asian J. 2012,7,1394−1400)に記載の方法により[NiII(N)RuII(HO)(η−CMe)](NO)及び[NiII(N)RuIV(η−O)(η−CMe)](NO)において記述されている方法によって調製した(N=N、N’−dimethyl−3,7−diazanonane−1,9−dithiolato)。 [Ni II (N 2 S 2 ) Ru II (H 2 O) (η 5 -C 5 Me 5)] (NO 3) and [Ni II (N 2 S 2 ) Ru IV (η 2 -O 2) ( η 5 -C 5 Me 5 )] (NO 3 ) can be obtained from [Ni II (N 2 S 2 ) Ru II (H 2 O] by the method described in the literature (Chem. Asian J. 2012, 7, 1394-1400). ) (Η 5 -C 5 Me 5 )] (NO 3 ) and [Ni II (N 2 S 2 ) Ru IV2 -O 2 ) (η 5 -C 5 Me 5 )] (NO 3 ) It was prepared by the method (N 2 S 2 = N, N'-dimethyl-3,7-diazanonane-1,9-dithiolato).

ガス、Oガスは、太陽東洋酸素株式会社から購入した。Hはシグマアルドリッチジャパンから購入した(純度30%)。HOは、和光純薬工業株式会社から購入した。これらは、更に精製することなしに使用した。 H 2 gas and O 2 gas were purchased from Taiyo Toyo Oxygen Corporation. H 2 O 2 was purchased from Sigma Aldrich Japan (purity 30%). H 2 O was purchased from Wako Pure Chemical Industries. These were used without further purification.

・赤外スペクトル
KBrディスク中に含まれる固体化合物の赤外スペクトルは、25℃で2cm−1の標準解像度を用いて400から4000cm−1までの領域をサーモ・ニコレーNEXUS8700FR−IR計器で測定した。
And infrared spectrum of the solid compound contained in the infrared spectrum in KBr disc was measured area from 400 using a standard resolution of 2 cm -1 at 25 ° C. until 4000 cm -1 in Thermo Nicolet NEXUS8700FR-IR instrument.

・紫外線可視スペクトル
紫外線可視スペクトルは、25℃にて日本分光V−670 UV−Visible−NIR分光計(セルの長さ1.0cm)で測定した。
-UV visible spectrum The UV visible spectrum was measured at 25 ° C with JASCO V-670 UV-Visible-NIR spectrometer (cell length 1.0 cm).

・元素分析データ
元素分析データは、パーキンエルマー2400IIシリーズCHNS/O分析器によって得た。
Elemental analysis data Elemental analysis data was obtained with a Perkin Elmer 2400II series CHNS / O analyzer.

・X線結晶学的解析
測定は、共焦点単色化Mo−Ka放射光(l=0.7107Å)を備えたリガク/MSCサターンCCD回析装置で行った。データを集め、CrystalClaerプログラム(リガク社)を用いて処理した。全ての計算は、モレキュラー・ストラクチャー・コーポレーションのteXan結晶学ソフトウェア・パッケージを用いて実施した。
X-ray crystallographic analysis The measurement was performed with a Rigaku / MSC Saturn CCD diffractometer equipped with confocal monochromated Mo-Ka radiation (l = 0.7107 Å). Data was collected and processed using the CrystalClear program (Rigaku). All calculations were performed using Molecular Structure Corporation's teXan crystallography software package.

[実施例1]ニッケル・ルテニウムアクア錯体[NiII(N)RuII(HO)(η−CMe)](NO)を用いたOの触媒的還元反応
[NiII(N)RuII(HO)(η−CMe)](NO)(3.0mg)を含むメタノール溶液(200μL)に18(5mL)を加えた(N=N、N’−dimethyl−3,7−diazanonane−1,9−dithiolato)。その溶液にヒドロキノン(5.5mg)を含むメタノール溶液(60μL)およびNaBH(1.9mg)のメタノール溶液(100μL)、HBF(6.8μL)を加え、6時間撹拌した。得られた溶液にカリボール(17mg)を加え、生じた沈殿をろ別した。得られた溶液をGS−MSで分析することにより、H 18Oを定量し、TONを算出した(TON=0.1)。
Example 1 Catalytic Reduction Reaction of O 2 Using Nickel / Ruthenium Aqua Complex [Ni II (N 2 S 2 ) Ru II (H 2 O) (η 5 -C 5 Me 5 )] (NO 3 ) 18 O 2 (5 mL) was added to a methanol solution (200 μL) containing [Ni II (N 2 S 2 ) Ru II (H 2 O) (η 5 -C 5 Me 5 )] (NO 3 ) (3.0 mg). the added (N 2 S 2 = N, N'-dimethyl-3,7-diazanonane-1,9-dithiolato). A methanol solution (60 μL) containing hydroquinone (5.5 mg), a methanol solution (100 μL) of NaBH 4 (1.9 mg), and HBF 4 (6.8 μL) were added to the solution, and the mixture was stirred for 6 hours. Caribol (17 mg) was added to the resulting solution, and the resulting precipitate was filtered off. The resulting solution by analyzing at GS-MS, to quantitate the H 2 18 O, was calculated TON (TON = 0.1).

[実施例2]ニッケル・ルテニウムペルオキソ錯体[NiII(N)RuIV(η−O)(η−CMe)](NO)を用いたHの触媒的還元反応
[NiII(N)RuIV(η−O)(η−CMe)](NO) (3.0mg)のメタノール溶液(200μL)にヒドロキノン(5.5mg)のメタノール溶液(100μL)および2% H 18/HO(60μL)、HBF(6.8μL)を加え、6時間撹拌した。得られた溶液にカリボール(17mg)を加え、生じた沈殿をろ別した。得られた溶液をGS−MSで分析することにより、H 18Oを定量し、TONを算出した(TON=1.3)。
[Example 2] H 2 O 2 using a nickel / ruthenium peroxo complex [Ni II (N 2 S 2 ) Ru IV2 -O 2 ) (η 5 -C 5 Me 5 )] (NO 3 ) Catalytic Reduction Reaction Hydroquinone (Ni II (N 2 S 2 ) Ru IV2 -O 2 ) (η 5 -C 5 Me 5 )) (NO 3 ) (3.0 mg) in methanol (200 μL) 5.5 mg) of a methanol solution (100 μL) and 2% H 2 18 O 2 / H 2 O (60 μL) and HBF 4 (6.8 μL) were added, and the mixture was stirred for 6 hours. Caribol (17 mg) was added to the resulting solution, and the resulting precipitate was filtered off. The resulting solution by analyzing at GS-MS, to quantitate the H 2 18 O, was calculated TON (TON = 1.3).

[実施例3]ニッケル・ルテニウムペルオキソ錯体をアノード触媒に用いた水素−過酸化水素燃料電池評価実験
[NiII(N)RuIV(η−O)(η−CMe)](NO)(5mg)をカーボンブラック(5mg)と混合し、カーボンクロス上に塗布することで、カソード電極を作成した。アノード電極としてはPt/C(10mg)をカーボンクロス上に塗布したものを用いた。以上の電極を用いて電池を作成し、アノード側から水素、カソードガス側から空気下で過酸化水素水(30%)をフィード(1mL/min)し、60℃での燃料電池評価を行った結果、図1に示すように電池として機能した。
[Example 3] Hydrogen-hydrogen peroxide fuel cell evaluation experiment using a nickel-ruthenium peroxo complex as an anode catalyst [Ni II (N 2 S 2 ) Ru IV2 -O 2 ) (η 5 -C 5 Me 5 )] (NO 3 ) (5 mg) was mixed with carbon black (5 mg) and coated on carbon cloth to form a cathode electrode. As the anode electrode, an electrode in which Pt / C (10 mg) was applied on a carbon cloth was used. A battery was prepared using the electrodes described above, hydrogen peroxide solution (30%) was fed (1 mL / min) under hydrogen from the anode side and air from the cathode gas side, and a fuel cell evaluation at 60 ° C. was performed. As a result, it functioned as a battery as shown in FIG.

[実施例4]ニッケル・ルテニウムペルオキソ錯体と白金の混合物をアノード触媒に用いた燃料電池評価実験
(1)水素−酸素燃料電池評価
[NiII(N)RuIV(η−O)(η−CMe)](NO)(2.5mg)をカーボンブラック(2.5mg)およびPt/C(5mg)と混合し、カーボンクロス上に塗布することで、カソード電極を作成した。アノード電極としてはPt/C(10mg)をカーボンクロス上に塗布したものを用いた。以上の電極を用いて電池を作成し、アノードガスとして水素、カソードガスとして酸素を用い、60℃での燃料電池評価を行った結果、図2に示すように電池として機能した。
[Example 4] Fuel cell evaluation experiment using a mixture of nickel / ruthenium peroxo complex and platinum as an anode catalyst (1) Hydrogen-oxygen fuel cell evaluation [Ni II (N 2 S 2 ) Ru IV2 -O 2 ) (Η 5 -C 5 Me 5 )] (NO 3 ) (2.5 mg) is mixed with carbon black (2.5 mg) and Pt / C (5 mg), and applied onto the carbon cloth to form a cathode electrode It was created. As the anode electrode, an electrode in which Pt / C (10 mg) was applied on a carbon cloth was used. A battery was prepared using the above electrodes, and a fuel cell was evaluated at 60 ° C. using hydrogen as the anode gas and oxygen as the cathode gas. As a result, the battery functioned as shown in FIG.

(2)水素−酸素/過酸化水素燃料電池評価
(1)で[NiII(N)RuIV(η−O)(η−CMe)](NO)とPt/Cを用いて作成したカソード電極を用いた電池を用い、アノード側から水素、カソードガス側から空気下で過酸化水素水(30%)をフィード(1mL/min)し、60℃での燃料電池評価を行った結果、図3に示すように電池として機能した。
(2) Hydrogen-oxygen / hydrogen peroxide fuel cell evaluation In (1), [Ni II (N 2 S 2 ) Ru IV2 -O 2 ) (η 5 -C 5 Me 5 )] (NO 3 ) Using a battery using a cathode electrode made of Pt / C, hydrogen peroxide water (30%) was fed (1 mL / min) under hydrogen from the anode side and air from the cathode gas side (1 mL / min). As a result of the fuel cell evaluation, it functioned as a battery as shown in FIG.

Claims (5)

下記式(1)で表される金属錯体および下記式(2)で表される金属錯体を用いて、酸素および過酸化水素を還元する方法。
Figure 2017135061
式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
Figure 2017135061
式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
A method of reducing oxygen and hydrogen peroxide using a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2).
Figure 2017135061
In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
Figure 2017135061
In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
過酸化水素の還元反応が、下記の工程で示される請求項1に記載の方法。
(工程A)上記式(2)で表される異種二核ペルオキソ錯体[M−O]を還元し異種二核中間体[M]を生成する工程。
[M−O]+(H+2e)→ [M]+2H
(工程B)過酸化水素(H)に異種二核中間体[M]を作用させ、異種二核ペルオキソ錯体[M−O]を再生する工程。
+[M]→[M−O]+2H
The method according to claim 1, wherein the reduction reaction of hydrogen peroxide is represented by the following steps.
(Step A) A step of reducing the heterobinuclear peroxo complex [M-O 2 ] represented by the above formula (2) to produce a heterobinuclear intermediate [M * ].
[M−O 2 ] + (H + + 2e ) → [M * ] + 2H 2 O
(Step B) A step of allowing a heterobinuclear intermediate [M * ] to act on hydrogen peroxide (H 2 O 2 ) to regenerate the heterobinuclear peroxo complex [M-O 2 ].
H 2 O 2 + [M * ] → [M−O 2 ] + 2H +
下記式(2)で表される異種二核ペルオキソ錯体[M−O]を含むカソード電極を用いることを特徴とする水素−過酸化水素燃料電池。
Figure 2017135061
式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
A hydrogen-hydrogen peroxide fuel cell characterized by using a cathode electrode containing a heterobinuclear peroxo complex [M-O 2 ] represented by the following formula (2).
Figure 2017135061
In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
下記式(1)で表される金属錯体および下記式(2)で表される金属錯体を含むカソード電極を用い、カソードガスとして過酸化水素を含むことを特徴とする水素−酸素燃料電池。
Figure 2017135061
式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
Figure 2017135061
式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
A hydrogen-oxygen fuel cell comprising a cathode complex containing a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2), and containing hydrogen peroxide as a cathode gas.
Figure 2017135061
In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
Figure 2017135061
In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
下記式(1)で表される金属錯体および下記式(2)で表される金属錯体から選択される少なくとも一つを含有する燃料電池用電極触媒を用いた発電方法。
Figure 2017135061
式(1)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
Figure 2017135061
式(2)において、l、mおよびnは、それぞれ独立して2〜4の整数である。Rはそれぞれ独立して、炭素数1〜5のアルキル基である。
A power generation method using a fuel cell electrode catalyst comprising at least one selected from a metal complex represented by the following formula (1) and a metal complex represented by the following formula (2).
Figure 2017135061
In the formula (1), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
Figure 2017135061
In the formula (2), l, m and n are each independently an integer of 2 to 4. Each R is independently an alkyl group having 1 to 5 carbon atoms.
JP2016015825A 2016-01-29 2016-01-29 Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method Active JP6702742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015825A JP6702742B2 (en) 2016-01-29 2016-01-29 Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015825A JP6702742B2 (en) 2016-01-29 2016-01-29 Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method

Publications (2)

Publication Number Publication Date
JP2017135061A true JP2017135061A (en) 2017-08-03
JP6702742B2 JP6702742B2 (en) 2020-06-03

Family

ID=59502809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015825A Active JP6702742B2 (en) 2016-01-29 2016-01-29 Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method

Country Status (1)

Country Link
JP (1) JP6702742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184256A1 (en) * 2019-03-14 2020-09-17 国立大学法人東京大学 Ammonia fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184256A1 (en) * 2019-03-14 2020-09-17 国立大学法人東京大学 Ammonia fuel cell
US11658309B2 (en) 2019-03-14 2023-05-23 The University Of Tokyo Ammonia fuel cell
JP7460089B2 (en) 2019-03-14 2024-04-02 国立大学法人 東京大学 ammonia fuel cell

Also Published As

Publication number Publication date
JP6702742B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
Poux et al. Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction
Chen et al. Non-noble metal fuel cell catalysts
US20070078052A1 (en) Methanol tolerant catalyst material
JP5528630B2 (en) Fuel cell with cathode electrode using iron redox couple
JP2012143753A (en) Active particle-containing catalyst, method for producing the same, fuel cell containing the same, electrode for lithium-air battery containing active particles thereof, and lithium-air battery having electrode thereof
Beltrán-Gastélum et al. Evaluation of PtAu/MWCNT (multiwalled carbon nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell
KR101624641B1 (en) Electrode catalyst for fuel cell, manufacturing method thereof, membrane electrode assembly and fuel cell including the same
KR20130087292A (en) Composite, catalyst including the composite, fuel cell including the same, and lithium air battery including the same
WO2008032802A1 (en) Membrane electrode assembly and solid polymer fuel cell
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
WO2012057236A1 (en) Anode-side catalyst composition for fuel cells, and membrane electrode assembly (mea) for solid polymer fuel cells which comprises same
JP2007273340A (en) High-durability electrode catalyst for fuel cell, and fuel cell using the same
Qu et al. Mild synthesis of layer-by-layer SnO2 nanosheet/Pt/graphene composites as catalysts for ethanol electro-oxidation
Wang et al. PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices
EP1540753A2 (en) Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell
JP2016091878A (en) Method for manufacturing electrode material, membrane-electrode assembly and fuel cell stack
JP6040954B2 (en) Method for producing fuel cell catalyst
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
JP6702742B2 (en) Method for reducing oxygen and hydrogen peroxide using metal complex, fuel cell and power generation method
US9799904B2 (en) Polymer electrolyte membrane fuel cell including complex catalyst and method for producing the complex catalyst
JP4238364B2 (en) Polymer electrolyte fuel cell
JP4565961B2 (en) Method for producing fuel electrode catalyst for fuel cell
JP2005342579A (en) Catalyst material and its production method, catalyst electrode, and electrochemical device
Takashita et al. A non-precious metal, Ni molecular catalyst for a fuel cell cathode
JP5375117B2 (en) Manufacturing method of membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6702742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250