JP6698661B2 - アライメントフィーチャを用いた独立側部測定を介する適応部分プロファイル生成 - Google Patents

アライメントフィーチャを用いた独立側部測定を介する適応部分プロファイル生成 Download PDF

Info

Publication number
JP6698661B2
JP6698661B2 JP2017533522A JP2017533522A JP6698661B2 JP 6698661 B2 JP6698661 B2 JP 6698661B2 JP 2017533522 A JP2017533522 A JP 2017533522A JP 2017533522 A JP2017533522 A JP 2017533522A JP 6698661 B2 JP6698661 B2 JP 6698661B2
Authority
JP
Japan
Prior art keywords
workpiece
feature
alignment
edge
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017533522A
Other languages
English (en)
Other versions
JP2018512059A5 (ja
JP2018512059A (ja
Inventor
ヘイスティ,ジョセフ,マシュー
ミーチャン,アレクサンダー,アナトリビッチ
コスモフスキ,マーク,セオドア
Original Assignee
エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド
エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド, エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド filed Critical エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド
Publication of JP2018512059A publication Critical patent/JP2018512059A/ja
Publication of JP2018512059A5 publication Critical patent/JP2018512059A5/ja
Application granted granted Critical
Publication of JP6698661B2 publication Critical patent/JP6698661B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/25Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for continuous-path control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35107Generate planar section toolpath
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36342Tool path processing, sequence to cut paths

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)
  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

関連出願に対する相互参照
本出願は、2014年12月29日に提出された米国仮特許出願第62/097,418号の優先権を主張するPCT出願である。当該米国仮特許出願の内容は、あらゆる目的のためにその全体が参照により本明細書に組み込まれる。
著作権表示
(c) 2015 Electro Scientific Industries社。この特許文書の開示の一部には、著作権保護を受ける構成要素が含まれている。この特許文書又は特許開示は米国特許商標庁の特許ファイル又は記録に記載されているので、著作権者は、いかなる者による特許文書又は特許開示のファクシミリによる複製に対して異議を唱えることはないが、それ以外についてはどのようなものであってもすべての著作権を留保する。米国連邦規則集第37巻第1.71条(d)。
本出願は、固定具上でツールに対するワークピースの位置を決定するためのシステム及び方法に関するものであり、特に、固定具の側部を検査することにより固定具上のワークピースの表面上のツール加工経路を決定するためのシステム及び方法に関するものである。
背景
電子機器のサイズが小さくなり続けるにつれ、より小さなサイズとしたり、湿気やダメージから内部の電子部品を保護したりするために、それらの構造的な構成要素を連結するための許容範囲を狭くすることが要求されることがある。電子機器の構造的な仕様に加えて、構造的な構成要素を連結するための許容範囲を狭くすることは、電子機器の美観や電子機器を取り扱う際の触感からも要求される。家庭用電子機器の市場での競争がより激しくなるにつれ、デバイスの製造者は、電子機器の技術的な能力だけではなく、電子機器の見た目と感じを良くしようとする。
さらに、製造プロセス中に、突き合わせ面間で相互作用するフィーチャが非常に小さくなるように家庭用電子機器のいくつかの構成要素を突き合わせることも一般的である。これらの界面の寸法はますます小さくすることが要求されるので、これまでの検査及び位置決め方法では、ツール加工用途に必要とされる正確性を得るのに十分ではないことがある。
概要
本概要は、例示の実施形態の詳細な説明においてさらに述べられる概念を厳選したものを簡略化した形態で紹介するために提供されるものである。本概要は、特許請求の範囲に記載された主題の重要な又は必須の創作的な概念を特定すること意図しているものでも、あるいは、特許請求の範囲に記載された主題の範囲を限定することを意図しているものでもない。
ある実施形態においては、ワークピースはワークピース上面を有し、上記ワークピースはワークピース底面を有し、上記ワークピースは上記ワークピース上面と上記ワークピース底面との間のワークピース側部を有し、上記ワークピースは上記ワークピース側部に沿って位置するワークピースエッジを有し、上記被覆材は被覆上面を有し、上記被覆材は被覆底面を有し、上記被覆材は上記被覆上面と上記被覆底面との間の被覆側部を有し、上記被覆材は上記被覆側部に位置する初期被覆エッジを有し、上記ワークピース上面は、上記被覆底面が上記ワークピース上面に近くなり、上記被覆上面が上記ワークピース上面から遠くなるように上記被覆材を支持し、上記初期被覆エッジは上記ワークピースエッジと一致しておらず、ワークピースにフィットする被覆材を加工するためにカスタマイズされたツール経路を決定するための方法は、上記ワークピースを支持固定具に固定し、上記ワークピースは上記支持固定具に対して静止位置に固定され、上記ワークピース底面が上記支持固定具に近く、上記ワークピース上面が上記支持固定具から遠く、上記支持固定具は、第1のアライメントフィーチャと第2のアライメントフィーチャとを含む複数のアライメントフィーチャに関連付けられ、上記第1のアライメントフィーチャは第1のフィーチャ上部寸法と第1のフィーチャ側部寸法とを有し、上記第2のアライメントフィーチャは第2のフィーチャ上部寸法と第2のフィーチャ側部寸法とを有し、上記ワークピース側部、上記第1のフィーチャ側部、上記第2のフィーチャ側部、上記第1のフィーチャ上部、及び上記第2のフィーチャ上部をスキャンし、側部スキャンデータを取得するために側部スキャンを用い、上部スキャンデータを取得するために上部スキャンを用い、上記側部スキャンデータは、上記ワークピースエッジの特性に関連付けられたワークピースエッジプロファイルデータを含み、上記側部スキャンは、上記第1のフィーチャ側部及び上記第2のフィーチャ側部の相対的な側部と関連付けられた側部位置データを含み、上記第1のフィーチャ上部に関連付けられた第1のフィーチャ上部位置データは上記上部スキャンから取得され、上記第2のフィーチャ上部に関連付けられた第2のフィーチャ上部位置データは上記上部スキャンから取得され、上記被覆材の上記被覆上面にわたって上記ワークピースエッジに関連付けられたツール経路を決定し、上記ツール経路は上記上部スキャンデータに対する上記側部スキャンデータの相関関係に基づいている。
代替的な、付加的な、あるいは累積的な実施形態では、基板は、上面と、底面と、上記上面と上記底面との間に延びる側面とを有し、上記側面は、上記基板の上記上面の基板エッジに対応し、上記被覆材は被覆上面を有し、ワークピースの基板によって支持される被覆材を加工するためのシステムは、その基板支持領域内で上記基板を支持するための支持固定具と、上記支持固定具によって支持されるアライメントフィーチャとを備え、上記アライメントフィーチャは、第1及び第2の離間アライメントフィーチャを含み、それぞれのアライメントフィーチャは、フィーチャ上部とフィーチャ側面とを有し、上記フィーチャ上部は、識別可能な上部特性を有し、上記フィーチャ側部は、識別可能な側部特性を有し、上部スキャンデータを取得可能な第1の検査システムと、側部スキャンデータを取得可能な第2の検査システムと、上記支持固定具と上記第1及び第2の検査システムとの間で相対移動を生じさせる相対移動システムと、上記被覆材を加工可能な加工ツールと、上記支持固定具と上記第1及び第2の検査システムとの間の相対移動を調整する1以上のプロセッサであって、上記側部スキャンデータと上記上部スキャンデータとを相互に関係させ、上記被覆材の上記上面にわたって上記加工ツール用のツール経路を決定し、上記ツール経路に沿った上記ワークピースと上記加工ツールとの間の相対移動により上記加工ツールの動作を調整するためのプロセッサとを備える。
付加的な又は累積的な実施形態では、加工ツールのカッティングツール軸の位置が上記ツール経路に沿った上記被覆上面上の位置に相対的に合わされ、上記ワークピースエッジに関連付けられた上記ツール経路に沿って上記被覆上面をカットするために上記加工ツールが用いられ、上記ワークピースエッジに一致する処理済み被覆エッジを形成する。
代替的な、付加的な、あるいは累積的な実施形態では、ワークピースはワークピース上面を有し、上記ワークピースはワークピース底面を有し、上記ワークピースは上記ワークピース上面と上記ワークピース底面との間のワークピース側部を有し、上記ワークピースは上記ワークピース側部に沿って位置するワークピースエッジを有し、上記被覆材は被覆上面を有し、上記被覆材は被覆底面を有し、上記被覆材は上記被覆上面と上記被覆底面との間の被覆側部を有し、上記被覆材は上記被覆側部に位置する初期被覆エッジを有し、上記ワークピース上面は、上記被覆底面が上記ワークピース上面に近くなり、上記被覆上面が上記ワークピース上面から遠くなるように上記被覆材を支持し、上記初期被覆エッジは上記ワークピースエッジと一致しておらず、ワークピースにフィットする被覆材を加工するためにカスタマイズされたツール経路を決定するための方法は、上記ワークピースを支持固定具に固定し、上記ワークピースは上記支持固定具に対して静止位置に固定され、上記ワークピース支持固定具は、加工ツール用座標系に関して較正された固定具位置を有し、上記ワークピース底面が上記支持固定具に近く、上記ワークピース上面が上記支持固定具から遠く、上記支持固定具は、第1のアライメントフィーチャと第2のアライメントフィーチャとを含む複数のアライメントフィーチャに関連付けられ、上記第1のアライメントフィーチャは第1のフィーチャ側部寸法を有し、上記第2のアライメントフィーチャは第2のフィーチャ側部寸法とを有し、上記ワークピース側部、上記第1のフィーチャ側部、及び上記第2のフィーチャ側部をスキャンし、側部スキャンデータを取得するために側部スキャンを用い、上記側部スキャンデータは、上記ワークピースエッジの特性に関連付けられたワークピースエッジプロファイルデータを含み、上記側部スキャンは、上記第1のフィーチャ側部及び上記第2のフィーチャ側部の相対的な側部と関連付けられた側部位置データを含み、上記被覆材の上記被覆上面にわたって上記ワークピースエッジに関連付けられたツール経路を決定し、上記ツール経路は上記固定具位置に関して較正された位置に対する上記側部スキャンデータの相関関係に基づき、上記ツール経路に沿った上記被覆上面上の位置に加工ツールのカッティングツール軸の位置を相対的に合わせ、上記加工ツールを用いて上記ワークピースエッジに関連付けられた上記ツール経路に沿って上記被覆上面をカットし、上記ワークピースエッジに一致する処理済み被覆エッジを形成する。
代替的な、付加的な、あるいは累積的な実施形態では、上記第1及び第2のアライメントフィーチャはそれぞれアライメントピンである。
代替的な、付加的な、あるいは累積的な実施形態では、上記加工ツールがレーザである。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースエッジはワークピース周縁部を形成し、上記初期被覆エッジは初期被覆エッジ周縁部を形成し、上記処理済み被覆エッジは処理済み被覆周縁部を形成する。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースエッジは複数の横断ワークピースエッジセグメントを含み、上記初期被覆エッジは複数の横断初期被覆エッジセグメントを含む。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースは、上記支持固定具に対してランダムな位置にロードされ、上記第1のアライメントフィーチャ及び上記第2のアライメントフィーチャは上記ワークピース周縁部の外側にある。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースは、真空圧により上記支持固定具に固定される。
代替的な、付加的な、あるいは累積的な実施形態では、上記支持固定具は、上記ワークピースの主表面寸法よりも大きな主表面寸法を有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記支持固定具は、上記ワークピースエッジに沿って上記被覆底面と垂直に交差する加工軸の利用を阻害する固定具表面積を有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記第1のアライメントフィーチャ及び上記第2のアライメントフィーチャは、上記支持固定具に固定されているときに、上記ワークピースに対する静的基準を提供する。
代替的な、付加的な、あるいは累積的な実施形態では、所定のフィーチャ離間距離を利用して上記第1のフィーチャ側部と上記第2のフィーチャ側部の相対的な側部をスケーリングする。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピース上面は、ワークピースエッジ離間距離だけ離間した、両側のワークピースエッジセグメントを有し、上記第1及び第2のアライメントフィーチャの間の離間距離は、上記ワークピースエッジ離間距離よりも大きい。
代替的な、付加的な、あるいは累積的な実施形態では、上記側部スキャンデータを取得するために1以上の変位センサが利用され得る。
代替的な、付加的な、あるいは累積的な実施形態では、上記スキャンするステップはマッピングを含む。
代替的な、付加的な、あるいは累積的な実施形態では、それぞれのワークピースエッジセグメントが2つのアライメントフィーチャの間にフィットするように十分な数の付加的なアライメントフィーチャが用いられる。
代替的な、付加的な、あるいは累積的な実施形態では、上記第1のアライメントフィーチャ及び上記第2のアライメントフィーチャはフィーチャラインに沿って配置され、上記ワークピースエッジは上記フィーチャラインに対して非平行に配置される。
代替的な、付加的な、あるいは累積的な実施形態では、上記第1のアライメントフィーチャは第1のフィーチャ直径を有し、上記第2のアライメントフィーチャは第2のフィーチャ直径を有し、上記第1のフィーチャ直径と上記第2のフィーチャ直径とが異なる。
代替的な、付加的な、あるいは累積的な実施形態では、上記第1のアライメントフィーチャは第1のフィーチャ直径を有し、上記第2のアライメントフィーチャは第2のフィーチャ直径を有し、上記第1のフィーチャ直径と上記第2のフィーチャ直径とが等しい。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースエッジは、予め決められたワークピース長さに近いワークピース長さを有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記処理済み被覆エッジの任意の被覆部は、上記ワークピースエッジのそれぞれ最も近いワークピース部の100ミクロン以内にある。
代替的な、付加的な、あるいは累積的な実施形態では、上記処理済み被覆エッジの任意の被覆部は、上記ワークピースエッジのそれぞれ最も近いワークピース部の50ミクロン以内にある。
代替的な、付加的な、あるいは累積的な実施形態では、上記処理済み被覆エッジの任意の被覆部は、上記ワークピースエッジのそれぞれ最も近いワークピース部の25ミクロン以内にある。
代替的な、付加的な、あるいは累積的な実施形態では、上記被覆周縁部と上記ワークピース周縁部との間の間隙は、人間の目から25mm以上離れた距離で平均的な視力の肉眼では均一に見える。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースエッジは50mmよりも長い。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースエッジは375mmよりも長い。
代替的な、付加的な、あるいは累積的な実施形態では、上記被覆材は光学的に不透明な材料を有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記被覆材はプラスチック材料を有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記被覆材はセラミック材料を有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記被覆材の上記上面にはアライメントフィーチャがない。
代替的な、付加的な、あるいは累積的な実施形態では、上記第1のアライメントフィーチャは、第1のアライメント基準点を含む第1のフィーチャ上面を有し、上記第2のアライメントフィーチャは、第2のアライメント基準点を含む第2のフィーチャ上面を有し、上記第1及び第2のアライメント基準点は、それぞれの主アライメントフィーチャ寸法よりも小さい主基準点寸法を有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記第1のアライメント基準点は、上記第1のフィーチャ上面上の中央に位置し、上記第2のアライメント基準点は、上記第2のフィーチャ上面の中央に位置する。
代替的な、付加的な、あるいは累積的な実施形態では、上記エッジプロファイルデータの上記特性は、上記ワークピース側部に沿った複数の点のそれぞれが側部スキャンセンサの側面センサ軸を通過するときの上記側部スキャンセンサと上記複数の点のそれぞれとの間の距離を含む。
代替的な、付加的な、あるいは累積的な実施形態では、上記側部スキャンデータは、アライメントフィーチャと上記エッジセグメントのコーナーとの間の相対距離を含む。
代替的な、付加的な、あるいは累積的な実施形態では、複数の支持固定具のそれぞれは、それぞれの支持固定具に固有の支持フィーチャデータを提供するようにそれぞれ互いにマッピングされた第1及び第2のアライメントフィーチャを有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記支持フィーチャデータを使用して上記側部スキャンデータを加工ツールが使用する座標系に変換する。
付加的な又は累積的な実施形態では、上記スキャンするステップにおいて、上記ワークピース周縁部全体をスキャンする。
付加的な又は累積的な実施形態では、側部スキャンセンサによって上記側部スキャンが行われ、上部スキャンセンサによって上記上部スキャンが行われ、上記側部スキャンセンサと上記上部スキャンセンサとは異なるタイプのセンサである。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースは、対向する第1のエッジセグメントと第2のエッジセグメントとを含み、第1の側部スキャンセンサが上記第1のエッジセグメントをスキャンし、上記第2の側部スキャンセンサが上記第2のエッジセグメントをスキャンする。
代替的な、付加的な、あるいは累積的な実施形態では、上記スキャンするステップにおいて、移動する上記ワークピースをスキャンするために1以上の静止センサを用いる。
代替的な、付加的な、あるいは累積的な実施形態では、上記スキャンするステップにおいて、ワークピースに沿って1以上のセンサを移動させる。
代替的な、付加的な、あるいは累積的な実施形態では、側部スキャンデータ取得が、リニアエンコーダ又は位置エンコーダを用いることによって、スキャンセンサと上記ワークピース側部に沿った位置との間の相対位置と同期される。
代替的な、付加的な、あるいは累積的な実施形態では、側部スキャンデータ取得は、スキャンセンサと上記ワークピース側部に沿った位置との間の実質的に一定の速度の相対移動と同期された予め決められたサンプリングレートを用いる。
付加的な又は累積的な実施形態では、側部スキャンデータ取得は、上記第1のアライメントフィーチャと上記第2のアライメントフィーチャとの間の既知の距離を利用し、スキャンセンサと上記ワークピース側部に沿った位置との間の実質的に一定の速度の相対移動を用いる。
代替的な、付加的な、あるいは累積的な実施形態では、上記実質的に一定の速度は、予め決められた速度の5%以内に維持される。
代替的な、付加的な、あるいは累積的な実施形態では、上記加工ツールは、コンピュータ制御のカッティング機械を含む。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピース側部と側部スキャンデータを取得するためのセンサとの間に1以上の障害物が配置され、上記1以上の障害物で塞がれたワークピースエッジ部の特性は、上記側部スキャンデータから外挿される。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピース側部と側部スキャンデータを取得するためのセンサとの間に1以上の障害物が配置され、上記1以上の障害物で塞がれたワークピースエッジ部の特性は、上記側部スキャンデータから内挿される。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースエッジは、ワークピースエッジプロファイルを有するワークピース周縁部を形成し、上記側部スキャンデータは、上記ワークピースエッジプロファイルを上記ワークピース周縁部用に予め決められた理想的なエッジプロファイルと比較するために用いられる。
代替的な、付加的な、あるいは累積的な実施形態では、上記側部スキャンは側部スキャン領域で行われ、上記ツール経路は上記側部スキャン領域から区別された加工領域において実現される。
代替的な、付加的な、あるいは累積的な実施形態では、上記側部スキャン領域は、上記加工領域と物理的に分離されている。
代替的な、付加的な、あるいは累積的な実施形態では、上記ワークピースは、上記スキャンするステップ及び加工するステップを通して、上記支持固定具に対して単一の位置に維持される。
代替的な、付加的な、あるいは累積的な実施形態では、側部スキャンセンサの第1のペアが、それぞれ反対側の第1及び第2のワークピースエッジセグメントから同時に側部スキャンデータを取得し、側部スキャンセンサの第2のペアが、それぞれ反対側の第3及び第4のワークピースエッジセグメントから同時に側部スキャンデータを取得する。
代替的な、付加的な、あるいは累積的な実施形態では、上記側部スキャンセンサの上記第1のペアは、上記側部スキャンセンサの上記第2のペアのスキャニング軸に横断する方向に向けられたスキャニング軸を有する。
代替的な、付加的な、あるいは累積的な実施形態では、上記側部スキャンセンサの上記第1のペア及び上記第2のペアのうち一方は、上記スキャンするステップの間静止し、上記側部スキャンセンサの上記第1のペア及び上記第2のペアのうち一方は、上記スキャンするステップの間移動する。
代替的な、付加的な、あるいは累積的な実施形態では、上記側部スキャンセンサの上記第1のペアは、上記側部スキャンセンサの上記第2のペアが側部スキャンデータを取得する前に側部スキャンデータを取得する。
代替的な、付加的な、あるいは累積的な実施形態では、上記側部スキャンデータは、上記上部スキャンデータが取得される前に取得される。
代替的な、付加的な、あるいは累積的な実施形態では、第1のワークピースエッジセグメントは、上記第1及び第2のアライメントフィーチャにより規定される軸の間に位置し、第2のワークピースエッジセグメントは、上記第2のアライメントフィーチャ及び第3のアライメントフィーチャにより規定される軸の間に位置し、上記第2のアライメントフィーチャに関連付けられたデータは、上記第1のワークピースエッジ及び上記第2のワークピースエッジに沿った連続的なツール経路を提供するために使用される。
追加の態様及び利点は、添付図面を参照して述べられる以下の例示的な実施形態の詳細な説明から明らかになるであろう。
図1は、汎用的なワークピースの上面図である。 図2は、大型の被覆材により覆われているときのワークピースの側断面図である。 図3Aは、複数のアライメントフィーチャを利用する支持固定具の例示的な実施形態の右前方等角図である。 図3Bは、図3Aに示される複数のアライメントフィーチャを利用する支持固定具の例示的な実施形態の上面図である。 図3Cは、図3Aに示される複数のアライメントフィーチャを利用する支持固定具の例示的な実施形態の(図3Bの線3Cに沿って見た)後方側面図である。 図3Dは、ずれた配置にあるワークピースを支持する図3Aの支持固定具の例示的な実施形態の右前方等角図である。 図4A、図4B、及び図4Cは、図3A、図3B、及び図3Cに示された例示的な支持固定具とともに使用するのに好適な例示的なアライメントピンのそれぞれ上側面等角図、上面図、及び側面図である。 図5は、例示的な側部スキャンデータのグラフであり、ワークピースエッジセグメントのコーナーに関して2つの例示的なアライメントフィーチャの相対位置を示すものである。 図5Aは、例示的な側部スキャンデータのグラフであり、ワークピースエッジセグメントにおける理想的なワークピースエッジセグメントからの偏位を示すものである。 図5Bは、ワークピースの4辺からの例示的な側部スキャンデータのグラフであり、ワークピース周縁部に関して方向決めされたエッジセグメントの側部スキャンデータである。 図6は、図5の側部スキャンデータの例示的な部分の拡大グラフであり、側部スキャンデータとアライメントフィーチャの上面上の基準点との間の関係を示すものである。 図6Aは、支持固定具の例示的な実施形態の上面図であり、大型の被覆材をワークピース上に重ねたツール経路を示している。 図7は、簡略化した例示的な側面スキャニングシステムの上面図である。 図8は、例えばカットを形成することによりワークピースを加工するために用いられるレーザシステムのような例示的なツールの図である。
好ましい実施形態の詳細な説明
以下、添付図面を参照しつつ実施形態の例を説明する。本開示の精神及び教示を逸脱することのない多くの異なる形態及び実施形態が考えられ、本開示を本明細書で述べた実施形態に限定して解釈すべきではない。むしろ、これらの実施形態の例は、本開示が完全かつすべてを含むものであって、本開示の範囲を当業者に十分に伝えるように提供されるものである。図面においては、理解しやすいように、構成要素のサイズや相対的なサイズが不釣り合いになっていたり誇張されたりしている場合がある。明細書において使用される用語は、特定の例示的な実施形態を説明するためだけのものであり、限定を意図しているものではない。本明細書で使用される場合には、内容が明確にそうではないことを示している場合を除き、単数形は複数形を含むことを意図している。さらに、「備える」及び/又は「備えている」という用語は、本明細書で使用されている場合には、述べられた特徴、整数、ステップ、動作、要素、及び/又は構成要素の存在を特定するものであるが、1つ以上の他の特徴、整数、ステップ、動作、要素、構成要素、及び/又はそのグループの存在又は追加を排除するものではないことも理解されよう。特に示している場合を除き、値の範囲が記載されているときは、その範囲は、その範囲の上限と下限の間にあるサブレンジだけではなく、その上限及び下限を含むものである。
図1は、電子機器用ハウジングのような一般的なワークピース10の上面図である。ワークピース10は、複数の層、複数の材料、又は複数の構成要素を有する、あるいはこれらを有しない基板12を含み得る。図1を参照すると、製造プロセスによってワークピース10のワークピース周縁部18におけるエッジ22に偏差が生じ、任意の2つのワークピース10のワークピース周縁部プロファイル24が異なる場合がある。便宜上、ワークピースエッジ22が1以上のワークピースエッジセグメント23,23a,23b,23c,23d(これらはエッジセグメント23又はエッジ22とも言うことができる)を含んでいるものと考えることができる。
図1は、ワークピース10が長方形のような理想的なワークピース周縁部プロファイル28を有するかのようにワークピース10の理想的なエッジ26を破線で示している。便宜上、理想的なワークピースエッジ26は、1以上の理想的なワークピースエッジセグメント27a,27b,27c,27d(これらは理想的なエッジセグメント27又は理想的なエッジ26とも言うことができる)を含んでいるものと考えることができる。また、便宜上、実際のワークピースエッジ22は実線で示され、理想的なワークピース周縁部プロファイル28の上に重ねられている。実際のワークピースエッジ22は、理想的なワークピース周縁部プロファイル28からの偏差が容易にわかるように偏差が誇張されて描かれている。
ある製造プロセスにおいては、被覆材30からなる保護層又は化粧層でワークピース10を覆うことが好ましい。図2は、支持固定具36により支持され大型の被覆材30によって覆われているように示されるワークピース10の側断面図である。再び図2を参照すると、ワークピースは、ワークピース上面38とワークピース底面40とを備え、ワークピース上面38とワークピース底面40との間にワークピース側部42を有している。ワークピースエッジ22は、ワークピース側部42に沿って位置している。
被覆材30は、被覆上面44と被覆底面46とを備え、被覆上面44と被覆底面46との間に被覆側部48又は被覆エッジセグメント32を有している。被覆底面46がワークピース上面38により近く、被覆上面44がワークピース上面38からより遠くなるようにワークピース上面38が被覆材30を支持している。
再び図2を参照すると、大型の被覆材30は、ワークピース10のエッジ22に重なり、これを越えて延びる(そしてこれにより、ワークピース10のエッジセグメント23のうち1つ以上に重なり、これを越えて延びる)ような寸法にされ位置決めされてもよい。ある実施形態においては、大型の被覆材30は、ワークピース10のエッジセグメント23のすべてに重なり、これらを越えて延びるような寸法にされ位置決めされてもよい。当業者であれば、大型の被覆材30が、理想の被覆周縁部プロファイルからずれたサイズ及び初期被覆周縁部プロファイルを有し、理想の被覆周縁部プロファイルは実際のワークピース周縁部プロファイル18によく一致するであろうことは理解できよう。
さらに、大型の被覆材30は、その被覆エッジセグメント32がそれぞれのワークピースエッジセグメント23から等距離に位置するように完璧に位置決めされていなくてもよい。特に、大型の被覆材30の被覆エッジセグメント32の一部が、ワークピース10のそれぞれのエッジセグメント23から他のエッジセグメント23からよりも遠くにまで延びていてもよい。これに加えて、あるいはこれに代えて、大型の被覆材30の被覆エッジセグメント32は、大型の被覆材30の1つの被覆エッジセグメント32の異なる部分が、ワークピース10の1つのエッジセグメント23のそれぞれの部分から異なる距離に位置するように、ワークピース10のエッジセグメント23に対してずれていてもよい。
ある製造プロセスにおいては、プロセスエンジニアは、ワークピース10のそれぞれのエッジセグメント23から被覆材30のエッジセグメント32までの距離がギャップ距離の特定の範囲内に入るように、大型の被覆材30の張り出し部34をトリミングすることが望ましいと判断している。ギャップ距離は、ワークピースエッジセグメント23を越えて外側に延びる被覆エッジセグメント32を示す場合があり、あるいは、ギャップ距離は、被覆エッジセグメント32がワークピースエッジセグメント23に対して内側にあることを示す場合がある。ある実施形態では、例えば、被覆材30がエンドユーザの衣服の生地に引っ掛かったり、エンドユーザの指に引っ掛かったりすることを防止するために、被覆エッジセグメント32がワークピースエッジセグメント23に対して内側にあることが好ましい場合がある。また、被覆エッジセグメント32に沿ったすべての点が、ワークピースエッジセグメント23に沿ったそれぞれの点から等距離に位置するように、被覆材30をトリミングしたり、カットしたりすることが好ましいであろう。ギャップ距離を均一にすることにより好ましい表面外観が得られる場合がある。
ある実施形態においては、被覆エッジセグメントに沿った点とワークピースエッジセグメント23に沿ったそれぞれの点との間の距離の範囲がゼロから3mmである。ギャップ距離がゼロであることは、被覆材30の処理済みエッジセグメント32がワークピース10のそれぞれのエッジセグメント23と同一平面上にあることを意味している。ある実施形態においては、ギャップ距離はゼロから2mmである。ある実施形態においては、ギャップ距離はゼロから1mmである。ある実施形態においては、ギャップ距離はゼロから500μmである。ある実施形態においては、ギャップ距離はゼロから250μmである。
ある実施形態においては、被覆エッジセグメントに沿った点とワークピースエッジセグメント23に沿ったそれぞれの点との間の距離の範囲は、ゼロから100μmである。ギャップ距離がゼロであることは、被覆材30の処理済みエッジセグメント32がワークピース10のそれぞれのエッジセグメント23と同一平面上にあることを意味している。ある実施形態においては、ギャップ距離はゼロから75μmである。ある実施形態においては、ギャップ距離はゼロから50μmである。ある実施形態においては、被覆エッジセグメント32は、それぞれのエッジセグメント23と同一平面上に位置するようにトリミングされる。ある実施形態においては、ギャップ距離は5から100μmである。ある実施形態においては、ギャップ距離は5から75μmである。ある実施形態においては、ギャップ距離は5から50μmである。ある実施形態においては、ギャップ距離は10から100μmである。ある実施形態においては、ギャップ距離は10から75μmである。ある実施形態においては、ギャップ距離は10から50μmである。ある実施形態においては、ギャップ距離は100μmよりも大きくてもよい。付加的な、選択的に付加的な、あるいは累積的な実施形態においては、それぞれの被覆エッジセグメント32とワークピースエッジセグメント23のすべての間の距離差が等しい。付加的な、選択的に付加的な、あるいは累積的な実施形態においては、それぞれのエッジ32とワークピースエッジセグメント23との間の距離差が異なっていてもよい。
従来から、ワークピース検査とツール経路生成は、ワークピース10の上面38に向けられたカメラによってワークピースとアライメントフィーチャとを検査することにより行われている。オレゴン州ポートランドのElectro Scientific Industries社のESIモデル5900csシステムをはじめ従来の多くのレーザ加工システムはこの能力を有している。特に、カメラと画像パターン認識により、アライメントフィーチャに対してワークピースエッジプロファイルを特定し、個々にスキャンされるワークピース10に適合されたツール経路を生成することができる。
しかしながら、本明細書において開示されるワークピース10及びトリミング精度についての多くの実施形態は、多くの理由で標準的な検査及びツール経路生成技術を妨げ得る数々の状況を生み出す。ワークピース10のエッジ22上の異なるサイズ及び種類のフィーチャは、それらが所望の形状にモールドされるので、プラスチック材料のようなある種の被覆材30の異なる膨張率を生じさせる。先に述べたように、被覆材30のエッジセグメント32とワークピース10のエッジセグメント23との間の距離に対する仕様は、ミクロンレベルであり、一般的に、ワークピース10全体にわたって互いに数十ミクロン以内である。出願人は、被覆エッジ32とワークピースエッジ22との間の所望のギャップ距離を得るための適応カットが望ましい場合があると判断している。また、出願人は、それぞれのワークピース10を個々に検査し、それぞれのワークピース10に対して個別にカスタマイズされたトリミングプロファイル(及び加工ツール経路)を適応させることが望ましいと判断している。また、出願人は、被覆底面46から被覆材30をカットするとワークピース10の側部42にダメージを与える可能性があるため、上面44から被覆材をカットすることが好ましいと判断している。
多くの実施形態においては、被覆材30の上面44は美観を生じさせるものであり、加工及びエッジ仕様を満足するための適切な精度とコントラストで位置情報を提供するためのフィーチャは形成されていない。さらに、多くの実施形態では、被覆材は不透明であり、被覆材30の上面44を通じたワークピースエッジ22の検査ができないようにしている。このため、そのような実施形態に関しては、ワークピース周縁部プロファイル24を決定するために被覆材30の上面44から被覆材30を検査及び測定することは一般的に不可能である。
ワークピース10の底面40からワークピースエッジ22を検査し、特定のワークピースエッジ22に適合されたツール経路を形成することは可能であるかもしれないが、ワークピース10を反転させる際に、アライメントフィーチャに対する位置合わせを維持することは、商業的生産過程においては(スループットを許容可能な範囲にしなければならないことやその他の理由から)問題がある可能性があるか、あるいは現実的ではない。加えて、ワークピースエッジ22に対する明確な照準線があれば、カメラ検査方法が容易になるであろう。ある実施形態に関しては、正しいワークピース位置決めとアライメントとを提供しつつ、ワークピース底面40からワークピースエッジ22への明確な照準線を許容する支持固定具は、設計的及び製造的に多くの問題を呈している。
ワークピース10のある実施形態について、出願人は、エッジスキャンデータを取得するための横向きスキャニングシステムとワークピースエッジ22を加工するための上向き加工アライメントシステムとによって、特に横向きスキャニングシステムと上向き加工アライメントシステムとの間に基準座標系が存在する場合に、所望のトリム仕様を達成できると判断している。ある実施形態については、アライメントピンのような1以上のアライメントフィーチャ60を用いて、横向きスキャニングシステムと上向き加工アライメントシステムとの間の基準座標系を提供して、ワークピースエッジ22に一致するように正確かつ精密に張り出し部34をトリミングすることを容易にしている。
図3A〜図3Cは、横向きスキャニングシステムと上向き加工アライメントシステムとの間の基準座標系を提供するための複数のワークピースアライメントフィーチャ60a,60b,60c,60d(汎用的又は包括的にアライメントフィーチャ60という)を利用する支持固定具36の例示的実施形態の右前方等角図、平面図、及び後側面図を表している。多くの実施形態において、支持固定具36は、ワークピース10の寸法よりも大きな寸法を有している。特に、支持固定具36は、ワークピース周縁部18よりも大きな固定具周縁部62を有していてもよく、固定具周縁部62は、ワークピース上面38の表面積よりも大きな表面を有する固定具上面64を規定していてもよい。さらに、(固定具エッジセグメント66a,66b,66c,66dのような)それぞれの固定具エッジセグメント66は、対応するワークピースセグメント23のセグメント長さよりも長い固定具エッジセグメント長さを有していてもよい。
支持固定具36は特定の形状を有している必要はない。例えば、支持固定具は、図3Aに示されるような略矩形状であってもよく、あるいは、略正方形状、略円形状、略楕円形状、略オーバル形状、略六角形状、又は略八角形状であってもよい。さらに、支持固定具36は、1以上の固定具フレームフィーチャ68a,68b,68c,68d(包括的又は汎用的に固定具フレームフィーチャ68という)を含んでいてもよく、これらは、支持固定具36の概略形状から外側に延びていてもよく、あるいは支持固定具36の概略形状の内側に凹部を形成してもよい。フレームフィーチャ68は、支持固定具36を取り扱う際、移送する際、又は位置合わせする際に有用であり得る。また、支持固定具36は、固定具ピン74及び固定具孔76のような付加的なフレームアライメントフィーチャを含み得る。他の実施形態においては、それぞれのサポートフィーチャ36は、プロセストレーサビリティのための識別手段を提供するための一意のバーコード又は他の機械読取可能な識別子を含んでいる。
多くの実施形態においては、ワークピース10を支持固定具36に対して静止位置に固定するために支持固定具36を適応させることができる。図3Dは、ずれた配置にあるワークピース10を支持する支持固定具36の例示的な実施形態の右前方等角図である。
ある実施形態においては、ワークピース固定機構は、高速接続真空導管(quick-connect vacuum umbilical)のような真空源(図示せず)に直接的又は間接的に接続された複数の吸引孔70を含んでいる。吸引孔70は、固定具表面64にわたって縦横の配列で均等に分布し得るか、あるいは、吸引孔70は、任意の非桁状(non-columnar)の配置で均等に分布し得る。しかしながら、吸引孔70は均等に分布されている必要はなく、吸引孔70は均一の形状又はサイズを有する必要もない。さらに、吸引孔70は円形であっても、あるいは他の任意の形状を有していてもよい。他の固定機構は、付加的に又は代替的に案内保持レール(図示せず)、クランプ(図示せず)、及びワークピース10を保持する寸法にされ保持するように適合された、固定具表面64内の凹部(図示せず)を用いることができる。
再び図3Aを参照すると、ある実施形態においては、アライメントフィーチャ60は、支持固定具36の固定具表面64に取り付けられている。ある実施形態においては、アライメントフィーチャ60は、固定具エッジセグメント66に取り付けられるか又は固定具エッジセグメント66に沿って配置されている。ある実施形態においては、アライメントフィーチャ60は、支持固定具36内の貫通孔(図示せず)から突き出てもよく、支持固定具36を移動及び位置決めするのに適応されたチャック、ステージ、又はコンベアの一部を構成していてもよい。ある実施形態においては、支持固定具36自体がチャック、ステージ、又はコンベアの一部を構成する。
アライメントフィーチャ60は、固定具表面64上の又は固定具エッジセグメント66に沿った任意の位置に配置されていてもよい。ある実施形態においては、アライメントフィーチャ60は、ワークピース10に対して外側に配置されている。固定具表面64は、典型的に、ワークピース10全体を支持するのに十分なサイズの試料領域を有しているか、あるいは、アライメントフィーチャ60が試料領域に対して外側に配置されていてもよい。ある実施形態においては、アライメントフィーチャ60は、吸引孔70により利用される固定具表面の領域に対して外側というように、固定機構により利用される領域に対して外側に配置され得る。ある好ましい実施形態においては、(エッジに向いた)側部スキャンビューからスキャンされる際に、側部スキャンシステムによって得られるデータ内でアライメントフィーチャ60がワークピースエッジ22から区別可能となるように、アライメントフィーチャ60がワークピース10の全境界の外側に置かれる。付加的な又は代替的な実施形態においては、アライメントフィーチャ60は、図3Aに示されるように、固定具フレームフィーチャ68内に配置されるか、固定具フレームフィーチャ68に接続され得る。
代替的な又は付加的な実施形態においては、アライメントフィーチャ60は、ワークピースエッジセグメント23の交差点のうち1つ以上の交差点に対して外側に配置され得る。代替的な又は付加的な実施形態においては、支持固定具36は、ワークピースエッジセグメント23の交差点のそれぞれに対して1つのアライメントフィーチャ60に関連付けられている。ある実施形態においては、支持固定具36は、ワークピースエッジセグメント23の交差点の数よりも多くのアライメントフィーチャ60に関連付けられ得る。ある実施形態においては、支持固定具36は、ワークピースエッジセグメント23の交差点の数よりも少ないアライメントフィーチャ60に関連付けられ得る。
ある実施形態においては、支持固定具36は、等間隔に離間された2つ以上のアライメントフィーチャ60からなるアライメントフィーチャ60の2つ組を支持する。ある実施形態においては、支持固定具36は、4つのアライメントフィーチャ60に関連づけられ、支持固定具36の固定具表面64上の矩形を規定するコーナーに配置される。ある実施形態においては、アライメントフィーチャ60は、固定具エッジセグメント66の一部に平行な線に沿って位置合わせされる。しかしながら、アライメントフィーチャ60間の間隔は等しい必要はなく、アライメントフィーチャは固定具エッジセグメント66に揃えられる必要もない。
ある実施形態においては、アライメントフィーチャのうちの2つは、(例えばX軸において)約10μmの精度で200000μmから210000μmの範囲内の中心間間隔を有している。ある実施形態においては、アライメントフィーチャのうちの2つは、(例えばY軸において)約10μmの精度で140000μmから142000μmの範囲内の中心間間隔を有している。ある実施形態においては、中心間間隔は約1μmの精度を有する。
アライメントフィーチャ60は、概して3次元的であり、横向きスキャニングシステムと上向き加工アライメントシステムとの間の基準座標系を提供している。アライメントフィーチャは様々な形状を有することができる。形状の例としては、円柱(例えば真円柱だが、断面は楕円や他の形状であってもよい)、円錐、角錐(例えば、矩形、正方形、三角形、又はこれに限られるわけではないが六角形又は八角形などの多角形の底面を有する)、立方体、又は多角形角柱(例えば五角形角柱、六角形角柱、及び八角形角柱)が含まれるが、これらに限られるものではない。ある実施形態については、真円柱が好ましい。
多くの実施形態においては、アライメントフィーチャ60のそれぞれは、平坦なフィーチャ上面80を有している。平坦なフィーチャ上面80は固定具表面64と平行であってもよい。ある実施形態においては、アライメントフィーチャ60は、既知の側面視寸法と既知の上面視寸法とを有している。多くの実施形態においては、アライメントフィーチャ60のそれぞれは、同一の側面視寸法を有しており、アライメントフィーチャ60のそれぞれは、同一の上面視寸法を有している。多くの実施形態においては、それぞれのアライメントフィーチャ60は、上面視寸法に等しい側面視寸法を有している。しかしながら、別個のアライメントフィーチャ60がすべて等しい寸法を有している必要はない。例えば、2つの第1のアライメントフィーチャ60a及び60bが同一の寸法を共有し、2つの第2のアライメントフィーチャ60c及び60dが2つの第1のアライメントフィーチャ60a及び60bとは異なるが同一の寸法を共有していてもよい。ある例においては、側面視寸法及び上面視寸法は、円筒状のアライメントフィーチャ60の直径と同じである。他の例においては、側面視寸法及び上面視寸法は、矩形角柱のアライメントフィーチャ60の長さの1つと同じである。
ある実施形態においては、アライメントフィーチャ60は、5mm以下の直径又は上面長軸を有している。ある実施形態においては、アライメントフィーチャ60の直径又は上面長軸は4mm以下である。ある実施形態においては、アライメントフィーチャ60の直径又は上面長軸は2mm以下である。ある実施形態においては、アライメントフィーチャ60の直径又は上面長軸は1mm以下である。
ある実施形態においては、アライメントフィーチャ60の直径又は上面長軸は±5μmの精度を有している。ある実施形態においては、アライメントフィーチャ60の直径又は上面長軸は±3μmの精度を有している。ある実施形態においては、アライメントフィーチャ60の直径又は上面長軸は±1μmの精度を有している。
ある実施形態においては、支持固定具36の固定具表面64に対するアライメントフィーチャ60の高さは、被覆材30をカットするために用いられるレーザの焦点面にほぼ等しい。アライメントとレーザ焦点面の高さが一致しない場合には、そのような不一致を調整するための方法がいくつかある。ある実施形態においては、レーザとカメラの双方が異なる高さのワークピース10を受け入れるようにZ方向高さが調整可能となっている。単純なオフセットを介してレーザとカメラとの間の不一致を補償するために較正が必要な場合がある。例えば、システムは、Z方向高さエンコーダ基準に対してレーザの焦点が合っている場所を特定することができ、その同一の基準に対してアライメントカメラの焦点が合っている場所を特定することができる。レーザとカメラとの間で切り換える際に、Z軸ステージは、Z方向高さをいずれのエフェクタに対して適切な焦点位置に移動することができる。
ある実施形態においては、レーザ平面の焦点が合っており、アライメントフィーチャの焦点が合っていない場合には、以下のことが言える。精度が重要でなく(カットに対する付加的な位置誤差が許容される)、アライメントフィーチャがアライメント方法(カメラ)によって依然として区別可能/特定可能であるが、十分に焦点が合っていない場合には、Z方向高さにおける不一致は許容され得る。また、Z方向高さの不一致が先験的に把握される場合には、焦点平面の外側でレーザカットの位置的な精度を確保するために較正を利用することができる。しかしながら、レーザの焦点が合っていない場合(カットの幅[切溝]がより大きくなりやすい)には、レーザカットの品質が損なわれる可能性がある。
ある実施形態においては、支持固定具36の固定具表面64に対するアライメントフィーチャ60の高さは被覆材30の上面44よりも高い。ある実施形態においては、支持固定具36の固定具表面64に対するアライメントフィーチャ60の高さは被覆材30の上面44よりも短い。
ある実施形態においては、アライメントフィーチャ60のうちの1つ以上は、上部スキャン視に対して上面基準点を提供する。ある実施形態においては、アライメントフィーチャ60のそれぞれが、上部スキャン視に対して上面基準点84を提供する。ある実施形態においては、アライメントフィーチャ60のうちの1つ以上は、側部スキャン視に対して側面基準点(図示せず)を提供する。ある実施形態においては、アライメントフィーチャ60のそれぞれが、側部スキャン視に対して側面基準点を提供する。ある実施形態においては、上面基準点84は、側部スキャン基準点に(垂直方向に)位置合わせされる。ある実施形態においては、上面基準点84は利用されない。ある実施形態においては、側面基準点は利用されない。ある実施形態においては、上面基準点84が利用され、側面基準点が利用されない。ある実施形態においては、上面基準点84が利用されず、側面基準点が利用される。
多くの実施形態においては、基準点は、それぞれの1以上の面上の中央に位置している。例えば、上面基準点84は、フィーチャ上面80に対して中心に位置し得る。例えば、アライメントフィーチャ60が円筒状である場合、上面基準点84は、フィーチャ上面80の円の中心に位置し得る。例えば、アライメントフィーチャ60が角柱である場合、上面基準点84は、フィーチャ上面80のコーナーからの対角線の交点に位置し得る。側面基準点は、図3Cに示されるような側部スキャン視において見た場合に、フィーチャエッジ86に対して中央に位置していてもよい。ある実施形態においては、基準点は、面あるいは点、十字、又は「x」のような彫込みマークであってもよい。ある実施形態においては、基準点は、アライメントフィーチャ60を完全に又は部分的に貫通するように形成された孔であってもよい。多くの実施形態では、基準点を中央に配置することが好ましいが、基準点を中央に配置する必要はない。ある実施形態においては、平面スキャン視では底面によって中心点が囲まれているような角錐や円錐のような場合、その中心点が基準点として機能してもよく、底面の1つの辺が基準点エッジ86として機能してもよい。
ある実施形態においては、上面基準点84の寸法は、アライメントフィーチャ60の上面80の直径又は長軸の15%以下である。ある実施形態においては、上面基準点84の寸法は、アライメントフィーチャ60の上面80の直径又は長軸の10%以下である。
ある実施形態においては、上面基準点84の寸法は1mm以下である。ある実施形態においては、上面基準点84の寸法は750μm以下である。ある実施形態においては、上面基準点84の寸法は500μm以下である。
ある実施形態においては、ワークピース22のエッジセグメント23のうち1つ以上のエッジセグメントの側面図、アライメントフィーチャ60のフィーチャエッジ86のうち1つ以上のフィーチャエッジの側面図、及びフィーチャ上面80のうち1つ以上のフィーチャ上面の上面図が得られる。ある実施形態においては、ワークピースエッジの特性に関連付けられたワークピースエッジプロファイルデータと、側面図から得られるようなフィーチャエッジ86の相対的側面位置に関連付けられた側面位置データとを含む側部スキャンデータを得るために側部スキャンを利用してもよい。ある実施形態においては、フィーチャ上面80に関連付けられたフィーチャ上面位置データを含む上部スキャンデータを得るために上部スキャンを利用してもよい。図5は、例示的な側部スキャンデータをグラフで表したものであり、2つの例示的なアライメントフィーチャ60とワークピースエッジセグメント23のコーナーとの相対的な位置を示している。図6は、図5の側部スキャンデータの例示的な部分を拡大してグラフで表したものであり、側部スキャンデータとアライメントフィーチャ60の上面80上の上面基準点84との間の関係を示している。
上部スキャン及び側部スキャンは任意の順序で行うことができる。ある実施形態においては、側部スキャンが上部スキャンの前に行われる。ある実施形態においては、上部スキャンが側部スキャンの前に行われる。ある実施形態においては、上部スキャン又は側部スキャンを2回以上任意の順番で行うことができる。ある実施形態においては、上部スキャン及び側部スキャンを同時に行うことができる。多くの実施形態では、ワークピース10は、上部スキャン及び側部スキャンを通して、かつ、加工プロセスを通して、支持固定具36に対して静止位置に維持される。しかしながら、スキャン中に支持固定具36が静止していてもよいし、移動していてもよい。
ある実施形態においては、干渉計のような1以上の変位センサなどの1以上の側部スキャンセンサにより側部スキャンが行われる。ある実施形態においては、1以上のカメラなどの1以上の上部スキャンセンサにより上部スキャンが行われる。
ある実施形態においては、側部スキャンは、複数の側面セグメントスキャンを含み得る。それぞれの側面セグメントスキャンは、アライメントフィーチャ60のうち少なくとも2つのアライメントフィーチャにより規定されるベクトルに沿って横断し、ワークピース10のエッジセグメント23のコーナー又は端部に対するアライメントフィーチャ60の相対距離を取得する。ある実施形態においては、側面セグメントスキャンのうちの1以上の側面セグメントスキャンはスキャンしているベクトルに対して直角(直交)する。ある実施形態においては、側面セグメントスキャンのそれぞれは、スキャンしているベクトルに対して直角(直交)する。ある実施形態においては、側面セグメントスキャンは、アライメントフィーチャ60の測定を含んでおり、ベクトルの両端でアライメントフィーチャ60を越えてスキャンデータが収集され、アライメントフィーチャの正確な位置が決定できるような機構を提供する。図5は、この方法の一実施形態をグラフで描いたものである。図5Aは、例示的な側部スキャンデータをグラフで表したものであり、理想的なワークピースエッジセグメント27からのワークピースエッジセグメント23内の偏位を示している。
ある実施形態においては、それぞれの測定サンプル間のピッチを決定できるような方法でスキャニングデータが受信される。この目的は多くの方法により達成することができる。ある実施形態においては、線形又は位置エンコーダを用いてワークピースエッジ22をスキャンする際に、側部スキャンセンサの出力データを側部スキャンセンサの線形位置に同期させることができる。
ある実施形態においては、側部スキャンセンサのサンプリングレートが既知であり、固定又は静的であるという条件付実行制御によりワークピースエッジ22を一定速度でスキャンすることができる。この情報により、ワークピースエッジセグメント23ごとの距離(サンプルピッチ)を計算することができる。ある実施形態においては、上記一定速度は所定の速度の5%以内に維持される。
ある実施形態においては、ワークピースエッジ22を一定速度でスキャンすることができ、それぞれのエッジ測定において見える2つのアライメントフィーチャ60の間の既知の距離を利用することによりサンプルごとのピッチを計算することができる。そのような実施形態の一部においては、サンプリングレートが固定又は静的であり、データ内でアライメントフィーチャ60の「中心」を特定するのに望まれる分解能を提供するのに十分なものである限り、センササンプリングレートが既知である必要はない。
側部スキャンモジュールを含む例示的なシステムが、オレゴン州ポートランドのElectro Scientific Industries社によりモデル6232システムとして導入されている。ある実施形態においては、側部スキャンモジュールの側部スキャンセンサは、ドイツ連邦共和国バルトキルヒのSICK社により製造されているモデルSICK OD2-P30W04センサを用いている。
ある実施形態においては、上部スキャンセンサを利用して上面視からアライメントフィーチャ60の相互の位置をマッピングするための上部スキャンデータを取得する。上部スキャンデータに対する1つの目標は、側部スキャンと上部スキャンの双方により検出されるアライメントフィーチャ60に対するスケール基準及びアライメント基準を提供することである。ある実施形態においては、この上部スキャンセンサは、被覆材30にカットを形成するための加工システムにより用いられる上部スキャンセンサとは別個のものである。レーザ加工システムにより用いられるものとは別個の上部スキャニングモジュールが有する利点は、あるワークピース10をスキャンしつつ、他のワークピース10を加工することができることである。そのような実施形態においては、側部スキャニングシステムだけでなく、上部スキャニングシステム(加工システムと別個の上部スキャニングモジュール)の双方により理想的な周縁部プロファイルを用いてもよい。そのような並列スキャニング及び加工によって、それぞれのワークピース10に割かれる総処理時間を顕著に短縮化することで、全体のスループットをほぼ2倍にし得る。しかしながら、ある実施形態においては、上部スキャンセンサは、オレゴン州ポートランドのElectro Scientific Industries社により製造されるモデル5390レーザ微細加工装置により用いられるスキャニングシステムのような、加工システムにより用いられる上部スキャンセンサであってもよい。アライメントフィーチャ60の上面のマッピングと加工システムのアライメントの双方に同一の上部スキャンセンサを用いることの利点は、そのような形態によって、スキャニング装置のコストを低減することができ、支持固定具36の移動時間及び整定時間を短縮できることである。
ある実施形態においては、それぞれの個別アライメントフィーチャ60に対して1つの上部スキャンデータが測定システムに利用されて、測定データが加工システムにより用いられる座標系に正確に変換され、加工座標系に対するカッティング部分プロファイルが決定される。
先に述べたように、ある実施形態においては、アライメントフィーチャ60の上面80は既知の長さを有しており、上面80は中央に位置するアライメント基準点84を有しており、このアライメント基準点84は、フィーチャ上面80の真ん中に正確に位置し、(加工システムの)上部スキャニングシステムから見える状態になっている。基準点84又は(円筒状のアライメントフィーチャ60に対しては平坦な円のような)アライメントフィーチャ60の上面80全体のいずれか、あるいはその両方を上部スキャニングシステムによる特定に用いてもよい。
先の述べた多くの実施形態においては、スキャンされた測定データからアライメントフィーチャ60の中心を見つけ出すことが望ましい。ある実施形態においては、アライメントフィーチャ60の「変曲点」を表す曲線の値の低い点/高い点を見つけるための適合アルゴリズムによりこの決定を行うことができる。図6は、この決定を行うことができる一実施形態をグラフで表すものである。
ある実施形態においては、測定データ内で決定されたアライメントフィーチャ60の位置は、それぞれの側面セグメントスキャンの全体を、正確ではあるが一時的な2次元側部スキャン座標系に変換するための「アンカー」として用いることができる。ある実施形態においては、この変換は、(円筒の正確に半径分だけ内側の点のような)発見したアライメントフィーチャ60の「内側」の中心が、関連する固定具のマッピングされた位置と同一であると考えることにより行うことができる。この変換は、ワークピース10のすべて(4つ)の側部42(エッジセグメント23)に対して行うことができる。
ある実施形態においては、決定されたアライメントフィーチャ60の位置をアンカーとして用いて(4つの)独立した側面データ測定値を一緒に「重ねる」又は「組み立てる」ことが望ましい。例えば、左側面データの例を考えると、このデータは、左下側と左上側のアライメントフィーチャ60に対する測定値を含んでいるが、底側面は、その測定データ中に左下側と左右側のアライメントフィーチャ60を含んでいる。左側面と底側面の2次元座標系からの左下側の「アンカー」がマッチし得る。このマッチングは、すべて(4つ)の測定2次元データセットを用いるすべてのアライメント点に対して行うことができる。ある実施形態においては、アライメントフィーチャ60に対するワークピース10の正しい表示を表す結果の照合に対して、これらのデータセットが1つだけの本当の配向を有することが好ましい場合があり、本当の配向は、(上部スキャニングシステムから見ることができるアライメントフィーチャ60/アライメント基準点84の上面80に対して)上側に「向いている」ことが好ましい場合がある。図5Bは、ワークピース10の4つの辺からの例示的側部スキャンデータをグラフで描いたものであり、ワークピース周縁部プロファイル24に対して方向決めされたエッジセグメント23の側部スキャンデータを表している。
支持固定具36内のワークピースエッジ22を正確に表すツーリング経路、軌跡、又はツール経路はアライメントフィーチャ60に対して相対的であるため、合致したアンカーと、完全なワークピース周縁部プロファイル24を含むように構成されたエッジセグメントに関するデータを用いて、このツーリング経路、軌跡、又はツール経路を決定することができる。そして、ツール経路は、ファイル転送プロトコル(FTP)などを介して加工システムに提供される。ある実施形態においては、加工システムは、ワークピースエッジ22及びアライメントフィーチャ60を測定した時と加工が行われている時との間での温度変化による固定具オフセット、回転、及び考えられるスケーリングを補償するように、アライメントフィーチャ60を位置合わせ(再位置合わせ)することが望ましい場合がある。その後、ワークピースエッジ22のワークピース周縁部プロファイル24に合致する、個々にカスタマイズされたツール経路100を用いた加工システムにより被覆材30の被覆上面44を加工することができる。図6Aは、支持固定具36の例示的な実施形態の上面図であり、大型の被覆材30をワークピース10上に重ねたツール経路100を示している。
固定具ピン74のような障害物や他の障害物又は不完全データ(又はスキャナと「レール」の測定範囲を越えるデータ)が、(側部スキャン)データ中に「ギャップ」を生じさせることがあることは理解できよう。データギャップのブリッジングを行う方法は、加工されるワークピース10によって変わり得るし、多くの実施形態では不要であることもある。ある例示的な例では、測定される/処理されるワークピース10に対する理想的なワークピース周縁部プロファイル28/ツール経路(「ゴースト」ツール経路としても知られる)を用いることができる。側部スキャンデータからデータが欠けている理想的なワークピース周縁部プロファイル28を参照することにより、また、欠損データに対する理想的な軌跡におけるスプライシングによりギャップのブリッジングを行うことができる。また、ある実施形態においては、最新の既知の良好な測定データ点間を単純に補間することによりギャップブリッジングを行うことができる。ある実施形態においては、これらの障害物が事前に把握されており、スキャニングシステムによりマスクする(意図的に無視する)ことができる。異常値の排除及び/又はノイズの多い測定データの補償を行うように、測定データのフィルタリングも望ましい場合がある。
図7は、ワークピースエッジセグメント23及びアライメントフィーチャ60の側部スキャンデータを取得するための側部変位センサ112a,112b,112c,112dのような1以上の側部変位センサ112を含む単純化した例示的な側面スキャニングシステム110の上面図である。図7を参照すると、ある実施形態においては、支持固定具36が、チャック、コンベヤ、又は固定具レール114のような移送機構上にロードされる前又はロードされた後に、ワークピース10を支持固定具36上にロード又は配置することができる。先に述べたように、支持固定具36の孔70を通してワークピース10に真空圧を作用させるなどにより、ワークピース10が適切な位置に固定される。
ある実施形態においては、静止側部変位センサ112間で支持固定具36を移動させることができるか、あるいは、側部変位センサがワークピースエッジセグメント23のうちの1つ以上のワークピースエッジセグメントに沿って移動可能であるか、あるいは支持固定具36と側部変位センサ112の双方が相対運動することができる(この場合、ある実施形態については、相対運動が既知の継続した相対運動であることが好ましい)。スキャニング工程の間、好ましくは、ワークピース10と支持固定具36との間の静止レジストレーションが維持される。
図7を再び参照すると、ある実施形態においては、静止側部センサモジュール111は、対向して静止して配置され、それぞれワークピースエッジセグメント23b及び23dに向けて方向付けられ、その間をワークピース10又は支持固定具36が移動できるほど十分に離間された1対の変位センサ112b及び112dを含んでいる。そして、それぞれの側部変位センサ112b及び112dのスキャニング領域を通じてエッジセグメント23b及び23dの全長がワークピース移動方向116に沿って移動するように固定具レール114(又はチャック)により支持固定具36が移動される。したがって、側部変位センサ112b及び112dは、ワークピースエッジセグメント23b及び23dの双方の側部スキャンデータを同時に取得することができる。ある実施形態については、固定具エッジセグメント66aに垂直なセンサ視野軸が好ましい場合があるが、その視野軸が垂直とはならないように側部変位センサ112を配置してもよいことは理解できよう。さらに、ある実施形態については、側部変位センサ112b及び112dが好ましくは同一の軸に沿って配置され得るが、それらの視野軸の位置を揃える必要はない。また、支持固定具36を移動させつつ、側部変位センサ112b及び112dを移動してもよい。
続けて図7を参照すると、ある実施形態においては、対向して静止して配置され、それぞれワークピースエッジセグメント23a及び23cに向けて方向付けられ、その間をワークピース10又は支持固定具36が移動できるほど十分に離間された1対の変位センサ112a及び112cを支持する側面センサステージ118を含む可動型側部センサモジュール117に支持固定具36を移動させるかロードさせてもよい。静止側部スキャンモジュール111による側部スキャン、可動型側部センサモジュール117への移送、及び可動型側部センサモジュール117によって行われるスキャン中は、好ましくは、ワークピース10と支持固定具36との間の静止レジストレーションが維持される。
ある実施形態においては、側部変位センサ112a及び112cは、特に、静止側部センサモジュール111と可動型側部センサモジュール117との間で支持固定具36の方向が変化しない場合に、側部変位センサ112b及び112dの方向を横断し、好ましくは側部変位センサ112b及び112dの方向に直交する配向を有している。しかしながら、代替的な実施形態においては、(例えば可動型側部センサモジュール117の代わりに)ターンテーブル上などで支持固定具36の配向を変更することができ、静止側部センサモジュール111を通じて支持固定具36を戻してワークピースエッジセグメント23a及び23cについての側部スキャンデータを取得することができる。側部スキャンセンサ112をターンテーブルの周囲に固定的に配置して支持固定具36の回転中にすべてのエッジセグメント23の側部スキャンデータを取得するようにしてもよく、あるいは、側部スキャンセンサ112をプラットフォームの周りに搭載して側部スキャンセンサ112が静止支持固定具36の周囲で回転するようにしてもよいことにも留意されたい。
側部変位センサ112a及び112cは、互いに同一であってもよく、側部変位センサ112b及び112dと同一であってもよく、あるいは、側部変位センサ112a及び112cは、互いに異なるタイプのものであってもよく、側部変位センサ112b及び112dのタイプとは異なるタイプのものであってもよい。
図7の可動型側部センサモジュール117を再び参照すると、ワークピースエッジセグメント23a及び23cについての側面センサデータを取得するために支持固定具36を静止させた状態で、側面センサステージ118が側部変位センサ112a及び112cをセンサ移動方向120に移動させてもよい。側部変位センサ112によってワークピースエッジセグメント23のすべてがスキャンされた後、ワークピース10と支持固定具36との間の静的レジストレーションが好ましくは維持された状態で、支持固定具を図8に示されるレーザシステムのような加工システムに移送することができる。
図8は、ワークピース10上の被覆材30にカットを形成することなどによって、ワークピース10を加工するのに好適なレーザ微細加工システム140のような例示的な加工システムの一部の要素の簡略化した部分的に模式的な斜視図である。図8を参照すると、ウェハや他の半導体工業材料基板12や被覆材30のようなワークピース10を加工又はカットするためにレーザが用いられている。例示的な被覆材30は、不透明又は不透過セラミック、ガラス、プラスチック、ポリカーボネート、アクリル、及び金属、あるいはこれらの組み合わせを含み得る。例示的な材料は結晶性のものであっても非結晶性のものであってもよい。例示的な材料は自然のものであっても合成されたものであってもよい。
被覆材30のレーザ加工の信頼性及び再現性を改善するために選択され得る例示的なレーザパルスパラメータとしては、レーザのタイプ、波長、パルス持続時間、パルス繰り返し率、ビーム軸の移動の速度(ビーム速度)、パルス数、パルスエネルギー、パルス時間的形状、パルス空間的形状、及び焦点スポットサイズ並びに形状が挙げられる。付加的なレーザパルスパラメータとしては、被覆材30の上面44に対して焦点スポットの位置を特定することと、ワークピース10に対してレーザパルスの相対運動を方向付けることが挙げられる。
再び図8を参照すると、ワークピース10の被覆材30の上面44上で又はその下でスポット132を加工することが可能な例示的なレーザ処理システム140は、ESI MM5330 微細加工システム、ESI MM5335 微細加工システム、ESI ML5900 微細加工システム、及びESI 5950微細加工システムである。これらはすべてオレゴン州97229ポートランドのElectro Scientific Industries社により製造されている。
これらのシステム140は、典型的に、CO2レーザのようなレーザ150を用いている。しかしながら、被覆材30を確実かつ繰り返しカットするために適切なレーザ、レーザ光学系、部品取扱機器、及び制御ソフトウェアを置き換えたり、追加したりすることによってこれらのシステムを適応させることができる。これらの変更により、適切なレーザパラメータを有するレーザパルスを、適切な位置に置かれ保持されたワークピース10上の所望の位置に、所望の速度とレーザスポット又はパルス間ピッチで照射することがレーザ微細加工システム140により実現可能となり、所望のスポット132を生成することができる。
ある実施形態においては、ダイオード励起固体レーザは、50MHzまでのパルス繰り返し率又はそれより高いパルス繰り返し率で約266nm(紫外(UV))から約1320nm(赤外(IR))の波長を出射するように構成され得る。ある実施形態において、レーザ微細加工システム140は、ドイツ連邦共和国カイザースラウテルンのLumera Laser社により製造されるモデルRapidのような、1064nm波長で動作するダイオード励起Nd:YVO4固体レーザ150を用いる。このレーザ150は、必要に応じて固体調波発生器を用いて波長を532nmに下げて二逓倍され、これにより可視(緑色)レーザパルスを生成することができ、あるいは、約355nmに三逓倍され、あるいは、約266nmに四逓倍され、これにより紫外(UV)レーザパルスを生成することができる。このレーザ150は、6ワットの連続パワーを生成するとされており、1000KHzの最大パルス繰り返し率を有する。このレーザ150は、コントローラ154と連係して1ピコ秒から1,000ナノ秒の持続時間を有するレーザパルス1を生成する。
ある実施形態において、レーザ微細加工システム140は、約1030〜1550nmの範囲内の基本波長を有するダイオード励起エルビウム添加ファイバレーザを用いる。これらのレーザは、必要に応じて固体調波発生器を用いて波長を約515nmに下げて二逓倍され、これにより可視(緑色)レーザパルスを生成することができ、あるいは約775nmに下げて二逓倍され、例えば可視(暗赤色)レーザパルスを生成することができ、あるいは、例えば、約343nm又は約517nmに三逓倍され、あるいは、約257nm又は約387.5nmに四逓倍され、これにより紫外(UV)レーザパルスを生成することができる。より一般的には、ある実施形態において、レーザ波長は200nmから3000nmの波長である。
これらのレーザパルスは、ガウス型であるか、あるいはレーザ光学系162、典型的には、スポット132で所望の特性を実現するように光路160に沿って配置された1以上の光学構成要素を備えたレーザ光学系によって特別に整形されたものであってもよい。例えば、被覆材30に当たるスポット132の全領域にわたって均一な照射量のレーザパルスを伝達する「トップハット」空間プロファイルを使用してもよい。回折光学素子や他の光学ビーム整形素子を用いてこのように特別に整形された空間プロファイルを生成してもよい。レーザスポット132の空間照射プロファイルを修正することについての詳細な説明は、本出願の譲受人に譲渡されたCorey Dunsky等による米国特許第6,433,301号に開示されている。この米国特許は参照により本明細書に組み込まれる。
レーザパルスは、折り畳みミラー164、(音響光学デバイス又は電子光学デバイスのような)減衰器又はパルス選別器166、及び(エネルギー用、タイミング用、又は位置用などの)フィードバックセンサ168も含み得る光路160に沿って伝搬される。光路160に沿ったレーザ光学系162及び他の光学要素は、コントローラ154により方向付けられるレーザビーム位置決めシステム170と協働して、光路160に沿って伝搬するレーザパルスのビーム軸172を方向付けて所望のレーザスポット位置で被覆材30の上面44の近傍にレーザ焦点スポットを形成する。
レーザ加工システム140は、レーザスポット132をワークピース10に対して所望のツール経路に沿って方向付けられるようにビーム軸172の位置をワークピース10又は支持固定具36のアライメントフィーチャ60に揃えるためのカメラ130のような1以上の上部スキャンセンサを含んでいてもよい。また、上述したようにアライメントフィーチャ60に関する上部スキャンデータを取得するためにカメラ130を用いてもよい。アライメントフィーチャ60の上面80のマッピングを行うためにもカメラ130が使用される実施形態においては、アライメントフィーチャ60がスケーリングデータを提供することになるので、加工の自動スケーリングの設定をオフにしてもよい。カメラ130をビーム軸172からオフセットし、ビーム軸172に対して較正してもよい。しかしながら、ある実施形態においては、カメラ132がビーム軸172を共有してもよい。
レーザビーム位置決めシステム170は、レーザ150をX軸などの移動軸に沿って移動可能なレーザステージ182と、ファーストポジショナ(図示せず)をZ軸などの移動軸に沿って移動させるファーストポジショナステージ184とを含み得る。典型的なファーストポジショナは、被覆材30上の大きな領域にわたってビーム軸172の方向を高速で変えることができる1対のガルバノメータ制御ミラーを利用する。そのような領域は、典型的には、ワークピースステージ186による移動の領域よりも小さい。ワークピースステージ186は、Y軸及び/又はX軸のような1以上の軸に沿ってワークピース10を移動させる。
ガルバノメータミラーよりビーム偏向範囲が小さい傾向があるものの、ファーストポジショナとして音響光学デバイス又は変形可能ミラーを用いてもよい。あるいは、ガルバノメータミラーに加えて音響光学デバイス又は変形可能ミラーを高速位置決めデバイスとして用いてもよい。
加えて、支持固定具36は、ビーム軸172に対して支持固定具36のアライメントフィーチャ60を位置決め可能な運動制御要素を有するワークピースステージ186により支持されていてもよい。ワークピースステージ186は、Y軸のような単一軸に沿って移動可能であってもよく、あるいは、ワークピースステージ186は、X軸及びY軸のような横断軸に沿って移動可能であってもよい。あるいは、ワークピースステージ86は、支持固定具36上でZ軸周りなどにワークピース10を回転(回転だけ、あるいはワークピース10を支持固定具36上でX軸及びY軸に沿って移動させるとともに)できるものであってもよい。
コントローラ154は、レーザビーム位置決めシステム70及びワークピースステージ86の動作を協働させ、複合ビーム位置決め能力を提供することができる。これにより、ワークピース10をビーム軸172に対して連続的に相対的に移動させつつ、被覆材30をカットすることが容易になる。この能力は、被覆材30を加工するためには必要ではないが、この能力は、スループットを上げるためには望ましい場合がある。この能力は、本件出願の譲受人に譲渡されたDonald R. Cutler等の米国特許第5,751,585号に述べられている。この米国特許は参照により本明細書に組み込まれる。
ビーム位置決めの付加的な方法又は代替的な方法を用いることができる。ビーム位置決めの付加的な方法又は代替的な方法がSpencer Barrett等の米国特許第6,706,999号及びJay Johnsonの米国特許第7,019,891号に述べられている。これらの米国特許のいずれも、本件出願の出願人に譲渡されており、参照により本明細書に組み込まれる。ある実施形態において有利に利用し得るレーザパラメータとしては、IRからUVにわたる波長で、特に約3000nmから約200nmまでの波長で、より詳細には約10.6ミクロンから約266nmまでの波長でレーザ150を使用することが挙げられる。レーザ50は、1Wから100Wの範囲にあり、より好ましくは1Wから12Wの範囲にある2Wで動作し得る。パルス持続時間は、1ピコ秒から1000ns、より好ましくは約1ピコ秒から200nsの範囲にある。レーザ繰り返し率は、1KHzから100MHz、より好ましくは10KHzから1MHzの範囲にあり得る。レーザフルエンスは、約0.1×10-6J/cm2から100.0J/cm2、より詳細には1.0×10-2J/cm2から10.0J/cm2の範囲にあり得る。ワークピース10に対してビーム軸172が移動する速度は、1mm/sから10m/s、より好ましくは100mm/sから1m/sの範囲にある。被覆材30上のスポット132の隣接する列の間のピッチ又は間隔は、1ミクロンから1000ミクロン、より好ましくは10ミクロンから100ミクロンの範囲にあり得る。レーザビームの焦点で測定されるレーザパルスのビームウェストの空間長軸は、10ミクロンから1000ミクロン又は50ミクロンから500ミクロンの範囲にあり得る。ある実施形態において、焦点のビームウェストは、1ミクロンから50ミクロンの間にある。ある実施形態において、焦点のビームウェストは、1ミクロンから25ミクロンの間にある。ある実施形態において、焦点のビームウェストは、1ミクロンから5ミクロンの間にある。
1から1,000ピコ秒の範囲のレーザパルス幅を生成するピコ秒レーザを使用することが、半導体基板内にカットを確実にかつ繰り返し形成するのに良好であった。ある実施形態においては、1から100psの範囲のパルス幅を用いることができる。ある実施形態においては、5から75psの範囲のパルス幅を用いることができる。ある実施形態においては、10から50psの範囲のパルス幅を用いることができる。あるいは、1から1000フェムト秒(fs)範囲のパルス幅を生成するフェムト秒レーザがよい結果を提供し得ると考えられる。あるいは、1fsから500ナノ秒(ns)の範囲のパルス幅を使用してもよい。ある実施形態においては、500fsから10nsの範囲のパルス幅を使用してもよい。しかしながら、ピコ秒レーザを用いる利点は、既存のフェムト秒レーザによりも非常に安価であり、メンテナンスを必要とすることも非常に少なく、典型的には、動作寿命もずっと長いことにある。一方で、コストが高くなるものの、一部の例ではフェムト秒レーザが好ましい場合がある。
本開示に従い、O'Brien等による米国再発行特許第43,605号に開示されているような、ステッチカッティング(stitch-cutting)や他の手法及びパラメータの多くを被覆材30のカッティングのために用いることができる。米国再発行特許第43,605号は、本出願の譲受人に譲渡されており、参照により本明細書に組み込まれる。
上記は、本発明の実施形態を説明したものであって、これに限定するものとして解釈されるものではない。いくつかの特定の例示の実施形態が述べられたが、当業者は、本発明の新規な教示や利点から大きく逸脱することなく、開示された例示の実施形態及び他の実施形態に対して多くの改良が可能であることを容易に理解するであろう。
したがって、そのような改良はすべて、以下の特許請求の範囲において規定される発明の範囲に含まれることを意図している。例えば、当業者は、そのような組み合わせが互いに排他的になる場合を除いて、いずれかの文や段落の主題を他の文や段落の一部又は全部の主題と組み合わせることができることを理解するであろう。
本発明の根底にある原理を逸脱することなく上述の実施形態の詳細に対して多くの変更をなすことが可能であることは当業者にとって自明なことであろう。したがって、本発明の範囲は、以下の特許請求の範囲とこれに含まれるべき請求項の均等物とによって決定されるべきである。

Claims (19)

  1. ワークピースの基板によって支持される被覆材を加工するためのシステムであって、前記基板は、上面と、底面と、前記上面と前記底面との間に延びる側面とを有し、前記側面は、前記基板の前記上面の基板エッジに対応し、前記被覆材は被覆上面を有し、
    その基板支持領域内で前記基板を支持するための支持固定具と、
    前記支持固定具によって支持されるアライメントフィーチャとを備え、前記アライメントフィーチャは、離間した第1及び第2のアライメントフィーチャを含み、それぞれのアライメントフィーチャは、フィーチャ上部とフィーチャ側面とを有し、前記フィーチャ上部は、識別可能な上部特性を有し、前記フィーチャ側部は、識別可能な側部特性を有し、
    上部スキャンデータを取得可能な第1の検査システムと、
    側部スキャンデータを取得可能な第2の検査システムと、
    前記支持固定具と前記第1及び第2の検査システムとの間で相対移動を生じさせる相対移動システムと、
    前記被覆材を加工可能な加工ツールと、
    前記支持固定具と前記第1及び第2の検査システムとの間の相対移動を調整する1以上のプロセッサであって、前記側部スキャンデータと前記上部スキャンデータとを相互に関係させ、前記被覆材の前記上面にわたって前記加工ツール用のツール経路を決定し、前記ツール経路に沿った前記ワークピースと前記加工ツールとの間の相対移動により前記加工ツールの動作を調整するためのプロセッサと
    を備える、システム。
  2. 前記第1及び第2のアライメントフィーチャはそれぞれアライメントピンである、請求項1のシステム。
  3. 前記加工ツールはレーザである、請求項1又は2のシステム。
  4. 前記第1のアライメントフィーチャ及び前記第2のアライメントフィーチャは、前記支持固定具に固定されているときに、前記ワークピースに対する静的基準を提供する、請求項1からのいずれか一項のシステム。
  5. 前記ワークピース上面は、ワークピースエッジ離間距離だけ離間した、両側のワークピースエッジセグメントを有し、前記第1及び第2のアライメントフィーチャの間の離間距離は、前記ワークピースエッジ離間距離よりも大きい、請求項1からのいずれか一項のシステム。
  6. 前記側部スキャンデータを取得する1以上の変位センサをさらに備える、請求項1からのいずれか一項のシステム。
  7. 前記第1のアライメントフィーチャは、第1のアライメント基準点を含む第1のフィーチャ上面を有し、前記第2のアライメントフィーチャは、第2のアライメント基準点を含む第2のフィーチャ上面を有し、前記第1及び第2のアライメント基準点は、それぞれの主アライメントフィーチャ寸法よりも小さい主基準点寸法を有する、請求項1からのいずれか一項のシステム。
  8. 前記第1のアライメント基準点は、前記第1のフィーチャ上面上の中央に位置し、前記第2のアライメント基準点は、前記第2のフィーチャ上面の中央に位置する、請求項のシステム。
  9. それぞれの支持固定具に固有の支持フィーチャデータを提供するようにそれぞれ互いにマッピングされた第1及び第2のアライメントフィーチャを有する複数の支持固定具をさらに備える、請求項1からのいずれか一項のシステム。
  10. 前記側部スキャンを行う側部スキャンセンサと、前記上部スキャンを行う上部スキャンセンサとをさらに備え、前記側部スキャンセンサと前記上部スキャンセンサとは異なるタイプのセンサである、請求項1からのいずれか一項のシステム。
  11. 前記ワークピースは、対向する第1のエッジセグメントと第2のエッジセグメントとを含み、前記システムは、前記第1のエッジセグメントをスキャンする第1の側部スキャンセンサと、前記第2のエッジセグメントをスキャンする第2の側部スキャンセンサとを含む、請求項1からのいずれか一項のシステム。
  12. 前記第1の側部スキャンセンサ及び前記第2の側部スキャンセンサの少なくとも一方は、静止している、請求項11のシステム。
  13. 前記第1の側部スキャンセンサ及び前記第2の側部スキャンセンサの少なくとも一方は、ワークピースに沿って移動する、請求項11のシステム。
  14. 前記加工ツールは、コンピュータ制御のカッティング機械を有する、請求項1から2及びから13のいずれか一項のシステム。
  15. 前記側部スキャンは側部スキャン領域で行われ、前記ツール経路は前記側部スキャン領域から区別された加工領域において実現される、請求項1から14のいずれか一項のシステム。
  16. それぞれ反対側の第1及び第2のワークピースエッジセグメントから同時に側部スキャンデータを取得する側部スキャンセンサの第1のペアと、それぞれ反対側の第3及び第4のワークピースエッジセグメントから同時に側部スキャンデータを取得する側部スキャンセンサの第2のペアとをさらに備える、請求項1から15のいずれか一項のシステム。
  17. 前記側部スキャンセンサの前記第1のペアは、前記側部スキャンセンサの前記第2のペアのスキャニング軸に横断する方向に向けられたスキャニング軸を有する、請求項16のシステム。
  18. 前記側部スキャンセンサの前記第1のペア及び前記第2のペアのうち一方は、前記スキャン中に静止し、前記側部スキャンセンサの前記第1のペア及び前記第2のペアのうち他方は、前記スキャン中に移動する、請求項16又は請求項17のシステム。
  19. 第1のワークピースエッジセグメントは、前記第1及び第2のアライメントフィーチャにより規定される軸の間に位置し、第2のワークピースエッジセグメントは、前記第2のアライメントフィーチャ及び第3のアライメントフィーチャにより規定される軸の間に位置し、前記第2のアライメントフィーチャに関連付けられたデータは、前記第1のワークピースエッジ及び前記第2のワークピースエッジに沿った連続的なツール経路を提供するために使用される、請求項1から18のいずれか一項のシステム。
JP2017533522A 2014-12-29 2015-12-08 アライメントフィーチャを用いた独立側部測定を介する適応部分プロファイル生成 Expired - Fee Related JP6698661B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462097418P 2014-12-29 2014-12-29
US62/097,418 2014-12-29
PCT/US2015/064479 WO2016109130A1 (en) 2014-12-29 2015-12-08 Adaptive part profile creation via independent side measurement with alignment features

Publications (3)

Publication Number Publication Date
JP2018512059A JP2018512059A (ja) 2018-05-10
JP2018512059A5 JP2018512059A5 (ja) 2019-01-17
JP6698661B2 true JP6698661B2 (ja) 2020-05-27

Family

ID=56164040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017533522A Expired - Fee Related JP6698661B2 (ja) 2014-12-29 2015-12-08 アライメントフィーチャを用いた独立側部測定を介する適応部分プロファイル生成

Country Status (6)

Country Link
US (1) US9983562B2 (ja)
EP (1) EP3241034A1 (ja)
JP (1) JP6698661B2 (ja)
KR (1) KR20170102250A (ja)
CN (1) CN107111293B (ja)
WO (1) WO2016109130A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015138529A1 (en) * 2014-03-11 2015-09-17 Ametek Precitech, Inc. Edge treatment process
EP3733346A4 (en) * 2017-12-25 2021-07-28 Nikon Corporation PROCESSING SYSTEM, MEASURING PROBE, SHAPE MEASURING DEVICE AND PROGRAM
CN108230400B (zh) * 2017-12-26 2021-10-19 常州固高智能控制技术有限公司 一种适用于激光切割机的自适应坐标重建方法
US10671047B2 (en) * 2018-03-15 2020-06-02 The Boeing Company Composite structure repair system and method
CN112099439B (zh) * 2020-09-17 2022-04-19 西安精雕软件科技有限公司 一种基于曲面特征分析技术的电极切角识别方法
CN113503817B (zh) * 2021-09-13 2021-12-03 广东三姆森科技股份有限公司 一种产品的内部尺寸测量方法及测量装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319270A (en) * 1979-01-12 1982-03-09 Kobe Steel, Ltd. Surface inspection system for hot radiant material
JP2709949B2 (ja) * 1988-12-01 1998-02-04 旭光学工業株式会社 走査式描画装置の描画面調整機構
GB9315843D0 (en) * 1993-07-30 1993-09-15 Litton Uk Ltd Improved machine tool
US5751585A (en) 1995-03-20 1998-05-12 Electro Scientific Industries, Inc. High speed, high accuracy multi-stage tool positioning system
US6170973B1 (en) * 1997-11-26 2001-01-09 Cognex Corporation Method and apparatus for wide-angle illumination in line-scanning machine vision devices
TW482705B (en) 1999-05-28 2002-04-11 Electro Scient Ind Inc Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias
US6676878B2 (en) 2001-01-31 2004-01-13 Electro Scientific Industries, Inc. Laser segmented cutting
SG139508A1 (en) * 2001-09-10 2008-02-29 Micron Technology Inc Wafer dicing device and method
US6706999B1 (en) 2003-02-24 2004-03-16 Electro Scientific Industries, Inc. Laser beam tertiary positioner apparatus and method
US7133188B2 (en) 2004-06-07 2006-11-07 Electro Scientific Industries, Inc. AOM modulation techniques employing an upstream Bragg adjustment device
CN100359419C (zh) * 2004-06-23 2008-01-02 中国科学院长春光学精密机械与物理研究所 一种用于微电子器件后封装加工设备的控制装置
DE602004010905D1 (de) * 2004-08-31 2008-02-07 St Microelectronics Srl Verfahren zur Herstellung einer MMC-Multimediakarte mittels Spritzguss- und Laserschneidverfahren
JP2008203434A (ja) * 2007-02-19 2008-09-04 Fujitsu Ltd 走査機構、被加工材の加工方法および加工装置
EP1990126B1 (en) * 2007-05-08 2012-11-21 Volvo Car Corporation Method of laser cutting a painted or multilayered workpiece by means of a scanned laser beam
US8053279B2 (en) * 2007-06-19 2011-11-08 Micron Technology, Inc. Methods and systems for imaging and cutting semiconductor wafers and other semiconductor workpieces
JP4291386B2 (ja) * 2007-10-04 2009-07-08 ファナック株式会社 ワーク設置誤差補正手段を有する数値制御装置
US8285025B2 (en) 2008-03-25 2012-10-09 Electro Scientific Industries, Inc. Method and apparatus for detecting defects using structured light
KR101088806B1 (ko) * 2009-01-07 2011-12-01 주식회사 뉴로바이오시스 액정 폴리머를 이용한 미세 전극 어레이 패키지 및 그의 제조 방법
KR20150126603A (ko) * 2013-03-15 2015-11-12 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 테이퍼 제어를 위한 빔 각도 및 작업물 이동의 공조
US20140340507A1 (en) 2013-05-17 2014-11-20 Electro Scientific Industries, Inc. Method of measuring narrow recessed features using machine vision

Also Published As

Publication number Publication date
EP3241034A1 (en) 2017-11-08
US20160187867A1 (en) 2016-06-30
WO2016109130A1 (en) 2016-07-07
CN107111293A (zh) 2017-08-29
JP2018512059A (ja) 2018-05-10
CN107111293B (zh) 2019-11-19
KR20170102250A (ko) 2017-09-08
US9983562B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
JP6698661B2 (ja) アライメントフィーチャを用いた独立側部測定を介する適応部分プロファイル生成
CN112074370B (zh) 激光加工设备、其操作方法以及使用其加工工件的方法
US9870961B2 (en) Wafer processing method
KR102240331B1 (ko) 가공 장치
US7521337B2 (en) Wafer laser processing method
KR102226222B1 (ko) 레이저 가공 장치
US20170210011A1 (en) Apparatus and Method to Optically Locate Workpiece for Robotic Operations
US20040152233A1 (en) Method and system for machine vision-based feature detection and mark verification in a workpiece or wafer marking system
CN112996652B (zh) 使用具有有限自由度的集成远心光学检测器的激光处理系统的自动校准
KR102231739B1 (ko) 레이저 광선의 검사 방법
CN201693290U (zh) 一种激光加工装置
CN108136544A (zh) 用于丝化非面平行形状的工件的方法和装置以及通过丝化产生的工件
TW201621486A (zh) 於基材上實施雷射消熔的裝置及方法
US9149886B2 (en) Modified layer forming method
JP2010142846A (ja) 3次元走査型レーザ加工機
KR102577193B1 (ko) 가공방법 및 가공장치
JP2003220483A (ja) レーザ加工装置、及びそれにおけるずれ補正方法
JP2017144465A (ja) 蒸着用メタルマスク加工方法及び蒸着用メタルマスク加工装置
KR102050765B1 (ko) 3차원 고속 정밀 레이저 가공 장치
JP2005014050A (ja) レーザ加工装置
JP5142916B2 (ja) レーザ加工方法、及び、レーザ加工装置
JP6328507B2 (ja) レーザー加工装置
JP2005046891A (ja) レーザ加工装置
Putzer et al. Self-optimizing method and software for calibration and mapping of a laser system for laser machining
JP2010167422A (ja) レーザー加工方法およびレーザー加工装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees