JP6696550B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP6696550B2
JP6696550B2 JP2018200263A JP2018200263A JP6696550B2 JP 6696550 B2 JP6696550 B2 JP 6696550B2 JP 2018200263 A JP2018200263 A JP 2018200263A JP 2018200263 A JP2018200263 A JP 2018200263A JP 6696550 B2 JP6696550 B2 JP 6696550B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
emitting device
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018200263A
Other languages
Japanese (ja)
Other versions
JP2019012860A (en
Inventor
鈴木 亮
亮 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2018200263A priority Critical patent/JP6696550B2/en
Publication of JP2019012860A publication Critical patent/JP2019012860A/en
Application granted granted Critical
Publication of JP6696550B2 publication Critical patent/JP6696550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本開示は、発光装置に関する。   The present disclosure relates to a light emitting device.

発光素子の側面を、光反射性の樹脂材料から形成された被覆部材で覆った発光装置が知られている(例えば特許文献1〜3)。これらの発光装置では、発光素子と被覆部材の間に透光性部材を配置し、発光素子の側面から出射される光を、その透光性部材を通して発光装置の発光面側へと取り出すことにより、発光装置の光取出し効率の向上を図っている。被覆部材は、ハウジングの代わりに発光装置の強度を保持する機能と、透光性部材内を通過して被覆部材に到達した光を反射する機能とを有している。   There is known a light emitting device in which a side surface of a light emitting element is covered with a covering member formed of a light reflecting resin material (for example, Patent Documents 1 to 3). In these light emitting devices, a translucent member is arranged between the light emitting element and the covering member, and light emitted from the side surface of the light emitting element is extracted to the light emitting surface side of the light emitting device through the translucent member. , The light extraction efficiency of the light emitting device is improved. The covering member has a function of retaining the strength of the light emitting device instead of the housing, and a function of reflecting the light that has passed through the transparent member and reached the covering member.

また、発光装置の発光面側に波長変換部材を配置することにより、発光素子からの光の一部を波長変換して発光素子とは異なる発光色を発する発光装置が知られている(例えば特許文献1〜3)。波長変換部材は、少なくとも発光素子および透光性部材の光取り出し面側を覆うように設けることにより、発光素子から発光面方向に出射される光と、発光素子から透光性部材を通って発光面方向に出射される光とを波長変換することができる。さらに、波長変換部材を、被覆部材の少なくとも一部を覆うように形成することもできる(例えば特許文献1〜3)。波長変換部材に入射した光の一部は、波長変換部材中の蛍光体によって波長を変換されると共に散乱され、その散乱された光の一部は、被覆部材によって反射されながら、波長変換部材の全体に伝搬する。これにより、波長変換部材の面積を広くすることにより、発光装置の発光面を拡大することができる。   Further, there is known a light emitting device that arranges a wavelength conversion member on the light emitting surface side of the light emitting device to convert the wavelength of a part of light from the light emitting element to emit a light emission color different from that of the light emitting element (for example, Patent Document 1). References 1-3). The wavelength conversion member is provided so as to cover at least the light extraction surface side of the light emitting element and the translucent member so that light emitted from the light emitting element in the light emitting surface direction and light emitted from the light emitting element through the translucent member. The wavelength of light emitted in the plane direction can be converted. Further, the wavelength conversion member can be formed so as to cover at least a part of the covering member (for example, Patent Documents 1 to 3). A part of the light incident on the wavelength conversion member has its wavelength converted and scattered by the phosphor in the wavelength conversion member, and a part of the scattered light is reflected by the covering member while Propagate throughout. Thereby, the light emitting surface of the light emitting device can be enlarged by increasing the area of the wavelength conversion member.

特開2012−227470号公報JP 2012-227470 A 特開2013−012545号公報JP, 2013-012545, A 国際公開第2013/005646号International Publication No. 2013/005646

しかし、被覆部材の材料や厚み等によっては、被覆部材で十分に光を反射できないおそれがある。   However, depending on the material and thickness of the covering member, there is a possibility that the covering member may not sufficiently reflect light.

そこで、本発明の一実施形態は、光取出しが良好な発光装置およびその製造方法を提供することを目的とする。   Therefore, it is an object of one embodiment of the present invention to provide a light emitting device with good light extraction and a method for manufacturing the same.

本発明の一実施形態に係る発光装置は、
発光装置の発光面側に位置する第1の面と、前記第1の面に対向する第2の面と、前記第1の面と前記第2の面との間に位置する側面と、を有する発光素子と、
樹脂を含む材料から形成され、前記発光素子の前記側面の少なくとも一部を覆い、前記発光面側に位置する第1の面を有する透光性部材と、
前記透光性部材の外面を覆い、前記発光面側に位置する第1の面を有する被覆部材と、
前記発光素子の前記第1の面と、前記透光性部材の前記第1の面及び前記被覆部材の前記第1の面を覆う波長変換部材と、
前記透光性部材の前記外面と前記被覆部材との間に設けられ、無機材料から成る第1反射膜と、前記被覆部材の前記第1の面と前記波長変換部材との間に設けられ、無機材料から成る第2反射膜と、を含む光反射膜と、を備える。
A light emitting device according to an embodiment of the present invention is
A first surface located on the light emitting surface side of the light emitting device, a second surface facing the first surface, and a side surface located between the first surface and the second surface. A light emitting element having
A translucent member formed of a material containing a resin, covering at least a part of the side surface of the light emitting element, and having a first surface located on the light emitting surface side;
A covering member that covers an outer surface of the translucent member and has a first surface located on the light emitting surface side;
A wavelength conversion member that covers the first surface of the light emitting element, the first surface of the translucent member, and the first surface of the covering member;
Provided between the outer surface of the translucent member and the covering member, and provided between the first reflecting film made of an inorganic material and the first surface of the covering member and the wavelength conversion member, And a light reflection film including a second reflection film made of an inorganic material.

本発明の一実施形態に係る発光装置を製造する方法は、
波長変換部材上に、発光素子を配置する工程と、
前記発光素子の側面を透光性部材で覆う工程と、
前記透光性部材の外面を無機物である第1反射膜で覆う工程と、
前記透光性部材から露出した前記波長変換部材を、無機物である第2反射膜で覆う工程と、
前記第1反射膜及び第2反射膜を被覆部材で覆う工程と、を含む。
A method of manufacturing a light emitting device according to an embodiment of the present invention is
A step of disposing a light emitting element on the wavelength conversion member,
Covering the side surface of the light emitting element with a transparent member,
Covering the outer surface of the translucent member with a first reflective film that is an inorganic material;
Covering the wavelength conversion member exposed from the translucent member with a second reflective film that is an inorganic material;
Covering the first reflective film and the second reflective film with a covering member.

本発明の一実施形態によれば、機械的強度の低下および光漏れ増加を抑制しつつ、被覆部材の厚さを薄くすることができる。   According to the embodiment of the present invention, it is possible to reduce the thickness of the covering member while suppressing a decrease in mechanical strength and an increase in light leakage.

図1は、実施の形態1に係る発光装置の概略平面図である。FIG. 1 is a schematic plan view of the light emitting device according to the first embodiment. 図2は、図1のA−A線に沿った概略断面図である。FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG. 図3は、図1のA−A線に沿った概略断面図である。FIG. 3 is a schematic sectional view taken along the line AA of FIG. 図4は、図2に示す発光素子の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the light emitting device shown in FIG. 図5(a)、図5(b)は、実施の形態1に係る発光装置の第1の製造方法を説明するための概略平面図である。5A and 5B are schematic plan views for explaining the first method for manufacturing the light emitting device according to the first embodiment. 図6(a)、図6(b)は、実施の形態1に係る発光装置の第1の製造方法を説明するための概略平面図である。FIG. 6A and FIG. 6B are schematic plan views for explaining the first method for manufacturing the light emitting device according to the first embodiment. 図7(a)、図7(b)は、実施の形態1に係る発光装置の第1の製造方法を説明するための概略平面図である。7A and 7B are schematic plan views for explaining the first manufacturing method of the light emitting device according to the first embodiment. 図8(a)は、図5(a)のB−B線に沿った概略断面図、図8(b)は、図5(b)のC−C線に沿った概略断面図、図8(c)は、図6(a)のD−D線に沿った概略断面図である。8A is a schematic sectional view taken along the line BB of FIG. 5A, and FIG. 8B is a schematic sectional view taken along the line C-C of FIG. 5B. FIG. 6C is a schematic sectional view taken along the line D-D of FIG. 図9(a)は、図6(b)のE−E線に沿った概略断面図、図9(b)は、図7(a)のF−F線に沿った概略断面図、図9(c)は、図7(b)のG−G線に沿った概略断面図である。9A is a schematic sectional view taken along the line EE of FIG. 6B, FIG. 9B is a schematic sectional view taken along the line FF of FIG. 7A, and FIG. FIG. 7C is a schematic sectional view taken along the line G-G in FIG. 7B. 図10(a)、図10(b)は、実施の形態1に係る発光装置の第2の製造方法を説明するための概略平面図である。10A and 10B are schematic plan views for explaining the second method for manufacturing the light emitting device according to the first embodiment. 図11(a)は、図10(a)のH−H線に沿った概略断面図、図11(b)は、図10(b)のI−I線に沿った概略断面図である。11A is a schematic cross-sectional view taken along the line HH of FIG. 10A, and FIG. 11B is a schematic cross-sectional view taken along the line I-I of FIG. 10B. 図12は、実施の形態2に係る発光装置の概略平面図である。FIG. 12 is a schematic plan view of the light emitting device according to the second embodiment. 図13は、図12のJ−J線に沿った概略断面図である。FIG. 13 is a schematic cross-sectional view taken along the line JJ of FIG.

以下、図面に基づいて本発明の実施の形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」及び、それらの用語を含む別の用語)を用いる。それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、複数の図面に表れる同一符号の部分は同一の部分または部材を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, a term indicating a specific direction or position (for example, “upper”, “lower”, “right”, “left” and another term including those terms) is used as necessary. .. The use of those terms is for facilitating the understanding of the invention with reference to the drawings, and the technical scope of the present invention is not limited by the meanings of the terms. Further, the portions having the same reference numerals appearing in a plurality of drawings indicate the same portions or members.

<実施の形態1>
図1、図2(a)に示す本実施の形態に係る発光装置10は、発光素子20と、発光素子20の側面23側に設けられた透光性部材30と、透光性部材30の外面33を覆う被覆部材40とを含む。発光装置10は、発光面として機能する第1の面(上面)11側に、波長変換部材50を備えることができる。波長変換部材50は、発光素子20の第1の面(上面)21、透光性部材30の第1の面(上面)31、および被覆部材40の第1の面(上面)41を覆っている。被覆部材40と透光性部材30との間、および被覆部材40と波長変換部材50との間には、光反射膜70が設けられている。
被覆部材40と透光性部材30との間に光反射膜70を備えることにより、発光素子20から透光性部材30を通過する光が被覆部材40に到達する前に、その光を光反射膜70で反射することができる。また、被覆部材40と波長変換部材50との間に光反射膜70を備えることにより、波長変換部材50の内部を伝搬する光が被覆部材40に到達する前に、その光をその光を光反射膜70で反射することができる。よって、被覆部材40の光反射率の低下を考慮せずに、被覆部材40を任意に設計することができる。
<Embodiment 1>
The light emitting device 10 according to the present embodiment shown in FIGS. 1 and 2A includes a light emitting element 20, a translucent member 30 provided on the side surface 23 side of the light emitting element 20, and a translucent member 30. And a covering member 40 that covers the outer surface 33. The light emitting device 10 may include the wavelength conversion member 50 on the first surface (upper surface) 11 side that functions as a light emitting surface. The wavelength conversion member 50 covers the first surface (upper surface) 21 of the light emitting element 20, the first surface (upper surface) 31 of the translucent member 30, and the first surface (upper surface) 41 of the covering member 40. There is. The light reflection film 70 is provided between the covering member 40 and the translucent member 30 and between the covering member 40 and the wavelength conversion member 50.
By providing the light reflection film 70 between the covering member 40 and the translucent member 30, the light passing through the translucent member 30 from the light emitting element 20 is reflected before the light reaches the covering member 40. It can be reflected by the film 70. Further, by providing the light reflection film 70 between the covering member 40 and the wavelength conversion member 50, before the light propagating inside the wavelength conversion member 50 reaches the covering member 40, the light is converted into the light. It can be reflected by the reflective film 70. Therefore, the covering member 40 can be arbitrarily designed without considering the decrease in the light reflectance of the covering member 40.

図4に示すように、発光素子20は、透光性基板27と、透光性基板27の下面側に形成された半導体積層体28とを含むことができる。発光素子20は、透光性基板27側の第1の面(上面)21と、第1の面21と対向する半導体積層体28側の第2の面(下面)22と、第1の面21と第2の面22との間に位置する複数の側面23とを有している。第1の面21は、発光装置10の発光面側に位置する。
透光性基板27としては、例えばサファイア基板が利用できる。
発光素子20の第2の面(下面)22側には、発光素子20に通電するための一対の電極251、252が設けられている。なお、本明細書において、発光素子20の「第2の面22」は、電極251、252を含まない状態における発光素子20の面を指している。よって、本実施の形態では、第2の面22は、半導体積層体28の下面と一致する。
As shown in FIG. 4, the light emitting element 20 may include a transparent substrate 27 and a semiconductor laminated body 28 formed on the lower surface side of the transparent substrate 27. The light emitting element 20 includes a first surface (upper surface) 21 on the transparent substrate 27 side, a second surface (lower surface) 22 on the semiconductor laminated body 28 side facing the first surface 21, and a first surface. 21 and a plurality of side surfaces 23 located between the second surface 22 and the second surface 22. The first surface 21 is located on the light emitting surface side of the light emitting device 10.
As the transparent substrate 27, for example, a sapphire substrate can be used.
A pair of electrodes 251 and 252 for energizing the light emitting element 20 are provided on the second surface (lower surface) 22 side of the light emitting element 20. In the present specification, the “second surface 22” of the light emitting element 20 refers to the surface of the light emitting element 20 in the state where the electrodes 251 and 252 are not included. Therefore, in the present embodiment, the second surface 22 coincides with the lower surface of the semiconductor stacked body 28.

再び図2を参照すると、発光素子20の側面23は、透光性部材30によって覆われている。透光性部材30は、発光素子20の側面23から出射される光を発光装置10の発光面(第1の面)11方向に導光する。発光素子20の側面23と被覆部材40との間に透光性部材30を設けることにより、発光素子20の側面23に到達した光は、側面23から透光性部材30へと取り出すことができる。このように、発光素子20の側面23に透光性部材30を設けることにより、光の損失を抑制して、発光装置10の光取出し効率を向上できる。   Referring again to FIG. 2, the side surface 23 of the light emitting element 20 is covered with the translucent member 30. The translucent member 30 guides the light emitted from the side surface 23 of the light emitting element 20 toward the light emitting surface (first surface) 11 of the light emitting device 10. By providing the translucent member 30 between the side surface 23 of the light emitting element 20 and the covering member 40, the light reaching the side surface 23 of the light emitting element 20 can be extracted from the side surface 23 to the translucent member 30. .. Thus, by providing the translucent member 30 on the side surface 23 of the light emitting element 20, it is possible to suppress the loss of light and improve the light extraction efficiency of the light emitting device 10.

透光性部材30の外面33は、発光素子20の第2の面22側から第1の面21側に向かって外向きに傾斜するのが好ましい。つまり、図2に示すような断面図において、透光性部材30の左右の外面33が、発光装置10の発光面(第1の面)11に向かって広がっているのが好ましい。発光素子20の側面23から出射されて、透光性部材30の中を伝搬する光は、傾斜した外面33に到達する。ここで、外面33を覆う光反射膜70で光を反射したときに、光を発光装置10の第1の面11の方向に向けることができる。これにより、発光装置10の光取出し効率を向上させることができる。   The outer surface 33 of the translucent member 30 is preferably inclined outward from the second surface 22 side of the light emitting element 20 toward the first surface 21 side. That is, in the cross-sectional view as shown in FIG. 2, it is preferable that the left and right outer surfaces 33 of the translucent member 30 expand toward the light emitting surface (first surface) 11 of the light emitting device 10. The light emitted from the side surface 23 of the light emitting element 20 and propagating in the translucent member 30 reaches the inclined outer surface 33. Here, when the light is reflected by the light reflecting film 70 that covers the outer surface 33, the light can be directed toward the first surface 11 of the light emitting device 10. Thereby, the light extraction efficiency of the light emitting device 10 can be improved.

図2に示す発光素子20の断面図において、側面23と透光性部材30の外面33とのなす角度(これを「傾斜角度θ」とする)は、40°〜60°であるのが好ましく、例えば45°にすることができる。傾斜角度θが大きいと、透光性部材30の第1の面31の外形(図1では、略円形に描かれている)が大きくなり、光取出し効率が向上する。一方、傾斜角度θが小さいと、第1の面31の外形が小さくなるので、上面視における発光装置10の一辺の寸法を小さくすることができる(すなわち、発光装置10を小型化できる)。光取出し効率と、発光装置10の小型化とを考慮すると、傾斜角度θ=45°であるのが最適である。 In the cross-sectional view of the light emitting element 20 shown in FIG. 2, the angle formed between the side surface 23 and the outer surface 33 of the translucent member 30 (this is referred to as “tilt angle θ 1 ”) is 40 ° to 60 °. It can preferably be 45 °, for example. When the inclination angle θ 1 is large, the outer shape of the first surface 31 of the translucent member 30 (depicted as a substantially circular shape in FIG. 1) is large, and the light extraction efficiency is improved. On the other hand, when the inclination angle θ 1 is small, the outer shape of the first surface 31 is small, and thus the size of one side of the light emitting device 10 in a top view can be reduced (that is, the light emitting device 10 can be downsized). Considering the light extraction efficiency and the miniaturization of the light emitting device 10, the inclination angle θ 1 = 45 ° is optimal.

発光素子20の側面23が、第2の面22に対して傾斜している場合には、透光性部材30の効果が顕著になる。例えば、発光素子20の製造工程において、透光性基板27(例えばサファイア基板)の劈開によって発光素子20を個片化している場合には、発光素子20の側面23が第2の面22に対して垂直にならない場合がある。例えば、断面視において、発光素子20の外形は、平行四辺形(図3参照)または台形となり得る。発光素子20の第1の面21と第2の面22が平行で、対向する2つの側面23が平行で、各側面23は、第1の面21および第2の面22に対して傾斜する。このような発光素子20の側面23を、透光性部材30を設けずに被覆部材40で直接覆った場合、一方の側面23については第2の面22とのなす角度が鈍角になるので、当該一方の側面23を覆う被覆部材40で反射された光は、発光素子20の第1の面21に向かってそのまま発光装置10の発光面(第1の面11)から外部に取り出され得る。しかし、他方の側面23については、第2の面22とのなす角度が鋭角になるので、当該他方の側面23を覆う被覆部材40で反射された光は、発光素子20の第2の面22に向かってしまい、発光素子20内から取り出される前に、発光素子20内で光の強度が減衰し得る。この他方の側面23を透光性部材30で覆うことにより、他方の側面23に到達した光は、第2の面22側に反射される代わりに、透光性部材30を通して発光装置10の第1の面11側に取り出すことができる。   When the side surface 23 of the light emitting element 20 is inclined with respect to the second surface 22, the effect of the translucent member 30 becomes remarkable. For example, in the manufacturing process of the light emitting element 20, when the light emitting element 20 is singulated by cleaving the translucent substrate 27 (for example, a sapphire substrate), the side surface 23 of the light emitting element 20 is different from the second surface 22. May not be vertical. For example, in cross-sectional view, the outer shape of the light emitting element 20 can be a parallelogram (see FIG. 3) or a trapezoid. The first surface 21 and the second surface 22 of the light emitting element 20 are parallel to each other, the two opposing side surfaces 23 are parallel to each other, and each side surface 23 is inclined with respect to the first surface 21 and the second surface 22. . When the side surface 23 of such a light emitting element 20 is directly covered with the covering member 40 without providing the translucent member 30, the angle formed between the one side surface 23 and the second surface 22 becomes an obtuse angle. The light reflected by the covering member 40 that covers the one side surface 23 can be extracted as it is toward the first surface 21 of the light emitting element 20 from the light emitting surface (first surface 11) of the light emitting device 10 to the outside. However, since the other side surface 23 forms an acute angle with the second surface 22, the light reflected by the covering member 40 that covers the other side surface 23 is the second surface 22 of the light emitting element 20. The intensity of light may be attenuated in the light emitting element 20 before being extracted from the inside of the light emitting element 20. By covering the other side surface 23 with the translucent member 30, the light reaching the other side surface 23 is not reflected on the second surface 22 side, but passes through the translucent member 30 and the light of the first side of the light emitting device 10 is reflected. It can be taken out to the surface 11 side of 1.

半導体積層体28は、第1導電型半導体層281、発光層282および第2導電型半導体層283の3つの半導体層を含んでいる(図4)。図2を参照すると、発光素子20(正確には、図4に示す半導体積層体28の発光層282)で発光した光は、半導体積層体28から透光性基板27を通って、または半導体積層体28から発光素子20の側面23および透光性部材30を通って、発光装置10の第1の面11側に取り出される。透光性部材30は、発光素子20の側面23の少なくとも一部を覆っている。
透光性部材30が側面の一部23を覆う場合には、半導体積層体28の側面に露出した3つの半導体層281、282、283のうち、第1導電型半導体層281の側面および発光層282の側面は全て透光性部材30で覆われているのが好ましい。
The semiconductor stacked body 28 includes three semiconductor layers of a first conductive type semiconductor layer 281, a light emitting layer 282 and a second conductive type semiconductor layer 283 (FIG. 4). Referring to FIG. 2, the light emitted from the light emitting element 20 (more precisely, the light emitting layer 282 of the semiconductor laminated body 28 shown in FIG. 4) is emitted from the semiconductor laminated body 28 through the transparent substrate 27 or the semiconductor laminated body. The light is extracted from the body 28 through the side surface 23 of the light emitting element 20 and the translucent member 30 to the first surface 11 side of the light emitting device 10. The translucent member 30 covers at least a part of the side surface 23 of the light emitting element 20.
When the translucent member 30 covers a part of the side surface 23, of the three semiconductor layers 281, 282, 283 exposed on the side surface of the semiconductor stacked body 28, the side surface of the first conductivity type semiconductor layer 281 and the light emitting layer. It is preferable that the side surface of 282 is entirely covered with the translucent member 30.

図2に示すように、透光性部材30が、さらに発光素子20の第1の面21の全面を覆ってもよい。発光素子20の第1の面21上に存在する膜状の透光性部材30tにより、発光素子20の第1の面21を保護することができる。また、膜状の透光性部材30tは、第1の面21と波長変換部材50とを接着させる接着部材としても機能しうる。   As shown in FIG. 2, the translucent member 30 may cover the entire first surface 21 of the light emitting element 20. The film-shaped translucent member 30t existing on the first surface 21 of the light emitting element 20 can protect the first surface 21 of the light emitting element 20. In addition, the film-shaped translucent member 30t can also function as an adhesive member that adheres the first surface 21 and the wavelength conversion member 50.

図2に示すように、被覆部材40は、透光性部材30の外面33を覆っている。被覆部材40と透光性部材30の外面33の間には、後述する光反射膜70(第1の反射膜71)が配置されている。被覆部材40は、光の反射率の高い材料(光反射性材料)から形成されていても、光の反射率の低い、例えば光の透過率や光の吸収率の高い材料から形成されていてもよい。被覆部材40は、さらに、発光素子20の電極251、252の側面251c、252cと、発光素子20の第2の面(下面)22のうち電極251、252が設けられていない部分と、を覆っていてもよい。   As shown in FIG. 2, the covering member 40 covers the outer surface 33 of the translucent member 30. A light reflection film 70 (first reflection film 71) described later is arranged between the covering member 40 and the outer surface 33 of the translucent member 30. Even though the covering member 40 is formed of a material having a high light reflectance (light-reflecting material), it is formed of a material having a low light reflectance, for example, a high light transmittance or a high light absorption rate. Good. The covering member 40 further covers the side surfaces 251c and 252c of the electrodes 251 and 252 of the light emitting element 20 and the portion of the second surface (lower surface) 22 of the light emitting element 20 where the electrodes 251 and 252 are not provided. May be.

発光装置10の第1の面11側に設けられた波長変換部材50は、発光素子20の第1の面(上面)21、透光性部材30の第1の面(上面)31、及び被覆部材40の第1の面(上面)41を覆っている。それらの第1の面(上面)21、31、41は、発光装置10の発光面(第1の面11)側に位置している。波長変換部材50と被覆部材40の第1の面41との間には、後述する光反射膜70(第2反射膜72)が配置されている。   The wavelength conversion member 50 provided on the first surface 11 side of the light emitting device 10 includes a first surface (upper surface) 21 of the light emitting element 20, a first surface (upper surface) 31 of the translucent member 30, and a coating. It covers the first surface (upper surface) 41 of the member 40. The first surfaces (upper surface) 21, 31, 41 are located on the light emitting surface (first surface 11) side of the light emitting device 10. A light reflection film 70 (second reflection film 72) described below is arranged between the wavelength conversion member 50 and the first surface 41 of the covering member 40.

発光装置10は、発光素子20で発光した光、および波長変換部材50で波長変換された光を発光面(発光装置10の第1の面11)側に反射するための光反射膜70を備えることができる。光反射膜70は、第1反射膜71、第2反射膜72、第3反射膜73および第4反射膜74を含み得る。第1〜第4反射膜について、個々に説明する。   The light emitting device 10 includes a light reflection film 70 for reflecting the light emitted by the light emitting element 20 and the light wavelength-converted by the wavelength conversion member 50 toward the light emitting surface (the first surface 11 of the light emitting device 10). be able to. The light reflection film 70 may include a first reflection film 71, a second reflection film 72, a third reflection film 73, and a fourth reflection film 74. The first to fourth reflective films will be individually described.

(第1反射膜71)
透光性部材30の外面33と被覆部材40との間には、第1反射膜71が設けられている。これにより、発光素子20の側面23から透光性部材30に取り出された光を、第1反射膜71で反射して、発光装置10の第1の面(上面)11側から取り出すことができる。
(First reflective film 71)
A first reflective film 71 is provided between the outer surface 33 of the translucent member 30 and the covering member 40. Thereby, the light extracted from the side surface 23 of the light emitting element 20 to the translucent member 30 can be reflected by the first reflective film 71 and extracted from the first surface (upper surface) 11 side of the light emitting device 10. ..

第1反射膜71を設けない場合、透光性部材30の外面33は、被覆部材40で覆われる。被覆部材40に、光反射率の高い材料(例えば白色の樹脂材料)を使用することにより、光を透光性部材30の外面33を覆う被覆部材40で反射させることは可能である。しかし、被覆部材40の壁厚が薄い場合には、光の一部が被覆部材40を透過してしまう恐れがある。また、被覆部材40に添加する添加物には、光反射率を低下させるものを選択できない。例えば、カーボンブラックは黒色で光を吸収するため、カーボンブラックを被覆部材40に添加すると、透光性部材30の外面33に到達した光の一部が被覆部材40に吸収され得るため、発光装置10の光取出し効率が低下するおそれがある。   When the first reflective film 71 is not provided, the outer surface 33 of the translucent member 30 is covered with the covering member 40. By using a material having a high light reflectance (for example, a white resin material) for the covering member 40, it is possible to reflect light by the covering member 40 that covers the outer surface 33 of the translucent member 30. However, when the wall thickness of the covering member 40 is thin, there is a possibility that part of the light may pass through the covering member 40. Further, as the additive to be added to the covering member 40, one that reduces the light reflectance cannot be selected. For example, since carbon black is black and absorbs light, when carbon black is added to the covering member 40, a part of the light reaching the outer surface 33 of the translucent member 30 may be absorbed by the covering member 40, and thus the light emitting device. The light extraction efficiency of 10 may decrease.

しかしながら、透光性部材30と被覆部材40との間に第1反射膜71を設けることにより、透光性部材30の外面33に到達した光は第1反射膜71によって実質的に全て反射され、被覆部材40に到達しない。そのため、(被覆部材40の光反射率が低いことに起因する)発光装置10の光取出し効率の低下を抑制できる。これにより、例えば、被覆部材40に、任意の添加物(例えば、カーボンブラック等の添加物)を添加することができる。   However, by providing the first reflective film 71 between the translucent member 30 and the covering member 40, substantially all the light reaching the outer surface 33 of the translucent member 30 is reflected by the first reflective film 71. , Does not reach the covering member 40. Therefore, it is possible to suppress a decrease in the light extraction efficiency of the light emitting device 10 (due to the low light reflectance of the covering member 40). Thereby, for example, an arbitrary additive (for example, an additive such as carbon black) can be added to the covering member 40.

(第2反射膜72)
被覆部材40の第1の面41と波長変換部材50の第2の面52との間には、第2反射膜72が設けられている。これにより、波長変換部材50で波長変換された後に被覆部材40の第1の面41方向に向かう光を第2反射膜72で反射して、発光装置10の第1の面11側から取り出すことができる。
(Second reflective film 72)
A second reflective film 72 is provided between the first surface 41 of the covering member 40 and the second surface 52 of the wavelength conversion member 50. As a result, the light that has been wavelength-converted by the wavelength conversion member 50 and then travels in the direction of the first surface 41 of the covering member 40 is reflected by the second reflective film 72 and is extracted from the first surface 11 side of the light emitting device 10. You can

発光素子20で発光した光は、発光素子20の上面21から膜状の透光性部材30tを通って、または透光性部材30の上面31から、波長変換部材50に入射する。波長変換部材50は、蛍光体等の波長変換材料を含んでおり、それらの波長変換材料に光が照射されることにより、光の波長が変換される。このとき、波長変換された光は波長変換材料によって散乱され、その一部は、波長変換部材50の第2の面(下面)52に向かう。
第2反射膜72を設けない場合、散乱光の一部は、波長変換部材50の第2の面52と接触する被覆部材40の第1の面(上面)41に向かう。被覆部材40に、光反射率の高い材料(例えば白色の樹脂材料)を使用することにより、その光を、被覆部材40の第1の面41で反射させることは可能である。しかし、カーボンブラック等の光反射率を低下させ得る添加物を被覆部材40に添加すると、波長変換部材50の第2の面52に到達した光の一部が被覆部材40に吸収され得るため、発光装置10の光取出し効率が低下する。
The light emitted from the light emitting element 20 enters the wavelength conversion member 50 from the upper surface 21 of the light emitting element 20 through the film-shaped transparent member 30t or from the upper surface 31 of the transparent member 30. The wavelength conversion member 50 contains a wavelength conversion material such as a phosphor, and the wavelength of the light is converted by irradiating the wavelength conversion material with light. At this time, the wavelength-converted light is scattered by the wavelength conversion material, and a part thereof goes toward the second surface (lower surface) 52 of the wavelength conversion member 50.
When the second reflection film 72 is not provided, a part of the scattered light goes to the first surface (upper surface) 41 of the covering member 40 that contacts the second surface 52 of the wavelength conversion member 50. It is possible to reflect the light on the first surface 41 of the covering member 40 by using a material having a high light reflectance (for example, a white resin material) for the covering member 40. However, when an additive such as carbon black that can reduce the light reflectance is added to the covering member 40, a part of the light reaching the second surface 52 of the wavelength conversion member 50 may be absorbed by the covering member 40. The light extraction efficiency of the light emitting device 10 is reduced.

しかしながら、波長変換部材50と被覆部材40との間に第2反射膜72を設けることにより、被覆部材40の第1の面41に到達した光は第2反射膜72によって実質的に全て反射され、被覆部材40に到達しない。そのため、(被覆部材40の光反射率が低いことに起因する)発光装置10の光取出効率の低下が抑制でき、被覆部材40に、任意の添加物(例えば、カーボンブラック等の添加物)を添加することができる。   However, by providing the second reflective film 72 between the wavelength conversion member 50 and the covering member 40, substantially all of the light reaching the first surface 41 of the covering member 40 is reflected by the second reflective film 72. , Does not reach the covering member 40. Therefore, the decrease in the light extraction efficiency of the light emitting device 10 (due to the low light reflectance of the coating member 40) can be suppressed, and the coating member 40 can be provided with any additive (for example, an additive such as carbon black). It can be added.

(第3反射膜73、第4反射膜74)
電極251、252の側面251c、252cと被覆部材40との間に、第3反射膜73を設けてもよい。また、発光素子20の第2の面22のうち、電極251、252が形成されていない領域(これを「露出領域」と称する)と被覆部材40との間に、第4反射膜74を設けてもよい。これにより、発光素子20の発光層282(図4参照)で発生して、発光素子20の第2の面(下面)22方向に向かう光を、第3反射膜73で効率よく反射して、発光素子20の側面23または第1の面(上面)21から、発光素子20の外に取り出すことができる。
(Third reflective film 73, fourth reflective film 74)
The third reflective film 73 may be provided between the side surfaces 251c and 252c of the electrodes 251 and 252 and the covering member 40. In addition, the fourth reflective film 74 is provided between the covering member 40 and a region of the second surface 22 of the light emitting element 20 where the electrodes 251 and 252 are not formed (this is referred to as an “exposed region”). May be. Thereby, the light generated in the light emitting layer 282 (see FIG. 4) of the light emitting element 20 and traveling toward the second surface (lower surface) 22 of the light emitting element 20 is efficiently reflected by the third reflective film 73, The light can be taken out of the light emitting element 20 from the side surface 23 or the first surface (top surface) 21 of the light emitting element 20.

第3反射膜73を設けない場合、発光素子20の第2の面22の露出領域は、被覆部材40で覆われる。被覆部材40に、光反射率の高い材料(例えば白色の樹脂材料)を使用することにより、露出領域に向かう光を、発光素子20の第2の面22で反射させることは可能である。しかし、カーボンブラック等の光反射率を低下させ得る添加物を被覆部材40に添加すると、発光素子20の露出領域に到達した光の一部が被覆部材40に吸収され得るため、発光装置10の光取出し効率が低下する。   When the third reflective film 73 is not provided, the exposed region of the second surface 22 of the light emitting element 20 is covered with the covering member 40. By using a material having a high light reflectance (for example, a white resin material) for the covering member 40, it is possible to reflect the light traveling toward the exposed area on the second surface 22 of the light emitting element 20. However, if an additive such as carbon black that can reduce the light reflectance is added to the covering member 40, a part of the light reaching the exposed region of the light emitting element 20 may be absorbed by the covering member 40, and thus the light emitting device 10 may be The light extraction efficiency decreases.

しかしながら、発光素子20の露出領域と被覆部材40との間に第4反射膜74を設けることにより、発光素子20の第2の面22の露出領域に到達した光は第4反射膜74によって実質的に全て反射され、被覆部材40に到達しない。そのため、(被覆部材40の光反射率が低いことに起因する)発光装置10の光取出効率の低下が抑制でき、被覆部材40に、任意の添加物(例えば、カーボンブラック等の添加物)を添加することができる。   However, by providing the fourth reflective film 74 between the exposed region of the light emitting element 20 and the covering member 40, the light reaching the exposed region of the second surface 22 of the light emitting element 20 is substantially reflected by the fourth reflective film 74. All are reflected and do not reach the covering member 40. Therefore, a decrease in the light extraction efficiency of the light emitting device 10 (due to the low light reflectance of the covering member 40) can be suppressed, and the covering member 40 can be provided with any additive (for example, an additive such as carbon black). It can be added.

なお、発光素子20の下面22に設けられた電極251、252に向かう光は、電極251、252によって反射されるので、電極251、252の側面251c、252cを覆う第3反射膜73に到達する光は実質的にない。しかしながら、第3反射膜73を設けることにより、第2反射膜72と電極251、252の側面251c、252cとの間に隙間が生じるのを抑制して、発光装置10の光取出し効率を向上させることができる。   Light directed to the electrodes 251 and 252 provided on the lower surface 22 of the light emitting element 20 is reflected by the electrodes 251 and 252, and thus reaches the third reflective film 73 that covers the side surfaces 251c and 252c of the electrodes 251 and 252. There is virtually no light. However, by providing the third reflective film 73, it is possible to suppress the formation of a gap between the second reflective film 72 and the side surfaces 251c, 252c of the electrodes 251, 252, and improve the light extraction efficiency of the light emitting device 10. be able to.

上述の通り、第1反射膜71、第3反射膜73、第4反射膜74は、発光素子20の発光層282(図4参照)で発生した光の反射に寄与する。一方、第2反射膜72は、主に、波長変換部材50で波長変換された光の反射に寄与する。このように、反射膜の反射すべき光の波長は、光反射膜70の部位によってそれぞれ異なる。   As described above, the first reflective film 71, the third reflective film 73, and the fourth reflective film 74 contribute to the reflection of the light generated in the light emitting layer 282 (see FIG. 4) of the light emitting element 20. On the other hand, the second reflective film 72 mainly contributes to the reflection of the light whose wavelength is converted by the wavelength conversion member 50. As described above, the wavelength of light to be reflected by the reflective film differs depending on the portion of the light reflective film 70.

また、第1反射膜71は透光性部材30との密着性が高いのが好ましく、第2反射膜72は波長変換部材50との密着性が高いのが好ましく、第3反射膜73は電極251、252との密着性が高いのが好ましく、そして第4反射膜74は、半導体積層体28との密着性が高いのが好ましい。このように、光反射膜70の接着性を向上すべき対象は、光反射膜70の部位によってそれぞれ異なる。   Further, the first reflective film 71 preferably has high adhesion to the translucent member 30, the second reflective film 72 preferably has high adhesion to the wavelength conversion member 50, and the third reflective film 73 has electrodes. It is preferable that the adhesiveness to the semiconductors 251 and 252 is high, and the adhesiveness of the fourth reflective film 74 to the semiconductor laminated body 28 is high. In this way, the target for which the adhesiveness of the light reflecting film 70 should be improved differs depending on the site of the light reflecting film 70.

よって、光反射膜70の第1〜第4反射膜71〜74を、それぞれ好ましい材料から形成することもできる。しかしながら、各反射膜を全て別部材で形成すると、各反射膜を製造する工程を個々に設ける必要があり、製造工程の複雑化と発光装置10の製造コストの増加とに繋がりうる。   Therefore, the first to fourth reflection films 71 to 74 of the light reflection film 70 can also be formed of preferable materials. However, if all the reflective films are formed by different members, it is necessary to individually provide a process for manufacturing each reflective film, which may lead to a complicated manufacturing process and an increase in manufacturing cost of the light emitting device 10.

製造コストを抑制するためには、第1〜第4反射膜71〜74のすくなくとも2つ以上が同一の材料から形成されるのが好ましい。これにより、製造工程の簡略化を図ることができる。例えば、第1反射膜71と第2反射膜72とを同一の材料から形成することができる。これにより、第1反射膜71と第2反射膜72とを同一の工程で形成できるので、製造工程の簡略化を図ることができる。また、第1反射膜71と第2反射膜72とを連続膜から形成できるので、第1反射膜71と第2反射膜72の間に隙間が発生するのを抑制することができる。   In order to suppress the manufacturing cost, it is preferable that at least two of the first to fourth reflective films 71 to 74 are formed of the same material. As a result, the manufacturing process can be simplified. For example, the first reflective film 71 and the second reflective film 72 can be formed of the same material. Accordingly, the first reflective film 71 and the second reflective film 72 can be formed in the same process, so that the manufacturing process can be simplified. Further, since the first reflective film 71 and the second reflective film 72 can be formed from a continuous film, it is possible to suppress the occurrence of a gap between the first reflective film 71 and the second reflective film 72.

光反射膜70は無機材料から形成することができる。例えば、誘電体多層膜、金属膜などの無機材料から形成できる。なお、光反射膜70の一部を誘電体多層膜、別の一部を金属膜から形成してもよく、光反射膜70の全体を誘電体多層膜または金属膜のいずれか一方から形成してもよい。   The light reflecting film 70 can be formed of an inorganic material. For example, it can be formed from an inorganic material such as a dielectric multilayer film or a metal film. Note that a part of the light reflection film 70 may be formed of a dielectric multilayer film and another part thereof may be formed of a metal film, and the entire light reflection film 70 may be formed of either a dielectric multilayer film or a metal film. May be.

誘電体多層膜は絶縁体材料の多層膜から形成されるため、電極251、252および半導体積層体28の表面に直接形成しても短絡が生じない点で有利である。よって、電極251、252と接触し得る第3反射膜73と、電極251、252および半導体積層体28と接触し得る第4反射膜74とは、誘電体多層膜から形成するのが好ましい。
誘電体多層膜は、特定波長の光を反射するように設計されるため、反射できる光の波長範囲が狭い。第3反射膜73および第4反射膜74は、主に、発光素子20から発せられる光の反射に寄与するため、反射可能な波長域の狭い誘電体多層膜であっても、高効率で光を反射させることができる。
Since the dielectric multilayer film is formed of a multilayer film made of an insulating material, it is advantageous in that a short circuit does not occur even if it is formed directly on the surfaces of the electrodes 251, 252 and the semiconductor laminated body 28. Therefore, it is preferable that the third reflective film 73 that can contact the electrodes 251 and 252 and the fourth reflective film 74 that can contact the electrodes 251 and 252 and the semiconductor stacked body 28 be formed of a dielectric multilayer film.
Since the dielectric multilayer film is designed to reflect light of a specific wavelength, the wavelength range of light that can be reflected is narrow. Since the third reflective film 73 and the fourth reflective film 74 mainly contribute to the reflection of the light emitted from the light emitting element 20, even if it is a dielectric multilayer film having a narrow wavelength range that can be reflected, the light is highly efficiently emitted. Can be reflected.

金属膜は、比較的広範囲の波長域で高い反射率を有する。よって、金属膜は短絡の問題がなく、波長の異なる光が混在しうる部分に形成するのに適している。第1反射膜71および第2反射膜72は、電極251、252および半導体積層体28と接触しないので、金属膜から形成するのが好ましい。特に、第2反射膜72は、発光素子20から発せられる光と、波長変換部材50で波長変換された光とを含む混合光を反射する必要があるため、反射可能な波長域の広い金属膜(例えば、AgまたはAg合金の金属膜)から形成するのが好ましい。   The metal film has a high reflectance in a relatively wide wavelength range. Therefore, the metal film has no problem of short circuit and is suitable to be formed in a portion where lights having different wavelengths can be mixed. Since the first reflective film 71 and the second reflective film 72 do not contact the electrodes 251, 252 and the semiconductor laminated body 28, they are preferably formed of a metal film. In particular, since the second reflective film 72 needs to reflect the mixed light including the light emitted from the light emitting element 20 and the light whose wavelength is converted by the wavelength conversion member 50, the second reflective film 72 has a wide reflective wavelength range. (For example, a metal film of Ag or Ag alloy) is preferably formed.

第3反射膜73および第4反射膜74を金属膜から形成することもできるが、その場合には、電極251、252の側面251c、252cおよび発光素子20の第2の面22の露出領域を、透光性の絶縁膜(例えば酸化ケイ素)で覆い、その絶縁膜の上に金属膜から成る第3反射膜73および第4反射膜74を形成する。   The third reflection film 73 and the fourth reflection film 74 may be formed of a metal film, but in that case, the exposed regions of the side surfaces 251c and 252c of the electrodes 251 and 252 and the second surface 22 of the light emitting element 20 are formed. A transparent insulating film (eg, silicon oxide) is covered, and a third reflecting film 73 and a fourth reflecting film 74 made of a metal film are formed on the insulating film.

さらに、第1〜第4反射膜71〜74は、誘電体多層膜と金属膜とを積層した積層反射膜としてもよい。具体的には、発光素子20側に誘電体多層膜を配置し、被覆部材40側に金属膜を配置する。発光素子20の半導体積層体28および電極251、252と、金属膜との間に誘電体多層膜が配置されるので、半導体積層体28および電極251、252と金属層との短絡を防止できる。なお、発光素子20から発せられる光と、波長変換部材50で波長変換された光とを含む混合光の場合、その一部の光は積層反射膜を通過し得る。誘電体多層膜を通過した一部の光は、誘電体多層膜を覆う金属層によって反射することができるので、光が被覆部材40に到達するのを抑制できる。   Further, the first to fourth reflection films 71 to 74 may be laminated reflection films formed by laminating a dielectric multilayer film and a metal film. Specifically, the dielectric multilayer film is arranged on the light emitting element 20 side, and the metal film is arranged on the covering member 40 side. Since the dielectric multilayer film is arranged between the semiconductor laminate 28 and the electrodes 251, 252 of the light emitting element 20 and the metal film, a short circuit between the semiconductor laminate 28 and the electrodes 251, 252 and the metal layer can be prevented. In the case of the mixed light including the light emitted from the light emitting element 20 and the light whose wavelength is converted by the wavelength conversion member 50, a part of the light can pass through the laminated reflective film. Part of the light that has passed through the dielectric multilayer film can be reflected by the metal layer that covers the dielectric multilayer film, so that the light can be prevented from reaching the covering member 40.

<第1の製造方法>
図5〜図9を参照しながら、本実施の形態に係る発光装置10の第1の製造方法について説明する。第1の製造方法では、複数の発光装置10を同時に製造することができる。
<First manufacturing method>
A first manufacturing method of the light emitting device 10 according to the present embodiment will be described with reference to FIGS. 5 to 9. In the first manufacturing method, a plurality of light emitting devices 10 can be manufactured at the same time.

工程1−1.透光性部材30の配置
波長変換シート500の第2の面520上に、透光性部材30を形成するための液状樹脂材料300を、分離した複数の島状に塗布する(図5(a)、図8(a))。このとき、比較的大きい波長変換シート500を用いて、1枚の波長変換シート500の上に複数の島状の液状樹脂材料300を配置する。島状に設けられた各液状樹脂材料300は、平面視において任意の形状にすることができ、例えば、円形、楕円形、正方形、長方形が挙げられる。なお、隣接する島状の液状樹脂材料300の間隔が広すぎると、同時に形成できる発光装置10の個数が減少して、発光装置10の量産の効率が悪くなるので、液状樹脂材料300は適切な間隔で配置するのが望ましい。
Step 1-1. Arrangement of Translucent Member 30 On the second surface 520 of the wavelength conversion sheet 500, the liquid resin material 300 for forming the translucent member 30 is applied in the form of a plurality of separated islands (see FIG. ), FIG. 8 (a)). At this time, using a relatively large wavelength conversion sheet 500, a plurality of island-shaped liquid resin materials 300 are arranged on one wavelength conversion sheet 500. Each liquid resin material 300 provided in an island shape can have any shape in a plan view, and examples thereof include a circle, an ellipse, a square, and a rectangle. Note that if the spacing between the adjacent island-shaped liquid resin materials 300 is too wide, the number of light emitting devices 10 that can be formed at the same time decreases, and the efficiency of mass production of the light emitting devices 10 deteriorates. It is desirable to arrange them at intervals.

工程1−2.発光素子20の固定と液状樹脂材料300の硬化
図5(b)、図8(b)に示すように、島状の各液状樹脂材料300の上に、発光素子20を配置する。このとき、発光素子20の第1の面21を、波長変換シート500の第2の面520と向かい合わせて配置する。発光素子20を島状の液状樹脂材料300の上に配置するだけで、もしくは配置した上で発光素子20を押圧することにより、表面張力によって液状樹脂材料300は発光素子20の側面23に這い上がり、液状樹脂材料300の外面303(後の透光性部材30の外面33)は下向きに拡がった形状になる。その後に液状樹脂材料300を加熱等によって硬化させて、透光性部材30を得る。
液状樹脂材料300の平面視の形状は、発光素子20の配置または押圧により変形し、最終製品である発光装置10が備える透光性部材30の第1の面31(図1、図2参照)の外形とほぼ一致する形状となる。
Step 1-2. Fixing Light-Emitting Element 20 and Curing Liquid Resin Material 300 As shown in FIGS. 5B and 8B, the light-emitting element 20 is arranged on each island-shaped liquid resin material 300. At this time, the first surface 21 of the light emitting element 20 is arranged so as to face the second surface 520 of the wavelength conversion sheet 500. By only disposing the light emitting element 20 on the island-shaped liquid resin material 300, or by pressing the light emitting element 20 after disposing the liquid resin material 300, the liquid resin material 300 climbs to the side surface 23 of the light emitting element 20 due to surface tension. The outer surface 303 of the liquid resin material 300 (the outer surface 33 of the translucent member 30 later) has a shape spreading downward. Then, the liquid resin material 300 is cured by heating or the like to obtain the translucent member 30.
The shape of the liquid resin material 300 in plan view is deformed by disposing or pressing the light emitting element 20, and the first surface 31 of the translucent member 30 included in the light emitting device 10 that is the final product (see FIGS. 1 and 2). The shape is almost the same as the outer shape of.

なお、この製造方法では、液状樹脂材料300の一部が、波長変換シート500と発光素子20との間に、膜状に存在する。この膜状の液状樹脂材料300を硬化して形成される膜状の透光性部材30tは、波長変換シート500と発光素子20との接着剤としても機能しうる。膜状の透光性部材30tの厚さは、接着性と発光装置10の放熱性を考慮して決定するのが好ましい。具体的には、図1、図2に示す発光装置10を発光させたときに、波長変換部材50からの発熱を、発光素子20を経由して実装基板側に効率よく伝導させることができるように、膜状の透光性部材30tの厚さは、例えば2〜30μmとすることができ、4〜20μmが好ましく、5〜10μm程度が最も好ましい。   In addition, in this manufacturing method, a part of the liquid resin material 300 exists in a film shape between the wavelength conversion sheet 500 and the light emitting element 20. The film-shaped translucent member 30t formed by curing the film-shaped liquid resin material 300 can also function as an adhesive between the wavelength conversion sheet 500 and the light emitting element 20. The thickness of the film-shaped translucent member 30t is preferably determined in consideration of adhesiveness and heat dissipation of the light emitting device 10. Specifically, when the light emitting device 10 shown in FIGS. 1 and 2 is caused to emit light, heat generated from the wavelength conversion member 50 can be efficiently conducted to the mounting substrate side via the light emitting element 20. In addition, the thickness of the film-shaped translucent member 30t may be, for example, 2 to 30 μm, preferably 4 to 20 μm, and most preferably 5 to 10 μm.

工程1−3.光反射連続膜700の形成
図6(a)、図8(c)に示すように、発光素子20、透光性部材30および波長変換シート500を、光反射連続膜700で覆う。この光反射連続膜700は、各発光装置10に個片化した後に、光反射膜70となる(図1、図2参照)。光反射連続膜700は、透光性部材30の外面33を覆う第1部分710(個片化後の第1反射膜71)と、透光性部材30から露出した波長変換シート500を覆う第2部分720(個片化後の第2反射膜72)とを含む。光反射連続膜700は、さらに、電極251、252の側面251c、252cを覆う第3部分730(個片化後の第3反射膜73)と、発光素子20の第2の面22の露出領域を覆う第4部分740(個片化後の第4反射膜74)とを含み得る。さらに、電極251、252の表面251s、252sを覆う第5部分750も含み得る。
Step 1-3. Formation of Light-Reflecting Continuous Film 700 As shown in FIGS. 6A and 8C, the light-emitting element 20, the translucent member 30, and the wavelength conversion sheet 500 are covered with the light-reflecting continuous film 700. The continuous light-reflecting film 700 becomes the light-reflecting film 70 after being divided into individual light emitting devices 10 (see FIGS. 1 and 2). The continuous light-reflecting film 700 covers the first portion 710 (the first reflecting film 71 after being divided into pieces) that covers the outer surface 33 of the translucent member 30 and the wavelength conversion sheet 500 that is exposed from the translucent member 30. 2 portions 720 (the second reflective film 72 after being divided into individual pieces). The continuous light-reflecting film 700 further includes a third portion 730 (the third reflecting film 73 after being divided into pieces) that covers the side surfaces 251c and 252c of the electrodes 251, 252 and an exposed region of the second surface 22 of the light emitting element 20. And a fourth portion 740 (the fourth reflective film 74 after being divided into individual pieces) that covers the. Further, a fifth portion 750 that covers the surfaces 251s and 252s of the electrodes 251 and 252 may be included.

光反射連続膜700を構成する第1〜第4部分710〜740は、例えばスパッタリング、CVD、塗布、スプレー等の成膜法により形成することができる。第1〜第4部分710〜740は、個別に形成することもできるが、同時に形成するのが好ましい。
光反射連続膜700が金属材料から形成される場合、電極251、252の表面と発光素子20の第2の面22(半導体積層体28が露出している)とに絶縁膜を形成して、光反射連続膜700と、電極251、252および半導体積層体28とを絶縁する。あるいは、光反射連続膜700のうち、第3部分730と第4部分740(電極251、252と、発光素子20の第2の面22とを覆う部分)を除去して、光反射連続膜700と、電極251、252および半導体積層体28との短絡を防止してもよい。
The first to fourth portions 710 to 740 forming the light reflection continuous film 700 can be formed by a film forming method such as sputtering, CVD, coating or spraying. The first to fourth portions 710 to 740 can be formed individually, but are preferably formed simultaneously.
When the light reflection continuous film 700 is formed of a metal material, an insulating film is formed on the surfaces of the electrodes 251 and 252 and the second surface 22 of the light emitting element 20 (where the semiconductor laminated body 28 is exposed), The light reflection continuous film 700 is insulated from the electrodes 251, 252 and the semiconductor laminated body 28. Alternatively, in the light reflection continuous film 700, the third portion 730 and the fourth portion 740 (portions that cover the electrodes 251, 252 and the second surface 22 of the light emitting element 20) are removed, and the light reflection continuous film 700. Then, a short circuit between the electrodes 251, 252 and the semiconductor laminated body 28 may be prevented.

なお、第1反射膜、第2反射膜、第3反射膜及び第4反射膜から成る群から選択される2つ以上の反射膜が同一の材料から成る場合、それら同一の材料からなる反射膜を同時に形成することができる。例えば、第1反射膜と第2反射膜が金属膜であり、第3反射膜と第4反射膜が誘電体多層膜や絶縁性の微粒子の層である場合には、第1反射膜と第2反射膜、第3反射膜と第4反射膜をそれぞれ同一の工程で製造できる。   When two or more reflection films selected from the group consisting of the first reflection film, the second reflection film, the third reflection film and the fourth reflection film are made of the same material, the reflection films made of the same material. Can be formed simultaneously. For example, when the first reflective film and the second reflective film are metal films and the third reflective film and the fourth reflective film are dielectric multilayer films or layers of insulating fine particles, The second reflective film, the third reflective film, and the fourth reflective film can be manufactured in the same process.

工程1−4.被覆部材400の形成
透光性部材30の外面33および波長変換シート500の第2の面520を覆う光反射連続膜700(第1部分710、第2部分720)、被覆部材400で覆う(図6(b)、図9(a))。この被覆部材400は、各発光装置10に個片化した後に、被覆部材40となる。さらに、発光素子20の第2の面22の露出部分および電極251、252の側面251c、252cを覆う光反射連続膜700(第3部分730、第4部分740)も、被覆部材400で覆うのが好ましい。発光素子20の電極251、252の表面251s、252sを覆う光反射連続膜700(第5部分750)も被覆部材400で覆われるように、被覆部材400の厚さ(−z方向の寸法)を調節する。図9(a)に示すように、波長変換シート500上に配置された複数の発光素子20の周囲に設けた複数の透光性部材30は、連続する1つの被覆部材400で覆われる。
その後、発光素子20の電極251、252が露出するように、公知の加工方法により被覆部材400および光反射連続膜700の第5部分750を除去する(図7(a)、図9(b))。
Step 1-4. Formation of coating member 400 The light reflection continuous film 700 (first portion 710, second portion 720) that covers the outer surface 33 of the translucent member 30 and the second surface 520 of the wavelength conversion sheet 500 is covered with the coating member 400 (FIG. 6 (b), FIG. 9 (a)). The covering member 400 becomes the covering member 40 after being divided into individual light emitting devices 10. Further, the light reflection continuous film 700 (third portion 730, fourth portion 740) that covers the exposed portion of the second surface 22 of the light emitting element 20 and the side surfaces 251c, 252c of the electrodes 251, 252 is also covered with the covering member 400. Is preferred. The thickness (dimension in the −z direction) of the covering member 400 is set so that the light reflection continuous film 700 (fifth portion 750) covering the surfaces 251s and 252s of the electrodes 251 and 252 of the light emitting element 20 is also covered with the covering member 400. Adjust. As shown in FIG. 9A, the plurality of translucent members 30 provided around the plurality of light emitting elements 20 arranged on the wavelength conversion sheet 500 are covered with one continuous covering member 400.
Then, the covering member 400 and the fifth portion 750 of the light reflection continuous film 700 are removed by a known processing method so that the electrodes 251 and 252 of the light emitting element 20 are exposed (FIGS. 7A and 9B). ).

工程1−5.発光装置10の個片化
隣接する発光素子20の中間を通る破線X、破線X、破線Xおよび破線X(図7(b)、図9(b))に沿って、被覆部材400、光反射連続膜700および波長変換シート500をダイサー等で切断する。これにより、個々の発光装置10に個片化される(図7(b)、図9(c))。このように、発光素子20を1つ含む発光装置10を、同時に複数製造することができる。
Step 1-5. Dividing the light emitting device 10 into individual pieces. A covering member along the broken line X 1 , the broken line X 2 , the broken line X 3 and the broken line X 4 (FIGS. 7B and 9B) that pass through the middle of the adjacent light emitting elements 20. 400, the light reflection continuous film 700, and the wavelength conversion sheet 500 are cut with a dicer or the like. As a result, the individual light emitting devices 10 are separated (FIGS. 7B and 9C). In this way, it is possible to simultaneously manufacture a plurality of light emitting devices 10 each including one light emitting element 20.

なお、個片化した発光装置10において、発光装置10の側面13(図9(c)に示す被覆部材40の側面40c)に透光性部材30が露出すると、発光素子20からの発光が、透光性部材30を通って発光装置10の側面13から横方向に漏れてしまう。よって、透光性部材30が発光装置10の側面13から露出することのないように、隣接する発光素子20間の間隔や、透光性部材30の粘度等を調節するのが好ましい。   In the individual light emitting device 10, when the translucent member 30 is exposed on the side surface 13 of the light emitting device 10 (the side surface 40c of the covering member 40 shown in FIG. 9C), the light emitted from the light emitting element 20 is emitted. The light leaks laterally from the side surface 13 of the light emitting device 10 through the translucent member 30. Therefore, it is preferable to adjust the distance between the adjacent light emitting elements 20 and the viscosity of the transparent member 30 so that the transparent member 30 is not exposed from the side surface 13 of the light emitting device 10.

この製造方法によれば、波長変換シート500上に液状樹脂材料300を島状に塗布した上に発光素子20を配置することで、発光素子20の接着と透光性部材30の形成を同時に行うことができる。これにより、量産性を向上させることができる。。   According to this manufacturing method, the light emitting element 20 is arranged on the wavelength conversion sheet 500 on which the liquid resin material 300 is applied in an island shape, whereby the light emitting element 20 is bonded and the translucent member 30 is formed at the same time. be able to. Thereby, mass productivity can be improved. ..

<第2の製造方法>
図10〜図11を参照しながら、本実施の形態に係る発光装置10の第2の製造方法について説明する。液状樹脂材料300を形成する前に、波長変換シート500上に発光素子20を固定する点で第1の製造方法と異なる。その他の点については、第1の製造方法と同様である。なお、第1の製造方法と同様の工程については、説明を省略する。
<Second manufacturing method>
A second manufacturing method of the light emitting device 10 according to the present embodiment will be described with reference to FIGS. This is different from the first manufacturing method in that the light emitting element 20 is fixed on the wavelength conversion sheet 500 before the liquid resin material 300 is formed. The other points are similar to those of the first manufacturing method. Note that description of steps similar to those of the first manufacturing method is omitted.

工程2−1.発光素子20の固定
波長変換シート500の第2の面520上に発光素子20を配置する(図10(a)、図11(a))。このとき、発光素子20の第1の面21を、波長変換部材50の第2の面52と向かい合わせて配置する。波長変換シート500は、各発光装置10に個片化した後に、波長変換部材50となる。比較的大きい波長変換シート500を用いて、1枚の波長変換シート500の上に、複数の発光素子20を配置する。隣接する発光素子20は、所定の間隔をあけて配置される。なお、隣接する発光素子20の間隔が広すぎると、同時に形成できる発光装置10の個数が減少して、発光装置10の量産の効率が悪くなるので、発光素子20は、適切な間隔で配置するのが望ましい。
発光素子20は、透光性の接着剤等により波長変換部材50に固定することができる。また、波長変換部材50自体が接着性を有する場合(半硬化状態等である場合)には、接着剤を使わずに固定してもよい。
Step 2-1. Fixing Light-Emitting Element 20 The light-emitting element 20 is arranged on the second surface 520 of the wavelength conversion sheet 500 (FIGS. 10A and 11A). At this time, the first surface 21 of the light emitting element 20 is arranged so as to face the second surface 52 of the wavelength conversion member 50. The wavelength conversion sheet 500 becomes the wavelength conversion member 50 after being divided into individual light emitting devices 10. Using the relatively large wavelength conversion sheet 500, a plurality of light emitting elements 20 are arranged on one wavelength conversion sheet 500. Adjacent light emitting elements 20 are arranged with a predetermined gap. If the space between the adjacent light emitting elements 20 is too wide, the number of the light emitting devices 10 that can be formed at the same time decreases, and the efficiency of mass production of the light emitting devices 10 deteriorates. Therefore, the light emitting elements 20 are arranged at appropriate intervals. Is desirable.
The light emitting element 20 can be fixed to the wavelength conversion member 50 with a translucent adhesive or the like. When the wavelength conversion member 50 itself has adhesiveness (when it is in a semi-cured state or the like), it may be fixed without using an adhesive.

工程2−2.透光性部材30の形成
発光素子20の側面23の一部と、波長変換部材50の第2の面52のうち発光素子20の近傍領域とを覆うように、透光性部材30を形成する(図10(b)、図11(b))。透光性部材30の原材料となる液状樹脂材料30Lを、ディスペンサ等を用いて、発光素子20と波長変換部材50との境界に沿って塗布する。ある発光素子20の周囲に形成された液状樹脂材料30Lと、その発光素子20と隣接して配置された発光素子20の周囲に形成された液状樹脂材料30Lとが接触しないように、液状樹脂材料30Lを形成する。液状樹脂材料30Lは、波長変換部材50の上に広がるとともに、表面張力によって発光素子20の側面23を這い上がる。その後に、液状樹脂材料30Lを加熱等によって硬化させて、透光性部材30を得る。
Step 2-2. Formation of Translucent Member 30 The translucent member 30 is formed so as to cover a part of the side surface 23 of the light emitting element 20 and a region of the second surface 52 of the wavelength conversion member 50 in the vicinity of the light emitting element 20. (FIG.10 (b), FIG.11 (b)). A liquid resin material 30L which is a raw material of the translucent member 30 is applied along the boundary between the light emitting element 20 and the wavelength conversion member 50 using a dispenser or the like. The liquid resin material 30L formed around a certain light emitting element 20 and the liquid resin material 30L formed around the light emitting element 20 arranged adjacent to the light emitting element 20 do not come into contact with each other. Form 30 L. The liquid resin material 30L spreads over the wavelength conversion member 50 and also creeps up on the side surface 23 of the light emitting element 20 due to surface tension. After that, the liquid resin material 30L is cured by heating or the like to obtain the translucent member 30.

その後、第1の製造方法の工程1−3.と同様に光反射膜70を形成し、工程1−4.と同様に被覆部材400を形成し、工程1−5.と同様に、発光装置10を個片化する。これにより、発光素子20を1つ含む発光装置10を、同時に複数製造することができる。
この製造方法によれば、発光素子20と波長変換部材50との間に、膜状の透光性部材30t(図2参照)が形成されない。よって、第2の製造方法は、発光素子20と波長変換部材50とを直接接触させたい場合、またはそれらの間に、透光性部材30とは異なる部材を配置したい場合に好適である。
Then, steps 1-3 of the first manufacturing method. The light reflection film 70 is formed in the same manner as in step 1-4. The covering member 400 is formed in the same manner as in step 1-5. Similarly, the light emitting device 10 is divided into individual pieces. Thereby, a plurality of light emitting devices 10 each including one light emitting element 20 can be simultaneously manufactured.
According to this manufacturing method, the film-shaped translucent member 30t (see FIG. 2) is not formed between the light emitting element 20 and the wavelength conversion member 50. Therefore, the second manufacturing method is suitable for directly contacting the light emitting element 20 and the wavelength conversion member 50, or for disposing a member different from the translucent member 30 between them.

<実施の形態2>
図12、図13に示すように、本実施の形態に係る発光装置15は、実施の形態1に係る発光装置10と比較して、波長変換部材501の側面501bが被覆部材403で覆われている点と、被覆部材403が2層構造になっている点で相違する。その他の点については、実施の形態1と同様である。
<Second Embodiment>
As shown in FIGS. 12 and 13, in the light emitting device 15 according to the present embodiment, the side surface 501b of the wavelength conversion member 501 is covered with the covering member 403 as compared with the light emitting device 10 according to the first embodiment. The difference is that the covering member 403 has a two-layer structure. The other points are similar to those of the first embodiment.

本実施の形態に係る発光装置15は、発光素子20と、発光素子20の第1の面21を覆う波長変換部材501と、発光素子20の側面23側に設けられた透光性部材30と、透光性部材30の外面33を覆う被覆部材403とを含んでいる。本実施の形態では、被覆部材403は、波長変換部材501の側面501bを覆う第1の被覆部材401と、透光性部材30の外面33を覆う第2の被覆部材402とを含む。   The light emitting device 15 according to the present embodiment includes a light emitting element 20, a wavelength conversion member 501 that covers the first surface 21 of the light emitting element 20, and a translucent member 30 provided on the side surface 23 side of the light emitting element 20. , And a covering member 403 that covers the outer surface 33 of the translucent member 30. In the present embodiment, the covering member 403 includes a first covering member 401 that covers the side surface 501b of the wavelength conversion member 501 and a second covering member 402 that covers the outer surface 33 of the translucent member 30.

波長変換部材501の側面501bを被覆部材403(第1の被覆部材401)で覆うことにより、発光素子20からの発光が、波長変換部材501の内部を伝搬して側面501bから横方向に漏れるのを抑制できる。発光装置15からの発光の大部分は、発光装置15の発光面として機能する第1の面(上面)16から取り出される。すなわち、発光装置15からの光は、ほぼz方向に出射されるので、発光装置15の光の指向性を高めることができる。   By covering the side surface 501b of the wavelength conversion member 501 with the covering member 403 (first covering member 401), light emitted from the light emitting element 20 propagates inside the wavelength conversion member 501 and leaks laterally from the side surface 501b. Can be suppressed. Most of the light emitted from the light emitting device 15 is extracted from the first surface (upper surface) 16 that functions as a light emitting surface of the light emitting device 15. That is, since the light from the light emitting device 15 is emitted substantially in the z direction, it is possible to enhance the directivity of the light of the light emitting device 15.

本実施の形態では、光反射膜70は、実施の形態1と同様に、被覆部材40と透光性部材30の外面33との間、被覆部材40と波長変換部材501との間、被覆部材40と発光素子20電極251、252の側面との間、および被覆部材40と発光素子20の下面の露出部との間に設けられている。さらに、本実施の形態では、第1の被覆部材401と第2の被覆部材402との間に形成されていてもよい。   In the present embodiment, the light reflection film 70 is provided between the covering member 40 and the outer surface 33 of the translucent member 30, between the covering member 40 and the wavelength conversion member 501, and in the covering member, as in the first embodiment. 40 and the side surfaces of the electrodes 251 and 252 of the light emitting element 20, and between the covering member 40 and the exposed portion of the lower surface of the light emitting element 20. Further, in the present embodiment, it may be formed between the first covering member 401 and the second covering member 402.

以下に、実施の形態1〜2の発光装置10の各構成部材に適した材料等について説明する。
(発光素子20)
発光素子20としては、例えば発光ダイオード等の半導体発光素子を用いることができる。半導体発光素子は、透光性基板27と、その上に形成された半導体積層体28とを含むことができる。
Materials suitable for the constituent members of the light emitting device 10 according to the first and second embodiments will be described below.
(Light emitting element 20)
As the light emitting element 20, for example, a semiconductor light emitting element such as a light emitting diode can be used. The semiconductor light emitting device may include a transparent substrate 27 and a semiconductor stacked body 28 formed thereon.

(透光性基板27)
発光素子20の透光性基板27には、例えば、サファイア(Al)、スピネル(MgAl)のような透光性の絶縁性材料や、半導体積層体28からの発光を透過する半導体材料(例えば、窒化物系半導体材料)を用いることができる。
(Translucent substrate 27)
The translucent substrate 27 of the light emitting element 20 transmits a translucent insulating material such as sapphire (Al 2 O 3 ) or spinel (MgAl 2 O 4 ), or light emitted from the semiconductor laminated body 28. A semiconductor material (for example, a nitride-based semiconductor material) can be used.

(半導体積層体28)
半導体積層体28は、複数の半導体層を含む。半導体積層体28の一例としては、第1導電型半導体層(例えばn型半導体層)281、発光層(活性層)282および第2導電型半導体層(例えばp型半導体層)283の3つの半導体層を含むことができる(図4参照)。半導体層には、例えば、III−V族化合物半導体、II−VI族化合物半導体等の半導体材料から形成することができる。具体的には、InAlGa1−X−YN(0≦X、0≦Y、X+Y≦1)等の窒化物系の半導体材料(例えばInN、AlN、GaN、InGaN、AlGaN、InGaAlN等)を用いることができる。
(Semiconductor laminate 28)
The semiconductor stacked body 28 includes a plurality of semiconductor layers. As an example of the semiconductor stacked body 28, three semiconductors of a first conductive type semiconductor layer (for example, n-type semiconductor layer) 281, a light emitting layer (active layer) 282, and a second conductive type semiconductor layer (for example, p-type semiconductor layer) 283 are provided. It may include layers (see Figure 4). The semiconductor layer can be formed of a semiconductor material such as a III-V group compound semiconductor or a II-VI group compound semiconductor. Specifically, nitride-based semiconductor materials such as In X Al Y Ga 1-X-Y N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) (for example, InN, AlN, GaN, InGaN, AlGaN, InGaAlN). Etc.) can be used.

(電極251、252)
発光素子20の電極251、252としては、電気良導体を用いることができ、例えばCu、Au、Ag、Ni、Sn等の金属が好適である。
一対の電極を構成する2つの電極251、252の各々は、任意の形状にすることができる。例えば、図1〜2に示す発光装置10では、電極251、252は、一方向(y方向)に伸びた直方体とすることができる。電極251、252は、同じ形状でなくてもよい。また、2つの電極251、252は、互いに離間していれば、任意に配置することができる。図1に示すように、本実施の形態では、2つの電極251、252は、各電極の長軸がy方向と一致するように平行に配置されている。
(Electrodes 251, 252)
As the electrodes 251 and 252 of the light emitting element 20, a good electrical conductor can be used, and metals such as Cu, Au, Ag, Ni, and Sn are preferable.
Each of the two electrodes 251 and 252 forming the pair of electrodes can have any shape. For example, in the light emitting device 10 shown in FIGS. 1 and 2, the electrodes 251 and 252 can be rectangular parallelepipeds extending in one direction (y direction). The electrodes 251 and 252 do not have to have the same shape. The two electrodes 251 and 252 can be arbitrarily arranged as long as they are separated from each other. As shown in FIG. 1, in the present embodiment, the two electrodes 251 and 252 are arranged in parallel so that the major axis of each electrode coincides with the y direction.

(透光性部材30)
透光性部材30は、透光性樹脂、ガラス等の透光性材料から形成することができる。透光性樹脂としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性の透光性樹脂であるのが好ましい。透光性部材30は発光素子20の側面23と接触しているので、点灯時に発光素子20で発生する熱の影響を受けやすい。熱硬化性樹脂は、耐熱性に優れているので、透光性部材30に適している。なお、透光性部材30は、光の透過率が高いことが好ましい。そのため、通常は、透光性部材30に、光を反射、吸収又は散乱する添加物は添加されないことが好ましい。しかし、望ましい特性を付与するために、透光性部材30に添加物を添加するのが好ましい場合もある。例えば、透光性部材30の屈折率を調整するため、または硬化前の透光性部材(液状樹脂材料300)の粘度を調整するために、各種フィラーを添加してもよい。
(Translucent member 30)
The translucent member 30 can be formed of a translucent material such as translucent resin or glass. The translucent resin is preferably a thermosetting translucent resin such as a silicone resin, a silicone-modified resin, an epoxy resin, or a phenol resin. Since the translucent member 30 is in contact with the side surface 23 of the light emitting element 20, it is easily affected by the heat generated in the light emitting element 20 during lighting. Since the thermosetting resin has excellent heat resistance, it is suitable for the translucent member 30. It is preferable that the translucent member 30 has a high light transmittance. Therefore, it is usually preferable that no additive that reflects, absorbs, or scatters light is added to the translucent member 30. However, in some cases it may be preferable to add additives to the translucent member 30 in order to impart the desired properties. For example, various fillers may be added to adjust the refractive index of the translucent member 30 or to adjust the viscosity of the translucent member (liquid resin material 300) before curing.

発光装置10の平面視において、透光性部材30の第1の面31の外形は、少なくとも発光素子20の第2の面22の外形よりも大きくされている。透光性部材30の第1の面31の外形は、さまざまな形状にすることができ、例えば、図1に示すような円形、図12に示すような角丸の四角形、および楕円形、正方形、長方形等の形状にすることができる。   In a plan view of the light emitting device 10, the outer shape of the first surface 31 of the translucent member 30 is at least larger than the outer shape of the second surface 22 of the light emitting element 20. The outer shape of the first surface 31 of the translucent member 30 can be various shapes, for example, a circle as shown in FIG. 1, a square with rounded corners as shown in FIG. 12, and an oval or a square. , A rectangle or the like.

また、透光性部材30の第1の面31の外形形状は、他の条件に基づいて決定してもよい。例えば、発光装置10を光学レンズ(二次レンズ)と組み合わせて使用する場合、第1の面31の外形を円形にするのが好ましくと、発光装置10から出射される発光も円形に近くなるので、光学レンズによって集光しやすくなる。一方、発光装置10の小型化が望まれる場合には、第1の面31の外形を角丸の四角形にするのが好ましく、発光装置10の上面11の寸法を小さくすることができる。   Further, the outer shape of the first surface 31 of the translucent member 30 may be determined based on other conditions. For example, when the light emitting device 10 is used in combination with an optical lens (secondary lens), it is preferable that the outer shape of the first surface 31 is circular, because the light emitted from the light emitting device 10 is also close to circular. , It becomes easier to collect light by the optical lens. On the other hand, when miniaturization of the light emitting device 10 is desired, it is preferable that the outer shape of the first surface 31 is a square with rounded corners, and the size of the upper surface 11 of the light emitting device 10 can be reduced.

(被覆部材40、403)
被覆部材40、403は、ガラス材料、樹脂材料等の無機材料から形成することができ、特に、樹脂材料から形成するのが好ましい。樹脂材料としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂が好適である。
被覆部材40、403には、所望の特性を付与するために、添加剤を添加するのが好ましい。添加剤としては、成形性を改善するための成形性改良剤、機械的強度を高めるための補強材、耐熱性を向上するための添加剤等が挙げられる。特に、機械的強度を高めるために、カーボンブラック、カーボンナノチューブ、ガラス繊維などを添加するのが好ましい。
(Coating members 40, 403)
The covering members 40 and 403 can be formed of an inorganic material such as a glass material or a resin material, and particularly preferably formed of a resin material. As the resin material, a thermosetting resin such as a silicone resin, a silicone-modified resin, an epoxy resin, or a phenol resin is particularly suitable.
Additives are preferably added to the coating members 40 and 403 in order to impart desired properties. Examples of the additive include a moldability improving agent for improving moldability, a reinforcing material for increasing mechanical strength, and an additive for improving heat resistance. In particular, it is preferable to add carbon black, carbon nanotubes, glass fibers or the like in order to increase the mechanical strength.

(波長変換部材50)
波長変換部材50は、蛍光体等の波長変換材料と透光性材料とを含んでいる。透光性材料としては、透光性樹脂、ガラス等が使用できる。特に、透光性樹脂が好ましく、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂、ポリカーボネート樹脂、アクリル樹脂、メチルペンテン樹脂、ポリノルボルネン樹脂などの熱可塑性樹脂を用いることができる。特に、耐光性、耐熱性に優れるシリコーン樹脂が好適である。
(Wavelength conversion member 50)
The wavelength conversion member 50 includes a wavelength conversion material such as a phosphor and a translucent material. As the translucent material, translucent resin, glass or the like can be used. In particular, a light-transmitting resin is preferable, and a thermosetting resin such as a silicone resin, a silicone-modified resin, an epoxy resin, or a phenol resin, a thermoplastic resin such as a polycarbonate resin, an acrylic resin, a methylpentene resin, or a polynorbornene resin can be used. it can. In particular, a silicone resin having excellent light resistance and heat resistance is suitable.

蛍光体は、発光素子20からの発光で励起可能なものが使用される。例えば、青色発光素子又は紫外線発光素子で励起可能な蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体(Ce:YAG);セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体(Ce:LAG);ユウロピウムおよび/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体(CaO−Al−SiO);ユウロピウムで賦活されたシリケート系蛍光体((Sr,Ba)SiO);βサイアロン蛍光体、CASN系蛍光体、SCASN系蛍光体等の窒化物系蛍光体;KSF系蛍光体(KSiF:Mn);硫化物系蛍光体、量子ドット蛍光体などが挙げられる。これらの蛍光体と、青色発光素子又は紫外線発光素子と組み合わせることにより、様々な色の発光装置(例えば白色系の発光装置)を製造することができる。
波長変換部材50には、粘度を調整する等の目的で、各種のフィラー等を含有させてもよい。
A phosphor that can be excited by the light emitted from the light emitting element 20 is used. For example, as a phosphor that can be excited by a blue light emitting element or an ultraviolet light emitting element, a cerium-activated yttrium-aluminum-garnet-based phosphor (Ce: YAG); a cerium-activated lutetium-aluminum-garnet-based phosphor (Ce: LAG); europium and / or activated nitrogen containing calcium aluminosilicate phosphor chromium (CaO-Al 2 O 3 -SiO 2); europium-activated silicates based phosphor ((Sr, Ba) 2 SiO 4 ); β-sialon phosphor, nitride phosphor such as CASN phosphor, SCASN phosphor; KSF phosphor (K 2 SiF 6 : Mn); sulfide phosphor, quantum dot phosphor And so on. By combining these phosphors with a blue light emitting element or an ultraviolet light emitting element, a light emitting device of various colors (for example, a white light emitting device) can be manufactured.
The wavelength conversion member 50 may contain various fillers for the purpose of adjusting viscosity.

なお、発光素子の表面は、波長変換部材50に代えて、蛍光体を含まない透光性の材料で被覆されてもよい。また、この透光性の材料にも、粘度を調整する等の目的で、各種のフィラー等を含有させてもよい。   Note that the surface of the light emitting element may be covered with a translucent material containing no phosphor, instead of the wavelength conversion member 50. Further, the light-transmissive material may also contain various fillers for the purpose of adjusting viscosity.

(光反射膜70(第1反射膜71、第2反射膜72、第3反射膜73、第4反射膜74))
光反射膜70を構成する各反射膜(第1反射膜71、第2反射膜72、第3反射膜73、第4反射膜74)は、無機材料から形成するのが好ましい。
各反射膜は、金属材料又は絶縁性材料等のうち、光の反射率の高いもので形成することができる。なお、絶縁性材料としては、材料自体が反射率の高いもの以外に、誘電体多層膜も含む。各材料について以下に詳述する。
(Light reflection film 70 (first reflection film 71, second reflection film 72, third reflection film 73, fourth reflection film 74))
Each of the reflective films (the first reflective film 71, the second reflective film 72, the third reflective film 73, the fourth reflective film 74) forming the light reflective film 70 is preferably formed of an inorganic material.
Each reflective film can be formed of a metal material, an insulating material, or the like having a high light reflectance. The insulating material includes not only a material having a high reflectance but also a dielectric multilayer film. Each material will be described in detail below.

・金属材料
各反射膜に適した金属材料としては、例えば銀、銀合金、アルミニウム、金、プラチナ等が挙げられる。特に、耐硫化性に優れた銀合金が好ましく、当該分野で公知の銀合金のいずれを用いてもよい。反射膜の厚さは、特に限定されるものではなく、発光素子から出射される発光を効果的に反射することができる厚さ(例えば、約20nm〜約1μm)、特に50nm以上の厚さであるのが好ましい。
Metallic material Suitable metallic materials for each reflective film include silver, silver alloy, aluminum, gold, platinum and the like. In particular, a silver alloy having excellent sulfidation resistance is preferable, and any silver alloy known in the art may be used. The thickness of the reflective film is not particularly limited, and the thickness capable of effectively reflecting the light emitted from the light emitting element (for example, about 20 nm to about 1 μm), particularly 50 nm or more. Preferably.

・誘電体多層膜(DBR)
誘電体多層膜(DBR)は、所定波長の光を選択的に反射することができる反射膜であり、屈折率の異なる2種類の誘電体膜を所定の厚さで交互に積層した構造を有する。具体的には、任意に形成された酸化膜等からなる下地層の上に、低屈折率層と高屈折率層とを、反射すべき光の1/4波長の厚さで交互に積層することにより、当該所定波長の光を高効率で反射することができる。
誘電体膜には、例えば、Si、Ti、Zr、Nb、Ta、Alからなる群より選択された少なくとも一種の酸化物又は窒化物を用いることができ、スパッタリング又はCVDにより成膜することができる。例えば、低屈折率層をSiO2、高屈折率層をNb2O5、TiO2、ZrO2又はTa2O5等とすることができる。具体的には、下地層側から順番に(Nb2O5/SiO2n(n=2〜5)が挙げられる。
DBRの総膜厚は、約0.2〜1μm程度とすることができる。
・ Dielectric multilayer film (DBR)
The dielectric multilayer film (DBR) is a reflective film capable of selectively reflecting light of a predetermined wavelength, and has a structure in which two types of dielectric films having different refractive indexes are alternately laminated with a predetermined thickness. .. Specifically, a low-refractive index layer and a high-refractive index layer are alternately laminated at a thickness of ¼ wavelength of light to be reflected on an underlying layer made of an oxide film or the like that is arbitrarily formed. As a result, the light having the predetermined wavelength can be reflected with high efficiency.
For the dielectric film, for example, at least one oxide or nitride selected from the group consisting of Si, Ti, Zr, Nb, Ta, and Al can be used, and can be formed by sputtering or CVD. .. For example, the low refractive index layer may be SiO 2 , and the high refractive index layer may be Nb 2 O 5 , TiO 2 , ZrO 2 or Ta 2 O 5 . Specifically, (Nb 2 O 5 / SiO 2 ) n (n = 2 to 5) may be mentioned in order from the underlayer side.
The total film thickness of DBR can be set to about 0.2 to 1 μm.

光反射膜は、10〜500nm程度の粒径の微粒子が層状に形成されたものであってもよい。
微粒子の材料としては、光反射率の高い酸化チタン、酸化ジルコニウム等を好ましく用いることができる。微粒子を層状に形成する方法としては、揮発性の溶剤に微粒子を混合させたものを透光性部材30の外面33を被覆するよう設けた後に、溶剤を揮発させる等があげられる。
絶縁物の微粒子を光反射膜として用いることにより、誘電体多層膜を用いる場合と同様に、電極251、252および半導体積層体28の表面に直接形成しても短絡が生じない点で有利である。また、酸化チタンのような反射可能な波長域の広い材料を用いることにより、金属膜を用いる場合と同様に、発光素子20から発せられる光と、波長変換部材50で波長変換された光とを含む混合光を効率的に反射することができる。
The light reflecting film may be formed by layering fine particles having a particle size of about 10 to 500 nm.
As the material of the fine particles, titanium oxide, zirconium oxide or the like having high light reflectance can be preferably used. As a method of forming the fine particles in a layered form, a method of mixing the fine particles in a volatile solvent to cover the outer surface 33 of the translucent member 30 and then volatilizing the solvent can be mentioned.
By using fine particles of an insulating material as the light reflecting film, it is advantageous in that a short circuit does not occur even when formed directly on the surfaces of the electrodes 251, 252 and the semiconductor laminated body 28, as in the case of using the dielectric multilayer film. .. Further, by using a material having a wide wavelength range that can be reflected, such as titanium oxide, the light emitted from the light emitting element 20 and the light wavelength-converted by the wavelength conversion member 50 are used as in the case of using the metal film. The mixed light including the light can be efficiently reflected.

第1〜第4反射膜71〜74は、全てまたは一部を同一の材料から形成してもよく、あるいは全てを異なる材料から形成してもよい。また、第1〜第4反射膜71〜74の中で異なる材料が用いられていてもよい。例えば、第1反射膜71は、第3反射膜73に近い部分においては、短絡等のリスクが低減できる誘電体多層膜や絶縁性の微粒子で形成され、第2反射膜72に近い部分においては、金属膜で形成されていてもよい。   All or part of the first to fourth reflective films 71 to 74 may be made of the same material, or all of them may be made of different materials. Further, different materials may be used in the first to fourth reflection films 71 to 74. For example, the first reflective film 71 is formed of a dielectric multilayer film or insulating fine particles that can reduce the risk of short circuit or the like in the portion close to the third reflective film 73, and in the portion close to the second reflective film 72. It may be formed of a metal film.

以上、本発明に係るいくつかの実施形態について例示したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り任意のものとすることができることは言うまでもない。
本明細書の開示内容は、以下の態様を含み得る。
(態様1)
発光装置の発光面側に位置する第1の面と、前記第1の面に対向する第2の面と、前記第1の面と前記第2の面との間に位置する側面と、を有する発光素子と、
樹脂を含む材料から形成され、前記発光素子の前記側面の少なくとも一部を覆い、前記発光面側に位置する第1の面を有する透光性部材と、
前記透光性部材の外面を覆い、前記発光面側に位置する第1の面を有する被覆部材と、
前記発光素子の前記第1の面と、前記透光性部材の前記第1の面及び前記被覆部材の前記第1の面を覆う波長変換部材と、
前記透光性部材の前記外面と前記被覆部材との間に設けられ、無機材料から成る第1反射膜と、前記被覆部材の前記第1の面と前記波長変換部材との間に設けられ、無機材料から成る第2反射膜と、を含む光反射膜と、を備える、発光装置。
(態様2)
前記第1反射膜と前記第2反射膜とが同一の無機材料から成る態様1に記載の発光装置。
(態様3)
前記発光素子は、その第2の面側に電極を有し、
前記被覆部材は、前記電極の側面と、前記発光素子の前記第2の面のうち前記電極が設けられていない露出領域とを覆っており、
前記光反射膜は、
前記電極の前記側面と前記被覆部材との間に設けられ、無機材料から成る第3反射膜と、
前記発光素子の前記露出領域と前記被覆部材との間に設けられ、無機材料から成る第4反射膜と、をさらに含む態様1または2に記載の発光装置。
(態様4)
前記第1反射膜、前記第2反射膜、前記第3反射膜及び前記第4反射膜の2つ以上が同一の無機材料から成る態様3に記載の発光装置。
(態様5)
前記光反射膜の少なくとも一部が誘電体多層膜から成る態様1〜4のいずれか1つに記載の発光装置。
(態様6)
前記光反射膜の少なくとも一部が金属膜から成る態様1〜5のいずれか1つに記載の発光装置。
(態様7)
前記被覆部材が、カーボンブラック、カーボンナノチューブ、ガラス繊維から成る群から選択される1つ以上の補強材を含有する樹脂材料を含む態様1〜6のいずれか1つに記載の発光装置。
(態様8)
前記透光性部材の前記外面は、前記発光素子の第2の面側から第1の面側に向かって外向きに傾斜している、態様1〜7のいずれか1つに記載の発光装置。
(態様9)
波長変換部材上に、発光素子を配置する工程と、
前記発光素子の側面を透光性部材で覆う工程と、
前記透光性部材の外面を無機材料である第1反射膜で覆う工程と、
前記透光性部材から露出した前記波長変換部材を、無機材料である第2反射膜で覆う工程と、
前記第1反射膜及び第2反射膜を被覆部材で覆う工程と、を含む発光装置の製造方法。
(態様10)
前記透光性部材の前記外面は、前記発光素子の第2の面側から第1の面側に向かって外向きに傾斜している、態様9に記載の製造方法。
(態様11)
前記第1反射膜で覆う工程と前記第2反射膜で覆う工程とを、同時に行う態様9または10に記載の製造方法。
(態様12)
前記発光素子は第2の面側に電極を有しており、
前記被覆部材で覆う工程前に、
前記電極の側面を第3反射膜で覆う工程と、
前記発光素子の前記第2の面のうち前記電極で覆われていない領域を第4反射膜で覆う工程と、をさらに含み、
前記被覆部材で覆う工程において、前記被覆部材により、前記第3反射膜と前記第4反射膜とをさらに覆うことを特徴とする態様9〜11のいずれか1つに記載の製造方法。
(態様13)
前記第1反射膜、前記第2反射膜、前記第3反射膜及び前記第4反射膜から成る群から選択される2つ以上の反射膜が同一の材料から成り、
前記同一の材料から成る前記反射膜を同時に形成することを特徴とする態様12に記載の製造方法。
Although some embodiments according to the present invention have been exemplified above, it is needless to say that the present invention is not limited to the above-mentioned embodiments and may be any one without departing from the gist of the present invention. ..
The disclosure of the present specification may include the following aspects.
(Aspect 1)
A first surface located on the light emitting surface side of the light emitting device, a second surface facing the first surface, and a side surface located between the first surface and the second surface. A light emitting element having
A translucent member formed of a material containing a resin, covering at least a part of the side surface of the light emitting element, and having a first surface located on the light emitting surface side;
A covering member that covers an outer surface of the translucent member and has a first surface located on the light emitting surface side;
A wavelength conversion member that covers the first surface of the light emitting element, the first surface of the translucent member, and the first surface of the covering member;
Provided between the outer surface of the translucent member and the covering member, and provided between the first reflecting film made of an inorganic material and the first surface of the covering member and the wavelength conversion member, A light emitting device, comprising: a second reflective film made of an inorganic material; and a light reflective film containing the second reflective film.
(Aspect 2)
The light emitting device according to aspect 1, wherein the first reflective film and the second reflective film are made of the same inorganic material.
(Aspect 3)
The light emitting element has an electrode on the second surface side thereof,
The covering member covers a side surface of the electrode and an exposed region of the second surface of the light emitting element where the electrode is not provided,
The light reflection film,
A third reflective film made of an inorganic material, provided between the side surface of the electrode and the covering member;
3. The light emitting device according to aspect 1 or 2, further comprising a fourth reflective film made of an inorganic material, the fourth reflective film being provided between the exposed region of the light emitting element and the covering member.
(Aspect 4)
The light emitting device according to aspect 3, wherein two or more of the first reflective film, the second reflective film, the third reflective film, and the fourth reflective film are made of the same inorganic material.
(Aspect 5)
5. The light emitting device according to any one of aspects 1 to 4, wherein at least a part of the light reflection film is a dielectric multilayer film.
(Aspect 6)
The light emitting device according to any one of aspects 1 to 5, wherein at least a part of the light reflection film is a metal film.
(Aspect 7)
7. The light emitting device according to any one of aspects 1 to 6, wherein the covering member includes a resin material containing one or more reinforcing materials selected from the group consisting of carbon black, carbon nanotubes, and glass fibers.
(Aspect 8)
8. The light emitting device according to any one of aspects 1 to 7, wherein the outer surface of the translucent member is inclined outward from the second surface side of the light emitting element toward the first surface side. ..
(Aspect 9)
A step of disposing a light emitting element on the wavelength conversion member,
Covering the side surface of the light emitting element with a transparent member,
Covering the outer surface of the translucent member with a first reflective film that is an inorganic material;
Covering the wavelength conversion member exposed from the translucent member with a second reflective film that is an inorganic material;
And a step of covering the first reflective film and the second reflective film with a covering member.
(Aspect 10)
10. The manufacturing method according to aspect 9, wherein the outer surface of the translucent member is inclined outward from the second surface side of the light emitting element toward the first surface side.
(Aspect 11)
11. The manufacturing method according to aspect 9 or 10, wherein the step of covering with the first reflective film and the step of covering with the second reflective film are performed simultaneously.
(Aspect 12)
The light emitting element has an electrode on the second surface side,
Before the step of covering with the covering member,
Covering the side surface of the electrode with a third reflective film,
A step of covering a region of the second surface of the light emitting element which is not covered with the electrode with a fourth reflective film,
12. The manufacturing method according to any one of aspects 9 to 11, wherein in the step of covering with the covering member, the covering member further covers the third reflective film and the fourth reflective film.
(Aspect 13)
Two or more reflective films selected from the group consisting of the first reflective film, the second reflective film, the third reflective film and the fourth reflective film are made of the same material,
13. The manufacturing method according to aspect 12, wherein the reflective films made of the same material are simultaneously formed.

10、15 発光装置
11 発光装置の第1の面(上面)
20 発光素子
21 発光素子の第1の面(上面)
22 発光素子の第2の面(下面)
23 発光素子の側面
28 半導体積層体
251、252 電極
30 透光性部材
33 透光性部材の外面
40 被覆部材
50 波長変換部材
70 光反射膜
10, 15 Light emitting device 11 First surface (top surface) of light emitting device
20 Light-Emitting Element 21 First Surface (Upper Surface) of Light-Emitting Element
22 Second surface (lower surface) of light emitting element
23 side surface of light emitting element 28 semiconductor laminated body 251, 252 electrode 30 translucent member 33 outer surface of translucent member 40 coating member 50 wavelength conversion member 70 light reflection film

Claims (15)

発光装置の発光面側に位置する第1の面と、前記第1の面に対向する第2の面と、前記第1の面と前記第2の面との間に位置する側面と、を有する発光素子と、
樹脂を含む材料から形成され、前記発光素子の前記側面の少なくとも一部を覆う透光性部材と、
前記発光素子の前記第1の面を覆う波長変換部材と、
前記波長変換部材の側面を覆う第1の被覆部材と、
前記透光性部材の外側面を覆い、前記波長変換部材から離間された第2の被覆部材と、
前記第2の被覆部材の内側面に接する光反射膜と、を備え、
前記第2の被覆部材の上面は、前記発光素子の第1の面よりも低い位置にある発光装置。
A first surface located on the light emitting surface side of the light emitting device, a second surface facing the first surface, and a side surface located between the first surface and the second surface. A light emitting element having
A translucent member formed of a material containing a resin and covering at least a part of the side surface of the light emitting element;
A wavelength conversion member that covers the first surface of the light emitting element,
A first covering member that covers a side surface of the wavelength conversion member;
A second covering member that covers the outer side surface of the translucent member and is separated from the wavelength conversion member;
A light reflecting film in contact with the inner surface of the second covering member,
A light-emitting device in which an upper surface of the second covering member is located lower than a first surface of the light-emitting element .
発光装置の発光面側に位置する第1の面と、前記第1の面に対向する第2の面と、前記第1の面と前記第2の面との間に位置する側面と、を有する発光素子と、  A first surface located on the light emitting surface side of the light emitting device, a second surface facing the first surface, and a side surface located between the first surface and the second surface. A light emitting element having
樹脂を含む材料から形成され、前記発光素子の前記側面の少なくとも一部を覆う透光性部材と、  A translucent member formed of a material containing a resin and covering at least a part of the side surface of the light emitting element;
前記発光素子の前記第1の面を覆う波長変換部材と、  A wavelength conversion member that covers the first surface of the light emitting element,
前記波長変換部材の側面を覆う第1の被覆部材と、  A first covering member that covers a side surface of the wavelength conversion member;
前記透光性部材の外側面を覆い、前記波長変換部材から離間された第2の被覆部材と、  A second covering member that covers the outer side surface of the translucent member and is separated from the wavelength conversion member;
前記第2の被覆部材の内側面に接する光反射膜と、を備え、  A light reflecting film in contact with the inner surface of the second covering member,
前記第1の被覆部材の外側面と、前記第2の被覆部材の外側面とは、同一面である発光装置。  The light emitting device in which the outer surface of the first covering member and the outer surface of the second covering member are the same surface.
発光装置の発光面側に位置する第1の面と、前記第1の面に対向する第2の面と、前記第1の面と前記第2の面との間に位置する側面と、を有する発光素子と、  A first surface located on the light emitting surface side of the light emitting device, a second surface facing the first surface, and a side surface located between the first surface and the second surface. A light emitting element having
樹脂を含む材料から形成され、前記発光素子の前記側面の少なくとも一部を覆う透光性部材と、  A translucent member formed of a material containing a resin and covering at least a part of the side surface of the light emitting element;
前記発光素子の前記第1の面を覆う波長変換部材と、  A wavelength conversion member that covers the first surface of the light emitting element,
前記波長変換部材の側面を覆う第1の被覆部材と、  A first covering member that covers a side surface of the wavelength conversion member;
前記透光性部材の外側面を覆い、前記波長変換部材から離間された第2の被覆部材と、  A second covering member that covers the outer side surface of the translucent member and is separated from the wavelength conversion member;
前記第2の被覆部材の内側面に接する光反射膜と、を備え、  A light reflecting film in contact with the inner surface of the second covering member,
前記第1の被覆部材の厚みは、前記波長変換部材と同じ厚みである発光装置。  The light emitting device in which the thickness of the first covering member is the same as that of the wavelength converting member.
前記第1の被覆部材の外側面と、前記第2の被覆部材の外側面とは、同一面である、請求項1または3のいずれか1項に記載の発光装置。 The light emitting device according to claim 1, wherein the outer surface of the first covering member and the outer surface of the second covering member are the same surface. 前記第1の被覆部材の厚みは、前記波長変換部材と同じ厚みである、請求項1または2、または4のいずれか1項に記載の発光装置。 The thickness of the first covering member, the thickness is the same as the wavelength conversion member, the light emitting device according to any one of claims 1 or 2 or 4,. 前記第2の被覆部材の上面上に、前記光反射膜を介して前記波長変換部材の一部が配置される、請求項1〜のいずれか1項に記載の発光装置。 Wherein on the upper surface of the second cover member, a portion of the wavelength conversion member through the light reflective film is disposed, the light emitting device according to any one of claims 1-5. 前記光反射膜は、前記波長変換部材と接する、請求項1〜のいずれか1項に記載の発光装置。 The light reflecting layer, the contact with the wavelength conversion member, the light emitting device according to any one of claims 1-6. 前記光反射膜は、さらに前記発光素子の下方に配置される、請求項1〜のいずれか1項に記載の発光装置。 The light reflective layer is further disposed below the light emitting element, a light-emitting device according to any one of claims 1-7. 前記発光素子の前記第1の面と、前記波長変換部材との間に、前記透光性部材が配置される、請求項1〜のいずれか1項に記載の発光装置。 And the first surface of the light emitting element, between the wavelength converting member, wherein the translucent member is arranged, the light emitting device according to any one of claims 1-8. 前記発光素子は、前記第2の面に電極を有し、前記光反射膜は、前記電極と接している、請求項1〜のいずれか1項に記載の発光装置。 The light emitting element has an electrode on the second surface, the light reflecting layer is in contact with the electrode, the light emitting device according to any one of claims 1-9. 発光装置の発光面側に位置する第1の面と、前記第1の面に対向する第2の面と、前記第1の面と前記第2の面との間に位置する側面と、を有する発光素子と、
樹脂を含む材料から形成され、前記発光素子の前記側面の少なくとも一部を覆う透光性部材と、
前記発光素子の前記第1の面を覆う波長変換部材と、
前記波長変換部材の側面を覆う第1の被覆部材と、
前記透光性部材の外側面を覆い、前記波長変換部材から離間された第2の被覆部材と、
前記第2の被覆部材の内側面に接する光反射膜と、を備え、 前記発光素子は、前記第2の面に電極を有し、前記光反射膜は、前記電極と接している発光装置。
A first surface located on the light emitting surface side of the light emitting device, a second surface facing the first surface, and a side surface located between the first surface and the second surface. A light emitting element having
A translucent member formed of a material containing a resin and covering at least a part of the side surface of the light emitting element;
A wavelength conversion member that covers the first surface of the light emitting element,
A first covering member that covers a side surface of the wavelength conversion member;
A second covering member that covers the outer side surface of the translucent member and is separated from the wavelength conversion member;
A light reflecting film in contact with the inner surface of the second covering member, wherein the light emitting element has an electrode on the second surface, and the light reflecting film is in contact with the electrode.
前記光反射膜は、無機材料からなる、請求項1〜11のいずれか1項に記載の発光装置。 The light reflecting film is made of an inorganic material, the light-emitting device according to any one of claims 1 to 11. 前記光反射膜は、絶縁性材料からなる、請求項1〜12のいずれか1項に記載の発光装置。 The light reflecting film is made of an insulating material, the light-emitting device according to any one of claims 1 to 12. 前記光反射膜は、金属材料からなる、請求項1〜のいずれか1項に記載の発光装置。 The light reflecting film is made of a metal material, the light-emitting device according to any one of claims 1-9. 前記光反射膜は、酸化チタンを含む請求項1〜13のいずれか1項に記載の発光装置。 The light reflecting film, the light-emitting device according to any one of claims 1 to 13 containing titanium oxide.
JP2018200263A 2018-10-24 2018-10-24 Light emitting device Active JP6696550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018200263A JP6696550B2 (en) 2018-10-24 2018-10-24 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200263A JP6696550B2 (en) 2018-10-24 2018-10-24 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015106547A Division JP6424738B2 (en) 2015-05-26 2015-05-26 Light emitting device and method of manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2019012860A JP2019012860A (en) 2019-01-24
JP6696550B2 true JP6696550B2 (en) 2020-05-20

Family

ID=65228125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200263A Active JP6696550B2 (en) 2018-10-24 2018-10-24 Light emitting device

Country Status (1)

Country Link
JP (1) JP6696550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7522343B2 (en) 2020-08-26 2024-07-25 日亜化学工業株式会社 Surface emitting light source and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211359B2 (en) * 2002-03-06 2009-01-21 日亜化学工業株式会社 Manufacturing method of semiconductor device
JP2006351808A (en) * 2005-06-15 2006-12-28 Matsushita Electric Works Ltd Light emitting device
EP2472613B1 (en) * 2009-08-27 2018-11-28 Kyocera Corporation Light-emitting device
JP2011181794A (en) * 2010-03-03 2011-09-15 Panasonic Corp Light emitting device and back light module using the same
JP2012094787A (en) * 2010-10-29 2012-05-17 Panasonic Corp Optical semiconductor device, optical semiconductor device package used for the device, and manufacturing methods of the device and the package
JP2012209511A (en) * 2011-03-30 2012-10-25 Kyocera Corp Manufacturing method of light emitting device
CN203674260U (en) * 2013-12-11 2014-06-25 江阴长电先进封装有限公司 LED packaging structure with ESD protection

Also Published As

Publication number Publication date
JP2019012860A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6424738B2 (en) Light emitting device and method of manufacturing light emitting device
JP6724933B2 (en) Method for manufacturing light emitting device
JP2016219743A5 (en)
US11482648B2 (en) Light emitting device and method for manufacturing the same
US9287472B2 (en) Light emitting device and method of manufacturing the same
JP6205897B2 (en) Light emitting device and manufacturing method thereof
KR102607320B1 (en) Light-emitting device
JP2019176081A (en) Light-emitting device and method for manufacturing the same
JP2015099940A (en) Light-emitting device
JP6460189B2 (en) Light emitting device and manufacturing method thereof
KR101364720B1 (en) Light emitting diode having distributed bragg reflector
JP6661964B2 (en) Light emitting device
JP6680302B2 (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP6696550B2 (en) Light emitting device
KR102464320B1 (en) Light emitting device package
US20150200340A1 (en) Light-emitting device
JP6274240B2 (en) Light emitting device
JP2023158909A (en) Luminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6696550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250