JP6691602B2 - 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス - Google Patents

光学的感知のためのマルチ・コア・ファイバを有する医療デバイス Download PDF

Info

Publication number
JP6691602B2
JP6691602B2 JP2018535167A JP2018535167A JP6691602B2 JP 6691602 B2 JP6691602 B2 JP 6691602B2 JP 2018535167 A JP2018535167 A JP 2018535167A JP 2018535167 A JP2018535167 A JP 2018535167A JP 6691602 B2 JP6691602 B2 JP 6691602B2
Authority
JP
Japan
Prior art keywords
fiber
force
catheter
core
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018535167A
Other languages
English (en)
Other versions
JP2019503225A (ja
Inventor
リウ ユー
リウ ユー
ダブリュ. スリワ ジョン
ダブリュ. スリワ ジョン
リウ ジャイン
リウ ジャイン
レオ ジョバンニ
レオ ジョバンニ
ティー. テッグ トロイ
ティー. テッグ トロイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical International Holding SARL
Original Assignee
St Jude Medical International Holding SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Jude Medical International Holding SARL filed Critical St Jude Medical International Holding SARL
Publication of JP2019503225A publication Critical patent/JP2019503225A/ja
Application granted granted Critical
Publication of JP6691602B2 publication Critical patent/JP6691602B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00988Means for storing information, e.g. calibration constants, or for preventing excessive use, e.g. usage, service life counter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1465Deformable electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/221Arrangements of sensors with cables or leads, e.g. cable harnesses
    • A61B2562/223Optical cables therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/225Connectors or couplings

Description

本開示は、医療デバイスに関し、特に、身体内で視覚化され、医療デバイスの遠位部分との組織接触に関する応答フィードバックを提供することができる介入カテーテルおよび/または外科用カテーテルならびに他の細長い医療デバイスに関する。
心周期内で、人間の心臓は、洞結節から心室まで横断する電気インパルスを経験する。心収縮は、電流が心臓全体に広がるにつれて、分極および脱分極のサイクルによって引き起こされる。健康な心臓では、心臓は、洞調律と呼ばれる脱分極波の規則的な進行を経験する。例えば、異所性心房頻拍、心房細動、および心房粗動を含む、心房性不整脈を経験するような不健康な心臓では、脱分極波の進行は無秩序になる。不整脈は、瘢痕組織または急速で均一な脱分極に対する他の障害の結果として持続する場合がある。これらの障害は、脱分極波が心臓のいくつかの部分を2回以上に亘って電気的に循環する原因となる場合がある。心房性不整脈は、不規則な心拍数、同期した房室収縮の喪失、および血流の停滞を含む、様々な危険な状態を作り出す場合がある。これらの状態のすべては、死を含む様々な病気に関連している。
カテーテルは、例えば、異所性心房頻拍、心房細動、および心房粗動を含む、心房性不整脈のような状態を診断および修正するために、様々な診断および/または治療の医療処置において使用される。典型的には、心房細動の治療において、カテーテルは、患者の脈管構造を介して患者の心臓まで操作され、マッピング、アブレーション、診断、または他の治療のために使用されてもよい1つまたは複数の電極を運ぶ。心房細動の症状を緩和するためにアブレーション療法が望まれる場合、アブレーション・カテーテルは、心臓組織に傷を生成するために心臓組織にアブレーション・エネルギーを加える。傷つけられた組織は、電気信号を伝達する能力が低く、それによって、望ましくない電気経路を途絶させ、不整脈を導く迷走電気信号を制限または防止する。アブレーション・カテーテルは、例えば、無線周波数(RF)、凍結アブレーション、レーザ、化学薬品、および高密度焦点式超音波を含むアブレーション・エネルギーを利用することができる。アブレーション療法は、しばしば、アブレーション・カテーテルの正確な位置決めと、標的心筋組織への最適なアブレーション・エネルギーの伝達のための精密な圧力印加と、を必要とする。アブレーション・カテーテル・チップと標的心筋組織との間の過剰な力は、心筋および/または周囲の神経に回復不能な損傷を与える可能性がある過度のアブレーションをもたらす場合がある。アブレーション・カテーテル・チップと標的心筋組織との間の接触力が目標力未満であるとき、アブレーション療法の有効性は、低減されるか、または完全に無効となる場合がある。
アブレーション療法は、しばしば、損傷ラインを形成するために、制御された様式でいくつかの個々のアブレーションを行うことによって行われる。損傷ラインに沿った個々のアブレーションの適合性を改善するために、個々のアブレーションが行われる位置、アブレーション期間、および、アブレーション・カテーテル・チップと標的組織との間の接触力を正確に制御することが望ましい。これらの要因のすべてが、結果として生じる損傷ラインの適合性に影響を及ぼす。カテーテル位置特定システムは、マッピングシステムと共に、アブレーションのためのアブレーション・カテーテル・チップを正確に位置決めし、治療の有効性を決定する臨床医の能力を大幅に改善している。同様に、アブレーション・コントローラ回路は、個々のアブレーション療法の一貫性を改善している。心筋組織とアブレーション・カテーテル・チップとの間に加えられる力を測定しようとするデバイスが存在する。既存の設計は、アブレーション・カテーテル・チップに対して加えられる力に応じて変形する変形可能な本体を有するアブレーション・カテーテル・チップを利用する。変形可能な本体の変形を近似し、変形をアブレーション・カテーテル・チップによって加えられた力と関連付ける信号をコントローラ回路に出力するために、(例えば、磁気、光学などの)センサが使用される。しかしながら、既存の変形可能な本体の設計は、主に測定信号の取得およびカテーテルの近位端への送達に関連する複雑さとコストの両方に悩まされる。
前述の議論は、本分野を説明することのみを意図されており、特許請求の範囲を否定するものとしてみなされるべきではない。
本開示は、医療デバイスに関し、特に、身体内で視覚化され、医療デバイスの遠位部分との組織接触に関する応答フィードバックを提供することができる介入カテーテルおよび/または外科用カテーテルならびに他の細長い医療デバイスに関する。
一実施形態では、医療デバイス屈曲構造アセンブリは、複数のコアを備えるマルチ・コア・ファイバと、少なくとも1つのスロットを備える屈曲構造と、を備えることができる。複数のコアの各々は、ファイバ・ブラッグ・グレーティングを備えることができ、屈曲構造は、屈曲構造に対して加えられる力に応じて曲がるように構成され得る。
別の実施形態では、外科用カテーテルは、カテーテル本体の遠位端に結合されたカテーテル・チップ・アセンブリを備えることができる。カテーテル・チップ・アセンブリは、カテーテル・チップと、屈曲構造と、マルチ・コア・ファイバとを備えることができ、マルチ・コア・ファイバは、複数のコアを備えることができる。カテーテル・チップの近位端は、屈曲構造の遠位端に結合することができ、マルチ・コア・ファイバの遠位部分は、屈曲構造の内部を通過し、屈曲構造は、カテーテル・チップに対して加えられる力に応じて曲がるように構成される。
さらに別の実施形態では、外科用カテーテルは、カテーテル本体の遠位端に結合されるカテーテル・チップ・アセンブリを備えることができる。カテーテル・チップ・アセンブリは、電極と、フェルールと、マルチ・コア・ファイバと、を備えることができ、マルチ・コア・ファイバは、複数のコアを備えることができる。電極の近位端は、フェルールの遠位端に結合することができ、マルチ・コア・ファイバの遠位部分は、屈曲の内部を通過し、電極は、カテーテル・チップに対して加えられる力に応じて曲がるように構成される。
本開示の前述のおよび他の態様、特徴、詳細、有用性、および利点は、以下の説明および特許請求の範囲を読み、添付図面を検討することから明らかになるであろう。
介入医療処置を実行するために使用することができるシステムの概略図である。 マルチ・コア・ファイバの一実施形態の端面図である。 図2Aのマルチ・コア・ファイバの端部の等角図である。 マルチ・コア・ファイバの別の実施形態の端部の等角図である。 力感知システムの一実施形態の概略図である。 マルチ・コア・ファイバを備えるカテーテル・チップの一実施形態の等角図である。 マルチ・コア・ファイバを備えるカテーテル・チップの他の実施形態の断面図である。 マルチ・コア・ファイバを備えるカテーテル・チップの他の実施形態の断面図である。 収容部材の一実施形態の断面図である。 マルチ・コア・ファイバを備えるカテーテル・チップの別の実施形態の断面図である。 マルチ・コア・ファイバの別の実施形態の等角図である。 マルチ・コア・ファイバの別の実施形態の等角図である。 図6Aおよび図6Bのマルチ・コア・ファイバの端面図である。 マルチ・コア・ファイバを備える屈曲構造の一実施形態の等角図である。 図6Dに示す屈曲構造の実施形態の側面図である。 屈曲構造を備えるチップ・アセンブリの一実施形態の側面図である。 処置中のマルチ・コア・ファイバを備えるカテーテルの概略図である。 カテーテル・シャフトを示すディスプレイの概略図である。
以下の説明では、典型的な例を示す添付図面への参照がなされる。本開示の範囲から逸脱することなく構造的変更および/または動作的変更がなされ得るので、他の実施形態および実装形態が利用され得ることが理解されるべきである。適切な場合には、本開示全体を通して同様の参照符号が使用される。
本開示は、概して医療デバイスに関する。身体内で視覚化され、医療デバイスの遠位部分との組織接触に関する応答フィードバックを提供することができる介入カテーテルおよび/または外科用カテーテル、導入器、ならびに他の細長い医療デバイスに関するデバイスおよび技法が開示される。
一実施形態では、カテーテルまたは他の細長い医療デバイスは、遠位力感知能力と、細長い本体形状の感知能力と、を備える。一実施形態では、遠位力感知能力および細長い本体形状の感知能力は、光感知技術を用いて実装される。そのような光感知技術は、例えば、ファイバ・ブラッグ・グレーティング(FBG)形状感知および光干渉計遠位力感知のような、異なる光感知技術を含むことができる。しかしながら、(例えば、光ファイバ、ファイバ・コアなどの)光学コンジットを使用する本明細書で説明される実施形態は、実装された力感知技術および形状感知技術が同じであるのか異なるのかに関わらず、力感知機構および形状感知機構での使用のために、そのような光学コンジットを介して光を伝導する任意の光学技術を利用することができる。
本明細書で説明される典型的な実施形態はまた、カテーテルまたは他の細長い本体のうちのいくつかまたはすべてを介して光学コンジットを提供するためにマルチ・コア・ファイバを実装することを含む。
図1は、身体14に対する介入医療処置において使用され得る典型的なシステム10を示す。本明細書における説明は、特定の典型的な医療処置および/または身体14の器官に関して説明される場合があるが、本明細書で説明される主体は、他の処置および身体器官に等しく適用可能であることが認識されるべきである。例えば、説明の一部は、心臓手術に関して、および/または、人間の心臓を含む心内膜手術に関して説明されているが、本明細書で説明される主体は、心外膜手術、腎臓除神経または腎臓を含む他の手術、脈管手術などのような他の介入処置に等しく適用可能である。
図1を参照すると、システム10は、カテーテル19、導入器、または他の介入デバイスもしくは外科用デバイスのような医療デバイスを含み、デバイスの少なくとも一部は、身体14内に配置される。典型的なカテーテル19は、身体14内の心臓空間内に示されているカテーテル電極アセンブリ11を含み、電極アセンブリ11は、カテーテル19または他の医療デバイスの一部として含まれ、例えば、身体14内の(心臓または他の組織のような)組織13の診断、視覚化、および/または治療のために使用されてもよい。例えば、電極アセンブリ11は、組織13のアブレーション療法および/または患者の身体14内のマッピング目的のために使用され得る。
図1は、システム10全体に含まれる様々な典型的なサブシステムをさらに示す。システム10は、任意の個々の処理ユニットまたは分散処理ユニットを表す電子制御ユニット(E.C.U.)16として図1に示された処理システムを含んでいてもよい主コンピューティング・システム15を含んでいてもよい。コンピューティング・システム15は、データ・ストレージ17、例えば、メモリおよび/または他のストレージを含んでいてもよい。コンピュータ・システム15は、他の構成要素の中でも、いくつかののユーザ入力/出力機構18aおよびディスプレイ18bのような、従来のインターフェース構成要素をさらに含むことができる。電極アセンブリ11によって得られる、および/または、提供される情報は、コンピュータ・システム15によって処理されてもよく、入力/出力機構18aおよび/もしくはディスプレイ18bを介して、または本明細書で説明されるか、もしくは当該技術分野で公知の他の方法において臨床医にデータを提供することができる。
例示的な実施形態では、カテーテル19は、1つまたは複数のケーブル・コネクタまたは他のインターフェース20と、ハンドル21と、近位部分23および遠位部分24を有する細長い(例えば、管状の)本体またはシャフト22と、を含んでいてもよい。遠位部分24は、任意の特定の長さを表さず、むしろ、ハンドル21または他の制御機構(例えば、ロボット・コントローラ)に最終的に結合するシャフト22の残りの部分から、身体14内のシャフト22のいくつかの使用可能な部分を区別する。カテーテル19は、温度センサ、追加の電極、対応する導体または導線などのような、本明細書に示されない他の従来の構成要素を含んでいてもよい。コネクタ20は、ケーブル25、26のようなケーブルのための機械的接続、流体的接続、光学的接続、および/または電気的接続を提供してもよい。灌注式カテーテルの場合、ケーブル25は、流体リザーバ12および流体ポンプ27、ならびにコンピュータ・システム15から延びていてもよい。コネクタ20は、当該技術分野において公知の従来の構成要素を備えていてもよく、図示の実施形態において示されているように、カテーテル19の近位端において配置されてもよい。
手動で制御されるカテーテルの場合、ハンドル21は、ユーザがカテーテル19を把持または保持する部分を提供してもよく、患者の身体14内でシャフト22を操縦または案内するための機構をさらに提供してもよい。例えば、ハンドル21は、カテーテル19を通ってシャフト22の遠位部分24まで延びるプル・ワイヤにおける張力を変化させるように構成された機構を含んでもよく、または、シャフト22を操縦するためのいくつかの他の機構を含んでもよい。ハンドル21は、当該技術分野における従来のものであってもよく、ハンドル21の構成は、異なっていてもよいことが理解されよう。実施形態では、ハンドル21は、電極アセンブリ11から、またはシャフト22に沿った他の場所から受信した情報に基づいて、視覚フィードバック、聴覚フィードバック、触覚フィードバック、および/または他のフィードバックをユーザに提供するように構成されてもよい。例えば、組織13との接触が電極アセンブリ11によってなされる場合、ハンドル21、コンピューティング・システム15、I/O18a、および/または、ディスプレイ18bのうちの任意の1つまたは複数は、グラフィカル出力、発光ダイオードもしくは他の視覚インジケータ、トーン生成器、振動機械式トランスデューサ、および/または、他のインジケータを含んでいてもよく、その出力は、電極アセンブリにおいて感知された信号に比例して変化し得る。
図1のシステム10は、本明細書で説明される主体が利用されてもよい典型的な文脈を提供するために説明される例示的なシステムに過ぎない。カテーテル・ベースの診断および治療システムは、様々な器官または脈管の調査および治療に広く使用されている。そのようなカテーテルは、典型的には、調査または治療されるべき器官の空洞に通じる脈管を介して導入されるか、または、代替的には、器官の壁に形成された切開を介して直接的になどの他の方法で導入され得る。この治療は、典型的には切開外科的処置に関連する外傷または長い回復時間を回避する。説明の目的のため、以下の説明は、アブレーション・カテーテルを使用する心臓アブレーション処置の典型的な文脈において説明される場合がある。
効果的な診断または治療を提供するために、治療されるべき領域が、最初にマッピングされてもよい。そのようなマッピングは、例えば、心房細動または他の電気的な心臓伝導の問題を治療するために心臓内の電気経路を選択的にアブレーションすることが望ましいときに実行されてもよい。しばしば、マッピング手順は、心周期全体にわたる心臓の周期的な動きのため、治療されるべき領域の位置を特定することの困難によって複雑にされる。現在のシステムは、カテーテルが脈管または器官内に適切に配置されたときを決定するために、カテーテルの手動フィードバックおよび/またはインピーダンス測定に依存する。よりよい手順効率が、脈管または器官の壁との接触力を測定することによって、または、正確な壁の位置を変更し得る器官または脈管に対して、カテーテルによって加えられる接触力を検出することによって得られてもよい。無線周波数(RF)アブレーション治療について、より小さい接触力は、不十分なアブレーションをもたらす可能性があり、大きすぎる力は、器官を穿孔するなどの安全上の問題を生じる可能性があるので、持続的な接触力が有益である。したがって、より迅速でより正確な診断および治療を可能にするために、カテーテルと器官または脈管の壁との間の接触力を検出および監視するための装置および方法を提供することが望ましい。
以下でより詳細に説明するように、1つのそのような接触力技術は、ファイバ・ブラッグ・グレーティングに基づくセンサのような光学センサを含む。ファイバ・ブラッグ・グレーティング(FBG)は、電子機器と干渉しない、サイズがコンパクトである、などの多数の理由のために、力を測定するための望ましいセンサである。FBGは、光の特定の波長を反射し、他のすべての波長を透過する光ファイバのセグメント内に構築された分布ブラッグ反射器の一種である。これは、完全な2つの光ビームが干渉してファイバ・コアの屈折率において周期的な変化を作ることによって達成される。すべての波長の光は、屈折率の縁において弱い反射を有するが、位相整合条件を有するそれらの波長のみが共鳴効果のために反射し、すべての他の波長はファイバを透過する。
Λの周期とファイバ・コア有効屈折率neffとを有するグレーティングについて、ブラッグ波長λは、共鳴条件によって、
Figure 0006691602
として決定される。
歪みがファイバ・グレーティングに適用される、又は、周囲温度が変化すると、グレーティング周期とファイバ有効屈折率の両方は、それに応じて変化し、したがって、ブラッグ波長は、青色または赤色の波長側にシフトする。ブラッグ波長のシフトを測定することによって、FBGは、力および温度の感知のために使用され得る。1つの利点は、波長シフトを測定する際の情報符号化の絶対的性質に由来し、それは、変動する光パワーまたはコネクタ損失からセンサを独立させる。適用される歪みεおよび周囲温度変化dTを用いて、ブラッグ波長のシフトは、微分方程式(1)によって、
Figure 0006691602
として得られる。
ここで、
Figure 0006691602
は、光弾性定数であり、純粋なシリカ・ガラスについて、ρ=0.22である。
Figure 0006691602
は、線膨張係数であり、
Figure 0006691602
は、熱光学係数であり、dTは、温度変化である。1550nmの波長におけるグレーティングについて、波長シフトは、典型的には、歪みに対しては〜1pm/μεであり、温度に対しては10pm/℃である。
ヤング率Eは、
Figure 0006691602
として定義され、ここで、Fは、力であり、Aは、ファイバ断面の面積であり、Lは、ファイバ長であり、ΔLは、加えられた力による応力印加長(stressed length)である。力は、したがって、式(3)から、
Figure 0006691602
として得られ、ここで、ε=ΔL/Lは、歪みである。125μmの直径を有する単一モード・ファイバについて、ガラス材料のヤング率が70×10N/mであり、ファイバ歪みに対する力は、
Figure 0006691602
として得られる。周囲温度が変化しないままdT=0であり、純粋なガラスρ=0.22について、式(5)を式(2)に代入すると、ブラッグ波長のシフトに対する加えられた力は、
Figure 0006691602
として得られる。1550nm波長帯域における0.01nmのブラッグ波長のシフトの分解能について、力の分解能は、式(6)によって0.7グラムとして与えられる。式(4)を式(2)に代入すると、加えられた力および温度変化に対するブラッグ波長のシフトは、
Figure 0006691602
として表される。ここで、Δλは、ブラッグ波長のシフトであり、ΔTは、温度変化であり、Fは、加えられた力であり、Eは、ヤング率であり、Aは、ファイバ断面の面積であり、ρは、光弾性定数であり、αは、線膨張係数であり、ξは、熱光学係数である。
3次元(3D)ベクトルの力と温度とを感知するために、4つの独立したセンサが一実施形態において使用されてもよい。4つの単一のFBGが感知のために使用され得るが、4つのFBGを取り付けるために、広い空間が必要とされる場合がある。加えて、4つすべてのFBGは、機械的アセンブリのために別個の較正を含む場合もあり、それは、カテーテル・チップのサイズがわずか数ミリメートルである場合があるので、特にカテーテル用途において、感知用途のためのFBGを制限する。本開示は、ファイバの長さにわたる複数のコア・ファイバを備えるマルチ・コア・ファイバを説明する。マルチ・コア・ファイバは、本明細書で説明するように、複数の独立したチャネルのためにカテーテル本体内に必要とされる断面空間を制限するのを助けることができる。
一実施形態によれば、FBGが、例えば、4つのコア・ファイバのマルチ・コア・ファイバ(MCFBG)上に刻まれるとき、4つのファイバ・コア上の4つのFBGは、4つのセンサとして機能することができるが、全体的なサイズは、依然として単一モード・ファイバの全体的なサイズに対応する。4つのFBGのすべてが同じファイバ内にあるので、別個の較正の問題は、存在し得ない。すべてのコアが実質的に同じに構成されている場合、温度変化は、4つのブラッグ波長のすべてを対応してシフトさせるが、ファイバ軸方向の力のみが、同じマウント内の4つのブラッグ波長をシフトさせる。MCFBGにある角度で力が適用されると、ファイバが曲げられ、したがって、4つのFBGが、それぞれ異なる圧縮および張力を経験するが、ブラッグ波長は、力の振幅とその方向とに応じて短波長または長波長のいずれかにシフトする。一実施形態では、MCFBGの端面は、反射を最小限にするために、(例えば、ボールに)溶融されるか、または他の方法で合併される。
図2Aおよび図2Bは、実施形態による典型的なマルチ・コア・ファイバ(MCFBG)200を示す。図示の実施形態では、MCFBG200は、複数のコアを備えることができる。複数のコアは、MCFBG本体210と、遠位端212と、中央コア202と、第2のコア204と、第3のコア206と、第4のコア208と、を備えることができる。MCFBG本体210は、ガラス材料またはプラスチック材料を備えることができる。これらの材料は、当業者に知られているような様々な構成を備えることができる。MCFBGは、他の材料の中でもシリカを備えることができる。複数のコアは、カテーテルの遠位部分に影響を及ぼす力を感知するための少なくとも光学/光コンジットを提供することができる。マルチ・コア・ファイバのコア径およびドーパントは、同じであってもよいし、異なっていてもよい。一実施形態では、中央コア202は、力および温度の感度を改善するように、異なる有効屈折率、温度、および歪み係数を達成することができる。別の実施形態では、力および温度の感度は、ファイバ・クラッドがマルチ・コア結晶ファイバ上の小さい穴またはFBGの構造を用いて設計されるときに、改善され得る。図示の実施形態では、中央コア202は、遠位コア・セクション202Bにおける光学センサ(例えば、FBG)を経由して温度変化を感知するために使用することができ、それは、それぞれの力感知(例えば、FBG)セクションに光を透過させる残りの軸外コア204、206、208のための温度補償を可能にする。一実施形態では、MCFBGは、カテーテルの中心軸に沿って配置することができ、中央コアは、光学センサを経由して温度変化を感知するために使用することができる。他の実施形態では、MCFBG内に存在する他のコアのうちの1つまたは複数は、光学センサを経由して温度変化を感知するために使用することができる。軸外コアの各々は、遠位セクションを備えることができる。図示の実施形態では、MCFBG200は、第2の遠位セクション204Bと、第3の遠位セクション206Bと、第4の遠位セクション208Bと、をさらに備えることができる。
図2Cは、MCFBG250の別の実施形態を示す。図示の実施形態では、MCFBG250は、MCFBG本体260と、遠位端266と、中央コア252と、第2のコア254と、第3のコア256と、第4のコア258と、を備えることができる。図示の実施形態では、MCFBG250の遠位端266は、遠位キャップ262に溶融され得る。遠位キャップは、ボール状の形状を備えることができる。ボール状の形状は、図2Cに示すように、遠位端266に進行する光からの反射を最小限にするために使用され得る。図示の実施形態では、遠位キャップ262は、MCFBG本体260と同じ材料を備えることができる。他の実施形態では、キャップは、粉砕されたMCFBG本体の一部を備えることができる。MCFBGの遠位端を粉砕することによって、溶融と同様に、MCFBGの遠位端に進行する光からの反射を最小限にする遠位キャップが形成され得る。他の実施形態では、遠位キャップは、MCFBGの遠位端上に配置された他の材料を備えることができる。様々な実施形態では、遠位キャップは、所望の形状に形成することができ、および/または、所望の反射特性を備えることができる接着剤または他の材料を備えることができる。
以上のように、式(7)は、線形方程式であるので、力および温度変化は、4つのFBG波長すべてを直線的にシフトさせ、力および温度は、
Figure 0006691602
として表され、ここで、Aij、i,j=1,2,3,4は、実験によって決定することができる機械的アセンブリおよび材料強度に関連する16の係数を表し、Δλ、i=1,2,3,4は、それぞれ、ブラッグ波長の4つのシフトを示し、F、i=1,2,3は、力の3つの成分を表し、Fは、温度変化である。力の振幅および方向角は、
Figure 0006691602
によって表される。
ここで、F、F、およびFは、力の3つの成分であり、θおよびγは、それぞれ、力の方向角である。コンピュータ制御の光スイッチがブラッグ波長のシフトを取得しながらチャネル1から4への走査を行うとき、加えられた力および温度変化は、式(9)から達成される。
図3は、波長掃引ファイバ・レーザ源300と、光スイッチ302と、3D導波路304と、コンピュータ310と、光検出器308と、サーキュレータ312と、マルチ・コア・ファイバ・ブラッグ・グレーティング306と、を利用する典型的な力感知システムの図である。一実施形態では、コンピュータ310は、マイクロプロセッサを備えることができる。コンピュータは、電磁波源または他の信号を放射するように波長掃引ファイバ・レーザ源300を制御することができる。図示の実施形態では、波長掃引ファイバ・レーザ源300は、源信号をサーキュレータ312に送信することができる。次いで、源信号は、光スイッチ302を通過し、3D導波路304を通過し、マルチ・コア・ファイバ・ブラッグ・グレーティング306の近位端からより遠位部分に進行することができる。信号の一部は、次いで、マルチ・コア・ファイバ・ブラッグ・グレーティング306の近位端に向かい、サーキュレータ312を通り、光検出器308に反射および/または屈折され得る。一実施形態では、光検出器308は、信号をコンピュータ310に送ることができる。コンピュータは、次いで、本明細書で説明するようにマルチ・コア・ファイバ・ブラッグ・グレーティング306の遠位端において規定されるたわみの程度を決定するために信号を処理することができる。別の実施形態では、マルチ・コア・ファイバ・ブラッグ・グレーティングから戻る信号が、コンピュータにまたはコンピュータの一部に結合されたセンサに導かれ得る。図示の実施形態では別々に示されているが、マルチ・コア・ファイバ・ブラッグ・グレーティングは、本出願を通して説明されているように、医療デバイスまたは他のオブジェクト内に配置され得る。
図4は、チップ電極408と、複数の灌注孔410と、灌注管406と、マルチ・コアFBG402と、力カプラ404と、を備える典型的なカテーテル・チップ・アセンブリ400の等角図を示す。チップ電極408は、力カプラ404に結合することができる。いくつかの実施形態では、力カプラは、変形可能な本体を備えることができる。さらに、マルチ・コアFBG402は、力カプラ404の内部に結合することができる。力がチップ電極408に規定されると、その力は、力カプラ404に伝達することができ、マルチ・コアFBG402は、力カプラ404の動きに応答して変形することができる。マルチ・コアFBG402が変形すると、信号は、マルチ・コアFBG内に存在するFBGと相互作用し、信号の変化は、チップ電極に作用する力を決定するために使用することができる。
図5Aは、別の典型的なカテーテル・チップ・アセンブリ500の断面図を示す。カテーテル・チップ・アセンブリは、電極502と、ファイバ506と、収容管508と、フェルール504と、を備えることができる。電極502は、角度回転することができる、または軸方向に圧縮することができる。一実施形態では、フェルール504は、電極502の近位端に結合することができる。別の実施形態では、フェルール504は、ファイバ506に結合することができ、電極502の近位端の近くに配置することができる。ファイバ506の外面は、収容管508によって取り囲まれ得る。一実施形態では、ファイバ506の遠位端および収容管508は、電極502の遠位部分に結合することができる。別の実施形態では、ファイバの遠位端および収容管は、電極内で自由に動くことができる。別の実施形態では、ファイバ506および接合された収容管508は、一次ばねとして機能することができる。ファイバ506は、複数のコア510を備えることができる。複数のコアは、ファイバの近位端からファイバの遠位端まで延びることができる。図示の実施形態では、収容されたファイバ506は、軸方向の圧縮の下では座屈を防止するのに十分に短いが屈曲感度を提供するのに十分に長い、長さ/直径比を有することができる。様々な実施形態では、この比は、例えば、3:1〜10:1の範囲、または、望ましく、当業者に公知の他の範囲であり得る。図示の実施形態では、カテーテル・チップ・アセンブリは、非灌注電極を備えることができる。他の実施形態では、電極は、灌注管に結合され、灌注液を電極の外側の領域に導くようにさらに構成することができる。
図5Bは、カテーテル・チップ・アセンブリ520の別の実施形態を示す。カテーテル・チップ・アセンブリ520は、電極522と、フェルール524と、ファイバ526と、収容管528と、を備えることができる。電極522は、少なくとも1つの変形機構532を備えることができる。様々な実施形態では、変形機構532は、コルゲーション、レーザ・スロット、または、電極522がばね定数で変形することを可能にし得る他の変形機構を備えることができる。図示の実施形態では、計算に使用される全体的な正味のバネは、電極522に関するばね作用と、収容管528を有するファイバ526によって提供される機械的に平行なばね作用からの機械的に平行な組合せである。ファイバ526の外面は、収容管528によって取り囲まれ得る。一実施形態では、ファイバ526の遠位端および収容管528は、電極522の遠位部分に結合することができる。別の実施形態では、ファイバの遠位端および収容管は、電極内で自由に動くことができる。
図5Cは、収容部材548およびその収容されたファイバ546の実施形態を示す。収容部材548は、近位壁554と遠位壁556とを備えることができる。図示の実施形態では、収容部材548の近位壁554は、遠位壁556の壁よりも薄い壁を備えることができる。ファイバ546は、グレーティングの第1のセット550と、グレーティングの第2のセット552と、を備えることができる。図示の実施形態では、グレーティングの第1のセット550は、グレーティングの第2のセット552に近接することができる。さらに、グレーティングの第1のセット550は、収容部材548の近位壁554に隣接または近接することができる。他の実施形態では、グレーティングの第1のセット550におけるファイバ546の外面は、近位壁554によって取り囲まれ得る。グレーティングの第2のセットは、収容部材548の遠位壁556に隣接または近接することができる。他の実施形態では、グレーティングの第2のセット552におけるファイバ546の外面は、遠位壁556によって取り囲まれ得る。図示の実施形態では、マルチ・コア・ファイバ546は、複数のコアと複数のグレーティングとを有する。グレーティングの第1のセット550は、屈曲のために使用することができ、グレーティングの第2のセット552は、軸方向の圧縮のために使用することができ、一方は薄い壁を有し、他方は比較的より厚い壁を有する2つの異なる軸方向位置において収容部材548内に配置され得る。様々な厚さの壁を有する収容部材を使用することによって、屈曲の感度および圧縮の感度は独立して操作されるべきである。グレーティング550および552は、コアの共通セット内に含まれ得るか、または、コアの2つの別個のセット内、もしくはそれらの組合せ内に含まれ得る(例えば、温度補償のための中央コアが共有され、コアの別個のセットが3つの力感知コアのセットの各々のために使用され得る)。さらに、図示の実施形態は、より近位の位置により薄い壁を有し、より遠位の位置により厚い壁を有する収容部材を開示しているが、他の形態も開示される。一実施形態では、より厚い壁がより近位の位置にあり得、より薄い壁がより遠位の位置に配置され得る。さらに、さらに他の実施形態では、壁は、その長さに沿って厚さが変化することができる。他の実施形態では、壁は、第1の直径から第2の直径まで勾配することができる。一実施形態では、壁は、近位位置のより薄い部分からより遠位位置のより厚い部分まで勾配することができる。別の実施形態では、壁は、近位位置のより厚い部分からより遠位位置のより薄い部分まで勾配することができる。さらに、収容部材の長さに沿った厚さのいくつかの段階的変化も考えられる。
図5Dは、カテーテル・チップ・アセンブリ560の別の実施形態を示す。図示の実施形態では、カテーテル・チップ・アセンブリは、電極562と、フェルール564と、マルチ・コア・ファイバ566と、を備えることができる。一実施形態では、マルチ・コア・ファイバ566の遠位端は、電極562の遠位部分に結合され得る。別の実施形態では、マルチ・コア・ファイバの遠位端は、電極562内で自由に動くことができる。さらに別の実施形態では、マルチ・コア・ファイバの遠位端は、電極の遠位部分に対して定位置に保持され得るが、電極に接着または他の方法で結合されない。マルチ・コア・ファイバ566は、収容部材をほとんどまたはまったく用いないで引っ張られた状態に保持され得る。マルチ・コア・ファイバ566は、柔軟過ぎず、硬過ぎもしないように、適切な長さ/直径のアスペクト比を有する場合、圧縮(張力低下)と屈曲の両方を依然として感知することができる。長さ/直径のアスペクト比は、マルチ・コア・ファイバを作成するために使用される材料に依存して変化することができ、当業者には公知であろう。
本明細書で説明される技術を使用する典型的な実施形態および変形形態について、例示および説明の目的のためにここで説明する。力感知能力を有する医療用カテーテルの実施形態は、例えば、力と共に組織に対して並置されるべき遠位診断または治療チップ領域、中間およびより近位に延在する可撓性管腔、患者の体内管腔または器官内のカテーテル管腔およびチップ領域を操作する最近位制御ハンドル、遠位チップが患者の組織(例えば、心臓組織)に接触するときにチップの屈曲力とチップの軸方向の力の一方または両方を感知する力センサを提供することができる。そのような実施形態では、力センサは、力−変位較正ばねと、力がチップに対して加えられたときにばねの1つまたは複数のたわみを報告することができる2つ以上の光学変位センサと、の組合せを備えてもよく、光学変位センサは、マルチ・コア光ファイバの2つ以上のコアに書き込まれた2つ以上のブラッグ・グレーティングを備え、検出されたばねのたわみは、ばねが力対たわみについて較正され、たわみが既知であるので、チップの力が計算され報告されることを可能にする。
さらなる変形形態および代替形態では、光学変位ブラッグセンサは、変位を決定するために波長走査を利用してもよく、波長走査は、例えば、カテーテルが接続されるコンソールにおいて、またはカテーテルのハンドルにおいて行われる。別のオプションは、マルチ・コア・ファイバがファイバの外径の周囲に少なくとも2つのコアを有することであり、より具体的な例では、複数のコアは、ほぼ等しく離間されるようにファイバの中心軸の周りに角度的に分布される。別のオプションは、マルチ・コア光ファイバが3D光導波路を使用して、別個のファイバに光学的に接続されることであり、それは、カテーテルが差し込まれる支持または制御コンソール内、またはその上に光コネクタを取り付けることをさらに含むことができる。別の実施形態では、較正されたばねは、ばね剛性が、封入されたファイバを含む管状マルチ・コア・ファイバ収容部材を含む。別の実施形態では、較正されたばねは、ファイバまたはその封じ込め手段によって提供される任意のばね作用に機械的に並列に動作する別個のばねを含み、全体的な正味のばねは、並列な両方のばねの同時の組合せである。さらに別の実施形態では、較正されたばねは、ファイバまたはその隣接した収容部材とは別個であり、ばねは、力計算で用いられる較正されたばね作用のすべてを提供する。さらに別の変形形態は、ファイバがそれ自体収容されているか否かに関わらず、製造中にファイバを張力において予備伸張すること、またはファイバを圧縮において予備圧縮することを含む。別の変形形態は、熱膨張について、ブラッグ・グレーティングの検出された変位を補正するために温度測定センサを含み、さらにより具体的な実施形態では、温度センサは、i)熱電対、ii)サーミスタ、iii)熱膨張が光学的に推定され得、それによって温度センサとして作用するブラッグ・グレーティングのいずれか1つである。そのような医療デバイスのさらに別の変形形態は、2つ以上のそのようなブラッグ・グレーティングをファイバの2つ以上のコア上に配置し、グレーティングは、同じ軸方向のファイバ位置を有する。代替的には、2つ以上のそのようなブラッグ・レーティングは、ファイバの単一のコア上に配置され、異なる軸方向のファイバ位置を有する。別の例では、1つまたは複数のコア上の2つ以上のブラッグ・グレーティングは、実質的に同じグレーティング周期、または異なるグレーティング周期を有することができる。カテーテルの一実施形態では、1つまたは複数のブラッグ・グレーティングを含むマルチ・コア・ファイバの領域は、ファイバ・クラッドを保持し、別の実施形態では、ファイバ・クラッドは、そこから取り去られる。さらに別の例では、ばねは、組み合わされたチップの屈曲およびチップの軸方向の圧縮、チップの屈曲のみ、または軸方向の圧縮のみのうちの少なくとも1つを可能にし、より具体的な実施形態では、2つ以上のブラッグ光学変位センサは、屈曲力および軸方向力のうちの1つまたは複数の少なくとも成分を検出する。さらに別の例では、正味の力または力成分は、ベクトルとして報告される。カテーテル・チップの典型的な変形形態は、組織加熱または冷却方法を使用して組織をアブレーションすることができるカテーテル・チップを含み、カテーテル・チップは、組織を電気的にペーシングすることができ、カテーテル・チップは、組織電気波形を電気的に感知することができる。一実施形態では、力情報は、最小の推奨された力が、達成されたもしくは達成されなかったか、又は維持されたもしくは維持されなかったか、の指標として、任意の数字、アイコン、又はベクトルの形式でスクリーン上に表示されてもよく、又は、力および時間、又は力/時間積分の数値生成物、又はインデックスが報告できるように、治療に曝露された時間と組み合わせて使用される。他の変形形態では、マルチ・コア・ファイバは、ファイバの座屈を防止するように設計される。一実施形態では、1つまたは複数の光学変位センサは、(a)流される灌注液(例えば、生理食塩水)内に浸漬され、灌注液/流体と直接接触する、(b)流される灌注液内に浸漬されるが、覆う部材、収容部材、または包む部材またはコーティングによって、灌注液から隔離される、(c)流される灌注液内に浸漬されるが、予め選択された熱導電率を有する、覆う部材、収容部材、または包む部材またはコーティングによって、灌注液から断熱または熱的に緩衝される、(d)空気、ガス、または真空中に浸漬される、(e)変形可能なゲル中に浸漬される、(f)溝またはチャネル内に取り付けられる、(g)周囲のポリマ含有部材に注型または成型される、のうちの少なくとも1つである。さらに別の実施形態では、マルチ・コア光ファイバはまた、管腔自体の屈曲形状もチップ力に加えて追跡することができるように、中間の可撓性管腔内に配置された追加のブラッグ・グレーティングと共に用いられる。別の実施形態では、マルチ・コア・ファイバはまた、光学病変フィードバックまたは光学組織分析を実行するために用いられる。いくつかの実施形態では、温度は、力を加えずにカテーテルを血液中に保持することによって測定または頻繁に更新され得る。別のオプションは、屈曲が中心FBG波長をシフトさせないので、特定のコアのFBG(例えば、中心FBG)を基準として使用することを含む。一実施形態では、3つ以上のコア上のFBGは、力と温度とを測定するために使用することができ、代替形態は、(a)力感度および温度感度を改善するために、加えられた力のブラッグ波長シフトを温度から分離するために、パラメータを最適化するために、コアのうちの1つまたは複数(例えば、中央コア)を他のコアと異なる材料でドープすることと、(b)力感度および温度感度を改善するために、パラメータを最適化するために、コアのうちの1つまたは複数(例えば、中央コア)を異なる直径にすることと、(c)マルチ・コア・ファイバのクラッドが、力感度および温度感度を改善するために、パラメータを最適化するために、穴を有するようにオプションで設計される場合と、(d)マルチ・コア結晶ファイバ上のFBGが、力感度および温度感度を改善するために、センサとして使用される場合と、を含む。
力感知機能を提供することに加えて、介入医療処置中または外科的医療処置中に医師にさらなる価値を提供するために、そのような医療デバイスに他の特徴が含まれてもよい。例えば、身体内に導入され、もはや直接見ることができない場合に、カテーテル・シャフトのような、患者の身体によって隠されている医療デバイスの関連部分を視覚的に知覚することは、有益であろう。本開示は、医療処置中(例えば、カテーテル・ベースの診断中および/または組織の治療中)のカテーテル・シャフトの近位部分の一部またはすべて、および、オプションで遠位部分の一部または実質的にすべてのような、医療デバイスの隠された部分の一部またはすべての形状を追跡およびミラーリングするための方法を提供することによって、そのような課題に対する解決策を提供する。
一実施形態では、光学的力感知と光学的形状感知の両方が提供される。光学的力および形状感知を提供する1つのそのような方法は、参照によりその全体が本明細書に組み込まれる米国特許第8,622,935号に記載されている。カテーテル・チップと身体組織との間の接触圧力が変化するためにカテーテル・チップに衝突する力を検出する光学的力センサに光を透過させるために、光ファイバのような光学コンジットが使用され得る。カテーテル・シャフトの感知された部分のリアル・タイムの位置が、身体内のカテーテル・シャフトのシミュレーションのために位置的に追跡およびレンダリングされることを可能にするために、光学センサを備えるカテーテル・シャフトの所望の長さに沿って光を透過させるために、他の光学コンジットが使用され得る。
組織に対する力を感知するために使用される光学センサ、およびカテーテルの変化する形状を感知するために使用される光学センサは、異なる光学感知技術、または共通の光学感知技術を利用することができる。例えば、一実施形態では、光ファイバは、医療処置中に組織に接触するときにカテーテル・チップを圧迫する力の大きさおよび方向を表すカテーテルの遠位部分のたわみを決定するために、ファイバ・ブラッグ・グレーティングまたは他の光学センサを備えることができる。同じまたは他の光ファイバにおいて、医療処置中にカテーテルが移動し、その結果形状を変化させるにつれて、リアル・タイムで追跡されるカテーテル・シャフトの長さに沿って、ファイバ・ブラッグ・グレーティングまたは他の光学センサも用いられ得る。
以下でさらに説明する実施形態では、力感知と形状感知の両方に使用される光ファイバは、マルチ・コア・ファイバの複数のコアとして提供され得る。マルチ・コア・ファイバは、したがって、力感知技術と形状感知技術の両方のための光路および光学センサを提供する。
力感知と形状感知の両方を収容するマルチ・コア・ファイバの一実施形態は、図6Aに示されている。図6Aは、マルチ・コア・ファイバ600の等角図を示す。マルチ・コア・ファイバ600は、複数の別個のコアを備えることができる。図示の実施形態では、マルチ・コア・ファイバ600は、3つのそれぞれの力センサ(図示省略)のための光学コンジットを提供するために3つのコアを備えることができる。マルチ・コア・ファイバ600は、第1の光コア602と、第2の光コア604と、第3の光コア606と、を備えることができる。マルチ・コア・ファイバ600は、3つのそれぞれの形状感知センサ(図示省略)のための光学コンジットを提供するために、第1の形状感知コア608と、第2の形状感知コア610と、第3の形状感知コア612と、をさらに備えることができる。図示の実施形態では、一実施形態では中央コア614である、ファイバ内のどこかに配置された特定のコアが、遠位コア・セクションにおいて光学センサ(例えば、FBG)として温度変化を感知するために使用され得る。中央コア614を用いて温度を感知することは、残りの軸外のコア602〜612に関する温度補償を可能にする。他の実施形態では、4つのファイバが、力成分と温度とを導出するために使用され得る。一実施形態では、温度ピークと通常のピークの両方が、同じ勾配において決定され得る。別の実施形態では、温度ピークと通常のピークの両方は、同じ勾配および同じ大きさで決定され得る。図6Bは、図6Aのマルチ・コア・ファイバ600の等角図を示すが、マルチ・コア・ファイバ600の本体を通るコア602〜614の伸長も示す。一実施形態では、上記の図2Cに示すように、マルチ・コア・ファイバの遠位端は、反射を最小にするためにボール状の形状に溶融され得る。図6Cは、図6Aおよび図6Bに示すマルチ・コア・ファイバ600の端面図を示し、ファイバ600の長手方向軸に垂直な視点からのファイバ600の複数のコア602〜612の典型的な配置を示す。
一実施形態では、第1の形状感知コア608、第2の形状感知コア610、および第3の形状感知コア612、ならびにオプションで(中央に配置される、又は中央に配置されない)追加のコア614のみがマルチ・コア・ファイバ600内に設けられるように、形状感知コアのみが実装される。例えば、図2Bを参照すると、コア204、206、208は、ファイバ200に沿って、したがって、ファイバが封入されるカテーテル・シャフトに沿って複数のファイバ・ブラッグ・グレーティングを有する形状感知コアとして構成され得る。1つまたは複数の温度センサが、図2Bのコア202であったようなファイバの1つまたは複数のコアに含まれ得る。そのような実施形態では、形状感知と力感知の両方に対して、形状感知のみがマルチ・コア・ファイバを利用して実行される。
別の実施形態では、各コアが形状感知センサと力感知センサの両方を含むように、形状感知と力感知の両方が共通のコアを使用して実施される。例えば、光の周波数は、力感知グレーティングおよび形状感知グレーティングの各々について共通コアにおいて異なる場合があり、それは、センサ信号処理ユニットにおいて生じる反射の区別を可能にする。
図6Dは、屈曲構造アセンブリ622の一実施形態の等角図を示す。屈曲構造アセンブリ622は、屈曲構造616において実装された例示的なマルチ・コア・ファイバ624を備えることができる。一実施形態では、屈曲構造アセンブリ622は、カテーテル・シャフトの遠位部分の近くに配置され得る。図示の実施形態では、屈曲構造616は、遠位屈曲に適応し、少なくとも力センサは、遠位屈曲から、心臓組織のような構造に対する力によるたわみを感知することができる。この実施形態では、スロット618、620として示される1つまたは複数のスロットは、屈曲構造616が組織との接触に応答して力によって曲がることを可能にする。例えば、1つまたは複数のファイバ・ブラッグ・グレーティング力センサが、(図6A〜図6Cにみられるように)3つのそれぞれのコア602、604、606内にあり、屈曲構造616内にある場合、力センサは、組織との接触の変化する程度に応答して屈曲構造616のたわみを識別することができる。ファイバ・ブラッグ・グレーティングに基づくそのようなセンサは、本明細書で説明されているように、および/または、参照によりその全体が本明細書に組み込まれる本出願の譲受人に譲渡された米国特許第8,182,433号に記載されているように実装され得る。他の実施形態では、(図6A〜図6Cに見られるように)力感知コア602、604、606に関連する力センサは、異なる光学技術を利用することができる。
図6Eは、図6Dに示す屈曲構造616の側面図を示す。屈曲構造616は、カテーテルの遠位端との接触に応答する屈曲構造616の曲げに適応するために、複数のスロット618、620を備えることができる。
図6Fは、カテーテル・チップ・アセンブリ640の別の実施形態の側面図を示す。カテーテル・チップ・アセンブリ640は、屈曲構造646と、カテーテル・チップ652と、第1のスロット648と、第2のスロット650と、マルチ・コア・ファイバ630と、を備えることができる。屈曲構造646は、アブレーション・チップおよび/またはマッピング・チップのようなカテーテル・チップ652に対して位置決めされ得る。カテーテル・チップ652は、医療処置中に冷却流体がカテーテルから排出されることを可能にするために、複数の灌注ポート654を備えることができる。一実施形態では、屈曲構造646は、カテーテル・チップ652の近くに配置され得る。
マルチ・コア・ファイバ内の形状センサは、カテーテルのような医療デバイス内に実装され得る。図7Aは、図示の実施形態における心臓アブレーション・カテーテル700である例示的なカテーテルを示す。カテーテル700は、手動操作のためのハンドル702を含むことができ、または、他の実施形態では、ロボット・システム(図示省略)において実装され得る。カテーテル700は、患者の身体706の脈管構造を通って患者の心臓708Aに導かれ得るカテーテル・シャフト704Aを含む。シャフト704A内に設けられたマルチ・コア・ファイバ(例えば、図6A〜図6Cの600)を介して提供されるファイバ・ブラッグ・グレーティング形状感知センサ(例えば、図6A〜図6Cの602、604、606)を使用し、カテーテル・シャフト704Aの形状は、検出され得、図7Bに示す図示のシャフト704Bによって示されているように視覚的に再現され得る。例えば、図7Bに示すように、図示のシャフト704B並びに図示の患者の心臓708Bは、ディスプレイ710上に提示され得る。
加えて、シャフト704A内に設けられたマルチ・コア・ファイバ(例えば、図6A〜図6Cの600)を介して提供されるファイバ・ブラッグ・グレーティング力センサ(例えば、図6A〜図6Cの608、610、612)を使用し、シャフト704Aのチップ712に衝突する変化する力は、心臓708Aの組織との接触の変化する程度の結果として検出され得る。
このようにして、カテーテル・シャフト704Aは、ディスプレイ710を介して図示のカテーテル・シャフト704Bとして視認され得、カテーテル・チップ712に対する接触力の程度は、同時にまたは交互に監視され得る。
そのような原理を組み込んだ医療デバイスの実施形態は、操作機構に対して遠位部分および近位部分を有するシャフトを有する操作可能なカテーテルを含む。シャフト内には、形状感知センサ専用の複数の光コアと、力感知センサ専用の複数の光コアと、を有するマルチ・コア光ファイバがある。
より具体的な実施形態では、マルチ・コア光ファイバのコアのうちの少なくとも1つは、形状感知センサおよび/または力感知センサから得られた感知値を調整するために使用される温度補償専用である。一実施形態では、形状感知センサは、たわんだときに光を知覚可能に反射する1つまたは複数のファイバ・ブラッグ・グレーティングを使用して実装される。別の実施形態では、力感知センサは、たわんだときに同様に光を知覚可能に反射する1つまたは複数のファイバ・ブラッグ・グレーティングを使用して実装される。他の実施形態は、力センサと形状感知センサの両方のためのファイバ・ブラッグ・グレーティング技術を実装し、さらに別の実施形態では、温度感知コアもファイバ・ブラッグ・グレーティング技術を利用する。
一実施形態は、組織との遠位部分の接触を検出するための力センサのみを収容するためにマルチ・コア・ファイバを利用することを含み、別の実施形態では、マルチ・コア・ファイバは、シャフト形状センサのみを収容するために利用される。
マルチ・コア・ファイバが形状感知と力感知の両方のためのコアを収容する一実施形態では、形状感知コアおよび力感知コアは、一つおきのコアが形状感知に充てられ、他のコアが力センサに充てられるように、互いにずらして配置される。1つの具体的な実施形態では、この互い違いのパターンは、実質的に対称であり、さらに別の実施形態では、1つまたは複数の温度センサ(例えば、ファイバ・ブラッグ・グレーティング)を収容するコアは、周囲の対称的な力感知コアおよび形状感知コアに対して実質的にファイバの中央に配置される。
シャフトおよびカテーテル・チップのたわみを可能にする任意の方法が利用され得る。一実施形態では、カテーテルの遠位部分、および、したがって、含まれるファイバがたわむことを可能にするために、マルチ・コア・ファイバのそれぞれのコア内の力センサの近くに屈曲構造が設けられる。このたわみは、カテーテルの遠位部分に衝突する力の量の指標を提供するために、ファイバ・ブラッグ・グレーティングまたは他のセンサによって知覚される。
主題は、構造的特徴および/または方法論的作用に特有の言語で説明されているが、添付の特許請求の範囲において定義された主題は、上記で説明した特定の特徴または作用に必ずしも限定されないことが理解されるべきである。むしろ、上記で説明した特定の特徴および作用は、特許請求の範囲を実施する典型的な形態として開示される。
さらに、いくつかの実施形態は、本開示が実施され得る少なくともいくつかの方法の理解を容易にするために、ある程度の詳細と共に上記で説明されているが、当業者は、本開示および添付の特許請求の範囲の範囲から逸脱することなく、開示された実施形態に多数の変更を行うことができる。上記の説明に含まれるか、または添付の図面に示されるすべての事項は、例示的なものとしてのみ解釈されるべきであり、限定的なものとして解釈されるべきではないことが意図されている。したがって、本明細書における例および実施形態は、本開示の範囲を限定するものとして解釈されるべきではない。本教示から逸脱することなく、詳細または構造における変更がなされ得る。上記の説明および以下の特許請求の範囲は、すべてのそのような変更および変形をカバーすることを意図している。
様々な装置、システム、および方法の様々な実施形態について本明細書で説明する。本明細書で説明し、添付の図面において示された実施形態の全体的な構造、機能、製造、および使用の完全な理解を提供するために、多数の具体的な詳細が示される。しかしながら、実施形態は、そのような具体的な詳細なしで実施され得ることが当業者によって理解されるであろう。他の例では、周知の動作、構成要素、および要素は、本明細書で説明される実施形態を不明瞭にしないように、詳細に説明されていない場合がある。当業者は、本明細書で説明され、示された実施形態が非限定的な例であることを理解し、したがって、本明細書で開示される具体的な構造的詳細および機能的詳細は、典型的であり、実施形態の範囲を必ずしも限定せず、その範囲は、添付の特許請求の範囲によってのみ規定されることが理解され得る。
本開示において使用される「含む」、「備える」という用語、およびそれらの変形は、特に明記しない限り、「含むが、それに限定されない」を意味する。本開示において使用される「1つの(a)」、「1つの(an)」、「その(the)」という用語は、明示的にそうでないことを指定されない限り、「1つまたは複数」を意味する。
「様々な実施形態」、「いくつかの実施形態」、「一実施形態」、「実施形態」などに対する本明細書を通した参照は、実施形態に関連して説明される特定の特徴、構造、または特性が少なくとも1つの実施形態に含まれることを意味する。したがって、明細書全体を通して所々の「様々な実施形態における」、「いくつかの実施形態における」、「一実施形態における」、「実施形態における」などのフレーズの出現は、必ずしもすべて同じ実施形態に言及していない。さらに、特定の特徴、構造、または特性は、1つまたは複数の実施形態において任意の適切な方法で組み合わされ得る。したがって、1つの実施形態に関連して図示または説明された特定の特徴、構造、または特性は、全体的または部分的に、1つまたは複数の他の実施形態の特徴、構造、または特性と無制限に組み合わされ得る。
プロセス・ステップ、方法ステップ、アルゴリズムなどは、順次に説明される場合があるが、そのようなプロセス、方法、およびアルゴリズムは、代替の順序で機能するように構成され得る。言い換えれば、説明され得るステップの任意の連続または順序は、必ずしもステップがその順序で実行される必要性を示していない。本明細書で説明されるプロセス、方法、およびアルゴリズムのステップは、任意の実際的な順序で実行され得る。さらに、いくつかのステップは、同時に実行され得る。
単一のデバイスまたは物品が本明細書で説明される場合、2つ以上のデバイスまたは物品が単一のデバイスまたは物品の代わりに使用され得ることは、容易に明らかであろう。同様に、2つ以上のデバイスまたは物品が本明細書で説明される場合、単一のデバイスまたは物品が2つ以上のデバイスまたは物品の代わりに使用され得ることは、容易に明らかであろう。デバイスの機能性または特徴は、そのような機能性または特徴を有するものとして明示的に記載されていない1つまたは複数の他のデバイスによって代替的に具体化され得る。
「近位」および「遠位」という用語は、患者を治療するために使用される器具の一方の端を操作する臨床医に関連して本明細書全体に渡って使用され得ることが理解されよう。「近位」という用語は、臨床医に最も近い器具の部分を指し、「遠位」という用語は、臨床医から最も遠くに位置する部分を指す。しかしながら、外科用器具は、多くの向きおよび位置において使用され得、これらの用語は、限定的および絶対的であることを意図しない。すべての他の方向の参照または空間の参照(例えば、上方、下方、上向き、下向き、左、右、左側、右側、上部、底、上の方の、下の方の、垂直、水平、時計回り、および反時計回り)は、本開示の読者の理解を助ける識別の目的のためにのみ使用され、特に、本開示の位置、向き、または使用に関して制限を作成しない。接合の参照(例えば、取り付けられた、結合された、接続されたなど)は、広く解釈されるべきであり、要素の接続と要素間の相対的移動との間の中間部材を含むことができる。そのように、接合の参照は、必ずしも、2つの要素が直接接続され、互いに固定された関係にあることを推論しない。
参照により本明細書に組み込まれると言われる任意の特許、刊行物、または他の開示材料は、全体的または部分的に、組み込まれた材料が、既存の定義、声明、または本開示に記載の他の開示材料と矛盾しない範囲でのみ本明細書に組み込まれる。そのように、そして必要な程度まで、本明細書に明示的に記載された開示は、参照により本明細書に組み込まれる任意の矛盾する材料に取って代わる。参照により本明細書に組み込まれると言われるが、既存の定義、声明、または本明細書に記載の他の開示材料と矛盾する任意の材料またはその一部は、組み込まれた材料と既存の開示材料との間で矛盾が生じない程度のみまで組み込まれる。
上記の議論および実例に基づいて、当業者は、本明細書で例示および説明される例示的な実施形態および適用例に厳密に従うことなく、様々な修正および変更が様々な実施形態に対してなされ得ることを容易に認識するであろう。そのような修正は、特許請求の範囲に記載の態様を含む、本開示の様々な態様の真の要旨および範囲から逸脱しない。以下の項目は、国際出願時の特許請求の範囲に記載の要素である。
[項目1]
医療デバイス屈曲構造アセンブリであって、
複数のコアを備えるマルチ・コア・ファイバと、
少なくとも1つのスロットを備える屈曲構造と、
を備え、
前記複数のコアの各々が、ファイバ・ブラッグ・グレーティングを備え、
前記屈曲構造が、前記屈曲構造に対して加えられた力に応じて曲がるように構成される、医療デバイス屈曲構造アセンブリ。
[項目2]
前記複数のコアが4つのコアを備える、項目1に記載の医療デバイス。
[項目3]
前記4つのコアのうちの1つが温度補償のために構成される、項目2に記載の医療デバイス。
[項目4]
前記複数のコアのうちの少なくとも1つが形状感知のために構成される、項目1に記載の医療デバイス。
[項目5]
前記複数のコアのうちの少なくとも1つが、前記屈曲構造に対して加えられた前記力を感知するために構成される、項目1に記載の医療デバイス。
[項目6]
外科用カテーテルであって、
カテーテル本体の遠位端に結合されたカテーテル・チップ・アセンブリを備え、
前記カテーテル・チップ・アセンブリは、カテーテル・チップと、屈曲構造と、マルチ・コア・ファイバと、を備え、
前記マルチ・コア・ファイバが、複数のコアを備え、
前記カテーテル・チップの近位端が、前記屈曲構造の遠位端に結合され、
前記マルチ・コア・ファイバの遠位部分が、前記屈曲構造の内部を通過し、
前記屈曲構造が、前記カテーテル・チップに対して加えられた力に応じて曲がるように構成される、外科用カテーテル。
[項目7]
前記カテーテル・チップが複数の灌注ポートを備える、項目6に記載の外科用カテーテル。
[項目8]
前記マルチ・コア・ファイバの遠位端がボール状の形状を備える、項目6に記載の外科用カテーテル。
[項目9]
前記複数のコアの各々が少なくとも1つのファイバ・ブラッグ・グレーティングを備える、項目6に記載の外科用カテーテル。
[項目10]
前記複数のコアの各々が複数のファイバ・ブラッグ・グレーティングを備える、項目9に記載の外科用カテーテル。
[項目11]
外科用カテーテルであって、
カテーテル本体の遠位端に結合されるカテーテル・チップ・アセンブリを備え、
前記カテーテル・チップ・アセンブリが、電極と、フェルールと、マルチ・コア・ファイバと、を備え、
前記マルチ・コア・ファイバが、複数のコアを備え、
前記電極の近位端が、前記フェルールの遠位端に結合され、
前記マルチ・コア・ファイバの遠位部分が、前記屈曲の内部を通過し、
前記電極が、前記カテーテル・チップに対して加えられた力に応じて曲がるように構成される、外科用カテーテル。
[項目12]
前記電極が軸方向に圧縮されるように構成される、項目11に記載の外科用カテーテル。
[項目13]
前記電極が角度回転するように構成される、項目11に記載の外科用カテーテル。
[項目14]
前記カテーテル・チップ・アセンブリが、前記マルチ・コア・ファイバの遠位部分を取り囲む収容管をさらに備える、項目11に記載の外科用カテーテル。
[項目15]
前記マルチ・コア・ファイバおよび前記収容管が、軸方向の圧力下で座屈を防止するのに十分なほど短くなるように構成された長さ/直径比を有する、項目14に記載の外科用カテーテル。
[項目16]
前記収容部材が、前記収容部材の第1の軸方向位置における薄い壁と、前記収容部材の第2の軸方向位置における厚い壁とを備える、項目15に記載の外科用カテーテル。
[項目17]
前記複数のコアのうちの少なくとも1つが形状感知のために構成される、項目11に記載の外科用カテーテル。
[項目18]
前記複数のコアのうちの少なくとも1つが形状感知のために構成される、項目11に記載の外科用カテーテル。
[項目19]
前記電極が少なくとも1つの変形機構を備える、項目11に記載の外科用カテーテル。
[項目20]
前記変形機構が、前記電極がばね定数で変形することを可能にするように構成される、項目19に記載の外科用カテーテル。

Claims (5)

  1. 医療デバイス屈曲構造アセンブリであって、
    遠位部分を備えるチップ電極と、
    複数のコアと、遠位端と、を備えるマルチ・コア・ファイバと、
    少なくとも1つのスロットを備える屈曲構造と、
    を備え、
    前記マルチ・コア・ファイバの前記遠位端が、前記チップ電極の前記遠位部分に結合されており、
    前記複数のコアの各々が、ファイバ・ブラッグ・グレーティングを備え、
    前記屈曲構造が、前記屈曲構造に対して加えられた力に応じて曲がるように構成される、医療デバイス屈曲構造アセンブリ。
  2. 前記複数のコアが4つのコアを備える、請求項1に記載の医療デバイス。
  3. 前記4つのコアのうちの1つが温度補償のために構成される、請求項2に記載の医療デバイス。
  4. 前記複数のコアのうちの少なくとも1つが形状感知のために構成される、請求項1から3のいずれか一項に記載の医療デバイス。
  5. 前記複数のコアのうちの少なくとも1つが、前記屈曲構造に対して加えられた前記力を感知するために構成される、請求項1から4のいずれか一項に記載の医療デバイス。
JP2018535167A 2016-01-07 2017-01-06 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス Active JP6691602B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662275877P 2016-01-07 2016-01-07
US62/275,877 2016-01-07
PCT/IB2017/050066 WO2017118949A1 (en) 2016-01-07 2017-01-06 Medical device with multi-core fiber for optical sensing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020038115A Division JP6814315B2 (ja) 2016-01-07 2020-03-05 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス

Publications (2)

Publication Number Publication Date
JP2019503225A JP2019503225A (ja) 2019-02-07
JP6691602B2 true JP6691602B2 (ja) 2020-04-28

Family

ID=57906814

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018535167A Active JP6691602B2 (ja) 2016-01-07 2017-01-06 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス
JP2020038115A Active JP6814315B2 (ja) 2016-01-07 2020-03-05 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020038115A Active JP6814315B2 (ja) 2016-01-07 2020-03-05 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス

Country Status (5)

Country Link
US (2) US11445937B2 (ja)
EP (2) EP3376986B1 (ja)
JP (2) JP6691602B2 (ja)
CN (1) CN108430368B (ja)
WO (1) WO2017118949A1 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115657B3 (de) * 2015-09-17 2017-02-09 Harting Ag & Co. Kg elektrisches Kontaktelement
US10610318B2 (en) * 2016-07-25 2020-04-07 General Electric Company Augmented reality catheter interface
WO2018229288A1 (en) * 2017-06-15 2018-12-20 Fbgs Technologies Gmbh Method and device for measuring force and shape
EP3624717B1 (en) * 2017-08-02 2022-02-09 St. Jude Medical International Holding S.à r.l. Optical force sensing catheter system
US11709105B2 (en) 2018-01-24 2023-07-25 Humanetics Innovative Solutions, Inc. Fiber optic system for detecting forces on and measuring deformation of an anthropomorphic test device
CN108066881B (zh) * 2018-01-29 2021-01-29 天津大学 血管介入导管、设备、接触力检测方法以及检测设备
CN108577977B (zh) * 2018-03-19 2020-10-30 山东大学 穿刺针及穿刺针运动轨迹的三维重建方法及系统
US11857268B2 (en) 2018-05-02 2024-01-02 Koninklijke Philips N.V. Optical shape sensing device with integrated force sensing region and tip integration
WO2019230713A1 (ja) * 2018-06-01 2019-12-05 古河電気工業株式会社 検知システム、カテーテル装置、およびレーザ焼灼装置
US20190374282A1 (en) * 2018-06-08 2019-12-12 St. Jude Medical International Holding S.À R.L. One fiber force and shape sensing
US11903683B2 (en) * 2018-08-03 2024-02-20 Chelak Medical Solutions Inc Non-barometric determination of hemodynamic effects of cardiac arrhythmias using signals sensed by an implantable device
EP3627112A1 (en) * 2018-09-20 2020-03-25 Koninklijke Philips N.V. Optical fiber sensor
EP3627096A1 (en) * 2018-09-20 2020-03-25 Koninklijke Philips N.V. Optical shape sensing system and method
US11885699B2 (en) 2019-02-20 2024-01-30 Humanetics Innovative Solutions, Inc. Optical fiber system having helical core structure for detecting forces during a collision test
EP3928308A4 (en) * 2019-02-20 2022-11-02 Humanetics Innovative Solutions, Inc. OPTICAL FIBER SYSTEM FOR DETECTING FORCES DURING A COLLISION TEST
CN111678539B (zh) * 2019-03-11 2024-02-13 新加坡国立大学 用于手术器械的光纤光栅传感器
US11357570B2 (en) * 2019-04-19 2022-06-14 Lake Region Manufacturing, Inc. Ablation catheter with fiber Bragg grating strain sensors
JP2022534744A (ja) * 2019-06-06 2022-08-03 ファスコメット ゲーエムベーハー カテーテルに作用する力を測定するように構成されたカテーテル
US11931112B2 (en) 2019-08-12 2024-03-19 Bard Access Systems, Inc. Shape-sensing system and methods for medical devices
CN110470633B (zh) * 2019-08-20 2022-07-19 武汉理工大学 具有原位自补偿特性的多芯光纤光栅折射率敏感型传感器
US11850338B2 (en) 2019-11-25 2023-12-26 Bard Access Systems, Inc. Optical tip-tracking systems and methods thereof
US11525670B2 (en) 2019-11-25 2022-12-13 Bard Access Systems, Inc. Shape-sensing systems with filters and methods thereof
US20230028220A1 (en) * 2019-12-24 2023-01-26 The University Of Melbourne Medical device and system and method for guiding positioning of same
US11474310B2 (en) 2020-02-28 2022-10-18 Bard Access Systems, Inc. Optical connection systems and methods thereof
CN111580230A (zh) * 2020-03-02 2020-08-25 华中科技大学 柔性光纤、制备方法及基于该光纤的可驱动激光手术刀
WO2021178578A1 (en) * 2020-03-03 2021-09-10 Bard Access Systems, Inc. System and method for optic shape sensing and electrical signal conduction
WO2021186330A1 (en) * 2020-03-16 2021-09-23 St. Jude Medical International Holding S.À.R.L. System and method for optical sensor reference frame alignment
CN113456054A (zh) 2020-03-30 2021-10-01 巴德阿克塞斯系统股份有限公司 光学和电气诊断系统及其方法
WO2021246495A1 (ja) 2020-06-03 2021-12-09 漢俊 金 マウスピース型可撤式矯正装置
WO2021263023A1 (en) 2020-06-26 2021-12-30 Bard Access Systems, Inc. Malposition detection system
US11883609B2 (en) 2020-06-29 2024-01-30 Bard Access Systems, Inc. Automatic dimensional frame reference for fiber optic
EP4178431A1 (en) 2020-07-10 2023-05-17 Bard Access Systems, Inc. Continuous fiber optic functionality monitoring and self-diagnostic reporting system
EP4188212A1 (en) 2020-08-03 2023-06-07 Bard Access Systems, Inc. Bragg grated fiber optic fluctuation sensing and monitoring system
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
US11585706B2 (en) 2020-10-14 2023-02-21 Lake Region Manufacturing, Inc. Guidewire with fiber Bragg grating strain sensors
CN112985656B (zh) * 2021-02-07 2022-03-11 上海交通大学 柔性机器人的力或力形状感知一体化驱动丝及其应用方法
CN113616329B (zh) * 2021-08-26 2023-11-14 桂林电子科技大学 一种具有体内3d导航手术功能的介入式激光消融系统
CN113662657B (zh) * 2021-08-26 2023-11-14 桂林电子科技大学 一种具有3d导航功能的介入式血管癌栓消融医疗系统
US11903572B2 (en) * 2021-09-14 2024-02-20 Nuvasive, Inc. Surgical instruments, systems, and methods with optical sensors
CN113984097B (zh) * 2021-12-27 2022-03-15 之江实验室 用于多芯光纤三维形状传感的片上解调系统及承载设备
CN114459645B (zh) * 2022-01-18 2023-05-23 武汉理工大学 一种基于圆弧铰链的光纤光栅压力传感器
US20230293243A1 (en) * 2022-03-16 2023-09-21 Bard Access Systems, Inc. Illuminating Medical Devices and Systems
WO2023212748A1 (en) 2022-04-29 2023-11-02 Chelak Medical Solution Inc. Systems, devices, and methods for miniaturization of fiber bragg grating interrogation for integration into implantable devices

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3020785A1 (de) 1980-05-31 1981-12-10 Erich 7993 Kressbronn Brosa Messwandler
US5696863A (en) 1982-08-06 1997-12-09 Kleinerman; Marcos Y. Distributed fiber optic temperature sensors and systems
US5178153A (en) 1984-03-08 1993-01-12 Einzig Robert E Fluid flow sensing apparatus for in vivo and industrial applications employing novel differential optical fiber pressure sensors
US5104392A (en) 1985-03-22 1992-04-14 Massachusetts Institute Of Technology Laser spectro-optic imaging for diagnosis and treatment of diseased tissue
US5693043A (en) 1985-03-22 1997-12-02 Massachusetts Institute Of Technology Catheter for laser angiosurgery
EP0214712B1 (en) 1985-07-31 1992-09-02 C.R. Bard, Inc. Infrared laser catheter apparatus
SE453561B (sv) 1986-06-25 1988-02-15 Radisensor Ab Miniatyriserad sensor for fysiologiska tryckmetningar
US4757194A (en) 1986-10-10 1988-07-12 Oxbridge, Inc. Methods and apparatus for sensing the mechanical application of force
US4796622A (en) 1987-03-06 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Catheter with oxyhydrogen catalytic thermal tip
FR2613065B1 (fr) 1987-03-24 1991-07-26 Electricite De France Interferometre de michelson a fibres optiques et son application notamment a la mesure des temperatures
US4983034A (en) 1987-12-10 1991-01-08 Simmonds Precision Products, Inc. Composite integrity monitoring
US5201317A (en) 1988-06-06 1993-04-13 Sumitomo Electric Industries, Ltd. Diagnostic and therapeutic catheter
DE3828550A1 (de) 1988-08-23 1990-03-01 Rheinmetall Gmbh Kraftmessring
US4966597A (en) 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
WO1990004949A1 (en) * 1988-11-10 1990-05-17 Xintec Corporation Improved laser-heated intravascular cautery cap
US5014709A (en) 1989-06-13 1991-05-14 Biologic Systems Corp. Method and apparatus for high resolution holographic imaging of biological tissue
DE69007465T2 (de) 1989-10-11 1994-10-20 Baxter Int Integrierter intrakranialer druckmonitor und drainagekatheter.
JPH03218723A (ja) 1990-01-24 1991-09-26 Toshiba Corp 内視鏡
US5122137A (en) 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5065010A (en) 1990-08-30 1991-11-12 Camino Laboratories Fiber optic measurement system having a reference conductor for controlling the energy level of the light source
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
EP0581871B2 (en) 1991-04-29 2009-08-12 Massachusetts Institute Of Technology Apparatus for optical imaging and measurement
US5633494A (en) 1991-07-31 1997-05-27 Danisch; Lee Fiber optic bending and positioning sensor with selected curved light emission surfaces
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5906614A (en) 1991-11-08 1999-05-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods using predicted temperature for monitoring and control
DE4204521C1 (ja) 1992-02-15 1993-06-24 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
US5423807A (en) 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5772590A (en) 1992-06-30 1998-06-30 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire
US5202939A (en) 1992-07-21 1993-04-13 Institut National D'optique Fabry-perot optical sensing device for measuring a physical parameter
US5279793A (en) 1992-09-01 1994-01-18 Glass Alexander J Optical osmometer for chemical detection
US5348019A (en) 1992-09-18 1994-09-20 The Board Of Regents Of The University Of Oklahoma Optical fiber pressure sensing catheter
US5706809A (en) 1993-01-29 1998-01-13 Cardima, Inc. Method and system for using multiple intravascular sensing devices to detect electrical activity
US5446546A (en) 1993-07-02 1995-08-29 The Boeing Company Laser interferometric single piece force transducer
US5409000A (en) 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5464404A (en) 1993-09-20 1995-11-07 Abela Laser Systems, Inc. Cardiac ablation catheters and method
US5396887A (en) 1993-09-23 1995-03-14 Cardiac Pathways Corporation Apparatus and method for detecting contact pressure
CA2194062C (en) 1994-06-27 2005-06-28 Dorin Panescu System for controlling tissue ablation using temperature sensors
NO302441B1 (no) 1995-03-20 1998-03-02 Optoplan As Fiberoptisk endepumpet fiber-laser
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5688267A (en) 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
US5594819A (en) 1995-07-26 1997-01-14 Electric Power Research Institute Field-mountable fiber optic sensors for long term strain monitoring in hostile environments
US6309580B1 (en) 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
JP3737554B2 (ja) 1996-01-09 2006-01-18 株式会社東海理化電機製作所 センサ機能を備えたカテーテル
US5697380A (en) 1996-01-11 1997-12-16 Intella Interventional Systems, Inc. Guide wire having distal extremity with adjustable support characteristic and method
US5622108A (en) 1996-01-30 1997-04-22 Universal Screenprinting Systems, Inc. Screen printing machine
ES2236791T3 (es) 1996-02-15 2005-07-16 Biosense Webster, Inc. Procedimiento de calibracion de una sonda.
US5798521A (en) 1996-02-27 1998-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for measuring strain in bragg gratings
US5769880A (en) 1996-04-12 1998-06-23 Novacept Moisture transport system for contact electrocoagulation
JPH09297078A (ja) 1996-05-01 1997-11-18 Atsuhiko Yamagami 画像処理による感覚センサ
DE69733261T2 (de) 1996-08-23 2006-01-19 Osteobiologics, Inc., San Antonio Tragbares materialprüfgerät
US6719755B2 (en) 1996-10-22 2004-04-13 Epicor Medical, Inc. Methods and devices for ablation
WO1998019044A1 (de) 1996-10-25 1998-05-07 Geoforschungszentrum Potsdam Verankerungseinrichtung mit dehnungsmessung
JP3705458B2 (ja) 1996-11-15 2005-10-12 株式会社東海理化電機製作所 センサ機構付きカテーテル
US6120520A (en) 1997-05-27 2000-09-19 Angiotrax, Inc. Apparatus and methods for stimulating revascularization and/or tissue growth
US6102926A (en) 1996-12-02 2000-08-15 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use
US5782828A (en) 1996-12-11 1998-07-21 Irvine Biomedical, Inc. Ablation catheter with multiple flexible curves
SI0901341T1 (en) 1997-01-03 2005-04-30 Biosense Webster, Inc. Bend-responsive catheter
US6056436A (en) 1997-02-20 2000-05-02 University Of Maryland Simultaneous measurement of temperature and strain using optical sensors
US5833688A (en) 1997-02-24 1998-11-10 Boston Scientific Corporation Sensing temperature with plurality of catheter sensors
US6063078A (en) 1997-03-12 2000-05-16 Medtronic, Inc. Method and apparatus for tissue ablation
DE19721362B4 (de) 1997-04-01 2011-05-26 Axel Muntermann Vorrichtung und Eichverfahren zur Katheterablation
GB9708783D0 (en) 1997-04-30 1997-06-25 Smiths Industries Plc Medico-surgical bags
US5858717A (en) 1997-06-11 1999-01-12 Incyte Pharmaceuticals, Inc. Human formin binding protein
US6256090B1 (en) 1997-07-31 2001-07-03 University Of Maryland Method and apparatus for determining the shape of a flexible body
US6057911A (en) 1997-11-17 2000-05-02 Northrop Grumman Corporation Fiber optic fabry-perot sensor for measuring absolute strain
DE19751875C2 (de) 1997-11-22 2001-07-05 Karlsruhe Forschzent Herzkatheter mit Messung der Anpreßkraft
US6156029A (en) 1997-11-25 2000-12-05 Eclipse Surgical Technologies, Inc. Selective treatment of endocardial/myocardial boundary
US6120476A (en) 1997-12-01 2000-09-19 Cordis Webster, Inc. Irrigated tip catheter
NO308050B1 (no) 1997-12-05 2000-07-10 Optoplan As Anordning for registrering av strekk
US6129667A (en) 1998-02-02 2000-10-10 General Electric Company Luminal diagnostics employing spectral analysis
DE19808222A1 (de) 1998-02-27 1999-09-02 Abb Research Ltd Faser-Bragg-Gitter Drucksensor mit integrierbarem Faser-Bragg-Gitter Temperatursensor
EP1059878B1 (en) 1998-03-05 2005-11-09 Gil M. Vardi Optical-acoustic imaging device
US6066102A (en) * 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
IL123646A (en) 1998-03-11 2010-05-31 Refael Beyar Remote control catheterization
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
US6558378B2 (en) 1998-05-05 2003-05-06 Cardiac Pacemakers, Inc. RF ablation system and method having automatic temperature control
US6262822B1 (en) 1998-05-13 2001-07-17 Jds Fitel Inc. Circuit for monitoring optical signals
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6266542B1 (en) 1998-09-24 2001-07-24 Ericsson Inc. Accessory allowing hands-free operation of a cellular telephone
US6171275B1 (en) 1998-12-03 2001-01-09 Cordis Webster, Inc. Irrigated split tip electrode catheter
US6210406B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Split tip electrode catheter and signal processing RF ablation system
US6310990B1 (en) 2000-03-16 2001-10-30 Cidra Corporation Tunable optical structure featuring feedback control
US6113593A (en) 1999-02-01 2000-09-05 Tu; Lily Chen Ablation apparatus having temperature and force sensing capabilities
JP2000227367A (ja) 1999-02-04 2000-08-15 Shibaura Institute Of Technology 光ファイバを用いた力センサ及びこれを用いた制御システム
US6088088A (en) 1999-03-31 2000-07-11 Hewlett-Packard Company Chromatic dispersion measurement scheme having high frequency resolution
CA2368565C (en) 1999-05-13 2011-08-16 Daig Corporation Device for the mapping of cardiac arrhythmia foci
US6314380B1 (en) 1999-06-03 2001-11-06 Robert Bosch Corporation Corp Of Delaware Ultrasound transducer temperature compensation methods, apparatus and programs
US6398778B1 (en) 1999-06-18 2002-06-04 Photonics Research Ontario Optical fiber diffuser
US6133593A (en) 1999-07-23 2000-10-17 The United States Of America As Represented By The Secretary Of The Navy Channel design to reduce impact ionization in heterostructure field-effect transistors
AU6639900A (en) 1999-08-13 2001-03-13 Advanced Sensor Technologies Llc Probe position sensing system for use in a coordinate measuring machine
US7527622B2 (en) 1999-08-23 2009-05-05 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US6314214B1 (en) 1999-09-28 2001-11-06 Corning Incorporated System and method for measuring stress during processing of an optical fiber
US6546271B1 (en) 1999-10-01 2003-04-08 Bioscience, Inc. Vascular reconstruction
US6370412B1 (en) 1999-10-07 2002-04-09 Massachusetts Institute Of Technology Method and apparatus for guiding ablative therapy of abnormal biological electrical excitation
AU1236601A (en) 1999-10-29 2001-05-14 Advanced Sensor Technologies Llc Optical fiber navigation system
US6660001B2 (en) 2000-01-21 2003-12-09 Providence Health System-Oregon Myocardial revascularization-optical reflectance catheter and method
DE10011790B4 (de) 2000-03-13 2005-07-14 Siemens Ag Medizinisches Instrument zum Einführen in ein Untersuchungsobjekt, sowie medizinisches Untersuchungs- oder Behandlungsgerät
US20010034501A1 (en) 2000-03-23 2001-10-25 Tom Curtis P. Pressure sensor for therapeutic delivery device and method
US6869430B2 (en) 2000-03-31 2005-03-22 Rita Medical Systems, Inc. Tissue biopsy and treatment apparatus and method
US20050085693A1 (en) 2000-04-03 2005-04-21 Amir Belson Activated polymer articulated instruments and methods of insertion
US6458123B1 (en) 2000-04-27 2002-10-01 Biosense Webster, Inc. Ablation catheter with positional sensor
US7657128B2 (en) 2000-05-23 2010-02-02 Silverbrook Research Pty Ltd Optical force sensor
US6324918B1 (en) 2000-06-05 2001-12-04 Center For Tribology, Inc. Bidirectional force sensor
US6425894B1 (en) 2000-07-12 2002-07-30 Biosense Webster, Inc. Ablation catheter with electrode temperature monitoring
WO2002010677A1 (en) 2000-08-01 2002-02-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Optical sensing device containing fiber bragg gratings
US6669692B1 (en) 2000-08-21 2003-12-30 Biosense Webster, Inc. Ablation catheter with cooled linear electrode
GB0021975D0 (en) 2000-09-07 2000-10-25 Optomed As Filter optic probes
GB0021976D0 (en) 2000-09-07 2000-10-25 Optomed As Multi-parameter fiber optic probes
US6451009B1 (en) 2000-09-12 2002-09-17 The Regents Of The University Of California OCDR guided laser ablation device
WO2002023148A1 (en) 2000-09-15 2002-03-21 Endevco Corporation Fiber optic pressure sensor
US6572804B2 (en) 2000-10-18 2003-06-03 Borden Chemical, Inc. Method for making building panels having low edge thickness swelling
AU2002220271A1 (en) 2000-12-12 2002-06-24 Datascope Investment Corp. Intra-aortic balloon catheter having a fiberoptic sensor
US20020072679A1 (en) 2000-12-12 2002-06-13 Schock Robert B. Intra-aortic balloon catheter having a fiberoptic sensor
US6666862B2 (en) 2001-03-01 2003-12-23 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
US6898338B2 (en) 2001-06-18 2005-05-24 Weatherford/Lamb, Inc. Fabry-Perot sensing element based on a large-diameter optical waveguide
US6915048B2 (en) 2001-06-18 2005-07-05 Cidra Corporation Fabry-perot filter/resonator
US6947637B2 (en) 2001-08-09 2005-09-20 Corning Incorporated Measurement of fiber strain during processing
US6852109B2 (en) 2002-06-11 2005-02-08 Intraluminal Therapeutics, Inc. Radio frequency guide wire assembly with optical coherence reflectometry guidance
EP1523271B1 (en) 2002-06-26 2007-06-13 Endosense S.A. Catheterization system
JP2004251779A (ja) 2003-02-20 2004-09-09 Fuji Photo Optical Co Ltd 長尺可撓部材の三次元形状検出装置
US8256428B2 (en) * 2003-03-12 2012-09-04 Biosense Webster, Inc. Method for treating tissue
US20040206365A1 (en) 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
WO2004104539A1 (en) 2003-05-22 2004-12-02 Nanyang Technological University A fiber optic force sensor for measuring shear force
US7054011B2 (en) 2003-09-04 2006-05-30 Virginia Tech Intellectual Properties, Inc. Optical fiber pressure and acceleration sensor fabricated on a fiber endface
JP4206057B2 (ja) 2003-09-16 2009-01-07 株式会社東京大学Tlo 光学式触覚センサを用いた力ベクトル再構成法
EP1668314A4 (en) 2003-10-03 2007-09-19 Sabeus Inc ROBUST FABRY-PEROT PRESSURE SENSOR
US7241986B2 (en) 2003-10-08 2007-07-10 Mississippi State University Fiber ringdown pressure/force sensors
US7050662B2 (en) 2003-11-19 2006-05-23 Em Photonics, Inc. Fiber Bragg grating compression sensor system
US8571640B2 (en) 2003-12-11 2013-10-29 The Regents Of The University Of California Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy
US8021361B2 (en) 2005-10-27 2011-09-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Systems and methods for electrode contact assessment
US7173713B2 (en) 2004-03-04 2007-02-06 Virginia Tech Intellectual Properties, Inc. Optical fiber sensors for harsh environments
US8052636B2 (en) 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
US7974681B2 (en) 2004-03-05 2011-07-05 Hansen Medical, Inc. Robotic catheter system
US7781724B2 (en) 2004-07-16 2010-08-24 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
US20060013523A1 (en) 2004-07-16 2006-01-19 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
DE602004021377D1 (de) 2004-08-27 2009-07-16 Schlumberger Holdings Sensor und Vermessungsvorrichtung zur Bestimmung des Biegeradius und der Form eines Rohrleitungs
US7689071B2 (en) 2004-12-22 2010-03-30 Opsens Inc. Fiber optic pressure sensor for catheter use
US20100312129A1 (en) * 2005-01-26 2010-12-09 Schecter Stuart O Cardiovascular haptic handle system
US8075498B2 (en) 2005-03-04 2011-12-13 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8182433B2 (en) 2005-03-04 2012-05-22 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
US7752920B2 (en) 2005-12-30 2010-07-13 Intuitive Surgical Operations, Inc. Modular force sensor
US7277605B2 (en) 2005-05-18 2007-10-02 The Regents Of The University Of California Silicon fiber optic sensors
EP2363073B1 (en) 2005-08-01 2015-10-07 St. Jude Medical Luxembourg Holding S.à.r.l. Medical apparatus system having optical fiber load sensing capability
US8672936B2 (en) 2005-10-13 2014-03-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Systems and methods for assessing tissue contact
JP4312192B2 (ja) 2005-11-02 2009-08-12 ミネベア株式会社 光学式変位センサおよび外力検出装置
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
JP5631585B2 (ja) * 2006-03-22 2014-11-26 コーニンクレッカ フィリップス エレクトロニクス エヌ.ヴィ. 光ファイバ機器センシングシステム
US8567265B2 (en) * 2006-06-09 2013-10-29 Endosense, SA Triaxial fiber optic force sensing catheter
US8048063B2 (en) 2006-06-09 2011-11-01 Endosense Sa Catheter having tri-axial force sensor
DE102006030407A1 (de) 2006-06-29 2008-01-03 Werthschützky, Roland, Prof. Dr.-Ing. Kraftsensor mit asymmetrischem Grundkörper zum Erfassen mindestens einer Kraftkomponente
DE102006031635A1 (de) 2006-07-06 2008-01-17 Werthschützky, Roland, Prof. Dr.-Ing. Minaturisierbarer Kraftsensor zum Erfassen eines Kraftvektors
WO2008107842A2 (en) 2007-03-07 2008-09-12 Koninklijke Philips Electronics N.V. Medical apparatus with a sensor for detecting a force
US8187267B2 (en) 2007-05-23 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with flexible tip and methods of making the same
US8157789B2 (en) * 2007-05-24 2012-04-17 Endosense Sa Touch sensing catheter
US8622935B1 (en) 2007-05-25 2014-01-07 Endosense Sa Elongated surgical manipulator with body position and distal force sensing
EP2626006B1 (en) * 2007-08-14 2019-10-09 Koninklijke Philips N.V. Robotic instrument systems utilizing optical fiber sensors
US8535308B2 (en) 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
US20090306643A1 (en) 2008-02-25 2009-12-10 Carlo Pappone Method and apparatus for delivery and detection of transmural cardiac ablation lesions
WO2009114955A1 (de) 2008-03-19 2009-09-24 Kistler Holding Ag Optisches messelement mit einstückiger struktur
US7903907B1 (en) 2008-04-10 2011-03-08 Intelligent Fiber Optic Systems, Inc. Force and deflection sensor with shell membrane and optical gratings and method of manufacture
US8298227B2 (en) 2008-05-14 2012-10-30 Endosense Sa Temperature compensated strain sensing catheter
US8437832B2 (en) 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
US7720322B2 (en) * 2008-06-30 2010-05-18 Intuitive Surgical, Inc. Fiber optic shape sensor
US9101734B2 (en) 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
WO2010102117A1 (en) * 2009-03-04 2010-09-10 Imricor Medical Systems, Inc. Mri compatible medical device temperature monitoring system and method
US8986292B2 (en) * 2011-04-13 2015-03-24 St. Jude Medical, Inc. Optical feedback RF ablator and ablator tip
EP2696777B1 (en) 2011-04-14 2020-08-05 St. Jude Medical International Holding S.à r.l. Catheter assembly with optical force sensor
US10595937B2 (en) * 2011-12-29 2020-03-24 St. Jude Medical, Atrial Fibrillation Division, Inc. System for optimized coupling of ablation catheters to body tissues and evaluation of lesions formed by the catheters
US9417057B2 (en) * 2012-03-16 2016-08-16 Koninklijke Philips N.V. Optical sensing system for determining the position and/or shape of an associated object
EP2967367B1 (en) * 2013-03-15 2019-02-20 Avinger, Inc. Optical pressure sensor assembly
US10278775B2 (en) * 2013-12-31 2019-05-07 Biosense Webster (Israel) Ltd. Catheter utilizing optical spectroscopy for measuring tissue contact area
WO2015106621A1 (en) 2014-01-17 2015-07-23 Harbin Institute Of Technology Method and equipment based on multi-core fiber bragg grating probe for measuring structures of a micro part

Also Published As

Publication number Publication date
CN108430368A (zh) 2018-08-21
JP2020096976A (ja) 2020-06-25
EP3376986A1 (en) 2018-09-26
US11445937B2 (en) 2022-09-20
EP3677206B1 (en) 2022-02-23
US20230031938A1 (en) 2023-02-02
JP6814315B2 (ja) 2021-01-13
EP3376986B1 (en) 2020-02-19
EP3677206A1 (en) 2020-07-08
US20170196479A1 (en) 2017-07-13
JP2019503225A (ja) 2019-02-07
CN108430368B (zh) 2022-05-31
WO2017118949A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6691602B2 (ja) 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス
US20210282893A1 (en) Medical apparatus system having optical fiber load sensing capability
US8894589B2 (en) Medical apparatus system having optical fiber load sensing capability
US11628286B2 (en) Coupler assembly for catheters
EP3222213B1 (en) Optic-based contact sensing assembly and system
JP7339286B2 (ja) 1つのファイバの力及び形状感知

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200410

R150 Certificate of patent or registration of utility model

Ref document number: 6691602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250