CN111678539B - 用于手术器械的光纤光栅传感器 - Google Patents

用于手术器械的光纤光栅传感器 Download PDF

Info

Publication number
CN111678539B
CN111678539B CN201910243269.5A CN201910243269A CN111678539B CN 111678539 B CN111678539 B CN 111678539B CN 201910243269 A CN201910243269 A CN 201910243269A CN 111678539 B CN111678539 B CN 111678539B
Authority
CN
China
Prior art keywords
fiber
grating sensor
matrix
base body
fiber grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910243269.5A
Other languages
English (en)
Other versions
CN111678539A (zh
Inventor
任洪亮
李天梁
管汉世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singapore Suzhou Research Institute, National University of
National University of Singapore
Singapore Health Services Pte Ltd
Original Assignee
Singapore Suzhou Research Institute, National University of
National University of Singapore
Singapore Health Services Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singapore Suzhou Research Institute, National University of, National University of Singapore, Singapore Health Services Pte Ltd filed Critical Singapore Suzhou Research Institute, National University of
Publication of CN111678539A publication Critical patent/CN111678539A/zh
Application granted granted Critical
Publication of CN111678539B publication Critical patent/CN111678539B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/066Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/84Drainage tubes; Aspiration tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0001Catheters; Hollow probes for pressure measurement
    • A61M2025/0002Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/332Force measuring means

Abstract

本发明涉及一种用于手术器械的光纤光栅传感器,其包括:基体和多根光纤,所述基体包括基体前端、基体末端和用于连接所述基体前端与所述基体末端的基体中部,所述多根光纤的每根光纤上都刻有光纤光栅,其特征在于:每根光纤都分别固定到所述基体前端和所述基体末端,并且使每根光纤上的光纤光栅都能被悬空布置。本发明的光纤光栅传感器在用于具有管状末端的手术仪器进行力检测时,可消除温度耦合干扰,同时还能够方便地集成在管状导管的远端部分。

Description

用于手术器械的光纤光栅传感器
技术领域
本发明涉及一种光纤光栅传感器,更具体地,涉及一种用于外科手术器械的光纤光栅多维力/力矩传感器。
背景技术
在外科手术中,吸引器是常见而又极其重要的基本手术器械。它在手术中充当多种角色,不仅用于吸除血水,廓清手术区域视野;同时可以用于清除病灶组织(肿瘤、坏死组织、血肿或囊肿),还可以作为牵开器和分离器使用。有些组织(例如脑组织)极其脆弱,而手术器械的末端会与脑组织接触,主治医生在缺乏力反馈的条件下进行外科手术,需要医生丰富的经验和一系列精巧细致的操作。
心血管手术也需要导管远端力反馈的辅助,这种用途目前也有很多的医学实例。介入式心电射频消融术是在临床上治疗心律不齐的常用的微创手术方式,手术过程需要把导管经病人股动脉穿刺介入经过主动脉进入心脏,接近病灶点,然后释放射频电流进行局部加热,进而使病灶点心内膜凝固性坏死。坏死的内膜组织不能传递心电信号,心电信号经正常的组织传输恢复正常,进而恢复心脏正常的节奏。在手术过程中,消融导管末端的电极需要跟心脏中病变组织保持较大的恒力接触才能确保病变组织能够坏死,并提高手术成功率,并减少术后心肌穿孔、心包填塞、血栓形成等因过大力操作而引发的并发症。
对于常见的心脑血管疾病,如脑动脉疾病或冠状动脉粥状硬化,微创介入式手术需要使用导丝穿过动脉网络,在病灶点处从导管远端植入支架。导管可能需要穿过被阻塞的区域,但导管的远端不容易控制。由于使用导管难以控制远端,因而容易发生故障而增加手术失败的风险。如果能够对导管末端的力进行实时测量,则可以让医生实时感知导管与组织的接触力,从而利于安全操作、减少对病人的伤害、降低手术失败的风险。
同时,导管远端力的测量对微创手术机器人实现操作系统的力觉反馈功能与力控制功能至关重要。此外,这些信息也可来评价医生的技能,并为医生培训提供优化的标准。
目前,针对上述需求,已发展出几项技术来感知导管与组织的接触力。一种是用在吸引管远端的硅树脂力传感器,其利用相机或内窥镜来感测硅树脂结构的极性变形,以检测牵引力,但这种设计由于包含外部视觉单元而具有复杂的结构和庞大的体积,因而这种设计很难在微型化介入式神经外科手术中使用。另一种是基于应变仪的感测装置,这种装置由于具有低成本、简单结构、易于操作而广泛用于外科手术中的力反馈。但是,这种基于应变仪的感测装置很容易在消毒和杀菌操作期间被损坏,同样地,也很难在微型化仪器或感测结构中放置应变仪。
为了克服这些传统力传感器的缺点,采用了一种光纤传感器,由于光纤的小尺寸、重量轻、抗电磁干扰、生物兼容性、无毒性以及抗腐蚀性,其能够集成在手术仪器导管尖端以测量接触力。例如,基于光纤的导管尖端力传感器能够通过检测心脏手术中反射的光强的变化,来测量轴向方向的力,但是每个感测单元都布置有两个单独的光纤来发射和接收光信号,这容易导致多维力传感器的大体积输出末端。此外,由于传感器集成在吸引管的尖端同时是非中空的结构,导致吸引管失去抽吸的功能。此外,目前研发出的基于波长解调的2维光纤布拉格光栅(FBG)力传感器能够避免前述的输入光强扰动的影响,但是,由于在感知体表面上的非均匀应变,使粘贴在其表面的FBG的反射谱易出现啁啾失效的风险,此外,该传感器如何集成在吸引管的远端的问题还没有被解决。
发明内容
因此,本发明要解决的一个技术问题是:提供一种基于FBG的用于外科手术器械的、改进了测量精度的、能够方便地集成在管状导管远端的多维力/力矩传感器。
在一个实施方式中,本发明涉及一种光纤光栅传感器,其包括:基体和多根光纤,所述基体包括基体前端、基体末端和用于连接所述基体前端与所述基体末端的基体中部,所述多根光纤的每根光纤的远端部分上都刻有光纤光栅,其特征在于:每根光纤的远端部分都分别固定到所述基体前端和所述基体末端,并且使每根光纤的远端部分上的光纤光栅都能被悬空布置。
优选地,所述多根光纤为四根光纤,所述基体为管状,所述四根光纤的远端部分沿所述基体以周向间隔90°的方式均匀地布置。
优选地,所述基体由3D打印机一体地打印制成。
优选地,所述光纤光栅为光纤布拉格光栅。
在一方面,所述基体为中空弹性体,所述基体中部为环形膜片,使得所述基体末端的直径大于所述基体前端的直径并且使所述每根光纤的远端部分上的光纤光栅在所述基体末端的位置处都能被悬空布置在基体末端的内部。
优选地,所述光纤光栅传感器能够探测出沿所述基体的轴向方向的力、与所述轴向方向垂直的截面上的二维力矩以及环境温度的变化量。
优选地,所述中空弹性体内部还具有沿所述中空弹性体周向均匀布置的、用于消除横向力干扰的四个加强筋,以使得每根光纤的远端部分上的光纤光栅在每相邻的两个加强筋之间穿过。
在另一方面,所述基体中部为柔性铰链,并且所述每根光纤的远端部分上的光纤光栅在所述柔性铰链的位置处都能被悬空布置在所述柔性铰链的外部。
优选地,所述光纤光栅传感器能够探测出与沿所述基体的轴向垂直的截面上的二维力以及环境温度的变化量。
本发明的多维力/力矩传感器中每个刻有单独的FBG元件的光纤利用波长解调来处理感测到的信号。相比于现有技术中光强解调的方式,这种配置能够有效地克服光强波动引起的干扰。每根光纤的远端部分都沿着弹性体的纵向方向、以刻有光纤光栅的部分悬置状态安装在弹性体的两端。在这种配置下,每个悬置光纤部段中的FBG会沿轴向方向被直接压缩或伸展。相比于传统的基于FBG的力传感器,以本发明的这种方式,能够有利地避免FBG啁啾失败,由此,改进了测量精度。
此外,通过在手术器械的管状末端集成多维力-矩传感器,实时反馈仪器与组织的接触力信息,可以有效的降低操作不当导致脑组织医源性损伤的风险,同时大大的提高手术的安全性。同时,这个集成了力传感器的手术器械也可通过监测操作过程的力来评价和改进医生的技能,并且可以作为医生培训提供操作标准。
附图说明
通过附图以及下面的描述,可以更好地理解本发明的技术方案,其中:
图1示出了本发明的集成在手术器械的管状末端的传感器立体图、装配体分解图和A-A截面图;
图2示出了本发明的传感器的结构剖视图;
图3示出了本发明的传感器的侧视图;
图4示出了在轴向力Fz的作用下,本发明的传感器的环形膜片的轴向变形示意图;
图5示出了在集中力矩Mx(My)作用下,本发明的传感器上的环形膜片的轴向变形示意图;
图6示出了本发明的基于柔性铰链和光纤光栅传感的二维力传感器的立体图;
图7示出了本发明的二维力传感器基体的立体图;以及
图8示出了本发明的二维力传感器基体的剖视图。
具体实施方式
在本公开所使用的术语中,“远端部分”是介入式手术仪器及其中的光纤和导管等部件的插入患者组织中的端部,也即,远离医疗仪器操作者的端部。该“远端部分”本身具有一定的长度,并且具有“两端”。
实施方式一
如图1和2所示,本发明的实施方式一提供了一种低成本且便于安装的光纤光栅三轴力/力矩传感器,以实现对外科手术器械的管状末端与组织之间的接触力的实时检测。该传感器的基体为管状中空弹性体5,该中空弹性体5包括弹性体末端5.1、环形膜片5.2和弹性体前端5.3。其中,弹性体末端5.1通过过盈配合集成于手术器械7的末端,以便于安装;弹性体前端5.3用于在手术中与组织接触;环形膜片5.2用于连接弹性体末端5.1与弹性体前端5.3并使得弹性体末端5.1的直径大于所述弹性体前端5.3的直径,通过在手术操作中手术器械的管状末端与组织接触时产生的环形膜片5.2的变形,从而实时获得关于z方向的轴向力Fz和x与y方向的力矩的Mx和My。该弹性体5可由低成本的3D打印机(例如,美国Stratasys Direct Manufacturing制造的Stratasys Objet260 Connex3打印机)打印制造而成,弹性体5的材料可选择柔性大且刚度适中的生物可兼容聚合物材料,例如VeroClearRGD810。此外,弹性体5内部沿其周向间隔90°布置有4个内部加强筋5.6,以消除横向力的干扰。四根光纤的远端部分1、2、3、4依次以90°环形间隔的方式均匀地布置在弹性体5上,每根光纤的远端部分上都刻有一个光纤布拉格光栅(FBG)元件,其中,每根光纤的远端部分在光纤布拉格光栅(FBG)元件的两侧的部分都分别在尾端粘胶槽5.4和前端粘胶槽5.5由粘胶固定到弹性体末端5.1和弹性体前端5.3,并且使每根光纤的远端部分上的光纤光栅在弹性体末端5.1的位置处都能被悬空布置在弹性体末端5.1的内部。每两个加强筋之间形成内腔8,此外,在环形膜片5.2和四个加强筋5.6的顶部之间形成很小的环形腔9。因此,四个内腔8由环形腔9连接,使得它们共享几乎相同的环境温度。四根光纤的远端部分1、2、3、4中的每一个单独行进通过各自对应的内腔。
在组装过程中,先将光纤1穿过其对应的尾端粘胶槽5.4和前端粘胶槽5.5,然后分别在尾端粘胶槽5.4和前端粘胶槽5.5涂覆尾端粘胶6.1和前端粘胶6.2,以将光纤1的两端固定在尾端粘胶槽5.4和前端粘胶槽5.5中,并且保证刻入光纤1的第1光纤光栅1.1以悬置的状态布置在弹性体末端5.1的内部,其中,粘胶6.1和6.2可以选择适合粘合光纤和弹性体的粘合剂,例如AB粘合剂。采用相同的方式分别配置安装光纤2、3、4,使得分别刻入光纤2、3、4的第2光纤光栅2.1、第3光纤光栅3.1、第4光纤光栅4.1分别以悬置的状态布置在弹性体末端5.1的内部。图3示出了安装好光纤1、2、3、4后的侧视图,其中,P1、P2、P3和P4分别对应光纤1、2、3、4的安装位置,2r表示图中通过四根光纤的远端部分的中心的虚线圆的直径,2R1表示管状弹性体前端5.3的直径。作为变形,光纤1、2、3、4的远端部分也可采用其他的合适的方式分别固定在弹性体末端5.1和弹性体前端5.3。
如图4所示,在手术操作中,当手术器械的管状末端与组织接触时,被测力Fz沿着z方向作用在传感器末端,此时,四个光纤光栅将承受一致的轴向变形。而当集中力矩Mx作用在弹性体前端5.3时,如图5所示,此时,由于环形膜片5.2会变形,因此,将使光纤光栅1.1和光纤光栅3.1分别产生同值的z方向的变形。而由于光纤光栅2.1和光纤光栅4.1与弹性体5的中性轴重叠,因此,该光纤光栅2.1和4.1的轴向变形接近于零。
为此,根据材料力学原理,可以将不同状态下的各个光纤光栅的轴向应变描述为公式(1):
其中,Δz、Δx和Δy分别表示在单位轴向力Fz、单位力矩Mx和My作用下环形膜片中间位置的z轴轴向变形。εiz为第i个光纤光栅在Fz作用下的轴向应变;εiMj为第i个光纤光栅在Mj(j=x或y)作用下的轴向应变。L为光纤的工作长度。为此,结合光纤光栅的工作原理,光纤光栅中心波长漂移量与应变以及温度的关系如下:
Δλii=(1-ρei+(αff)ΔT (2)
其中,εi为Fx和Mx/My引起的第i个光纤光栅轴向变形之和。Δλi为第i个光纤光栅波长漂移量,λi为第i个光纤光栅的中心波长,该传感器中配置的四个光纤光栅的中心波长相近,记为λ0。ρe为光纤的有效光弹效应,αf为光纤的热膨胀系数,ξf为光纤的热光系数,ΔT为被测物体环境温度的变化量。为此,将公式(1)代入公式(2)中可得:
由此,根据公式(3),由四个光纤光栅的中心波长的漂移可实时检测出3轴力/力矩Fz、Mx、My,并且可以得到相应的环境温度的变化值ΔT。
在该实施方式中,每个刻有单独的FBG元件的光纤利用波长解调来处理感测到的信号。相比于现有技术中光强解调的方式,这种配置能够有效地克服光强波动引起的干扰。每根光纤的远端部分都沿着弹性体的纵向方向、以刻有光纤光栅的部分悬置状态安装在弹性体的两端。在这种配置下,每个悬置光纤部段中的FBG会在力Fz和力矩(Mx、My)的作用下沿轴向方向被直接压缩或伸展。相比于传统的基于FBG的力传感器,以本发明的这种方式,能够有利地避免FBG啁啾失败,并且消除了温度耦合干扰,由此,改进了测量精度。
此外,检测得到的力矩Mx、My还可以用于定量地评估和反映出仪器与组织接触力的类型和接触力的方向,基于这两个力矩分量的接触面将有助于医生获得接触力的定量方向信息。并且,这种力/力矩传感方式还可以进一步应用于各种类型的管状医疗设备,例如,内窥镜或管状机器人,以帮助其获取接触力和温度信息。
实施方式二
图6-7示出了根据本发明的的实施方式二的基于柔性铰链、光纤光栅传感的二维力传感器的立体图。与实施方式一不同的是,传感器中的中空弹性体被替换成了柔性基体10,该柔性基体10包括导管连接端10.1、管状基体末端10.2、管状基体前端10.4、柔性铰链10.3以及半球状接触头10.5,其中,导管连接端10.1与手术操作中的导管远端连接,柔性铰链10.3连接基体末端10.2和基体前端10.4。四根光纤的远端部分1、2、3、4的两端分别固定基体末端10.2和基体前端10.4,在光纤1、光纤2,光纤3和光纤4上分别刻有第1光纤光栅1.1、第2光纤光栅2.1、第3光纤光栅3.1和第4光纤光栅4.1,并且所述每根光纤的远端部分上的光纤光栅在所述柔性铰链的位置处都能被悬空布置在所述柔性铰链10.3的外部。如图8所示,管状基体末端10.2和管状基体前端10.4具有相同的直径d。柔性铰链10.3的直径小于d,在与基体末端10.2和基体前端10.4的连接处分别具有直径R的倒角,使得悬置在柔性铰链10.3外部的光纤布拉格光栅1.1、2.1、3.1、4.1与柔性铰链10.3的距离为h,光纤的工作长度为L。其中,本领域技术人员可以根据所连接仪器的管的尺寸和所需测量的力的精度来设计上述直径d、直径R、距离h和长度L的值。
与实施方式一相似,该柔性基体10也可由低成本的3D打印机打印制造而成,柔性基体10的材料可选择柔性适中的生物可兼容聚合物材料。在组装过程中,光纤1的两端通过粘胶1.2和1.3分别固定在基体前端10.4和基体末端10.2,并且使每根光纤的远端部分的光纤光栅在所述柔性铰链的位置处都能被悬空布置在所述柔性铰链10.3的外部,然后以同样的方式依次将光纤2、3和4固定在柔性基体5上。
结合光纤布拉格光栅的工作原理,当传感器在x、y方向受到力的作用时,第1光纤光栅1.1和第3光纤光栅3.1实现x方向的力解耦,而第2光纤光栅2.1和第4光纤光栅4.1实现y方向的力解耦。在受到x方向的力作用时,此时第1和第3光纤光栅中心波长漂移量与应变的关系如下:
其中,δx为Fx引起的对应光纤光栅的轴向变形。Δλi为第i个光纤光栅波长漂移量,λi为第i个光纤光栅的中心波长,该传感器中配置的四个光纤光栅的中心波长相近,记为λ0。ρe为光纤的有效光弹效应,αf为光纤的热膨胀系数,ξf为光纤的热光系数,ΔT为被测物体环境温度的变化量。
将公式(4)中的两式相减,整理可得:
同理,对于第2光纤光栅2.1和第4光纤光栅4.1,根据公式(4)可实现y方向力的检测,可表示为:
其中,δy为Fy引起的对应光纤光栅的轴向变形,由此,根据式(5)和(6)中的4个光纤光栅的对应波长漂移差Δλi可得x和y方向的δx和δy,然后根据以下公式(7),可以得到该二维力传感器对在x、y方向上受到的力Fx和Fy
其中,表示柔性基体5在x、y方向上的柔度矩阵。然后,将计算得到的Fx和Fy代入公式(4),可以解耦得出环境温度的变化值ΔT。
同样地,在该实施方式中,每个刻有单独的FBG元件的光纤利用波长解调来处理感测到的信号。相比于现有技术中光强解调的方式,这种配置能够有效地克服光强波动引起的干扰。而每根光纤的远端部分都沿着柔性基体的纵向方向、以光纤光栅所在位置处悬置状态安装在弹性体的两端,通过柔性基体在x和y方向变形,可以实时地解耦得出x和y方向的力Fx、Fy以及环境温度的变化值ΔT,消除了温度耦合干扰,由此,改进了测量精度。
这种力传感方式还可以进一步应用于各种类型的管状医疗设备,例如,内窥镜或管状机器人,以帮助其获取接触力和温度信息。
尽管上面已经参考用于手术器械的光纤光栅传感器的具体实施例描述了本发明,但当然能想到,本领域普通技术人员可以推导出许多变型,因此,本领域普通技术人员容易想到的变型被认作本发明的一部分。本发明的范围在所附的权利要求书中限定。

Claims (8)

1.一种光纤光栅传感器,包括:
基体,所述基体包括:基体前端、基体末端和用于连接所述基体前端与所述基体末端的基体中部,其中,所述基体为中空弹性体,并且其中所述光纤光栅传感器能够探测出沿所述基体的轴向方向的力、与所述轴向方向垂直的截面上的二维力矩以及环境温度的变化量;以及
多根光纤,所述多根光纤的每根光纤的远端部分上都刻有光纤光栅,其特征在于:所述多根光纤的每根光纤的远端部分都分别固定到所述基体前端和所述基体末端,使得每根光纤的远端部分上的光纤光栅都能被悬空布置,
其中,所述基体还包括环形膜片,所述环形膜片用于连接所述基体末端与所述基体前端并使得所述基体末端的直径大于所述基体前端的直径,并且
其中,在所述基体内部沿所述基体的周向间隔90°布置有4个内部加强筋,每两个加强筋之间形成内腔,并且在所述环形膜片和4个加强筋的顶部之间形成有环形腔。
2.根据权利要求1所述的光纤光栅传感器,其中,所述多根光纤为四根光纤,所述基体为管状,所述四根光纤的远端部分沿所述基体以周向间隔90°的方式均匀地布置。
3.根据权利要求1所述的光纤光栅传感器,其中,所述基体由3D打印机一体地打印制成。
4.根据权利要求1所述的光纤光栅传感器,其中,所述光纤光栅为光纤布拉格光栅。
5.根据权利要求1至4中的任一项所述的光纤光栅传感器,其中,所述基体中部为环形膜片,使得所述基体末端的直径大于所述基体前端的直径,并且使所述每根光纤的远端部分上的光纤光栅在所述基体末端的位置处都能被悬空布置在基体末端的内部。
6.根据权利要求1所述的光纤光栅传感器,其中,每根光纤的远端部分上的光纤光栅在每相邻的两个加强筋之间穿过。
7.根据权利要求1至4中的任一项所述的光纤光栅传感器,所述光纤光栅传感器能够安装于外科手术器械的管状末端。
8.一种感测具有管状末端的仪器的多维力或多维力矩的方法,所述方法包括:
(1)提供根据权利要求1至7中的任一项所述的光纤光栅传感器;
(2)将所述光纤光栅传感器连接到所述仪器的管状末端;
(3)在将所述光纤光栅传感器的基体前端与被测对象接触时,测量所述多根光纤的每根光纤的远端部分上的光纤光栅的中心波长漂移量;
(4)根据所测量的所述中心波长漂移量,计算所述末端的多维力或多维力矩。
CN201910243269.5A 2019-03-11 2019-03-28 用于手术器械的光纤光栅传感器 Active CN111678539B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG10201902169U 2019-03-11
SG10201902169U 2019-03-11

Publications (2)

Publication Number Publication Date
CN111678539A CN111678539A (zh) 2020-09-18
CN111678539B true CN111678539B (zh) 2024-02-13

Family

ID=72425931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910243269.5A Active CN111678539B (zh) 2019-03-11 2019-03-28 用于手术器械的光纤光栅传感器

Country Status (2)

Country Link
CN (1) CN111678539B (zh)
WO (1) WO2020185159A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112168351B (zh) * 2020-09-22 2022-07-12 哈尔滨工业大学 一种基于fbg光纤的机器人关节力感知系统及其优化方法
CN113081235B (zh) * 2021-03-24 2023-10-13 武汉理工大学 环境误差自补偿的心脏消融导管尖端光纤三维力传感器
CN114216594B (zh) * 2021-12-01 2022-11-11 上海交通大学 一种机械手
CN114376729B (zh) * 2022-01-10 2023-05-26 哈尔滨工业大学 一种基于fbg光纤的骨牵引针力感知系统
CN114459645B (zh) * 2022-01-18 2023-05-23 武汉理工大学 一种基于圆弧铰链的光纤光栅压力传感器
CN115290243A (zh) * 2022-07-19 2022-11-04 天津大学 一种用于微创手术的三维力传感器及测量系统
CN116608983B (zh) * 2023-07-21 2023-11-10 武汉理工大学 三维力光纤自解耦感知与容错测量方法及其一体式集成
CN117470429B (zh) * 2023-12-27 2024-04-05 武汉理工大学 一种六维力传感器、手术用钻铣机器人及其应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1743821A (zh) * 2005-09-20 2006-03-08 山东微感光电子有限公司 高性能光纤压力传感器
CN101132730A (zh) * 2005-03-04 2008-02-27 恩杜森斯公司 具有光纤负载感应能力的医疗装置系统
CN103105251A (zh) * 2013-01-23 2013-05-15 杭州珏光物联网科技有限公司 一种光纤光栅三维压力传感器
KR20140088416A (ko) * 2013-01-02 2014-07-10 (주)에프비지코리아 광섬유 압력변위센서
CN204228306U (zh) * 2014-10-16 2015-03-25 中国人民解放军63653部队 双膜片光纤Bragg光栅土压力传感器
CN105973279A (zh) * 2016-06-03 2016-09-28 安徽工业大学 一种单端反射式长周期光纤光栅传感器及其制作工艺
CN205958154U (zh) * 2016-07-08 2017-02-15 深圳市畅格光电有限公司 一种光纤光栅压力传感器
CN107854763A (zh) * 2016-09-21 2018-03-30 羅蓋 可自主控制的拉线注射导管、包括所述导管的机器人系统及其操作方法
CN107884062A (zh) * 2017-12-27 2018-04-06 盐城工学院 一种具有自温补特性的三维微振光纤光栅传感器
CN108430368A (zh) * 2016-01-07 2018-08-21 圣犹达医疗用品国际控股有限公司 用于光学感测的具有多芯光纤的医疗设备
WO2018163622A1 (ja) * 2017-03-10 2018-09-13 ソニー株式会社 手術用システム、外科手術システム、外科手術用器具、並びに外力検知システム
CN108593161A (zh) * 2018-04-20 2018-09-28 南开大学 一种基于光纤光栅的微创外科手术机器人三维力传感器
CN108663110A (zh) * 2018-04-28 2018-10-16 武汉理工大学 基于双轴柔性铰链的光纤光栅加速度传感器及测量方法
WO2019035764A1 (en) * 2017-08-14 2019-02-21 National University Of Singapore ARM SURGICAL MANIPULATOR AND SURGICAL ROBOT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150019A1 (en) * 2012-04-04 2013-10-10 Universite Libre De Bruxelles Optical force transducer
WO2017106699A1 (en) * 2015-12-17 2017-06-22 Millar Instruments Novel fiber-optic pressure sensor configurations

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132730A (zh) * 2005-03-04 2008-02-27 恩杜森斯公司 具有光纤负载感应能力的医疗装置系统
CN101874729A (zh) * 2005-03-04 2010-11-03 恩杜森斯公司 具有光纤负载感应能力的医疗装置系统
CN1743821A (zh) * 2005-09-20 2006-03-08 山东微感光电子有限公司 高性能光纤压力传感器
KR20140088416A (ko) * 2013-01-02 2014-07-10 (주)에프비지코리아 광섬유 압력변위센서
CN103105251A (zh) * 2013-01-23 2013-05-15 杭州珏光物联网科技有限公司 一种光纤光栅三维压力传感器
CN204228306U (zh) * 2014-10-16 2015-03-25 中国人民解放军63653部队 双膜片光纤Bragg光栅土压力传感器
CN108430368A (zh) * 2016-01-07 2018-08-21 圣犹达医疗用品国际控股有限公司 用于光学感测的具有多芯光纤的医疗设备
CN105973279A (zh) * 2016-06-03 2016-09-28 安徽工业大学 一种单端反射式长周期光纤光栅传感器及其制作工艺
CN205958154U (zh) * 2016-07-08 2017-02-15 深圳市畅格光电有限公司 一种光纤光栅压力传感器
CN107854763A (zh) * 2016-09-21 2018-03-30 羅蓋 可自主控制的拉线注射导管、包括所述导管的机器人系统及其操作方法
WO2018163622A1 (ja) * 2017-03-10 2018-09-13 ソニー株式会社 手術用システム、外科手術システム、外科手術用器具、並びに外力検知システム
WO2019035764A1 (en) * 2017-08-14 2019-02-21 National University Of Singapore ARM SURGICAL MANIPULATOR AND SURGICAL ROBOT
CN107884062A (zh) * 2017-12-27 2018-04-06 盐城工学院 一种具有自温补特性的三维微振光纤光栅传感器
CN108593161A (zh) * 2018-04-20 2018-09-28 南开大学 一种基于光纤光栅的微创外科手术机器人三维力传感器
CN108663110A (zh) * 2018-04-28 2018-10-16 武汉理工大学 基于双轴柔性铰链的光纤光栅加速度传感器及测量方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A High-Sensitivity Tactile Sensor Array Based on Fiber Bragg Grating Sensing for Tissue Palpation in Minimally Invasive Surgery;Tianliang Li; Chaoyang Shi; Hongliang Ren;IEEE/ASME Transactions on Mechatronics;第23卷(第15期);2306 - 2315 *
A Millinewton Resolution Fiber Bragg Grating-Based Catheter Two-Dimensional Distal Force;Chaoyang Shi, Tianliang Li, and Hongliang Ren;IEEE Sensors Journal;第18卷(第4期);1539 - 1546 *
Three-Dimensional Catheter Distal Force Sensing for Cardiac Ablation Based on Fiber Bragg Grating;Tianliang Li; Chaoyang Shi; Hongliang Ren;IEEE/ASME Transactions on Mechatronics;第23卷(第5期);2316 - 2327 *
基于光纤Bragg光栅的机器人力/力矩触觉传感技术研究进展;郭永兴,孔建益,熊禾根等;激光与光电子学进展;第53卷(第05期);61-72 *

Also Published As

Publication number Publication date
CN111678539A (zh) 2020-09-18
WO2020185159A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
CN111678539B (zh) 用于手术器械的光纤光栅传感器
US11883131B2 (en) Triaxial fiber optic force sensing catheter
Tosi et al. Fiber optic sensors for biomedical applications
JP6434576B2 (ja) カテーテル用の小型力センサ
EP3560416B1 (en) Touch sensing catheter
JP5270174B2 (ja) 光ファイバ負荷検知能力を備えた医療装置システム
US9907618B2 (en) Medical apparatus system having optical fiber sensing capability
EP3884898B1 (en) Force sensor and catheter
US8894589B2 (en) Medical apparatus system having optical fiber load sensing capability
EP2595587B1 (en) Interferometric force sensor for surgical instruments
JP6924287B2 (ja) 光学力検知カテーテルシステム
Li et al. Disposable FBG-based tridirectional force/torque sensor for aspiration instruments in neurosurgery
Shin et al. Development of tri-axial fiber Bragg grating force sensor in catheter application
Abushagur et al. Sub-millinewton force sensor for Vitreoretinal microsurgery using linear chirp fiber Bragg grating
Shin et al. Development and evaluation of tri-axial fiber Bragg grating in a measurement module for catheterization
Lee et al. Fiber-Bragg-grating based Force Sensor with Dual Structure for Minimally Invasive Surgery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant