JP6688710B2 - Powder-granulating device and powder-granulating method - Google Patents

Powder-granulating device and powder-granulating method Download PDF

Info

Publication number
JP6688710B2
JP6688710B2 JP2016189207A JP2016189207A JP6688710B2 JP 6688710 B2 JP6688710 B2 JP 6688710B2 JP 2016189207 A JP2016189207 A JP 2016189207A JP 2016189207 A JP2016189207 A JP 2016189207A JP 6688710 B2 JP6688710 B2 JP 6688710B2
Authority
JP
Japan
Prior art keywords
powder
granular material
powdery
granular
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189207A
Other languages
Japanese (ja)
Other versions
JP2017070944A (en
Inventor
良輔 真鍋
良輔 真鍋
小林 英男
英男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to CN201680057683.1A priority Critical patent/CN108137243B/en
Priority to PCT/JP2016/079143 priority patent/WO2017061339A1/en
Priority to TW105132153A priority patent/TWI682884B/en
Publication of JP2017070944A publication Critical patent/JP2017070944A/en
Application granted granted Critical
Publication of JP6688710B2 publication Critical patent/JP6688710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sowing (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

本発明は、粉粒体散布装置及びそれを用いた粉粒体の散布方法に関する。   TECHNICAL FIELD The present invention relates to a powder and particle dispersal device and a powder and particle dispersal method using the same.

種々の製品の製造において、連続搬送される基材に対してその幅方向に亘って均一に粉粒体を散布させることが要望されている。斯かる要望に応えることを目的とした技術に関し、例えば特許文献1には、粉粒体を内部に一時的に貯蔵可能なホッパーを備え、該ホッパーから排出させた粉粒体を、連続搬送される基材上に散布可能な粉粒体散布装置において、該ホッパーの下方に、該ホッパーから排出された粉粒体を水平方向に搬送するためのスクリューコンベアを配置し、且つ該スクリューコンベアの略下方に、該粉粒体を垂直方向に搬送するためのロータを配置し、且つ該ロータの下方に、該粉粒体を一粒ずつ垂直方向に整列させた状態で排出するための間隙調節機構を配置することが開示されている。   In the production of various products, it is required to uniformly disperse the powder particles in the width direction of the continuously conveyed base material. Regarding the technology aiming to meet such a demand, for example, Patent Document 1 includes a hopper capable of temporarily storing powder and granules therein, and the powder and granules discharged from the hopper are continuously conveyed. In the powder-dispersion device capable of being sprayed on the base material, below the hopper, a screw conveyor for horizontally conveying the powder discharged from the hopper is arranged, and the screw conveyor is substantially A rotor for transporting the powder or granular material in the vertical direction is arranged below, and a gap adjusting mechanism for discharging the powder or granular material in a state where the powder or granular materials are vertically aligned one by one under the rotor. It is disclosed to arrange.

特開平6−92433号公報JP-A-6-92433

特許文献1記載の粉粒体散布装置は、連続搬送される基材に対して粉粒体を散布する直前に、多数の粉粒体を垂直方向に整列させ、その粉粒体の列から一粒ずつ基材に対して散布するところ、このような散布機構が適用できるのは、粉粒体が真球状で且つ粒度分布の小さい場合に限定される。特許文献1記載の粉粒体散布装置を用いて非真球状の粉粒体や粒度分布の広い粉粒体を散布した場合には、粉粒体を垂直方向に整列させ難く、装置内で粉粒体の詰まり等が発生し、定量性良く粉粒体を散布することができないおそれがある。   The powdery- or granular-material spreading device described in Patent Document 1 aligns a large number of powdery or granular materials in a vertical direction immediately before spraying the powdery or granular materials onto a substrate that is continuously conveyed, and the powdery or granular materials are removed from a row of the powdery or granular materials. When the particles are sprayed on the base material one by one, such a spraying mechanism can be applied only to the case where the powdery particles are spherical and have a small particle size distribution. When a non-spherical powder or granular material or a granular material having a wide particle size distribution is dispersed by using the granular material dispersing device described in Patent Document 1, it is difficult to align the granular material in the vertical direction, and the powder in the apparatus The particles may be clogged, and the particles may not be sprayed with good quantitativeness.

本発明の課題は、連続搬送される基材に対して、粉粒体を該基材の幅方向に均一に定量性良く散布し得る粉粒体散布装置を提供することに関する。   An object of the present invention is to provide a powdery- or granular-material spraying device capable of uniformly spraying a powdery or granular material in a widthwise direction of the base material, which is continuously conveyed, with good quantitativeness.

本発明は、内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置であって、前記排出口は平面視において、前記搬送手段による粉粒体の搬送方向と直交する方向の長さが該搬送方向の長さに比して長い形状をなし、前記移動路は、その前記搬送方向の最大幅が粉粒体の最大粒子径の2倍以上5倍未満、その粉粒体が排出される方向の長さが粉粒体の最大粒子径の1倍以上であり、前記隙間は、粉粒体の最大粒子径の1倍以上である粉粒体散布装置である。   DISCLOSURE OF THE INVENTION The present invention relates to a storage unit capable of temporarily storing powder and granules therein, a discharge port for discharging powder and granules in the storage unit, and a transfer unit for powder and granules connecting the storage unit and the discharge port. A hopper provided with a passage and a discharge space which is arranged with a gap from the discharge port, and conveys the granular material discharged from the discharge port in a predetermined direction and spreads it on a continuously conveyed substrate. In the plan view, the discharge port has a length in a direction orthogonal to a conveying direction of the powder or granular substance by the conveying unit in comparison with a length in the conveying direction. The moving path has a long width, the maximum width in the conveying direction is 2 times or more and less than 5 times the maximum particle diameter of the powder or granular material, and the length in the direction in which the powder or granular material is discharged is equal to or smaller than that of the powder or granular material. It is a powdery- or granular-material-dispersing device having a diameter of 1 time or more of the maximum particle diameter and the gap being 1 time or more of the maximum particle diameter of the powdery or granular material.

また本発明は、前記の本発明の粉粒体散布装置を用いて、粉粒体を、連続搬送される基材上に散布する、粉粒体の散布方法である。   Further, the present invention is a method for spraying a powder or granular material, which comprises using the powder or granular material spraying device of the present invention to spray the powder or granular material on a continuously conveyed substrate.

本発明によれば、連続搬送される基材に対して、粉粒体を該基材の幅方向に均一に定量性良く散布することが可能である。特に本発明の粉粒体散布装置は、該装置内に設けられた粉粒体用移動路における粉粒体の流れを定常流化し且つ粉粒体の流動性を向上させ得るため、粉粒体が真球状ではない場合や粒度分布が比較的広い場合であっても、粉粒体の詰まりが発生し難く、連続搬送される基材に、粉粒体を、該基材の幅方向に均一に散布し得ると共に、該基材の搬送方向に高精度に定量散布し得る。   According to the present invention, it is possible to evenly and quantitatively disperse a powder or granular material in a width direction of a base material that is continuously conveyed. In particular, since the powdery- or granular-material-dispersing device of the present invention can make the flow of powdery or granular material in the moving path for powdery or granular material provided in the device a steady flow and improve the fluidity of the powdery or granular material, Even if the particles are not spherical or have a relatively wide particle size distribution, clogging of the particles is unlikely to occur, and the particles are uniformly distributed in the width direction of the base material that is continuously conveyed. In addition to being able to be sprayed onto the base material, the base material can be sprayed quantitatively with high accuracy in the conveying direction of the base material.

図1は、本発明の粉粒体散布装置の一実施形態を模式的に示す側面図である。FIG. 1 is a side view schematically showing an embodiment of the powdery or granular material spraying device of the present invention. 図2は、図1に示す粉粒体散布装置を、搬送手段による粉粒体の搬送方向の下流側から見た様子を模式的に示す正面図である。FIG. 2 is a front view schematically showing a state in which the powdery- or granular-material spraying device shown in FIG. 1 is viewed from the downstream side in the transporting direction of the powdery- or granular material by the transporting means. 図3は、図1に示す粉粒体散布装置におけるホッパーの斜視図である。FIG. 3 is a perspective view of a hopper in the powdery- or granular-material spraying device shown in FIG. 図4は、図1に示す粉粒体散布装置における排出口及びその近傍を模式的に示す側面図である。FIG. 4 is a side view schematically showing the discharge port and its vicinity in the powdery- or granular-material spraying device shown in FIG. 図5(a)及び図5(b)は、それぞれ、本発明の粉粒体散布装置の他の実施形態の要部(搬送手段)を模式的に示す側面図である。FIG. 5 (a) and FIG. 5 (b) are side views schematically showing main parts (conveying means) of another embodiment of the powdery- or granular-material spraying device of the present invention. 図6(a)及び図6(b)は、それぞれ、本発明の粉粒体散布装置に係る排出口を模式的に示す平面図である。6 (a) and 6 (b) are plan views each schematically showing the discharge port of the powdery or granular material spraying device of the present invention. 図7は、本発明の範囲内の実施例1の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。FIG. 7: is a graph which shows the spraying quantitative property at the time of spraying a granular material using the granular material spraying apparatus of Example 1 within the range of this invention. 図8は、本発明の範囲内の実施例2の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。FIG. 8: is a graph which shows the spraying quantitative property at the time of spraying a granular material using the granular material spraying device of Example 2 within the range of this invention. 図9は、本発明の範囲内の実施例3の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。FIG. 9: is a graph which shows the spraying quantitative property at the time of spraying a granular material using the granular material spraying apparatus of Example 3 within the range of this invention. 図10は、本発明の範囲内の実施例4の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。FIG. 10: is a graph which shows the spraying quantitative property at the time of spraying a granular material using the granular material spraying device of Example 4 within the range of this invention. 図11は、本発明の範囲内の実施例5の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。FIG. 11: is a graph which shows the spraying quantitative property at the time of spraying a granular material using the granular material spraying device of Example 5 within the scope of the present invention. 図12は、本発明の範囲外の比較例1の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。FIG. 12 is a graph showing the spraying quantification property when the powdery or granular material is sprayed using the powdery or granular material spraying device of Comparative Example 1 which is outside the scope of the present invention. 図13は、本発明の範囲外の比較例2の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。FIG. 13: is a graph which shows the spraying quantitative property at the time of spraying a granular material using the granular material spraying device of the comparative example 2 which is outside the scope of the present invention.

以下、本発明について、その好ましい実施形態に基づき図面を参照しながら説明する。図1〜図4には、本発明の粉粒体散布装置の一実施形態である粉粒体散布装置1が示されている。粉粒体散布装置1は、粉粒体Pを内部に一時的に貯蔵可能なホッパー2と、ホッパー2から排出された粉粒体Pを図中符号Xで示す所定の一方向に搬送し、連続搬送される基材100上に散布する搬送手段3とを備えている。基材100は例えば、図1に示す如き搬送ロール、あるいはベルトコンベア等の公知の搬送装置により連続搬送することができる。尚、基材100及びその搬送装置は、粉粒体散布装置1を構成するものではない。   Hereinafter, the present invention will be described based on its preferred embodiments with reference to the drawings. 1 to 4 show a powdery- or granular-material spraying device 1 which is an embodiment of the powder- or granular-material spraying device of the present invention. The powdery- or granular-material spraying device 1 conveys the hopper 2 capable of temporarily storing the powdery or granular material P therein, and the powdery or granular material P discharged from the hopper 2 in a predetermined direction indicated by a symbol X in the drawing, The carrier means 3 is provided for spraying on the base material 100 which is continuously carried. The base material 100 can be continuously transported by a known transport device such as a transport roll as shown in FIG. 1 or a belt conveyor. It should be noted that the base material 100 and the conveying device therefor do not constitute the powdery or granular material spraying device 1.

図1に示すように、ホッパー2は、ベースプレート4上に立設された支持部材5によって、同じくベースプレート4上に固定された搬送手段3(受取手段30)の上方位置に固定されている。   As shown in FIG. 1, the hopper 2 is fixed to a position above the conveying means 3 (reception means 30) which is also fixed on the base plate 4 by a supporting member 5 provided upright on the base plate 4.

ホッパー2は、図1に示す如き側面視、即ち、搬送手段3による粉粒体Pの搬送方向Xと直交する方向から見た場合において、上底が下底より長い台形形状をなしている貯蔵部20と、該貯蔵部20の下端に連接され、該側面視において長方形形状をなす直方体形状の排出部21とを含んで構成されている。貯蔵部20は内部に粉粒体Pを貯蔵可能な空間を有し、その内部空間に粉粒体Pを一時的に貯蔵可能になされている。粉粒体Pは、貯蔵部20の上部開口から粉体供給装置90によって貯蔵部20の内部空間に供給される。排出部21は内部に粉粒体Pの移動路22を有し、且つ排出部21の下端(貯蔵部20側とは反対側の端部)には、粉粒体Pの排出口23が形成されており、貯蔵部20の内部空間と排出口23とが移動路22を介して連通している。ホッパー2は、斯かる構成により、内部に一時的に貯蔵した粉粒体Pを、移動路22を介して排出口23より排出可能になされている。   The hopper 2 has a trapezoidal shape in which the upper bottom is longer than the lower bottom in a side view as shown in FIG. 1, that is, when viewed from a direction orthogonal to the conveying direction X of the powder or granular material P by the conveying means 3. It is configured to include a portion 20 and a rectangular parallelepiped discharge portion 21 that is connected to the lower end of the storage portion 20 and has a rectangular shape in the side view. The storage unit 20 has a space inside which the powder P can be stored, and the powder P can be temporarily stored in the internal space. The powder P is supplied from the upper opening of the storage unit 20 to the internal space of the storage unit 20 by the powder supply device 90. The discharge part 21 has a movement path 22 for the powder P therein, and a discharge port 23 for the powder P is formed at the lower end of the discharge part 21 (the end opposite to the storage part 20 side). Therefore, the internal space of the storage unit 20 and the discharge port 23 communicate with each other via the moving path 22. With such a configuration, the hopper 2 can discharge the powder particles P temporarily stored therein from the discharge port 23 via the moving path 22.

ホッパー2について詳述する。本実施形態においては図1及び図3に示すように、貯蔵部20の内部空間を画成する内側壁20iは、その一部が水平方向及び垂直方向の両方向に交差する方向に延びる傾斜内側壁20isであり、内側壁20iの残りの部分は全て水平方向と直交する垂直方向に延びる垂直壁である。より具体的には図3に示すように、粉粒体Pを貯蔵する貯蔵部20の内部空間は、4枚の内側壁20i,20isで画成されており、各内側壁20i,20isは、それぞれ、粉粒体Pの移動路22を画成する内側壁21iと繋がっているところ、その4枚の内側壁20i,20isのうち搬送方向Xの最下流側又は最上流側に位置する1枚の内側壁20isを除く、残り3枚の内側壁20iの全てが、垂直方向に延びる垂直壁である。ホッパー2がこのような構造を有することにより、貯蔵部20から排出部21に粉粒体Pの集合体が流れ込む際に、その集合体の流動方向と直交する方向の中央部分が周囲部分よりも流動速度が速くなることが抑制されるため、粉粒体Pの均一な散布に有利となる。   The hopper 2 will be described in detail. In the present embodiment, as shown in FIGS. 1 and 3, an inner side wall 20i that defines an internal space of the storage unit 20 has an inclined inner side wall, a part of which extends in a direction intersecting both the horizontal direction and the vertical direction. 20is, and the rest of the inner wall 20i is a vertical wall extending in the vertical direction orthogonal to the horizontal direction. More specifically, as shown in FIG. 3, the internal space of the storage unit 20 that stores the powder or granular material P is defined by four inner side walls 20i and 20is, and each inner side wall 20i and 20is is One of the four inner side walls 20i, 20is, which is connected to the inner side wall 21i that defines the moving path 22 of the granular material P, is located on the most downstream side or the most upstream side in the transport direction X. All of the remaining three inner side walls 20i, except the inner side wall 20is, are vertical walls extending in the vertical direction. Since the hopper 2 has such a structure, when the aggregate of the powder or granular material P flows from the storage unit 20 into the discharge unit 21, the central portion in the direction orthogonal to the flow direction of the aggregate is more than the peripheral portion. Since the increase in the flow rate is suppressed, it is advantageous for the uniform distribution of the powder P.

また、排出部21では、図1及び図3に示すように、粉粒体Pの移動路22を画成する内側壁21iの全てが、水平方向と直交する垂直方向に延びる垂直壁となっている。換言すると、排出部21の内部空間である移動路22は、該排出部21の貯蔵部20との接続部側端部から排出口23に向けて、搬送方向X及び搬送方向Xと直交する方向Yの何れに対しても同じ長さを有する直方体形状となっている。従って、本実施形態のホッパー2では、図3に示すように、搬送方向Xに関しては、貯蔵部20の上底の長さが排出口23の長さよりも長く、搬送方向Xに直交する方向Yに関しては、貯蔵部20の上底の長さが排出口23の長さと同じになっている。ホッパー2はこの構造によって、粉粒体Pを排出口23から安定的に定量排出することが容易になっている。   Moreover, in the discharge part 21, as shown in FIG. 1 and FIG. 3, all of the inner side walls 21i that define the moving path 22 of the granular material P are vertical walls extending in the vertical direction orthogonal to the horizontal direction. There is. In other words, the moving path 22 which is the internal space of the discharging unit 21 is directed in the transport direction X and the direction orthogonal to the transport direction X from the end of the discharging unit 21 on the side of the connecting portion with the storage unit 20 toward the discharging port 23. It has a rectangular parallelepiped shape having the same length for any Y. Therefore, in the hopper 2 of the present embodiment, as shown in FIG. 3, in the transport direction X, the length of the upper bottom of the storage unit 20 is longer than the length of the discharge port 23, and the direction Y is orthogonal to the transport direction X. As for the above, the length of the upper bottom of the storage unit 20 is the same as the length of the discharge port 23. This structure makes it easy for the hopper 2 to stably and quantitatively discharge the powder P from the discharge port 23.

搬送手段3は、図1に示すように、ホッパー2から排出された粉粒体Pを受け取る受取手段30と、受取手段30を振動させる振動発生手段31とを含んで構成されている。搬送手段3は、ホッパー2の下端に位置する排出口23に対して隙間Gを置いて配置されており、より具体的には、受取手段30の上面30a、即ち、ホッパー2から排出された粉粒体Pを受け取って搬送する面30aと排出口23との間に所定の隙間Gが形成されるように、配置されている。振動発生手段31は、受取手段30の下面30bに固定されている。受取手段30において、粉粒体Pの受け取り及び搬送に利用される(粉粒体Pと接触する)のは、ホッパー2(排出口23)の下方に位置する部分及びその近傍であり、それ以外の部分は基本的に粉粒体Pと接触しない粉粒体非接触部であるところ、振動発生手段31は、受取手段30の該粉粒体非接触部における下面30bに固定されている。   As shown in FIG. 1, the conveying means 3 is configured to include a receiving means 30 that receives the granular material P discharged from the hopper 2, and a vibration generating means 31 that vibrates the receiving means 30. The conveying means 3 is arranged with a gap G with respect to the discharge port 23 located at the lower end of the hopper 2, and more specifically, the upper surface 30a of the receiving means 30, that is, the powder discharged from the hopper 2. It is arranged so that a predetermined gap G is formed between the surface 30a that receives and conveys the granules P and the discharge port 23. The vibration generating means 31 is fixed to the lower surface 30b of the receiving means 30. In the receiving means 30, the part (contact with the powder P) used for receiving and transporting the powder P is the portion located below the hopper 2 (discharge port 23) and its vicinity, and other than that. The portion of (1) is basically a non-contact portion of the granular material that does not come into contact with the granular material P, and the vibration generating means 31 is fixed to the lower surface 30b of the non-contact portion of the receiving means 30.

搬送手段3は、振動発生手段31を作動させて受取手段30を振動させることによって、受取手段30上の粉粒体Pを所定の方向に搬送可能になされている。粉粒体散布装置1は、振動発生手段31に印加する電圧及び周波数を制御する振動制御部(図示せず)を備えており、該振動制御部によって、受取手段30の振動数及び振幅を制御し、延いては受取手段30上の粉粒体Pの搬送状態を制御する。即ち、前記振動制御部による制御下、振動発生手段31の非作動時には、受取手段30は振動していないため、受取手段30上の粉粒体Pの搬送は停止又は抑制されているが、斯かる状態から振動発生手段31を作動させると、受取手段30が振動を開始することによって、受取手段30上の粉粒体Pの停止又は抑制が解除され、粉粒体Pは、図中符号Xで示す方向に搬送され、最終的には図1及び図2に示すように、受取手段30の搬送方向Xの先端部から落下して、受取手段30の下方を連続搬送されている基材100上に散布される。   The conveying means 3 is capable of conveying the powder or granular material P on the receiving means 30 in a predetermined direction by operating the vibration generating means 31 to vibrate the receiving means 30. The powdery or granular material spraying device 1 includes a vibration control unit (not shown) that controls the voltage and frequency applied to the vibration generating unit 31, and the vibration control unit controls the frequency and amplitude of the receiving unit 30. Then, by extension, the conveyance state of the powder P on the receiving means 30 is controlled. That is, under the control of the vibration control section, when the vibration generating means 31 is not in operation, the receiving means 30 is not vibrating, so that the transportation of the powder P on the receiving means 30 is stopped or suppressed. When the vibration generating means 31 is actuated from the above-mentioned state, the receiving means 30 starts to vibrate, so that the suspension or suppression of the granular material P on the receiving means 30 is released, and the granular material P is denoted by X in the figure. 1, and finally, as shown in FIGS. 1 and 2, the base material 100 drops from the tip of the receiving means 30 in the conveying direction X and is continuously conveyed below the receiving means 30. Sprinkled on.

受取手段30としては、振動発生手段31によって発生する振動を受取手段30上の粉粒体Pに適切に伝えるようにする観点から、平板状のものが好ましく、より具体的には、図1に示す如き扁平な平板部材が好ましい。斯かる平板部材からなる受取手段30の材質は特に制限されないが、例えば、鉄、ステンレス、アルミニウム、プラスチック等が挙げられる。   The receiving means 30 is preferably a flat plate from the viewpoint of appropriately transmitting the vibration generated by the vibration generating means 31 to the powder or granules P on the receiving means 30, and more specifically, FIG. A flat plate member as shown is preferred. The material of the receiving means 30 composed of such a flat plate member is not particularly limited, but examples thereof include iron, stainless steel, aluminum, and plastic.

また、受取手段30の搬送方向Xに沿う側縁部に、上面30aから上方(ホッパー2側)に向かって立設するガイド部材を設けても良い。受取手段30にこのようなガイド部材を設けることによって、ホッパー2の排出口23から排出された粉粒体Pを受取手段30で受け取ることがより一層確実に行えるようになると共に、受け取った粉粒体Pを基材100に散布するまでの間、受取手段30の上面30aからこぼさずに上面30a上に留めておくことがより一層確実に行えるようになるため、搬送方向X以外の想定外の方向から粉粒体Pを散布する不都合が回避され、受取手段30の搬送方向Xの先端部から基材100に対して粉粒体Pを均一に散布することが確実になされるようになる。   In addition, a guide member that stands up from the upper surface 30a toward the upper side (the hopper 2 side) may be provided at the side edge portion of the receiving means 30 along the transport direction X. By providing such a guide member in the receiving means 30, it becomes possible to more reliably receive the powdery or granular material P discharged from the discharge port 23 of the hopper 2 by the receiving means 30, and the received powdery or granular material is received. Until the body P is sprayed on the base material 100, it is possible to more reliably keep the body P on the upper surface 30a without spilling from the upper surface 30a of the receiving means 30. The inconvenience of spraying the powder or granules P from the direction is avoided, and it becomes possible to surely spray the powder or granules P from the tip of the receiving means 30 in the transport direction X onto the base material 100.

振動発生手段31としては、受取手段30上の粉粒体Pを所望の一方向に搬送させ得る振動成分を発生可能なものであれば良く、例えば、圧電セラミック等の圧電素子、振動フィーダー等の公知の振動発生手段が挙げられる。中でも振動フィーダーは、振動発生手段31として好ましく用いられる。また、振動発生手段31の振動数は特に制限されないが、粉粒体の搬送性並びに散布の均一性及び定量性等の観点から、好ましくは50Hz以上、さらに好ましくは100Hz以上、そして、好ましくは500Hz以下、さらに好ましくは300Hz以下、より具体的には、好ましくは50〜500Hz、さらに好ましくは100〜300Hzである。   The vibration generating means 31 may be any as long as it can generate a vibration component capable of transporting the powder or granular material P on the receiving means 30 in a desired one direction. For example, a piezoelectric element such as a piezoelectric ceramic, a vibration feeder, or the like. Known vibration generating means can be used. Above all, the vibration feeder is preferably used as the vibration generating means 31. The frequency of vibration of the vibration generating means 31 is not particularly limited, but from the viewpoint of the transportability of the powder and granules and the uniformity and quantitativeness of the dispersion, etc., preferably 50 Hz or higher, more preferably 100 Hz or higher, and preferably 500 Hz. Or less, more preferably 300 Hz or less, more specifically 50 to 500 Hz, and further preferably 100 to 300 Hz.

本実施形態の粉粒体散布装置1は、連続搬送される基材100に対して、粉粒体Pを該基材100の幅方向(基材100の搬送方向と直交する方向。図中符号Yで示す方向。)に均一性に優れ定量性良く散布することを主たる課題とするものであり、斯かる課題を解決するために下記(1)〜(4)が採用されている。
(1)排出口23は平面視(粉粒体Pの排出方向と直交する方向の断面視)において、搬送手段3による粉粒体Pの搬送方向Xと直交する方向(幅方向Y)の長さW(図3参照)が、搬送方向Xの長さD(図1、図3及び図4参照)に比して、長い形状をなしている。
(2)移動路22は、搬送方向Xの最大幅Dが粉粒体Pの最大粒子径r(図4参照)の2倍以上5倍未満である(2≦D/r<5)。
(3)移動路22は、粉粒体Pの排出方向の長さH(図2及び図3参照)が粉粒体Pの最大粒子径rの1倍以上である(r≦H)。
(4)隙間G(図1、図2及び図4参照)は、粉粒体Pの最大粒子径rの1倍以上である(r≦G)。
The powdery- or granular-material spraying device 1 of the present embodiment has a width direction of the powdery or granular material P (direction orthogonal to the transporting direction of the base material 100. In the direction indicated by Y.), the main problem is to spray with excellent uniformity and with good quantitativeness, and the following (1) to (4) are adopted in order to solve such problems.
(1) The discharge port 23 has a length in a direction (width direction Y) orthogonal to the transport direction X of the powder or granular material P by the transport means 3 in a plan view (cross-sectional view orthogonal to the discharge direction of the powder or granular material P). The length W (see FIG. 3) is longer than the length D in the transport direction X (see FIGS. 1, 3 and 4).
(2) The maximum width D in the transport direction X of the moving path 22 is not less than 2 times and less than 5 times the maximum particle diameter r of the powder P (see FIG. 4) (2 ≦ D / r <5).
(3) The length H (see FIGS. 2 and 3) of the moving path 22 in the discharging direction of the powder P is 1 or more times the maximum particle diameter r of the powder P (r ≦ H).
(4) The gap G (see FIG. 1, FIG. 2, and FIG. 4) is at least 1 time the maximum particle diameter r of the powder P (r ≦ G).

粉粒体Pの最大粒子径rは公知の方法により測定することができ、具体的には例えば、乾式篩法(JIS Z8815−1994)、動的光散乱法、レーザー回折法、遠心沈降法、重力沈降法、画像イメージング法、FFF(フィールド・フロー・フラクショネーション)法、静電気検知体法、コールター法等が挙げられる。これらの中でも、レーザー回折法又はコールター法で測定した最大粒子径rを採用することが、再現性と精度の点から好ましい。特に、対象とする粉粒体の形状が不定形である場合、あるいは粉粒体の粒子径が5mm程度以下である場合は、レーザー回折法を用いて粉粒体の最大粒径rを測定することが好ましい。   The maximum particle diameter r of the powder P can be measured by a known method, and specifically, for example, dry sieving method (JIS Z8815-1994), dynamic light scattering method, laser diffraction method, centrifugal sedimentation method, A gravity sedimentation method, an image imaging method, an FFF (field flow fractionation) method, an electrostatic detection method, a Coulter method and the like can be mentioned. Among these, it is preferable to use the maximum particle size r measured by the laser diffraction method or the Coulter method from the viewpoint of reproducibility and accuracy. Particularly, when the shape of the target powder or granule is irregular, or when the particle diameter of the powder or granule is about 5 mm or less, the maximum particle size r of the powder or granule is measured by using the laser diffraction method. It is preferable.

前記(1)に関し、排出部21の下端に位置する排出口23の平面視形状は、排出部21内の移動路22における粉粒体Pの流れに少なからず影響を及ぼす。本発明者らの知見によれば、排出口23の平面視形状が、長方形形状又はそれに準じた形状、即ち「一方向に長い形状」であると、真円形状や正方形形状の場合に比して、移動路22における粉粒体Pの流れが定常流化されやすく、前記課題の解決に繋がる。前記(1)は斯かる知見に基づき採用されたものであり、排出口23においては、「幅方向Yの長さW>搬送方向Xの長さD」なる大小関係が成立している。長さWと長さDとの比は、W/Dとして、好ましくは2以上、さらに好ましくは5以上、そして、好ましくは1000以下、さらに好ましくは100以下、より具体的には、好ましくは2〜1000、さらに好ましくは5〜100である。尚、長さWは、排出口23の幅方向Yにおける最大長さを意味する。   Regarding the above (1), the plan view shape of the discharge port 23 located at the lower end of the discharge unit 21 has a considerable influence on the flow of the powder or granular material P in the moving path 22 in the discharge unit 21. According to the knowledge of the present inventors, when the shape of the outlet 23 in a plan view is a rectangular shape or a shape similar thereto, that is, a “long shape in one direction”, as compared with the case of a perfect circle shape or a square shape. Thus, the flow of the powder or granular material P in the moving path 22 is likely to be a steady flow, which leads to the solution of the above problems. The above (1) is adopted based on such knowledge, and the discharge port 23 has a size relation of “length W in the width direction Y> length D in the transport direction X”. The ratio of the length W to the length D, as W / D, is preferably 2 or more, more preferably 5 or more, and preferably 1000 or less, more preferably 100 or less, and more specifically, 2 ˜1000, more preferably 5 to 100. The length W means the maximum length of the discharge port 23 in the width direction Y.

前記(2)に関し、移動路22の最大幅Dが粉粒体Pの最大粒子径rの2倍未満では、移動路22において粉粒体Pの詰まりが発生するおそれがあり、また、移動路22の最大幅Dが粉粒体Pの最大粒子径rの5倍以上では、移動路22における粉粒体Pの流れを定常流化することが困難となり、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布し得ない。移動路22の最大幅Dは、粉粒体Pの最大粒子径rを基準として、好ましくは3倍以上4倍未満である。   Regarding the above (2), if the maximum width D of the moving path 22 is less than twice the maximum particle diameter r of the granular material P, the granular material P may be clogged in the moving path 22. When the maximum width D of 22 is 5 times or more of the maximum particle diameter r of the powder P, it becomes difficult to make the flow of the powder P in the moving path 22 a steady flow, and the powder 100 with respect to the base material 100 becomes difficult. P cannot be uniformly sprayed in the width direction Y with good quantitativeness. The maximum width D of the moving path 22 is preferably 3 times or more and less than 4 times, based on the maximum particle diameter r of the powder P.

前記(3)に関し、移動路22の長さHが粉粒体Pの最大粒子径rの1倍未満では、移動路22内において粉粒体Pの流れが定常流化されないおそれがあり、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布し得ない。移動路22の長さHは、粉粒体Pの最大粒子径rを基準として、好ましくは5倍以上、さらに好ましくは10倍以上である。移動路22の長さHの上限値としては、粉粒体Pの流れの定常流化の観点からは制限されないが、装置の適正な大さの観点から決定することができ、例えば、粉粒体Pの最大粒子径rの100倍以下であることが好ましい。   Regarding the above (3), if the length H of the moving path 22 is less than 1 times the maximum particle diameter r of the powder P, the flow of the powder P may not be steadily flowed in the moving path 22, The powder particles P cannot be uniformly sprayed in the width direction Y on the material 100 with good quantitativeness. The length H of the moving path 22 is preferably 5 times or more, more preferably 10 times or more, based on the maximum particle diameter r of the powder P. The upper limit value of the length H of the moving path 22 is not limited from the viewpoint of the steady flow of the powder P, but can be determined from the viewpoint of the proper size of the device. It is preferably 100 times or less of the maximum particle diameter r of the body P.

前記(4)に関し、ホッパー2(排出部21)の排出口23と搬送手段3(受取手段30)の上面との隙間Gが、粉粒体Pの最大粒子径rの1倍より小さいと、隙間Gにおいて粉粒体Pのつまりが発生するおそれがあり、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布し得ない。この点に関して、粉粒体Pの平均粒径以上の隙間Gを設けていても、粉粒体散布装置1を長時間運転する場合には、排出口23と搬送手段3との間に詰りが生じるといった不都合が生じうるので、大量生産する製品の製造には不向きである。隙間Gは、粉粒体Pの最大粒子径rを基準として、好ましくは1.5倍以上、さらに好ましくは2倍以上、そして、好ましくは10倍以下、さらに好ましくは5倍以下、より具体的には、好ましくは1.5倍以上10倍以下、さらに好ましくは2倍以上5倍以下である。隙間Gが粉粒体Pの最大粒子径rの10倍以下であると、粉粒体Pの排出速度を一定に保ち易い。特に、搬送手段3に振動発生手段31を備えている場合、振動発生手段31の振幅又は振動数により粉粒体Pの排出量を制御できるが、隙間Gが最大粒子径rの10倍以下であると、ホッパー2の排出口23から排出される粉粒体Pの排出量を制御し易いので好ましい。   Regarding the above (4), when the gap G between the discharge port 23 of the hopper 2 (discharge unit 21) and the upper surface of the conveying unit 3 (receiving unit 30) is smaller than 1 times the maximum particle size r of the powder P, The powder particles P may be clogged in the gap G, and the powder particles P cannot be uniformly sprayed on the base material 100 in the width direction Y with good quantitativeness. In this regard, even if the gap G having an average particle size of the powder or granular material P or more is provided, when the powder or granular material spraying device 1 is operated for a long time, clogging between the discharge port 23 and the conveying means 3 occurs. It is not suitable for mass-produced products because it may cause inconvenience. The gap G is preferably 1.5 times or more, more preferably 2 times or more, and preferably 10 times or less, more preferably 5 times or less, based on the maximum particle diameter r of the powder P, and more specifically. It is preferably 1.5 times or more and 10 times or less, more preferably 2 times or more and 5 times or less. When the gap G is 10 times or less of the maximum particle diameter r of the powder or granule P, it is easy to keep the discharge speed of the powder or granule P constant. Particularly, when the conveying means 3 is provided with the vibration generating means 31, the discharge amount of the powder P can be controlled by the amplitude or the frequency of the vibration generating means 31, but the gap G is 10 times or less of the maximum particle diameter r. It is preferable that the discharge amount of the powder P that is discharged from the discharge port 23 of the hopper 2 is easily controlled.

また、ホッパー2内における粉粒体Pの流れの定常流化及び流動性のさらなる向上の観点から、前記(1)〜(4)を具備することに加えてさらに、ホッパー2における粉粒体Pと接触する内面の水平方向に対する角度が、粉粒体Pの安息角θ(図4参照)以上であることが好ましい。本実施形態においては、ホッパー2の側壁は、貯蔵部20の傾斜側壁20s(図1及び図2参照)を除き、全て水平方向と直交する垂直方向に延びる垂直壁であり、それら垂直壁の内面の水平方向に対する角度は90°であって粉粒体Pの安息角θよりも大きく、また、貯蔵部20の傾斜側壁20sの内面の水平方向に対する角度は、粉粒体Pの安息角θと同じかそれよりも大きくなされている。「ホッパーにおける粉粒体と接触する内面の水平方向に対する角度」をθ1とした場合、θ1と粉粒体の安息角θとの比は、θ1/θとして、好ましくは1.2以上、さらに好ましくは1.5以上である。また、θ1は、好ましくは1.2θ以上であって90°以下、さらに好ましくは1.5θ以上であって90°以下である。   In addition to the provision of the above (1) to (4), from the viewpoint of achieving a steady flow of the powder P in the hopper 2 and further improving the fluidity, the powder P in the hopper 2 is further provided. The angle of the inner surface in contact with the horizontal direction is preferably equal to or greater than the angle of repose θ of the powder P (see FIG. 4). In the present embodiment, the side walls of the hopper 2 are all vertical walls extending in the vertical direction orthogonal to the horizontal direction except for the inclined side walls 20s (see FIGS. 1 and 2) of the storage unit 20, and the inner surfaces of the vertical walls. Is 90 ° with respect to the horizontal direction and is larger than the angle of repose θ of the powder P, and the angle of the inner surface of the inclined side wall 20s of the storage unit 20 with respect to the horizontal is the angle of repose θ of the powder P. Made the same or larger. When the “angle of the inner surface of the hopper in contact with the granular material with respect to the horizontal direction” is θ1, the ratio of θ1 to the repose angle θ of the granular material is θ1 / θ, preferably 1.2 or more, and more preferably Is 1.5 or more. Further, θ1 is preferably 1.2θ or more and 90 ° or less, more preferably 1.5θ or more and 90 ° or less.

また、基材100に対する粉粒体Pの散布精度を安定的に向上させる観点から、前記(1)〜(4)を具備することに加えてさらに、図4を参照して、排出口23の中心を通って垂直方向に延びる仮想直線VLと搬送手段3(受取手段30の上面30a)との交点23Aは、隙間G、粉粒体Pの安息角θとの関係において、搬送手段3における搬送方向Xの下流側端3DEからG/tanθ以上15G以下の範囲に位置していることが好ましい。換言すれば、搬送手段3(受取手段30)の下流側端3DEと交点23Aとの離間距離Lは、G/tanθ以上15G以下であることが好ましい。斯かる離間距離Lが短いほど、粉粒体Pの散布精度の点で好ましいが、離間距離Lが短すぎると、排出口23から排出された粉粒体Pが、搬送手段3と接触せずに又は粉粒体Pの安息角が崩壊して、直接その下方に位置する基材100に散布されてしまうおそれがあり、散布精度の安定的な向上を却って阻害するおそれがある。離間距離Lは、G/tanθ以上10G以下であることがさらに好ましい。   Further, from the viewpoint of stably improving the spraying accuracy of the powder P on the base material 100, in addition to the provision of the above (1) to (4), referring to FIG. An intersection point 23A between the imaginary straight line VL extending in the vertical direction through the center and the conveying means 3 (the upper surface 30a of the receiving means 30) has a relation between the gap G and the repose angle θ of the granular material P. It is preferably located in the range of G / tan θ or more and 15 G or less from the downstream end 3DE in the direction X. In other words, the separation distance L between the downstream end 3DE of the conveying means 3 (reception means 30) and the intersection 23A is preferably G / tan θ or more and 15 G or less. The shorter the separation distance L is, the more preferable in terms of the accuracy of spraying the powder particles P. However, if the separation distance L is too short, the powder particles P discharged from the discharge port 23 do not come into contact with the conveying means 3. Alternatively, the angle of repose of the powder or granules P may collapse, and the powder P may be directly sprayed on the base material 100 located therebelow, which may rather hinder stable improvement of spraying accuracy. The distance L is more preferably G / tan θ or more and 10 G or less.

粉粒体Pとしては、吸水性ポリマー粒子、砂糖、活性炭、小麦粉、PEペレット、PPペレット、PETチップ、PCチップ、PEグラニュール、PBAビーズ、等の有機物の粉粒体や、金属粉、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネス、ガラス、石灰等の無機物の粉粒体が挙げられる。粉粒体Pの形状は特に制限されず、例えば、球状、碁石状、楕円形、楕円柱、針状、キュービック状等が挙げられる。粉粒体散布装置1によれば、粉粒体Pが真球状の場合は勿論のこと、真球状以外の形状であっても、基材100の幅方向Yに均一に定量性良く散布することができる。   As the powder P, water absorbent polymer particles, sugar, activated carbon, wheat flour, PE pellets, PP pellets, PET chips, PC chips, PE granules, PBA beads, and other organic substance powders, metal powder, chloride Inorganic powders such as sodium, potassium chloride, calcium chloride, magnesium chloride, glass and lime can be used. The shape of the powder P is not particularly limited, and examples thereof include a spherical shape, a go-stone shape, an elliptical shape, an elliptic cylinder, a needle shape, and a cubic shape. According to the powdery or granular material spraying device 1, not only when the powdery or granular material P has a true spherical shape, but also when the powdery or granular material P has a shape other than a true spherical shape, it is possible to uniformly spray the base material 100 in the width direction Y with good quantitativeness. You can

粉粒体Pと接触するホッパー2の内側壁20i,20is,21iの素材としては、粉粒体Pが付着しにくい素材であることが好ましい。例えば、粉粒体として、塩化ナトリウム等の潮解性を有するものや、吸水性ポリマーのように吸水による変性を来たすような材料を使用する場合には、ホッパー2の内側壁として、熱伝導性が比較的低い素材を用いることが好ましい。熱伝導率としては、粉粒体の散布が行われる作業時の温度下において、25W/m・K以下のものを使用すると好ましい。熱伝導性の低い材料をホッパー2の内側壁として使用することで、ホッパー2内の結露を防止しやすくなるからである。また、ホッパー2の内側壁の素材としては、該内側壁とは反対側に位置してホッパー2の外面を構成する外側壁よりも、熱伝導性の低い素材などを選択することも可能である。そのような相対的に熱伝導性の低い内側壁をホッパー2に採用した場合には、特に、粉粒体として吸水性ポリマーを用いる場合では、吸水性ポリマーが吸水によって膨張したり、粘着性を発現してお互いにくっついてしまうという不都合も生じ難くなるので、後述する本発明の効果を一層確実に奏する観点から好ましい。また、ホッパー2の内側壁20の素材としては、粉粒体に起因する腐食が発生しにいものであることが好ましく、具体的には例えば、ステンレス鋼、ガラス、ジルコニア、窒化ケイ素等のセラミック材料等が挙げられる。さらに例えば、樹脂粉体のような非導電性材料で、粉粒体Pどうしの間や粉粒体Pと内側壁20i,20is,21iとの接触により静電気が発生しうる材料を粉粒体Pとして使用する場合には、ホッパー2の内側壁20i,20is,21iとして、導電性を有する素材を用いることが望ましい。導電性を有する材料をホッパーの内側壁として使用することで、静電気発生を防止できるからである。そのような材料としては、たとえば、ステンレス鋼、アルミニウム、銅のような金属材料、導電性セラミック、導電性樹脂のような導電性を付与した材料等が挙げられる。   As a material for the inner sidewalls 20i, 20is, 21i of the hopper 2 that comes into contact with the powder P, it is preferable that the powder P is not easily attached to the inner walls 20i, 20is, 21i. For example, in the case of using a deliquescent material such as sodium chloride as the powder or granules, or a material such as a water-absorbing polymer that is modified by absorption of water, the inner wall of the hopper 2 has a high thermal conductivity. It is preferable to use a relatively low material. As for the thermal conductivity, it is preferable to use one having a thermal conductivity of 25 W / m · K or less at the temperature during the operation of spraying the powder and granules. By using a material having low thermal conductivity as the inner side wall of the hopper 2, it becomes easy to prevent dew condensation in the hopper 2. Further, as the material of the inner wall of the hopper 2, it is also possible to select a material having lower thermal conductivity than the outer wall which is located on the opposite side of the inner wall and constitutes the outer surface of the hopper 2. . When such an inner wall having a relatively low thermal conductivity is adopted for the hopper 2, particularly when a water-absorbent polymer is used as the powder or granular material, the water-absorbent polymer expands due to water absorption or has an adhesive property. Since the disadvantage that they are expressed and stick to each other is less likely to occur, it is preferable from the viewpoint of more reliably exhibiting the effects of the present invention described below. In addition, the material of the inner wall 20 of the hopper 2 is preferably one that is less likely to cause corrosion due to the granular material, and specifically, for example, a ceramic material such as stainless steel, glass, zirconia, or silicon nitride. Etc. Further, for example, a non-conductive material such as a resin powder, which is capable of generating static electricity between the particles P or between the particles P and the inner sidewalls 20i, 20is, 21i, is used as the particles P. In this case, it is desirable to use a conductive material for the inner side walls 20i, 20is, 21i of the hopper 2. This is because static electricity can be prevented by using a conductive material as the inner wall of the hopper. Examples of such a material include metallic materials such as stainless steel, aluminum, and copper, conductive ceramics, and materials having conductivity such as a conductive resin.

また、ホッパー2の内側壁20i,20is,21iとしては、粉粒体Pが円滑に排出口23へと流れ出るような表面性状を有することが好ましい。従って、ホッパー2の内側壁は、表面が滑らかであって、かつ、動摩擦係数が低いことが好ましい。特に、内側壁のうち、水平方向及び垂直方向の両方向に交差する方向に延びる傾斜内側壁20isが、そのような性状であることが好ましい。具体的には、ホッパー2の内側壁20i,20is,21iの表面粗さ(Ra)は、JIS B 0601−2001に従って測定された値で、10μm以下、特に1μm以下であることが好ましい。   Further, it is preferable that the inner wall surfaces 20i, 20is, 21i of the hopper 2 have a surface texture that allows the powder P to smoothly flow out to the discharge port 23. Therefore, it is preferable that the inner wall of the hopper 2 has a smooth surface and a low coefficient of dynamic friction. In particular, it is preferable that, among the inner side walls, the inclined inner side wall 20is extending in a direction intersecting both the horizontal direction and the vertical direction has such a property. Specifically, the surface roughness (Ra) of the inner side walls 20i, 20is, 21i of the hopper 2 is a value measured according to JIS B 0601-2001, and is preferably 10 μm or less, and particularly preferably 1 μm or less.

基材100は、シート状の基材であることが好ましいが、シート状の基材に限られない。シート状の基材としては、各種製法による不織布、樹脂フィルム、織物、編み物、紙等、及びこれらのうちの同種又は異種のものを複数枚積層した積層体等が挙げられる。   The base material 100 is preferably a sheet-shaped base material, but is not limited to the sheet-shaped base material. Examples of the sheet-shaped base material include non-woven fabrics, resin films, woven fabrics, knitted fabrics, papers, and the like produced by various manufacturing methods, and a laminated body in which a plurality of the same or different types of these are laminated.

また、基材100としては、シート状の材料の上に機能性を有する材料や組成物を積層したものが挙げられる。例えば、フィルムや不織布等のシート状材料の上に、被酸化性金属及び水を含む発熱組成物を塗布するなどして配置したものを、基材100とすることができる。そのような形態の例としては、「本発明の粉粒体散布装置を用いて、粉粒体を、連続搬送されるシート状の基材上に散布する、粉粒体の散布方法」の一例として、被酸化性金属の粒子、及び水を含む発熱シートを製造する際に、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子、金属粒子、固形の電解質等の1又は2以上を散布して、発熱組成物を形成する方法が挙げられる。この基材100の発熱組成物の層に、塩化ナトリウム等の電解質や吸水性ポリマーといった粉粒体を、本発明の粉粒体散布装置を用いて散布することにより、これら粉粒体が均一な状態で配置された発熱体を得ることができる。このような発熱体であれば、発熱ムラの少ない、優れた発熱特性を得られることが期待できる。尚、本発明の粉粒体散布装置及び粉粒体の散布方法は、発熱体の製造方法において好ましいものであるが、他の機能性シートの製造方法にも適用可能である。例えば、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子を散布し、吸水性シートを製造することができる。   Examples of the base material 100 include a sheet-shaped material on which a functional material or composition is laminated. For example, the substrate 100 may be a sheet-shaped material such as a film or a non-woven fabric, which is arranged by applying a heat-generating composition containing an oxidizable metal and water. As an example of such a form, an example of "a method for applying a powder or granular material, in which the powder or granular material is sprayed on a continuously conveyed sheet-like base material by using the powder or granular material spraying device of the present invention" As the particles of the oxidizable metal, and when producing a heat-generating sheet containing water, on a sheet-shaped substrate made of a fiber sheet that is continuously conveyed, superabsorbent polymer particles, metal particles, solid electrolyte And the like, or a method of forming an exothermic composition by spraying one or more of the above. By applying a powder or granular material such as an electrolyte such as sodium chloride or a water-absorbing polymer to the heat-generating composition layer of the base material 100 using the powder or granular material spraying device of the present invention, these powder or granular materials are made uniform. It is possible to obtain a heating element arranged in a state. With such a heating element, it can be expected that excellent heating characteristics with less uneven heating can be obtained. The powdery- or granular-material spraying device and the powdery- or granular-materials spraying method of the present invention are preferable in the method for manufacturing a heating element, but can be applied to other methods for manufacturing functional sheets. For example, particles of a super absorbent polymer can be dispersed on a sheet-shaped substrate made of a continuously conveyed fiber sheet to produce a absorbent sheet.

また、基材100が水分を含む組成物等を含んでいることに起因して、該基材100上に散布された粉粒体がその散布直後から該基材100上を移動困難である場合には、排出口23から均一な粉粒体散布が行われることが重要となる。その観点から、本発明の粉粒体散布装置は非常に有用なものである。   Further, when the base material 100 contains a composition containing water or the like, it is difficult for the powder or granules dispersed on the base material 100 to move on the base material 100 immediately after the dispersion. Therefore, it is important that the powder particles are uniformly sprayed from the discharge port 23. From that point of view, the powdery or granular material spraying device of the present invention is very useful.

図5には、本発明の粉粒体散布装置の他の実施形態の要部が示されている。後述する他の実施形態については、前記粉粒体散布装置1と異なる構成部分を主として説明し、同様の構成部分は同一の符号を付して説明を省略する。特に説明しない構成部分は、前記粉粒体散布装置1についての説明が適宜適用される。   FIG. 5 shows a main part of another embodiment of the powdery- or granular-material spraying device of the present invention. Regarding other embodiments to be described later, a description will be mainly given of components that are different from those of the powdery or granular material spraying device 1, and the same components will be denoted by the same reference numerals. The description of the powder-particle dispersal device 1 is appropriately applied to components that are not particularly described.

図5に示す粉粒体散布装置1A,1Bは、それぞれ搬送手段が、前記粉粒体散布装置1と異なる。
図5(a)に示す粉粒体散布装置1Aにおける搬送手段3Aは、ホッパー2の排出口23の下方に配置され、回転軸周りに回転する円筒状の搬送ロール32を含んで構成されており、排出口23から排出された粉粒体Pを搬送ロール32の外周面で受け取り、その受け取り位置から搬送ロール32の回転により、搬送ロール32の下方に位置する基材(図示せず)に向けて落下させて該基材に散布するようになされている。
図5(b)に示す粉粒体散布装置1Bにおける搬送手段3Bは、駆動ロール33及び従動ロール34に架け渡された無端状の搬送ベルト35を含んで構成されており、排出口23から排出された粉粒体Pを搬送ベルト35で受け取り、その受け取り位置から搬送ベルト35の移動により、搬送ベルト35の下方に位置する基材(図示せず)に向けて落下させて該基材に散布するようになされている。
The powdery- or granular-material-dispersing apparatuses 1A and 1B shown in FIG.
The conveying means 3A in the powdery- or granular-material-dispersing apparatus 1A shown in FIG. 5 (a) is arranged below the discharge port 23 of the hopper 2 and includes a cylindrical conveying roll 32 that rotates around a rotation axis. The powder particles P discharged from the discharge port 23 are received by the outer peripheral surface of the transport roll 32, and are rotated from the receiving position toward the base material (not shown) located below the transport roll 32. It is made to fall and is sprayed on the said base material.
The conveying means 3B in the powdery- or granular-material-dispersing apparatus 1B shown in FIG. 5B is configured to include an endless conveyor belt 35 that is stretched around a driving roll 33 and a driven roll 34, and is discharged from the discharge port 23. The conveyed powder 35 is received by the conveyor belt 35, and the conveyor belt 35 is moved from the receiving position to be dropped toward a base material (not shown) located below the conveyor belt 35 to be sprayed on the base material. It is designed to do.

本発明は、前記実施形態に制限されず適宜変更可能である。
ホッパー2の排出部22における排出口23の平面視形状は、図3に示す如き長方形形状に限定されず、円形、楕円形、多角形形状等、任意に設定可能であり、例えば、図6(a)に示す如き長楕円形状、あるいは、図6(b)に示す如き一方向に長い五角形以上の多角形形状とすることができる。尤も、前述したように、排出口23の平面視形状は、搬送手段3による粉粒体Pの搬送方向Xと直交する幅方向Yの長さの方が搬送方向Xの長さよりも長いような、「一方向に長い形状」であることが好ましく、図3及び図6に示す排出口23はその具体例である。
また、排出口23が幅方向Yに複数の区画に分割され、排出部21が該複数の区画に1対1で対応する複数の移動路22を有していても良く、その場合、複数の移動路22(排出口23)それぞれにおいて、前記(2)〜(4)が採用される。
前述した本発明の実施形態に関し、更に以下の付記を開示する。
The present invention is not limited to the above embodiment and can be modified as appropriate.
The shape of the discharge port 23 of the discharge portion 22 of the hopper 2 in plan view is not limited to the rectangular shape shown in FIG. 3, and can be arbitrarily set to a circular shape, an elliptical shape, a polygonal shape, or the like. The shape may be an elliptical shape as shown in a) or a polygonal shape having pentagons or longer that is long in one direction as shown in FIG. However, as described above, the shape of the discharge port 23 in plan view is such that the length in the width direction Y orthogonal to the transport direction X of the powder or granular material P by the transport means 3 is longer than the length in the transport direction X. , “Long in one direction”, and the discharge port 23 shown in FIGS. 3 and 6 is a specific example.
In addition, the discharge port 23 may be divided into a plurality of sections in the width direction Y, and the discharge section 21 may have a plurality of moving paths 22 that correspond to the plurality of sections on a one-to-one basis. The above items (2) to (4) are adopted in each of the moving paths 22 (exhaust ports 23).
Regarding the above-described embodiment of the present invention, the following supplementary notes are further disclosed.

<1> 内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置であって、
前記排出口は平面視において、前記搬送手段による前記粉粒体の搬送方向と直交する方向の長さが該搬送方向の長さに比して長い形状をなし、
前記移動路は、その前記搬送方向の最大幅が前記粉粒体の最大粒子径の2倍以上5倍未満、該粉粒体が排出される方向の長さが該粉粒体の最大粒子径の1倍以上であり、
前記隙間は、前記粉粒体の最大粒子径の1倍以上である粉粒体散布装置。
<2> 前記隙間は、前記粉粒体の最大粒子径の10倍以下である前記<1>に記載の粉粒体散布装置。
<3> 前記ホッパーは、前記貯蔵部に連接され、下端に前記排出口を有する排出部を備えており、前記貯蔵部の内部空間を画成する内側壁は、該排出部に向けて斜め下方に延びる傾斜内側壁と、垂直方向に延びる垂直壁とを含む前記<1>又は<2>に記載の粉粒体散布装置。
<4>
前記移動路を画成する前記排出部の内側壁の全てが、垂直方向に延びる垂直壁となっている前記<1>〜<3>の何れか1つに記載の粉粒体散布装置。
<5>
前記貯蔵部は、前記搬送方向と直交する方向から見た場合において上底が下底より長い台形形状をなしており、
前記搬送方向に関しては、前記貯蔵部の上底の長さが前記排出口の長さよりも長く、該搬送方向に直交する方向に関しては、該貯蔵部の上底の長さが該排出口の長さと同じである前記<4>に記載に粉粒体散布装置。
<6>
前記排出口において、前記搬送方向と直交する方向の長さ(W)と該搬送方向の長さ(D)との比は、W/Dとして、好ましくは2以上1000以下、さらに好ましくは5以上100以下である前記<1>〜<5>の何れか1つに記載の粉粒体散布装置。
<1> A storage unit capable of temporarily storing the granular material therein, a discharge port for discharging the granular material in the storage unit, and a moving path for the granular material connecting the storage unit and the discharge port A hopper provided with a hopper, and a conveying means that is arranged with a gap from the discharge port, conveys the powder or granular material discharged from the discharge port in a predetermined direction, and disperses it on a substrate that is continuously conveyed. A powdery or granular material spraying device comprising:
In a plan view, the discharge port has a shape in which a length in a direction orthogonal to a conveying direction of the powder or granular material by the conveying means is longer than a length in the conveying direction,
The moving path has a maximum width in the carrying direction of 2 times or more and less than 5 times the maximum particle diameter of the powder or granular material, and a length in the direction in which the powder or granular material is discharged is the maximum particle diameter of the powder or granular material. More than 1 times
The powder-granule-dispersing device, wherein the gap is at least 1 times the maximum particle size of the powder-granulate.
<2> The powder-granule-dispersing device according to <1>, wherein the gap is 10 times or less the maximum particle diameter of the powder-granulate.
<3> The hopper is connected to the storage unit and includes a discharge unit having the discharge port at a lower end, and an inner wall defining an internal space of the storage unit is obliquely downward toward the discharge unit. The powdery- or granular-material spreading device according to <1> or <2>, further including an inclined inner wall extending in the vertical direction and a vertical wall extending in the vertical direction.
<4>
The powdery or granular material spraying device according to any one of <1> to <3>, wherein all of the inner walls of the discharge portion that define the movement path are vertical walls extending in a vertical direction.
<5>
The storage portion has a trapezoidal shape in which the upper bottom is longer than the lower bottom when viewed from a direction orthogonal to the transport direction,
Regarding the transport direction, the length of the upper bottom of the storage section is longer than the length of the discharge port, and regarding the direction orthogonal to the transport direction, the length of the upper bottom of the storage section is the length of the discharge port. The powdery- or granular-material spraying apparatus according to <4>, which is the same as the above.
<6>
The ratio of the length (W) in the direction orthogonal to the carrying direction and the length (D) in the carrying direction at the outlet is preferably 2 or more and 1000 or less, more preferably 5 or more as W / D. The powdery or granular material spraying device according to any one of <1> to <5>, which is 100 or less.

<7> 前記ホッパーにおける前記粉粒体と接触する内面の水平方向に対する角度は、該粉粒体の安息角以上である前記<1>〜<6>の何れか1つに記載の粉粒体散布装置。
<8> 前記搬送手段は、前記ホッパーから排出された前記粉粒体を受け取る平板状の受取手段と、該受取手段を振動させる振動発生手段とを含んで構成され、該振動発生手段を作動させて該受取手段を振動させることによって、該受取手段上の該粉粒体を前記一方向に搬送可能になされており、
前記隙間の大きさをG、前記粉粒体の安息角をθとした場合、前記排出口の中心を通って垂直方向に延びる仮想直線と前記搬送手段との交点は、該搬送手段における前記搬送方向の下流側端からG/tanθ以上15G以下の範囲に位置している前記<1>〜<7>の何れか1つに記載の粉粒体散布装置。
<9>
前記粉粒体が水分を吸収するか、又は潮解性を有するものである前記<1>〜<8>の何れか1つに記載の粉粒体散布装置。
<7> The granular material according to any one of <1> to <6>, wherein an angle of the inner surface of the hopper in contact with the granular material with respect to the horizontal direction is equal to or more than the repose angle of the granular material. Spraying device.
<8> The conveying means includes a flat plate-like receiving means for receiving the powdery or granular material discharged from the hopper, and a vibration generating means for vibrating the receiving means, and operates the vibration generating means. And vibrating the receiving means to convey the powder or granular material on the receiving means in the one direction,
When the size of the gap is G and the repose angle of the granular material is θ, the intersection of the virtual straight line extending in the vertical direction through the center of the discharge port and the transport means is the transport in the transport means. The granular material dispersion device according to any one of <1> to <7>, which is located in a range of G / tan θ or more and 15 G or less from a downstream end in the direction.
<9>
The powdery or granular material spraying device according to any one of <1> to <8>, wherein the powdery or granular material absorbs water or has deliquescent property.

<10>
前記ホッパーの内側壁の素材は、前記粉粒体の散布が行われる作業時の温度下における熱伝導率が25W/m・K以下のものである前記<1>〜<9>の何れか1つに記載の粉粒体散布装置。
<11>
前記ホッパーの内側壁の素材は、ステンレス鋼、ガラス、ジルコニア及び窒化ケイ素その他のセラミック材料からなる群から選択される1種以上である前記<1>〜<10>の何れか1つに記載の粉粒体散布装置。
<12>
前記粉粒体が非導電性材料である前記<1>〜<9>の何れか1つに記載の粉粒体散布装置。
<13>
前記ホッパーの内側壁の素材は、導電性を有する素材である前記<12>に記載の粉粒体散布装置。
<14>
前記ホッパーの内側壁の素材は、金属材料、合金材料、導電性セラミック及び導電性樹脂からなる群から選択される1種以上である前記<13>に記載の粉粒体散布装置。
<15>
前記ホッパーの内側壁の素材はステンレス鋼である前記<1>〜<14>の何れか1つに記載の粉粒体散布装置。
<10>
The material of the inner wall of the hopper has a thermal conductivity of 25 W / m · K or less at a temperature during the operation of spraying the powder or granular material, and the material is any one of <1> to <9> above. The powdery or granular material spraying device according to item 3.
<11>
The material of the inner wall of the hopper is one or more selected from the group consisting of stainless steel, glass, zirconia, silicon nitride, and other ceramic materials, according to any one of <1> to <10> above. Powder and dusting device.
<12>
The powdery or granular material spraying device according to any one of <1> to <9>, wherein the powdery or granular material is a non-conductive material.
<13>
The material for the inner wall of the hopper is the powdery or granular material spraying device according to <12>, which is a material having conductivity.
<14>
The material for the inner wall of the hopper is the powdery or granular material spraying device according to <13>, which is at least one selected from the group consisting of metal materials, alloy materials, conductive ceramics, and conductive resins.
<15>
The material for the inner wall of the hopper is a powdery or granular material spraying device according to any one of <1> to <14>, wherein the material is stainless steel.

<16>
前記粉粒体の安息角(θ)と、前記ホッパーにおける前記粉粒体と接触する内面の水平方向に対する角度(θ1)との比であるθ1/θは、好ましくは1.2以上、さらに好ましくは1.5以上である前記<1>〜<15>の何れか1つに記載の粉粒体散布装置。
<17>
前記ホッパーにおける前記粉粒体と接触する内面の水平方向に対する角度(θ1)は、好ましくは1.2θ以上であって90°以下、さらに好ましくは1.5θ以上であって90°以下である<16>に記載の粉粒体散布装置。
<18>
前記ホッパーの内側壁は、その表面即ち前記ホッパーにおける前記粉粒体と接触する内面の表面粗さRaが、JIS B 0601−2001に従って測定された値で、好ましくは10μm以下、さらに好ましくは1μm以下である前記<1>〜<17>の何れか1つに記載の粉粒体散布装置。
<19>
前記ホッパーの内側壁は、その表面即ち前記ホッパーにおける前記粉粒体と接触する内面が、所定方向に延びる畝部と溝部とが該所定方向と直交する方向に交互に配されてなる畝溝形状を有している前記<1>〜<18>の何れか1つに記載の粉粒体散布装置。
<20>
前記ホッパーの内側壁は、その表面即ち前記ホッパーにおける前記粉粒体と接触する内面がフッ素樹脂で被覆されている前記<1>〜<19>の何れか1つに記載の粉粒体散布装置。
<16>
Θ1 / θ, which is the ratio of the angle of repose (θ) of the powder and granules to the angle (θ1) of the inner surface of the hopper in contact with the powder and granules with respect to the horizontal direction, is preferably 1.2 or more, and more preferably Is 1.5 or more, The powdery- or granular-material spreading apparatus as described in any one of said <1>-<15>.
<17>
The angle (θ1) with respect to the horizontal direction of the inner surface of the hopper in contact with the powder or granular material is preferably 1.2θ or more and 90 ° or less, more preferably 1.5θ or more and 90 ° or less <16> The powdery- or granular-material spreading apparatus as described in 16>.
<18>
The surface roughness Ra of the inner wall of the hopper, that is, the inner surface of the hopper in contact with the powder or granular material, is a value measured according to JIS B 0601-2001, preferably 10 μm or less, more preferably 1 μm or less. The powdery or granular material spraying device according to any one of <1> to <17>.
<19>
The inner wall of the hopper has a ridge shape in which the surface, that is, the inner surface of the hopper that comes into contact with the powder or granular material, has ridges and grooves extending in a predetermined direction alternately arranged in a direction orthogonal to the predetermined direction. The powdery- or granular-material spreading apparatus as described in any one of said <1>-<18> which has.
<20>
The inner wall of the hopper has a surface, that is, an inner surface of the hopper that comes into contact with the powder or granular material, is covered with a fluororesin, and the powder or granular material spraying device according to any one of <1> to <19>. .

<21>
前記搬送手段は、前記ホッパーから排出された前記粉粒体を受け取る平板状の受取手段と、該受取手段を振動させる振動発生手段と、該振動発生手段に印加する電圧及び周波数を制御する振動制御部とを備えており、該振動制御部によって、該受取手段の振動数及び振幅を制御し、延いては該受取手段上の粉粒体の搬送状態を制御するようなされている<1>〜<20>の何れか1つに記載の粉粒体散布装置。
<22>
前記振動発生手段の振動数は、好ましくは50Hz以上500Hz以下、さらに好ましくは100Hz以上300Hz以下である前記<21>に記載の粉粒体散布装置。
<23>
前記粉粒体が不定形形状であり、その不定形形状の粉粒体の前記最大粒子径がレーザー回折法によって測定されたものである前記<1>〜<22>の何れか1つに記載の粉粒体散布装置。
<21>
The conveying means is a flat plate-shaped receiving means for receiving the powder or granular material discharged from the hopper, a vibration generating means for vibrating the receiving means, and a vibration control for controlling a voltage and a frequency applied to the vibration generating means. And a vibration control section for controlling the frequency and amplitude of the receiving means, and further for controlling the conveying state of the granular material on the receiving means. The powdery- or granular-material spreading apparatus as described in any one of <20>.
<22>
The vibration frequency of the vibration generating means is preferably 50 Hz or more and 500 Hz or less, more preferably 100 Hz or more and 300 Hz or less, and the powdery or granular material scattering device according to <21>.
<23>
The powder or granular material has an amorphous shape, and the maximum particle diameter of the powder or granular material having the amorphous shape is measured by a laser diffraction method. <1> to <22> Of powder and granular material.

<24>
前記<1>〜<23>の何れか1つに記載の粉粒体散布装置を用いて、粉粒体を、連続搬送される基材上に散布する、粉粒体の散布方法。
<25>
前記<24>記載の散布方法を用いて、前記粉粒体として吸水性ポリマー又は電解質を基材上に散布する工程を含む、機能性物品の製造方法。
<26>
前記基材は、シート状の材料の一面上に被酸化性金属と水とを含む発熱組成物を配置したものであって、該発熱組成物の上に、前記搬送手段から吸水性ポリマー又は電解質を散布することによって供給する前記<25>に記載の機能性物品の製造方法。
<27>
前記粉粒体は吸水性ポリマーであり、機能性物品が吸水性シートである、前記<25>に記載の機能性物品の製造方法。
<24>
A method for spraying a powder or granular material, which comprises using the powder or granular material spraying device according to any one of <1> to <23> to spray the powder or granular material onto a continuously conveyed substrate.
<25>
A method for producing a functional article, which comprises a step of spraying a water-absorbent polymer or an electrolyte as the powdery particles on a substrate using the spraying method described in <24>.
<26>
The base material is one in which a heat-generating composition containing an oxidizable metal and water is disposed on one surface of a sheet-shaped material, and the water-absorbing polymer or electrolyte from the conveying means is placed on the heat-generating composition. The method for producing a functional article according to <25>, wherein the functional article is supplied by spraying.
<27>
The method for producing a functional article according to <25>, wherein the powder and granular material is a water absorbent polymer, and the functional article is a water absorbent sheet.

以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically by way of examples, but the present invention is not limited to the examples.

〔実施例1〜5及び比較例1〜3〕
図1〜図4に示す粉粒体散布装置1において、一部の構成部材の寸法等を下記表1に示すように変更した以外は、粉粒体散布装置1と同様の構成の粉粒体散布装置を用い、一方向に連続搬送される基材(不織布、搬送速度40.95m/秒)上に粉粒体を散布した(実施例1〜5及び比較例1〜2)。
また、実施例1において隙間Gをほぼ0とした以外は、実施例1と同じ条件で基材上に粉粒体を散布した(比較例3)。
粉粒体としては、最大粒子径及び安息角が下記表1に示す範囲にある吸水性ポリマー粒子又は塩化ナトリウムを用いた。尚、粉粒体の最大粒子径は、動的光散乱法によって測定し、測定装置として、HORIBA社製レーザー回折/散乱式粒子径分布測定装置LA950V2を用いた。尚、各実施例及び比較例の粉粒体散布装置におけるホッパーは、内側壁を含め、その内外面全体がステンレス鋼で形成されている。
[Examples 1 to 5 and Comparative Examples 1 to 3]
1 to 4 except that the dimensions and the like of some of the constituent members are changed as shown in Table 1 below, the powder and granular material having the same configuration as the powder and granular material distribution device 1 Using a spraying device, the powder and granules were sprayed on a substrate (nonwoven fabric, transport speed 40.95 m / sec) that was continuously transported in one direction (Examples 1 to 5 and Comparative Examples 1 and 2).
In addition, the granular material was dispersed on the base material under the same conditions as in Example 1 except that the gap G was set to almost 0 in Example 1 (Comparative Example 3).
As the powdery particles, water-absorbent polymer particles or sodium chloride having a maximum particle size and an angle of repose within the ranges shown in Table 1 below were used. The maximum particle size of the powdery particles was measured by the dynamic light scattering method, and a laser diffraction / scattering particle size distribution measuring device LA950V2 manufactured by HORIBA was used as a measuring device. In addition, the hopper in the powder and granular material spraying device of each of the examples and comparative examples is formed of stainless steel on the entire inner and outer surfaces including the inner wall.

Figure 0006688710
Figure 0006688710

〔評価試験〕
各実施例及び比較例について、市販のロードセル(A&D製)を用いて常法に従って、基材への粉粒体の散布重量を0.1秒間隔で測定した。その結果を図7〜図13に示す。実施例1〜5(図7〜図11)は、比較例1(図12)及び比較例2(図13)に比して粉粒体の散布量の経時的な変化が小さく、散布定量性に優れることが明らかである。特に、比較例1と各実施例との対比から、粉粒体の散布定量性を向上させるためには、粉粒体散布装置における粉粒体の貯蔵部20と排出口23との間を結ぶ移動路22の、粉粒体搬送方向Xの最大幅Dが、粉粒体の最大粒子径rの2倍以上5倍未満である、即ち「2≦D/r<5」なる大小関係を成立させることが有効であることが分かる。また、比較例2と各実施例との対比から、粉粒体の散布定量性を向上させるためには、移動路22の粉粒体排出方向の長さHが粉粒体の最大粒子径rの1倍以上である、即ち「r≦H」なる大小関係を成立させることも有効であることが分かる。
尚、比較例3の粉粒体散布装置においては、粉粒体が排出口から搬送手段3に排出されなかった。そのため比較例3については、図7〜図13に示す如き、散布定量性を示すグラフを作成することができなかった。
〔Evaluation test〕
In each of the examples and comparative examples, the weight of the powder or granular material sprayed on the substrate was measured at intervals of 0.1 seconds using a commercially available load cell (manufactured by A & D) according to a conventional method. The results are shown in FIGS. In Examples 1 to 5 (Figs. 7 to 11), compared with Comparative Example 1 (Fig. 12) and Comparative Example 2 (Fig. 13), the change in the amount of the powder or granular material applied over time was small, and the spraying quantitativeness was good. It is clear that it is superior to. In particular, from the comparison between Comparative Example 1 and each Example, in order to improve the quantitative distribution of the granular material, the storage unit 20 for the granular material and the discharge port 23 in the granular material dispersion device are connected. The maximum width D of the moving path 22 in the powder or granular material conveying direction X is 2 times or more and less than 5 times the maximum particle diameter r of the powder or granular material, that is, a magnitude relationship of “2 ≦ D / r <5” is established. It turns out that it is effective. Further, from the comparison between Comparative Example 2 and each Example, in order to improve the spraying quantitativeness of the powdery particles, the length H of the moving path 22 in the powdery particle discharging direction is the maximum particle diameter r of the powdery particles. It can be seen that it is also effective to establish a magnitude relation of 1 or more, that is, “r ≦ H”.
Incidentally, in the powdery- or granular-material spraying device of Comparative Example 3, the powdery- or granular material was not discharged to the conveying means 3 from the discharge port. Therefore, for Comparative Example 3, it was not possible to create a graph showing the spraying quantitativeness as shown in FIGS. 7 to 13.

1,1A,1B 粉粒体散布装置
2 ホッパー
20 貯蔵部
21 排出部
22 移動路
23 排出口
3,3A,3B 搬送手段
30 受取手段
31 振動発生手段
32 搬送ロール
33 駆動ロール
34 従動ロール
35 搬送ベルト
100 基材
P 粉粒体
X 搬送手段による粉粒体の搬送方向
Y 粉粒体の搬送方向と直交する方向(基材の幅方向)
1, 1A, 1B Powder and Granule Dispersion Device 2 Hopper 20 Storage Section 21 Discharge Section 22 Moving Path 23 Discharge Port 3, 3A, 3B Conveying Means 30 Receiving Means 31 Vibration Generating Means 32 Conveying Rolls 33 Driving Rolls 34 Driven Rolls 35 Conveying Belts 100 Base material P Powder / granular material X Transporting direction of powder / granular material by transporting device Y Direction (direction of width of base material) orthogonal to the transporting direction of powder / granular material

Claims (7)

内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置であって、
前記排出口は平面視において、前記搬送手段による粉粒体の搬送方向と直交する方向の長さが該搬送方向の長さに比して長い形状をなし、
前記移動路は、その前記搬送方向の最大幅が粉粒体の最大粒子径の2倍以上5倍未満、その粉粒体が排出される方向の長さが粉粒体の最大粒子径の1倍以上であり、
前記隙間は、粉粒体の最大粒子径の1倍以上である粉粒体散布装置。
A storage part capable of temporarily storing the powder and granules, a discharge port for discharging the powder and granules in the storage part, and a movement path for the powder and granules connecting the storage part and the discharge port are provided inside. A hopper, and a conveying means arranged with a gap from the discharge port, for conveying the powder or granular material discharged from the discharge port in a predetermined direction, and spraying it on a continuously conveyed substrate. A powder and granular material spraying device,
In a plan view, the discharge port has a shape in which the length in the direction orthogonal to the transport direction of the powder or granular material by the transport means is longer than the length in the transport direction,
The movement path has a maximum width in the carrying direction of 2 times or more and less than 5 times the maximum particle diameter of the powder or granular material, and a length in the direction in which the powder or granular material is discharged is 1 of the maximum particle diameter of the powder or granular material. More than double,
The powder-granule-dispersing device, wherein the gap is at least 1 times the maximum particle size of the powder-granulate.
前記隙間は、粉粒体の最大粒子径の10倍以下である請求項1に記載の粉粒体散布装置。   The powdery- or granular-material spraying device according to claim 1, wherein the gap is 10 times or less the maximum particle size of the powdery or granular material. 前記ホッパーにおける粉粒体と接触する内面の水平方向に対する角度は、粉粒体の安息角以上である請求項1又は2に記載の粉粒体散布装置。   The powdery- or granular-material spreading apparatus according to claim 1 or 2, wherein an angle of the inner surface of the hopper, which is in contact with the powdery or granular material, with respect to the horizontal direction is equal to or more than the repose angle of the powdery or granular material. 前記搬送手段は、前記ホッパーから排出された粉粒体を受け取る平板状の受取手段と、該受取手段を振動させる振動発生手段とを含んで構成され、該振動発生手段を作動させて該受取手段を振動させることによって、該受取手段上の粉粒体を前記一方向に搬送可能になされており、
前記隙間の大きさをG、粉粒体の安息角をθとした場合、前記排出口の中心を通って垂直方向に延びる仮想直線と前記搬送手段との交点は、該搬送手段における前記搬送方向の下流側端からG/tanθ以上15G以下の範囲に位置している請求項1〜3の何れか1項に記載の粉粒体散布装置。
The conveying means includes a flat plate-like receiving means for receiving the powder or granular material discharged from the hopper, and a vibration generating means for vibrating the receiving means, and the receiving means by operating the vibration generating means. By vibrating the, it is possible to convey the powdery particles on the receiving means in the one direction,
When the size of the gap is G and the repose angle of the granular material is θ, the intersection of the virtual straight line extending in the vertical direction through the center of the discharge port and the transport means is the transport direction in the transport means. The powdery or granular material spraying device according to any one of claims 1 to 3, which is located in a range of G / tan θ or more and 15 G or less from the downstream end of the.
請求項1〜4の何れか1項に記載の粉粒体散布装置を用いて、粉粒体を、連続搬送される基材上に散布する、粉粒体の散布方法。   A method of applying a powder or granular material, comprising: using the powder or granular material spraying device according to any one of claims 1 to 4, spraying the powder or granular material onto a substrate that is continuously conveyed. 請求項5に記載の粉粒体の散布方法によって、前記粉粒体を、連続搬送される基材上に散布する工程を含む、粉粒体含有物品の製造方法。   A method for producing a powdery or granular material-containing article, comprising the step of spraying the powdery or granular material on a substrate that is continuously conveyed by the method for spraying the powdery or granular material according to claim 5. 請求項5に記載の粉粒体の散布方法によって、前記粉粒体として吸水性ポリマー又は電解質を、基材上に散布する工程を含む、機能性物品の製造方法。   A method for producing a functional article, comprising the step of spraying a water-absorbent polymer or an electrolyte as the powder or granules on a substrate by the method for spraying the powder or granules according to claim 5.
JP2016189207A 2015-10-06 2016-09-28 Powder-granulating device and powder-granulating method Active JP6688710B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680057683.1A CN108137243B (en) 2015-10-06 2016-09-30 Powder/granular material distribution device, powder/granular material distribution method, and method for manufacturing powder/granular material-containing article
PCT/JP2016/079143 WO2017061339A1 (en) 2015-10-06 2016-09-30 Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
TW105132153A TWI682884B (en) 2015-10-06 2016-10-05 Powder and granule dispersion device, powder and granule dispersion method, and method for manufacturing powder and granule-containing article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015198134 2015-10-06
JP2015198134 2015-10-06

Publications (2)

Publication Number Publication Date
JP2017070944A JP2017070944A (en) 2017-04-13
JP6688710B2 true JP6688710B2 (en) 2020-04-28

Family

ID=58539410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189207A Active JP6688710B2 (en) 2015-10-06 2016-09-28 Powder-granulating device and powder-granulating method

Country Status (1)

Country Link
JP (1) JP6688710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272839B2 (en) * 2019-03-26 2023-05-12 三洋化成工業株式会社 Feeding device and method for manufacturing electrode for lithium ion battery

Also Published As

Publication number Publication date
JP2017070944A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
CN108137243B (en) Powder/granular material distribution device, powder/granular material distribution method, and method for manufacturing powder/granular material-containing article
US6109481A (en) Powder atomizer
JP2017094294A (en) Granule scattering method and granule scattering device, and granule containing article manufacturing method
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
JP6009886B2 (en) Secondary battery powder supply apparatus and electrode body manufacturing apparatus
JP2019052013A (en) Powder particle spraying device and method for producing powder particle-containing article
JP6688710B2 (en) Powder-granulating device and powder-granulating method
CN110461478A (en) For dispensing the proportioner of bulk material, bulk material being applied to the spray equipment and method of substrate
JP6719336B2 (en) How to spread powder
JP6882125B2 (en) Granule spraying device
WO2021166375A1 (en) Particulate spraying apparatus and particulate spraying method
JP7017901B2 (en) Granule spraying device
JP5428042B2 (en) Substance supply and metering device, particle processing device, coating device and coating system
JP6396791B2 (en) Powder and particle dispersion device and powder particle dispersion method
AU738351B2 (en) Powder atomizer
JP7228475B2 (en) Granule sprayer
KR101590002B1 (en) Continuous feeder of uniformly fine powder having a cohesion prevent unit
WO2021166731A1 (en) Method for spraying particulate matter and method for producing article containing particulate matter
CN213440729U (en) PVC coiled material floor vibration granulator
JP7043662B1 (en) Gas transfer type ultrasonic squirt fine powder quantitative supply system and gas transfer type ultrasonic squirt fine powder quantitative supply method
JP7102244B2 (en) Granule spraying device
KR101559454B1 (en) Multi feeding apparatus for micropowder
KR101559371B1 (en) Continuous feeder of uniformly fine powder
JP2021046305A (en) Sprinkling method of granular powder
JP2003155124A (en) Powder and granular material continuous and constant feed device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6688710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250