JP2019052013A - Powder particle spraying device and method for producing powder particle-containing article - Google Patents

Powder particle spraying device and method for producing powder particle-containing article Download PDF

Info

Publication number
JP2019052013A
JP2019052013A JP2017176699A JP2017176699A JP2019052013A JP 2019052013 A JP2019052013 A JP 2019052013A JP 2017176699 A JP2017176699 A JP 2017176699A JP 2017176699 A JP2017176699 A JP 2017176699A JP 2019052013 A JP2019052013 A JP 2019052013A
Authority
JP
Japan
Prior art keywords
granular material
hopper
powder
unit
vibration generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017176699A
Other languages
Japanese (ja)
Inventor
尚大 平
Shodai Taira
尚大 平
良輔 真鍋
Ryosuke Manabe
良輔 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2017176699A priority Critical patent/JP2019052013A/en
Publication of JP2019052013A publication Critical patent/JP2019052013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

To provide a powder particle spraying device and a method for spraying a powder particle capable of spraying powder particles on a continuously conveyed base material evenly and well quantitatively in a width direction of the base material.SOLUTION: A powder particle spraying device 1 includes a hopper 2 provided with a storage part 20 and a discharge port 23, and a conveying spraying part 3 for spraying powder particles P discharged from the discharge port 23 on a base material 100 continuously conveyed. The conveying spraying part 3 is constituted including a tabular receiving part 30 for receiving the powder particles P and a vibration generating part 31 for vibrating the receiving part 30, and operates the vibration generating part 31 to vibrate the receiving part 30, whereby the powder particles P on the receiving part 30 are conveyed in a predetermined direction. The vibration generating part 31 is operated at a frequency in which a value of an inclination m of a calibration curve determined from a relation of an amplitude N of the vibration generating part 31 with a spraying amount Q of a plurality of the powder particles P conveyed in the predetermined direction and sprayed on the base material 100 is larger than 0 and 0.4 or less in terms of a value shown as a variation.SELECTED DRAWING: Figure 1

Description

本発明は、粉粒体散布装置及び粉粒体含有物品の製造方法に関する。   The present invention relates to a powder particle dispersion device and a method for producing a powder particle-containing article.

種々の製品の製造において、連続搬送される基材に対してその幅方向に亘って均一に粉粒体を散布させることが要望されている。斯かる要望に応えることを目的とした技術に関し、例えば特許文献1には、粉粒体を内部に一時的に貯蔵可能なホッパーを備え、該ホッパーから排出させた粉粒体を、連続搬送される基材上に散布可能な粉粒体散布装置において、該ホッパーの下方に、該ホッパーから排出された粉粒体を水平方向に搬送するためのスクリューコンベアを配置し、且つ該スクリューコンベアの略下方に、該粉粒体を垂直方向に搬送するためのロータを配置し、且つ該ロータの下方に、該粉粒体を一粒ずつ垂直方向に整列させた状態で排出するための間隙調節機構を配置することが開示されている。   In the manufacture of various products, it is desired to uniformly disperse powder particles over the width direction of a continuously conveyed substrate. With regard to the technology aimed at meeting such a demand, for example, Patent Document 1 includes a hopper capable of temporarily storing powder particles therein, and the powder particles discharged from the hopper are continuously conveyed. In the powder particle spraying device that can be sprayed on the base material, a screw conveyor for conveying the powder discharged from the hopper in the horizontal direction is disposed below the hopper, and A rotor for conveying the granular material in the vertical direction is disposed below, and a gap adjusting mechanism for discharging the granular material in a state of being aligned in the vertical direction one by one below the rotor Is disclosed.

特開平6−92433号公報Japanese Patent Laid-Open No. 6-92433

特許文献1記載の粉粒体散布装置は、連続搬送される基材に対して粉粒体を散布する直前に、多数の粉粒体を垂直方向に整列させ、その粉粒体の列から一粒ずつ基材に対して散布するところ、このような散布機構が適用できるのは、粉粒体が真球状で且つ粒度分布の小さい場合に限定される。特許文献1記載の粉粒体散布装置を用いて非真球状の粉粒体や粒度分布の広い粉粒体を散布した場合には、粉粒体を垂直方向に整列させ難く、装置内で粉粒体の詰まり等が発生し、定量性良く粉粒体を散布することができないおそれがある。   The powder and particle distribution device described in Patent Document 1 aligns a large number of powder particles in the vertical direction immediately before the powder particles are sprayed on a continuously conveyed base material, and starts from the row of the powder particles. When the particles are sprayed on the base material, such a spraying mechanism can be applied only when the particles are spherical and have a small particle size distribution. When a non-spherical granular material or a granular material having a wide particle size distribution is dispersed using the granular material dispersing device described in Patent Document 1, it is difficult to align the granular material in the vertical direction. There is a possibility that clogging of granules occurs, and the powders cannot be dispersed with good quantitativeness.

したがって本発明の課題は、前述した従来技術が有する欠点を解消し得る粉粒体散布装置を提供することにある。   Therefore, the subject of this invention is providing the granular material spreading | diffusion apparatus which can eliminate the fault which the prior art mentioned above has.

本発明は、内部に粉粒体を一時的に貯蔵可能な貯蔵部、及び該貯蔵部内の粉粒体を排出する排出口を備えたホッパーと、該排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を所定の方向に搬送し、連続搬送される基材上に散布する搬送散布部とを備えた粉粒体散布装置であって、前記搬送散布部は、前記ホッパーから排出された複数の粉粒体を受け取る受取部と、該受取部を振動させる振動発生部とを含んで構成され、該振動発生部を作動させて該受取部を振動させることによって、該受取部上の複数の粉粒体を前記所定の方向に搬送可能になされており、前記振動発生部の振幅と、該受取部の振動により前記所定の方向に搬送されて前記基材上に散布される複数の粉粒体の散布量との関係から求められた検量線の傾きの値を、変化量として表した値が0より大きく、且つ0.4以下となる周波数で、前記振動発生部を作動させる粉粒体散布装置を提供するものである。   The present invention is disposed inside a storage unit capable of temporarily storing powder particles, a hopper having a discharge port for discharging the powder particles in the storage unit, and a gap with respect to the discharge port. , A granular material spraying device comprising a conveying and scattering unit that conveys the granular material discharged from the discharge port in a predetermined direction and spreads it on a continuously conveyed base material, the conveying and scattering unit comprising: A receiving unit that receives a plurality of powder particles discharged from the hopper and a vibration generating unit that vibrates the receiving unit, and operates the vibration generating unit to vibrate the receiving unit. The plurality of powder particles on the receiving part can be conveyed in the predetermined direction, and are conveyed in the predetermined direction by the amplitude of the vibration generating part and the vibration of the receiving part. Slope of the calibration curve obtained from the relationship with the amount of powder particles sprayed A value greater than the value expressed is 0 as the change amount, and at a frequency of 0.4 or less, there is provided a granular material spraying device for actuating the vibration generator.

また本発明は、ホッパーから排出された粉粒体を、所定の方向に搬送して散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造方法であって、前記ホッパーから排出された複数の粉粒体を受け取る受取部及び該受取部を振動させる振動発生部を含む搬送散布部を用い、前記振動発生部の振幅と、前記受取部の振動により前記基材上に散布される複数の粉粒体の散布量との関係から検量線を求め、該検量線の傾きの値を共振周波数に対する変化量として表した変化量絶対値を求め、該変化量絶対値が0より大きく、且つ0.4以下となる周波数で前記振動発生部を作動して複数の粉粒体を前記所定の方向に搬送して散布する、粉粒体含有物品の製造方法を提供するものである。   Further, the present invention is a method for producing a granular material-containing article, wherein the granular material discharged from the hopper is conveyed and dispersed in a predetermined direction to produce an article containing the granular material, Using a receiving part for receiving a plurality of powder particles discharged from the hopper and a conveying / spreading part including a vibration generating part for vibrating the receiving part, the substrate by the amplitude of the vibration generating part and the vibration of the receiving part Obtain a calibration curve from the relationship with the amount of the powder particles sprayed above, determine the absolute value of the change expressed as the amount of change with respect to the resonance frequency, and the absolute value of the change. A method of manufacturing a granular material-containing article, in which the vibration generating unit is operated at a frequency that is greater than 0 and equal to or lower than 0.4 to convey and disperse a plurality of granular materials in the predetermined direction. Is.

本発明の粉粒体散布装置によれば、連続搬送される基材に対して、粉粒体を該基材の幅方向に均一に定量性良く散布することができる。
また本発明の粉粒体含有物品の製造方法によれば、粉粒体が基材の幅方向に均一に定量性よく散布された粉粒体含有物品を効率的に製造することができる。
According to the granular material spreading | diffusion apparatus of this invention, a granular material can be spread | dispersed uniformly with sufficient quantitative property with respect to the continuously conveyed base material in the width direction of this base material.
Moreover, according to the manufacturing method of the granular material containing article of this invention, the granular material containing article by which the granular material was spread | dispersed uniformly with sufficient quantitative property in the width direction of a base material can be manufactured efficiently.

図1は、本発明の粉粒体散布装置の一実施形態を模式的に示す側面図である。FIG. 1 is a side view schematically showing an embodiment of the powder particle distribution device of the present invention. 図2は、図1に示す粉粒体散布装置を、搬送散布部による粉粒体の搬送方向の下流側から見た様子を模式的に示す正面図である。FIG. 2 is a front view schematically showing a state in which the granular material spraying device shown in FIG. 1 is viewed from the downstream side in the conveyance direction of the granular material by the conveyance scattering unit. 図3は、図1に示す粉粒体散布装置におけるホッパーの斜視図である。FIG. 3 is a perspective view of a hopper in the granular material spraying device shown in FIG. 1. 図4は、図1に示す粉粒体散布装置におけるホッパーの排出口及びその近傍を模式的に示す側面図である。FIG. 4 is a side view schematically showing the discharge port of the hopper and the vicinity thereof in the granular material spraying device shown in FIG. 1. 図5は、粉粒体の散布量と、受取部上での粉粒体の振幅との関係から求められる検量線を示すグラフである。FIG. 5 is a graph showing a calibration curve obtained from the relationship between the amount of powder and the amplitude of powder on the receiving part. 図6は、図5に示す検量線の傾きと、振動発生部の周波数との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the slope of the calibration curve shown in FIG. 5 and the frequency of the vibration generating unit. 図7は、図6に示す検量線の傾きの値を変化量として表した値と振動発生部の周波数との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the value of the slope of the calibration curve shown in FIG. 6 as the amount of change and the frequency of the vibration generating unit. 図8は、図7のグラフの縦軸(変化量絶対値)の0.6以下となる領域を拡大して示すグラフである。FIG. 8 is an enlarged graph showing an area where the vertical axis (absolute amount of change) of the graph of FIG. 7 is 0.6 or less.

以下、本発明をその好ましい一実施形態に基づき図面を参照しながら説明する。
本実施形態の粉粒体散布装置1は、図1に示すように、内部に粉粒体Pを一時的に貯蔵可能な貯蔵部20、該貯蔵部20内の粉粒体Pを排出する排出口23、及び該貯蔵部20と該排出口23との間を結ぶ粉粒体用移動路22を備えたホッパー2と、該排出口23に対して隙間を置いて配置され、該排出口23から排出された粉粒体Pを所定の方向に搬送し、連続搬送される基材100上に散布する搬送散布部3と、ホッパー2及びホッパー2内に貯蔵される粉粒体の全重量を連続して計量する計量装置50と、計量装置50で全重量の単位時間当たりの変化量を測定し、且つ搬送散布部3によって散布される粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するように、該変化量に応じて搬送散布部3の搬送能力の制御を行う制御部40とを備えている。基材100は、例えば、図1に示す如き搬送ロール、あるいはベルトコンベア等の公知の搬送装置により連続搬送することができる。尚、基材100及びその搬送装置は、粉粒体散布装置1を構成するものではない。
Hereinafter, the present invention will be described based on a preferred embodiment thereof with reference to the drawings.
As shown in FIG. 1, the granular material spraying apparatus 1 according to the present embodiment includes a storage unit 20 that can temporarily store the granular material P therein, and an exhaust that discharges the granular material P in the storage unit 20. The outlet 23 and the hopper 2 provided with the moving path 22 for the granular material connecting between the storage unit 20 and the outlet 23 and the outlet 23 are arranged with a gap therebetween. The transporting and dispersing unit 3 that transports the granular material P discharged from the substrate in a predetermined direction and sprays it onto the continuously transported base material 100, and the total weight of the granular material stored in the hopper 2 and the hopper 2. The measuring device 50 that continuously measures, the amount of change per unit time of the total weight is measured by the measuring device 50, and the amount of spraying of the granular material sprayed by the transport spraying unit 3 is the unit time According to the amount of change, the transport capacity of the transport spray unit 3 is adjusted so as to match the target spray amount per hit. And a control unit 40 for control. The base material 100 can be continuously transported by a known transport device such as a transport roll as shown in FIG. 1 or a belt conveyor. In addition, the base material 100 and its conveying apparatus do not constitute the powder particle distribution apparatus 1.

粉粒体散布装置1では、ホッパー2は、図1に示すように、ベースプレート4上に立設された支持部材5によって、同じくベースプレート4上に固定された搬送散布部3(受取部30)の上方位置に固定されている。   As shown in FIG. 1, in the granular material spraying device 1, the hopper 2 includes a carrier spraying unit 3 (receiving unit 30) fixed on the base plate 4 by a support member 5 erected on the base plate 4. It is fixed at the upper position.

粉粒体散布装置1では、ホッパー2は、図1に示す如き側面視、即ち、搬送散布部3による粉粒体Pの搬送方向Xと直交する方向から見た場合において、上底が下底より長い台形形状をなしている貯蔵部20と、該貯蔵部20の下端に連接され該側面視において長方形形状をなす直方体形状の排出部21とを含んで構成されている。貯蔵部20は、内部に粉粒体Pを貯蔵可能な空間を有し、その内部空間に粉粒体Pを一時的に貯蔵可能になされている。粉粒体Pは、貯蔵部20の上部開口から粉粒体供給装置90によって貯蔵部20の内部空間に供給される。排出部21は、内部に粉粒体用移動路22を有している。排出部21の下端(貯蔵部20側とは反対側の端部)には、粉粒体Pの排出口23が形成されており、貯蔵部20の内部空間と排出口23とは、粉粒体用移動路22を介して連通されている。ホッパー2は、斯かる構成により、内部に一時的に貯蔵した粉粒体Pを、粉粒体用移動路22を介して排出口23より排出可能になされている。   In the granular material spraying apparatus 1, the hopper 2 has an upper bottom as a lower base when viewed from the side as shown in FIG. 1, that is, when viewed from a direction orthogonal to the conveying direction X of the granular material P by the conveying and scattering unit 3. The storage unit 20 has a longer trapezoidal shape, and a rectangular parallelepiped discharge unit 21 connected to the lower end of the storage unit 20 and having a rectangular shape in a side view. The storage unit 20 has a space in which the powder particles P can be stored, and the powder particles P can be temporarily stored in the internal space. The granular material P is supplied from the upper opening of the storage unit 20 to the internal space of the storage unit 20 by the granular material supply device 90. The discharge part 21 has the moving path 22 for powder bodies inside. At the lower end of the discharge unit 21 (the end opposite to the storage unit 20 side), a discharge port 23 for the granular material P is formed, and the internal space of the storage unit 20 and the discharge port 23 are divided into particles. It communicates via the body movement path 22. With such a configuration, the hopper 2 can discharge the powder P stored temporarily inside the discharge port 23 via the powder moving path 22.

ホッパー2について詳述する。粉粒体散布装置1では、図1及び図3に示すように、貯蔵部20の内部空間を画成する内側壁20iは、その一部が水平方向及び垂直方向の両方向に交差する方向に延びる傾斜内側壁20isである。内側壁20iの残りの部分は全て水平方向と直交する垂直方向に延びる垂直壁である。具体的に、粉粒体Pを貯蔵する貯蔵部20の内部空間は、図3に示すように、3枚の内側壁20i及び1枚の傾斜内側壁20isで画成されており、各内側壁20i及び傾斜内側壁20isは、それぞれ、粉粒体用移動路22を画成する内側壁21iと繋がっているところ、その各内側壁20i及び傾斜内側壁20isのうち搬送方向Xの最下流側又は最上流側に位置する1枚の傾斜内側壁20isを除く、残り3枚の内側壁20iの全てが、垂直方向に延びる垂直壁である。ホッパー2がこのような構造を有することにより、貯蔵部20から排出部21に粉粒体Pの集合体が流れ込む際に、その集合体の流動方向と直交する方向の中央部分が周囲部分よりも流動速度が速くなることが抑制されるため、粉粒体Pの均一な散布に有利となる。   The hopper 2 will be described in detail. In the granular material spraying apparatus 1, as shown in FIGS. 1 and 3, the inner wall 20i that defines the internal space of the storage unit 20 extends in a direction in which a part thereof intersects both the horizontal direction and the vertical direction. This is the inclined inner wall 20is. The remaining portions of the inner wall 20i are all vertical walls extending in the vertical direction perpendicular to the horizontal direction. Specifically, as shown in FIG. 3, the internal space of the storage unit 20 that stores the granular material P is defined by three inner walls 20 i and one inclined inner wall 20 is. 20i and the inclined inner wall 20is are respectively connected to the inner wall 21i that defines the moving path 22 for the granular material. Of the inner wall 20i and the inclined inner wall 20is, the most downstream side in the transport direction X or All of the remaining three inner walls 20i except for one inclined inner wall 20is located on the most upstream side are vertical walls extending in the vertical direction. When the hopper 2 has such a structure, when the aggregate of the granular material P flows from the storage unit 20 to the discharge unit 21, the central portion in the direction orthogonal to the flow direction of the aggregate is more than the surrounding portion. Since the increase in the flow rate is suppressed, it is advantageous for uniform dispersion of the powder P.

また粉粒体散布装置1では、排出部21は、図1及び図3に示すように、粉粒体用移動路22を画成する内側壁21iの全てが、水平方向と直交する垂直方向に延びる垂直壁となっている。換言すると、排出部21の内部空間である粉粒体用移動路22は、該排出部21の貯蔵部20との接続部側端部から排出口23に向けて、搬送方向Xに対して同じ長さで延在し且つ搬送方向Xと直交する幅方向Yに対しても同じ長さで延在する直方体形状となっている。従って、粉粒体散布装置1では、ホッパー2は、図3に示すように、搬送方向Xに関しては、貯蔵部20の上底の長さが排出口23の長さよりも長く、幅方向Yに関しては、貯蔵部20の上底の長さが排出口23の長さと同じになっている。ホッパー2はこの構造によって、粉粒体Pを排出口23から安定的に定量排出することが容易になっている。   Moreover, in the granular material spreading | diffusion apparatus 1, as shown in FIG.1 and FIG.3, the discharge part 21 has all the inner walls 21i which define the moving path 22 for granular materials in the perpendicular direction orthogonal to a horizontal direction. It is a vertical wall that extends. In other words, the moving path 22 for the granular material that is the internal space of the discharge unit 21 is the same with respect to the transport direction X from the end of the discharge unit 21 connected to the storage unit 20 toward the discharge port 23. It has a rectangular parallelepiped shape extending in the length and extending in the same length with respect to the width direction Y orthogonal to the transport direction X. Therefore, in the granular material spraying apparatus 1, the hopper 2 is configured so that the length of the upper base of the storage unit 20 is longer than the length of the discharge port 23 in the transport direction X and the width direction Y as shown in FIG. The length of the upper base of the storage unit 20 is the same as the length of the discharge port 23. With this structure, the hopper 2 can easily and stably discharge the particulate matter P from the discharge port 23.

また粉粒体散布装置1では、排出口23は、図3に示す斜視図のように、搬送散布部3(図1参照)による粉粒体Pの搬送方向Xと直交する幅方向Yの長さWが、搬送方向Xの長さDに比して、長い形状をなしている。排出口23の平面視形状(粉粒体Pの排出方向と直交する方向の断面視形状)は、排出部21内の粉粒体用移動路22における粉粒体Pの流れに少なからず影響を及ぼすことから、長方形形状又はそれに準じた形状、即ち「一方向に長い形状」であると、真円形状や正方形形状の場合に比して、粉粒体用移動路22における粉粒体Pの流れが定常流化されやすくなる。粉粒体散布装置1では、図3に示すように、排出口23においては、「幅方向Yの長さW>搬送方向Xの長さD」なる大小関係が成立している。排出口23の長さWと長さDとの比は、W/Dとして、好ましくは2以上、さらに好ましくは5以上、そして、好ましくは1000以下、さらに好ましくは100以下、より具体的には、好ましくは2以上1000以下、さらに好ましくは5以上100以下である。尚、長さWは、排出口23の幅方向Yにおける最大長さを意味する。   Moreover, in the granular material spreading | diffusion apparatus 1, the discharge port 23 is the length of the width direction Y orthogonal to the conveyance direction X of the granular material P by the conveyance distribution part 3 (refer FIG. 1) like the perspective view shown in FIG. The length W is longer than the length D in the transport direction X. The plan view shape of the discharge port 23 (the cross-sectional shape in the direction orthogonal to the discharge direction of the powder P) has a considerable influence on the flow of the powder P in the powder moving path 22 in the discharge unit 21. Therefore, when the shape is a rectangular shape or a shape equivalent thereto, that is, “a shape that is long in one direction”, compared to the case of a perfect circle shape or a square shape, The flow is likely to be steady. As shown in FIG. 3, in the granular material spraying apparatus 1, a size relationship of “length W in the width direction Y> length D in the transport direction X” is established at the discharge port 23. The ratio between the length W and the length D of the discharge port 23 is preferably 2 or more, more preferably 5 or more, and preferably 1000 or less, more preferably 100 or less, more specifically, as W / D. , Preferably 2 or more and 1000 or less, more preferably 5 or more and 100 or less. The length W means the maximum length of the discharge port 23 in the width direction Y.

粉粒体散布装置1では、粉粒体用移動路22は、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布する観点から、図4に示すように、搬送方向Xの長さDが粉粒体Pの最大粒子径rの2倍以上5倍未満に形成されている(2r≦D<5r)。粉粒体用移動路22は、搬送方向Xの長さDが粉粒体Pの最大粒子径rの2倍未満では、粉粒体用移動路22において粉粒体Pの詰まりが発生するおそれがある。また、粉粒体用移動路22の搬送方向Xの長さDが粉粒体Pの最大粒子径rの5倍以上では、粉粒体用移動路22における粉粒体Pの流れを定常流化することが困難となるおそれがある。粉粒体用移動路22の搬送方向Xの長さDは、粉粒体Pの最大粒子径rを基準として、好ましくは3倍以上4倍未満である(3r≦D<4r)。   In the granular material spraying apparatus 1, the moving path 22 for granular material is transported as shown in FIG. 4 from the viewpoint of uniformly spraying the granular material P in the width direction Y on the substrate 100 with good quantitativeness. The length D in the direction X is 2 times or more and less than 5 times the maximum particle diameter r of the granular material P (2r ≦ D <5r). If the length D in the transport direction X of the powder moving path 22 is less than twice the maximum particle diameter r of the powder P, the powder P may be clogged in the powder moving path 22. There is. Further, when the length D in the transport direction X of the granular material moving path 22 is 5 times or more the maximum particle diameter r of the granular material P, the flow of the granular material P in the granular material moving path 22 is a steady flow. There is a risk that it will be difficult to convert. The length D in the conveyance direction X of the moving path 22 for the granular material is preferably 3 times or more and less than 4 times (3r ≦ D <4r) based on the maximum particle diameter r of the granular material P.

尚、粉粒体Pの最大粒子径rは公知の方法により測定することができる。公知の測定方法としては、例えば、乾式篩法(JIS Z8815−1994)、動的光散乱法、レーザー回折法、遠心沈降法、重力沈降法、画像イメージング法、FFF(フィールド・フロー・フラクショネーション)法、静電気検知体法、コールター法等が挙げられる。これらの中でも、レーザー回折法又はコールター法で測定した最大粒子径rを採用することが、再現性と精度の点から好ましい。特に、対象とする粉粒体Pの形状が不定形である場合、あるいは粉粒体Pの粒子径が5mm程度以下である場合は、レーザー回折法を用いて粉粒体Pの最大粒子径rを測定することが好ましい。   In addition, the maximum particle diameter r of the granular material P can be measured by a well-known method. Known measurement methods include, for example, dry sieving method (JIS Z8815-1994), dynamic light scattering method, laser diffraction method, centrifugal sedimentation method, gravity sedimentation method, image imaging method, FFF (field flow fractionation). ) Method, electrostatic detector method, Coulter method and the like. Among these, it is preferable from the viewpoint of reproducibility and accuracy to employ the maximum particle diameter r measured by the laser diffraction method or the Coulter method. In particular, when the shape of the target granular material P is indefinite, or when the particle diameter of the granular material P is about 5 mm or less, the maximum particle diameter r of the granular material P is measured using a laser diffraction method. Is preferably measured.

粉粒体散布装置1では、粉粒体用移動路22は、図3及び図4に示すように、粉粒体Pの排出方向(垂直方向)の長さHが粉粒体Pの最大粒子径rの1倍以上に形成されている(r≦H)。粉粒体用移動路22の長さHが粉粒体Pの最大粒子径rの1倍未満では、粉粒体用移動路22内において粉粒体Pの流れが定常流化されないおそれがあり、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布し得ない。粉粒体用移動路22の長さHは、粉粒体Pの最大粒子径rを基準として、好ましくは5倍以上(5r≦H)、さらに好ましくは10倍以上である(10r≦H)。粉粒体用移動路22の長さHの上限値としては、粉粒体Pの流れの定常流化の観点からは制限されないが、装置の適正な大さの観点から決定することができ、例えば、粉粒体Pの最大粒子径rの100倍以下(H≧100r)であることが好ましい。   In the granular material spraying apparatus 1, as shown in FIGS. 3 and 4, in the granular material moving path 22, the length H in the discharge direction (vertical direction) of the granular material P is the largest particle of the granular material P. It is formed to be 1 or more times the diameter r (r ≦ H). If the length H of the particle moving path 22 is less than 1 times the maximum particle diameter r of the powder P, the flow of the powder P may not be steady in the particle moving path 22. The granular material P cannot be uniformly dispersed in the width direction Y with respect to the base material 100 with good quantitativeness. The length H of the particulate movement path 22 is preferably 5 times or more (5r ≦ H), more preferably 10 times or more (10r ≦ H), based on the maximum particle diameter r of the powder P. . The upper limit value of the length H of the moving path 22 for the granular material is not limited from the viewpoint of steady flow of the flow of the granular material P, but can be determined from the viewpoint of the appropriate size of the device, For example, it is preferable that the maximum particle diameter r of the granular material P is 100 times or less (H ≧ 100r).

粉粒体散布装置1では、搬送散布部3は、図1に示すように、ホッパー2から排出された複数の粉粒体Pを受け取る平板状の受取部30と、該受取部30を振動させる振動発生部31とを含んで構成されている。   As shown in FIG. 1, in the granular material spraying apparatus 1, the conveying and scattering unit 3 vibrates the flat plate-shaped receiving unit 30 that receives a plurality of powders P discharged from the hopper 2, and the receiving unit 30. The vibration generating unit 31 is included.

粉粒体散布装置1では、搬送散布部3は、図1に示すように、ホッパー2の下端に位置する排出口23に対して隙間Gを置いて配置されている。具体的に、搬送散布部3は、受取部30の上面30a、即ち、ホッパー2から排出された粉粒体Pを受け取って搬送する面30aと排出口23との間に所定の隙間Gが形成されるように配置されている。   In the granular material spraying device 1, the transport spraying unit 3 is arranged with a gap G with respect to the discharge port 23 located at the lower end of the hopper 2 as shown in FIG. 1. Specifically, the conveying and scattering unit 3 forms a predetermined gap G between the upper surface 30a of the receiving unit 30, that is, the surface 30a that receives and conveys the granular material P discharged from the hopper 2 and the discharge port 23. Are arranged to be.

粉粒体散布装置1では、隙間Gは、図4に示すように、粉粒体Pの最大粒子径rの1倍以上に形成されている(r≦G)。ホッパー2の排出部21の排出口23と搬送散布部3の受取部30の上面30aとの隙間Gが、粉粒体Pの最大粒子径rの1倍より小さいと、隙間Gにおいて粉粒体Pのつまりが発生するおそれがあり、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布し得ない。   In the granular material spraying apparatus 1, the gap G is formed to be not less than 1 times the maximum particle diameter r of the granular material P (r ≦ G), as shown in FIG. 4. If the gap G between the discharge port 23 of the discharge part 21 of the hopper 2 and the upper surface 30a of the receiving part 30 of the conveying and spreading part 3 is smaller than 1 times the maximum particle diameter r of the powder P, the powder in the gap G P clogging may occur, and the granular material P cannot be uniformly spread in the width direction Y with good quantitativeness on the base material 100.

粉粒体散布装置1では、隙間Gは、図4に示すように、粉粒体Pの最大粒子径rを基準として、好ましくは1.5倍以上、さらに好ましくは2倍以上、そして、好ましくは10倍以下、さらに好ましくは5倍以下、より具体的には、1倍以上10倍以下、好ましくは1.5倍以上10倍以下、さらに好ましくは2倍以上5倍以下である。隙間Gが粉粒体Pの最大粒子径rの10倍以下であると、粉粒体Pの排出速度を一定に保ち易い。特に、搬送散布部3に振動発生部31を備えている場合、振動発生部31の振動数等により粉粒体Pの排出量を制御できるが、隙間Gが最大粒子径rの10倍以下であると、ホッパー2の排出口23から排出される粉粒体Pの排出量を制御し易いので好ましい。   In the granular material spraying device 1, the gap G is preferably 1.5 times or more, more preferably 2 times or more, and preferably, based on the maximum particle diameter r of the powder material P, as shown in FIG. Is 10 times or less, more preferably 5 times or less, more specifically 1 to 10 times, preferably 1.5 to 10 times, and more preferably 2 to 5 times. When the gap G is 10 times or less of the maximum particle diameter r of the granular material P, the discharge speed of the granular material P is easily kept constant. In particular, in the case where the conveying / spreading unit 3 includes the vibration generating unit 31, the discharge amount of the granular material P can be controlled by the frequency of the vibration generating unit 31, but the gap G is 10 times or less the maximum particle diameter r. If it exists, since the discharge amount of the granular material P discharged | emitted from the discharge port 23 of the hopper 2 is easy to control, it is preferable.

粉粒体散布装置1では、受取部30は、図1に示すように、ホッパー2の排出口23に対して隙間Gを置いて、該排出口23と平行に配置されている。粉粒体散布装置1では、受取部30は、図2に示すように、搬送散布部3による粉粒体Pの搬送方向Xと直交する幅方向Yの長さW1が、ホッパー2の排出口23の幅方向Yの長さWに比して、長い形状をなしている。粉粒体散布装置1では、受取部30としては、振動発生部31によって発生する振動を該受取部30上の粉粒体Pに適切に伝えるようにする観点から、図1に示す如き扁平で且つ上面30aが平滑な平板部材が好ましい。斯かる平板部材からなる受取部30の材質は特に制限されないが、例えば、鉄、ステンレス、アルミニウム、プラスチック等が挙げられる。   In the granular material spraying apparatus 1, the receiving unit 30 is arranged in parallel with the discharge port 23 with a gap G with respect to the discharge port 23 of the hopper 2, as shown in FIG. 1. In the granular material spraying apparatus 1, the receiving unit 30 is configured such that the length W1 in the width direction Y perpendicular to the conveying direction X of the granular material P by the conveying and spraying unit 3 has an outlet of the hopper 2 as shown in FIG. Compared to the length W of the width direction Y of 23, it has a long shape. In the granular material spraying apparatus 1, the receiving unit 30 is flat as shown in FIG. 1 from the viewpoint of appropriately transmitting the vibration generated by the vibration generating unit 31 to the granular material P on the receiving unit 30. A flat plate member having a smooth upper surface 30a is preferable. Although the material of the receiving part 30 which consists of such a flat plate member is not restrict | limited in particular, For example, iron, stainless steel, aluminum, a plastic etc. are mentioned.

また、受取部30の搬送方向Xに沿う側縁部に、上面30aから上方(ホッパー2側)に向かって立設するガイド部材を設けても良い。受取部30にこのようなガイド部材を設けることによって、ホッパー2の排出口23から排出された粉粒体Pを該受取部30で受け取ることがより一層確実に行えるようになると共に、受け取った粉粒体Pを基材100に散布するまでの間、該受取部30の上面30aからこぼさずに該上面30a上に留めておくことがより一層確実に行えるようになる。その為、搬送方向X以外の想定外の方向から粉粒体Pを散布する不都合が回避され、受取部30の搬送方向Xの先端部から基材100に対して粉粒体Pを均一に散布することが確実になされるようになる。   Further, a guide member may be provided on a side edge portion of the receiving unit 30 along the conveyance direction X so as to stand upward from the upper surface 30a (on the hopper 2 side). By providing such a guide member in the receiving portion 30, it becomes possible to more reliably receive the powder P discharged from the discharge port 23 of the hopper 2 by the receiving portion 30, and the received powder Until the particles P are sprayed on the base material 100, it is possible to more reliably retain the particles P on the upper surface 30a without spilling from the upper surface 30a of the receiving portion 30. Therefore, the inconvenience of spraying the powder P from an unexpected direction other than the transport direction X is avoided, and the powder P is uniformly sprayed on the base material 100 from the front end of the receiving unit 30 in the transport direction X. It will surely be done.

粉粒体散布装置1では、振動発生部31は、図1に示すように、受取部30の下面30bに固定されている。受取部30において、粉粒体Pの受け取り及び搬送に利用される(粉粒体Pと接触する)のは、ホッパー2の排出口23の下方に位置する部分及びその近傍であり(図4参照)、それ以外の部分は基本的に粉粒体Pと接触しない粉粒体非接触部であるところ(図1参照)、振動発生部31は、受取部30の該粉粒体非接触部における下面30bに固定されている(図1参照)。   In the granular material spraying device 1, the vibration generating unit 31 is fixed to the lower surface 30b of the receiving unit 30 as shown in FIG. In the receiving unit 30, the part used for receiving and transporting the granular material P (in contact with the granular material P) is a portion located below the discharge port 23 of the hopper 2 and its vicinity (see FIG. 4). ), Where the other parts are basically non-contact parts of the granular material that do not come into contact with the granular material P (see FIG. 1), the vibration generating unit 31 is in the non-contact part of the granular material of the receiving unit 30 It is fixed to the lower surface 30b (see FIG. 1).

粉粒体散布装置1では、振動発生部31としては、受取部30上の粉粒体Pを搬送方向Xに搬送させ得る振動成分を発生可能なものであれば良く、例えば、圧電セラミック等の圧電素子、振動フィーダ等の公知の振動発生手段が挙げられる。中でも振動フィーダは、受取部30上の粉粒体Pの搬送性並びに基材100への散布の均一性及び定量性等の観点から、振動発生部31として好ましく用いられる。   In the powder particle distribution device 1, the vibration generating unit 31 may be anything that can generate a vibration component that can convey the powder P on the receiving unit 30 in the conveyance direction X. For example, a piezoelectric ceramic or the like can be used. Known vibration generating means such as a piezoelectric element and a vibration feeder can be used. Among these, the vibration feeder is preferably used as the vibration generating unit 31 from the viewpoints of the transportability of the powder P on the receiving unit 30 and the uniformity and quantitativeness of the dispersion on the substrate 100.

粉粒体散布装置1では、受取部30を振動させる振動発生部31の駆動周波数fは、受取部30上の粉粒体Pの搬送性並びに基材100への散布の均一性及び定量性等の観点から、粉粒体散布装置1の共振周波数frよりも高く、且つ共振周波数frとの差の値(f−fr)が、好ましくは10Hz以上、さらに好ましくは75Hz以上、そして、好ましくは175Hzよりも低く、さらに好ましくは150Hz以下、より具体的には、好ましくは10Hz以上175Hzよりも低く、さらに好ましくは75Hz以上150Hz以下である。振動発生部31の駆動周波数fと粉粒体散布装置1の共振周波数frとの差の値が10Hzよりも低いと、受取部30上での粉粒体Pの搬送性が強過ぎてしまい、基材100への散布の均一性及び定量性を損なうおそれがある。また、振動発生部31の駆動周波数fと粉粒体散布装置1の共振周波数との差の値が175Hz以上であると、受取部30上での粉粒体Pの搬送性が弱過ぎてしまい、基材100への散布の定量性を損なうおそれがある。   In the granular material spraying device 1, the drive frequency f of the vibration generating unit 31 that vibrates the receiving unit 30 is such that the transportability of the granular material P on the receiving unit 30 and the uniformity and quantification of the spraying onto the base material 100, etc. In view of the above, the resonance frequency fr of the granular material spreading device 1 is higher than the resonance frequency fr, and the difference value (f-fr) is preferably 10 Hz or more, more preferably 75 Hz or more, and preferably 175 Hz. Lower, more preferably 150 Hz or less, more specifically, preferably 10 Hz or more and 175 Hz, and more preferably 75 Hz or more and 150 Hz or less. If the value of the difference between the drive frequency f of the vibration generating unit 31 and the resonance frequency fr of the powder particle distribution device 1 is lower than 10 Hz, the transportability of the powder material P on the receiving unit 30 is too strong, There is a possibility that the uniformity and quantitativeness of the spraying onto the substrate 100 may be impaired. In addition, if the value of the difference between the drive frequency f of the vibration generating unit 31 and the resonance frequency of the granular material spreading device 1 is 175 Hz or more, the transportability of the granular material P on the receiving unit 30 is too weak. There is a risk that the quantitativeness of the dispersion on the substrate 100 may be impaired.

計量装置50は、ホッパー2に取り付けられている。計量装置50としては、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全重量を連続して計測可能なものが用いられる。連続して計測可能とは、計量データのサンプリングタイムが1秒以下であることをいう。計量装置50によって計量されたホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全重量データは、データの取得のたびに制御部40に送信されるようになっている。計量装置50の具体例としては電気式計量器が挙げられ、具体的には、ロードセル式計量器や電磁式計量器、音叉式計量器等を用いることができる。   The weighing device 50 is attached to the hopper 2. As the weighing device 50, a device capable of continuously measuring the total weight of the hopper 2 and the powder P stored in the hopper 2 is used. “Measurable continuously” means that the sampling time of the weighing data is 1 second or less. The hopper 2 weighed by the weighing device 50 and the total weight data of the powder P stored in the hopper 2 are transmitted to the control unit 40 every time data is acquired. A specific example of the weighing device 50 is an electric meter, and specifically, a load cell meter, an electromagnetic meter, a tuning fork meter, or the like can be used.

制御部40は、受取部30の振動数及び/又は振幅を制御できる機能を有している。また制御部40は、計量装置50から送信された計量データを受信できるようになっている。更に制御部40は、ホッパー2の貯蔵部20上に設置されている粉粒体供給装置90に接続されており、粉粒体供給装置90による貯蔵部20への粉粒体の供給も制御する機能を有している。制御部40としては、例えば、制御・処理用ソフトウエアがインストールされたコンピュータを用いることができる。   The control unit 40 has a function capable of controlling the frequency and / or amplitude of the receiving unit 30. Further, the control unit 40 can receive the weighing data transmitted from the weighing device 50. Furthermore, the control unit 40 is connected to the powder / particle supply device 90 installed on the storage unit 20 of the hopper 2, and also controls the supply of the powder / particles to the storage unit 20 by the powder / particle supply device 90. It has a function. As the control unit 40, for example, a computer in which control / processing software is installed can be used.

粉粒体散布装置1では、制御部40は、更に、受取部30を振動させる振動発生部31の駆動周波数及び振動発生部31に印加する電圧を制御できる機能を有している。粉粒体散布装置1では、制御部40を用いて振動発生部31の駆動周波数を制御することで受取部30の振動数を制御する。また粉粒体散布装置1では、制御部40を用いて振動発生部31に印加する電圧を制御することで振動発生部31の振幅Nを制御する。即ち、粉粒体散布装置1では、該制御部40を用いて、搬送散布部3の搬送能力を制御している。具体的に、制御部40による制御下、振動発生部31の非作動時には、受取部30は振動していないため、受取部30上の複数の粉粒体Pの搬送は停止又は抑制されている。斯かる状態から振動発生部31を作動させると、受取部30が振動を開始することによって、受取部30上の複数の粉粒体Pの停止又は抑制が解除され、複数の粉粒体Pが搬送方向Xに搬送されながら幅方向Yに広がり、最終的には図1及び図2に示すように、幅方向Yに広がった状態で受取部30の搬送方向Xの先端部から落下して、受取部30の下方を連続搬送されている基材100上に散布される。尚、振動発生部31の振幅N(%)は、振動発生部31に電圧を印加した時の変位であり、最大電圧を印加した時の変位を100%(基準)とした値である。   In the granular material spraying apparatus 1, the control unit 40 further has a function of controlling the driving frequency of the vibration generating unit 31 that vibrates the receiving unit 30 and the voltage applied to the vibration generating unit 31. In the granular material spraying apparatus 1, the frequency of the receiving unit 30 is controlled by controlling the drive frequency of the vibration generating unit 31 using the control unit 40. Moreover, in the granular material dispersion | distribution apparatus 1, the amplitude N of the vibration generation part 31 is controlled by controlling the voltage applied to the vibration generation part 31 using the control part 40. FIG. That is, in the granular material spraying apparatus 1, the transport capability of the transport spraying unit 3 is controlled using the control unit 40. Specifically, under the control of the control unit 40, when the vibration generating unit 31 is not in operation, the receiving unit 30 is not vibrating, so that the conveyance of the plurality of powder particles P on the receiving unit 30 is stopped or suppressed. . When the vibration generating unit 31 is operated from such a state, when the receiving unit 30 starts to vibrate, the stop or suppression of the plurality of granular materials P on the receiving unit 30 is released, and the plurality of granular materials P are released. While being transported in the transport direction X, it spreads in the width direction Y, and finally falls from the leading end of the receiving direction 30 in the transport direction X in a state of spreading in the width direction Y, as shown in FIGS. It is spread | dispersed on the base material 100 currently conveyed under the receiving part 30 continuously. The amplitude N (%) of the vibration generating unit 31 is a displacement when a voltage is applied to the vibration generating unit 31, and is a value with the displacement when the maximum voltage is applied as 100% (reference).

ここで、粉粒体散布装置1において、本発明者は、振動発生部31の振幅N(%)と、該受取部30の振動により搬送方向Xに搬送されて基材100上に散布される複数の粉粒体Pの散布量Q(mg/枚)との関係から求められた検量線の傾きm(mg/%・枚)の値を、変化量|m|(mg/%・枚/Hz)として表した値が0.4以下となる周波数f(Hz)で振動発生部31を作動させることで、受取部30上の粉粒体Pの搬送性並びに基材100への散布の均一性及び定量性が安定することを見出した。   Here, in the granular material spraying apparatus 1, the inventor is transported in the transport direction X by the amplitude N (%) of the vibration generating unit 31 and the vibration of the receiving unit 30 and sprayed on the base material 100. The value of the slope m (mg /% · sheet) of the calibration curve obtained from the relationship with the application amount Q (mg / sheet) of the plurality of granular materials P is expressed as the amount of change | m | (mg /% · sheet / Hz), by causing the vibration generating unit 31 to operate at a frequency f (Hz) at which the value expressed as 0.4 or less, the transportability of the granular material P on the receiving unit 30 and the uniform dispersion on the base material 100 It was found that the property and the quantitative property are stable.

図5に示すグラフは、ホッパー2と、受取部30及び振動発生部31を有する搬送散布部3と、制御部40とを備え、共振周波数frが250Hzの粉粒体散布装置1を用い、振動発生部31の振幅N(%)と、受取部30から散布される粉粒体Pの散布量Q(mg/枚)との関係をプロットしたものである。具体的に図5に示すグラフは、各駆動周波数f(255Hz、260Hz、300Hz,325Hz,350Hz,375Hz,400Hz,410Hz,425Hz)にて振動発生部31を作動させて、前記振幅N(%)を変更した場合の各前記散布量Q(mg/枚)を測定した結果をプロットしたものである。   The graph shown in FIG. 5 includes a hopper 2, a conveying / spreading unit 3 having a receiving unit 30 and a vibration generating unit 31, and a control unit 40. The relationship between the amplitude N (%) of the generation unit 31 and the application amount Q (mg / sheet) of the granular material P applied from the receiving unit 30 is plotted. Specifically, in the graph shown in FIG. 5, the vibration generating unit 31 is operated at each driving frequency f (255 Hz, 260 Hz, 300 Hz, 325 Hz, 350 Hz, 375 Hz, 400 Hz, 410 Hz, 425 Hz), and the amplitude N (%). Is a plot of the results of measuring each of the spraying amounts Q (mg / sheet) when the value is changed.

詳述すると、図5中の直線A1は、駆動周波数255Hzにて振動発生部31を作動させて粉粒体Pの散布量Q(mg/枚)をプロットした測定結果の線形近似(最小二乗法による回帰直線)による検量線である。図5中の直線B1は、駆動周波数260Hzにて振動発生部31を作動させた測定結果の検量線であり、図5中の直線C1は、駆動周波数300Hzにて振動発生部31を作動させた測定結果の検量線である。図5中の直線D1は、駆動周波数325Hzにて振動発生部31を作動させた測定結果の検量線であり、図5中の直線E1は、駆動周波数350Hzにて振動発生部31を作動させた測定結果の検量線である。図5中の直線F1は、駆動周波数375Hzにて振動発生部31を作動させた測定結果の検量線であり、図5中の直線G1は、駆動周波数400Hzにて振動発生部31を作動させた測定結果の検量線である。図5中の直線H1は、駆動周波数410Hzにて振動発生部31を作動させた測定結果の検量線であり、図5中の直線I1は、駆動周波数425Hzにて振動発生部31を作動させた測定結果の検量線である。   More specifically, a straight line A1 in FIG. 5 is a linear approximation of a measurement result in which the vibration generating unit 31 is operated at a driving frequency of 255 Hz to plot the amount Q (mg / sheet) of the granular material P (the least square method). Is a calibration curve by a regression line). A straight line B1 in FIG. 5 is a calibration curve of measurement results obtained by operating the vibration generating unit 31 at a driving frequency of 260 Hz, and a straight line C1 in FIG. 5 operates the vibration generating unit 31 at a driving frequency of 300 Hz. It is a calibration curve of measurement results. A straight line D1 in FIG. 5 is a calibration curve of measurement results obtained by operating the vibration generating unit 31 at a driving frequency of 325 Hz, and a straight line E1 in FIG. 5 operates the vibration generating unit 31 at a driving frequency of 350 Hz. It is a calibration curve of measurement results. A straight line F1 in FIG. 5 is a calibration curve of measurement results obtained by operating the vibration generating unit 31 at a driving frequency of 375 Hz, and a straight line G1 in FIG. 5 operates the vibration generating unit 31 at a driving frequency of 400 Hz. It is a calibration curve of measurement results. A straight line H1 in FIG. 5 is a calibration curve of measurement results obtained by operating the vibration generating unit 31 at a driving frequency of 410 Hz, and a straight line I1 in FIG. 5 operates the vibration generating unit 31 at a driving frequency of 425 Hz. It is a calibration curve of measurement results.

図5に示すように、駆動周波数255Hz(直線A1)においては、前記振幅N(%)を増加させると前記散布量Q(mg/枚)が増加する比例関係にあることが分かる。同様に、駆動周波数260Hz(直線B1)、駆動周波数300Hz(直線C1)、駆動周波数325Hz(直線D1)、駆動周波数350Hz(直線E1)、駆動周波数375Hz(直線F1)、駆動周波数400Hz(直線G1)及び駆動周波数410Hz(直線H1)においても、前記振幅N(%)を増加させると前記散布量Q(mg/枚)が増加する比例関係にあることが分かる。   As shown in FIG. 5, at the driving frequency of 255 Hz (straight line A1), it can be seen that there is a proportional relationship in which the application amount Q (mg / sheet) increases when the amplitude N (%) is increased. Similarly, the driving frequency is 260 Hz (straight line B1), the driving frequency is 300 Hz (straight line C1), the driving frequency is 325 Hz (straight line D1), the driving frequency is 350 Hz (straight line E1), the driving frequency is 375 Hz (straight line F1), and the driving frequency is 400 Hz (straight line G1). It can also be seen that, even at the drive frequency of 410 Hz (straight line H1), when the amplitude N (%) is increased, the spray amount Q (mg / sheet) is in a proportional relationship.

一方、駆動周波数425Hz(直線I1)においては、前記振幅Nを増加させても前記散布量Q(mg/枚)の増加が著しく少なく、粉粒体Pが搬送方向Xに搬送され難くなる傾向にあることが分かる。即ち、振動発生部31の駆動周波数fが425Hzになると、受取部30から散布される粉粒体Pの散布量Q(mg/枚)が著しく少なくなる傾向にあることが分かる。   On the other hand, at a driving frequency of 425 Hz (straight line I1), even if the amplitude N is increased, the spread amount Q (mg / sheet) is remarkably small and the powder P tends to be difficult to be conveyed in the conveyance direction X. I understand that there is. In other words, it can be seen that when the drive frequency f of the vibration generating unit 31 is 425 Hz, the spraying amount Q (mg / sheet) of the powder P sprayed from the receiving unit 30 tends to be significantly reduced.

図6に示すグラフは、前記粉粒体散布装置1を用い、振動発生部31を作動させる駆動周波数f(Hz)と、前記直線A1〜I1の傾きm(mg/%・枚)との関係をプロットしたものである。具体的に図6に示すグラフは、各駆動周波数f(255Hz,260Hz,300Hz,325Hz,350Hz,375Hz,400Hz,410Hz,425Hz)において、前記直線A1〜I1の傾きm(mg/%・枚)の値をプロットしたものである。   The graph shown in FIG. 6 shows the relationship between the drive frequency f (Hz) for operating the vibration generating unit 31 and the slope m (mg /% / sheet) of the straight lines A1 to I1 using the powder particle disperser 1. Are plotted. Specifically, the graph shown in FIG. 6 shows the slope m (mg /% / sheet) of the straight lines A1 to I1 at each driving frequency f (255 Hz, 260 Hz, 300 Hz, 325 Hz, 350 Hz, 375 Hz, 400 Hz, 410 Hz, 425 Hz). Is a plot of the value of.

詳述すると、図6中のA2は直線A1(駆動周波数255Hz)の傾きの値をプロットしたものであり、B2は直線B1(駆動周波数260Hz)の傾きの値をプロットしたものである。図6中のC2は直線C1(駆動周波数300Hz)の傾きの値をプロットしたものであり、D2は直線D1(駆動周波数325Hz)の傾きの値をプロットしたものである。図6中のE2は直線E1(駆動周波数350Hz)の傾きの値をプロットしたものであり、F2は直線F1(駆動周波数375Hz)の傾きの値をプロットしたものである。図6中のG2は直線G1(駆動周波数400Hz)の傾きの値をプロットしたものであり、図6中のH2は直線H1(駆動周波数410Hz)の傾きの値をプロットしたものであり、I2は直線I1(駆動周波数425Hz)の傾きの値をプロットしたものである。   More specifically, A2 in FIG. 6 is a plot of the slope value of the straight line A1 (drive frequency 255 Hz), and B2 is a plot of the slope value of the straight line B1 (drive frequency 260 Hz). C2 in FIG. 6 is a plot of the slope value of the straight line C1 (drive frequency 300 Hz), and D2 is a plot of the slope value of the straight line D1 (drive frequency 325 Hz). E2 in FIG. 6 is a plot of the slope value of the straight line E1 (drive frequency 350 Hz), and F2 is a plot of the slope value of the straight line F1 (drive frequency 375 Hz). G2 in FIG. 6 is a plot of the slope value of the straight line G1 (drive frequency 400 Hz), H2 in FIG. 6 is a plot of the slope value of the straight line H1 (drive frequency 410 Hz), and I2 is The slope value of the straight line I1 (driving frequency 425 Hz) is plotted.

図6に示す結果から、振動発生部31の駆動周波数f(Hz)が高くなれば、直線A1〜I1の傾きm(mg/%・枚)の値が小さくなる傾向にあることが分かる。即ち、振動発生部31の駆動周波数f(Hz)が高くなれば、前記振幅N(%)を変更しても散布量Q(mg/枚)の変化が少なくなる傾向にあることが分かる。つまり、振動発生部31の駆動周波数f(Hz)が高い駆動周波数f(Hz)にて振動発生部31を作動させれば、散布量Q(mg/枚)の変化を抑制した状態で前記振幅N(%)を制御し易いことが分かる。   From the results shown in FIG. 6, it can be seen that the value of the slope m (mg /% · sheet) of the straight lines A1 to I1 tends to decrease as the drive frequency f (Hz) of the vibration generating unit 31 increases. That is, it can be seen that if the drive frequency f (Hz) of the vibration generating unit 31 is increased, the change in the spray amount Q (mg / sheet) tends to decrease even if the amplitude N (%) is changed. That is, if the vibration generating unit 31 is operated at a driving frequency f (Hz) where the driving frequency f (Hz) of the vibration generating unit 31 is high, the amplitude is suppressed in a state where the change in the spray amount Q (mg / sheet) is suppressed. It can be seen that it is easy to control N (%).

図7に示すグラフは、前記粉粒体散布装置1を用い、振動発生部31を作動させる駆動周波数f(Hz)と、図6に示す傾きm(mg/%・枚)の値を変化量として表した値との関係をプロットしたものである。具体的に図7に示すグラフは、各駆動周波数f(255Hz,260Hz,300Hz,325Hz,350Hz,375Hz,400Hz,410Hz,425Hz)における傾きmの値(A2〜I2)を前記変化量として表した値(AB3〜HI3)をプロットしたものである。尚、「変化量として表した値」とは、前記各周波数fのそれぞれにおける傾きmの値(A2〜I2での値)の変化量を、前記各周波数fの変化量で除した値である。例えば、図7及び図8に示すCD3は、325Hzの傾きD2の値と300Hzの傾きC2の値との差(D2−C2)を変化量として表した値の絶対値を、傾きD2の周波数(325Hz)と傾きC2の周波数(300Hz)との差(D2−C2)を変化量として表した値の絶対値で除して求められる値である。   The graph shown in FIG. 7 uses the powder particle disperser 1 to change the drive frequency f (Hz) for operating the vibration generating unit 31 and the value of the slope m (mg /% · sheet) shown in FIG. Is a plot of the relationship with the value expressed as. Specifically, the graph shown in FIG. 7 represents the value of the slope m (A2 to I2) at each driving frequency f (255 Hz, 260 Hz, 300 Hz, 325 Hz, 350 Hz, 375 Hz, 400 Hz, 410 Hz, 425 Hz) as the amount of change. The values (AB3 to HI3) are plotted. The “value expressed as the amount of change” is a value obtained by dividing the amount of change in the value of the slope m (the value in A2 to I2) at each frequency f by the amount of change in each frequency f. . For example, CD3 shown in FIG. 7 and FIG. 8 represents the absolute value of the value representing the difference (D2−C2) between the value of the slope D2 of 325 Hz and the value of the slope C2 of 300 Hz as the amount of change, and the frequency of the slope D2 ( 325 Hz) and the frequency of the slope C2 (300 Hz) (D2-C2) is obtained by dividing by the absolute value of the value expressed as the amount of change.

詳述すると、図7中のAB3は傾きmの値A2(駆動周波数255Hz)及び値B2(駆動周波数260Hz)間の変化量を表した前記値であり、図7中のBC3は傾きmの値B2(駆動周波数260Hz)及び値C2(駆動周波数300Hz)間の変化量を表した前記値である。図7中のCD3は傾きmの値C2(駆動周波数300Hz)及び値D2(駆動周波数325Hz)間の変化量を表した前記値であり、図7中のDE3は傾きmの値D2(駆動周波数325Hz)及び値E2(駆動周波数350Hz)間の変化量を表した前記値である。図7中のEF3は傾きmの値E2(駆動周波数350Hz)及び値F2(駆動周波数375Hz)間の変化量をを変化量として表した前記値であり、図7中のFG3は傾きmの値F2(駆動周波数375Hz)及び値G2(駆動周波数400Hz)間の変化量を表した前記値である。図7中のGH3は傾きmの値G2(駆動周波数400Hz)及び値H2(駆動周波数410Hz)間の変化量をを変化量として表した前記値であり、図7中のHI3は傾きmの値H2(駆動周波数410Hz)及び値I2(駆動周波数425Hz)間の変化量を前記表した値である。   More specifically, AB3 in FIG. 7 is the value representing the amount of change between the value A2 (drive frequency 255 Hz) and the value B2 (drive frequency 260 Hz) of the slope m, and BC3 in FIG. 7 is the value of the slope m. This value represents the amount of change between B2 (drive frequency 260 Hz) and value C2 (drive frequency 300 Hz). CD3 in FIG. 7 is the value representing the amount of change between the value C2 (driving frequency 300 Hz) and the value D2 (driving frequency 325 Hz) of the inclination m, and DE3 in FIG. 7 is the value D2 (driving frequency) of the inclination m. 325 Hz) and the value representing the amount of change between the value E2 (drive frequency 350 Hz). EF3 in FIG. 7 is the value representing the amount of change between the value E2 (drive frequency 350 Hz) and the value F2 (drive frequency 375 Hz) of the slope m as the amount of change, and FG3 in FIG. 7 is the value of the slope m. This value represents the amount of change between F2 (drive frequency 375 Hz) and value G2 (drive frequency 400 Hz). GH3 in FIG. 7 is the value representing the amount of change between the value G2 (drive frequency 400 Hz) and the value H2 (drive frequency 410 Hz) of the slope m as the amount of change, and HI3 in FIG. 7 is the value of the slope m. The amount of change between H2 (driving frequency 410 Hz) and value I2 (driving frequency 425 Hz) is the above-described value.

図6からわかるように、振動発生部31の駆動周波数f(Hz)から粉粒体散布装置1の共振周波数fr(250Hz)を差し引いた値(f−fr)が10Hz以下の場合(図6に示すA2(255Hz)及びB2(260Hz))、粉粒体散布装置1の共振周波数fr(250Hz)に近過ぎるため、粉粒体Pの搬送性が強過ぎ、振幅(N)に対する散布量(mg/枚)の変化が大きくなってしまい、振幅制御が難しくなり、基材100への散布の均一性及び定量性を損なうおそれがある。また、振動発生部31の駆動周波数f(Hz)から粉粒体散布装置1の共振周波数fr(250Hz)を差し引いた値が175Hz以上の場合(図6に示すI2(425Hz))、粉粒体Pの搬送性が弱過ぎてしまい、基材100への散布の定量性を損なうおそれがある。   As can be seen from FIG. 6, when the value (f−fr) obtained by subtracting the resonance frequency fr (250 Hz) of the powder distribution device 1 from the drive frequency f (Hz) of the vibration generating unit 31 is 10 Hz or less (in FIG. 6). A2 (255 Hz) and B2 (260 Hz) to be shown, too close to the resonance frequency fr (250 Hz) of the granular material spraying device 1, the transportability of the granular material P is too strong, and the spraying amount (mg) relative to the amplitude (N) / Sheet) becomes large, the amplitude control becomes difficult, and the uniformity and quantitativeness of the spraying onto the substrate 100 may be impaired. In addition, when the value obtained by subtracting the resonance frequency fr (250 Hz) of the powder distribution device 1 from the drive frequency f (Hz) of the vibration generating unit 31 is 175 Hz or more (I2 (425 Hz) shown in FIG. 6), The transportability of P is too weak, and there is a possibility that the quantitativeness of the spraying onto the base material 100 may be impaired.

図8は、前記値(f−fr)が10Hz以下のA2又はB2に基づく図7中のAB3,BC3を除き、図7の縦軸を拡大したグラフである。図8に示す結果から、本発明者らは、変化量として表した値がDE3〜HI3のように0よりも大きく且つ0.4以下となる駆動周波数fで振動発生部31を作動すれば、受取部30上の粉粒体Pの搬送性並びに基材100への散布の均一性及び定量性の全てを満足することを知見した。また、変化量として表した値が0より大きく0.3以下となる駆動周波数fで振動発生部31を作動すれば、更に満足でき、変化量として表した値が0より大きく0.25以下となる駆動周波数fで振動発生部31を作動すれば、特に満足できることを見出した。   FIG. 8 is a graph obtained by enlarging the vertical axis of FIG. 7 except for AB3 and BC3 in FIG. 7 based on A2 or B2 where the value (f-fr) is 10 Hz or less. From the result shown in FIG. 8, the present inventors can operate the vibration generating unit 31 at a driving frequency f in which the value expressed as the amount of change is greater than 0 and less than or equal to 0.4, such as DE3 to HI3. It has been found that all of the transportability of the granular material P on the receiving unit 30 and the uniformity and quantitativeness of the dispersion on the base material 100 are satisfied. Further, if the vibration generating unit 31 is operated at a driving frequency f in which the value expressed as the amount of change is greater than 0 and equal to or less than 0.3, the vibration generating unit 31 can be further satisfied. It has been found that it is particularly satisfactory if the vibration generating unit 31 is operated at the drive frequency f.

粉粒体散布装置1では、基材100上に散布する粉粒体Pとしては、吸水性ポリマー粒子、砂糖、PEペレット、PPペレット、PETチップ、PCチップ、PEグラニュール、PBAビーズ、等の有機物の粉粒体や、金属粉、塩化ナトリウム(電解質)、塩化カリウム、塩化カルシウム、塩化マグネシウム、ガラス、石灰等の無機物の粉粒体が挙げられる。中でも、受取部30上の粉粒体Pの搬送性並びに基材100への散布の均一性及び定量性等の観点から、吸水性ポリマー粒子及び塩化ナトリウム(電解質)が好ましく、塩化ナトリウム(電解質)が特に好ましい。   In the granular material spraying apparatus 1, as the granular material P sprayed on the base material 100, water-absorbing polymer particles, sugar, PE pellets, PP pellets, PET chips, PC chips, PE granules, PBA beads, etc. Examples include organic powders and inorganic powders such as metal powder, sodium chloride (electrolyte), potassium chloride, calcium chloride, magnesium chloride, glass, and lime. Of these, water-absorbing polymer particles and sodium chloride (electrolyte) are preferred from the viewpoints of the transportability of the powder P on the receiving unit 30 and the uniformity and quantitativeness of dispersion on the substrate 100, and sodium chloride (electrolyte). Is particularly preferred.

粉粒体散布装置1では、粉粒体Pの形状は特に制限されず、例えば、球状、碁石状、楕円形、楕円柱、針状、キュービック状等が挙げられる。粉粒体散布装置1によれば、粉粒体Pが真球状の場合は勿論のこと、真球状以外の形状であっても、基材100の幅方向Yに均一に定量性良く散布することができる。   In the granular material spraying apparatus 1, the shape of the granular material P is not particularly limited, and examples thereof include a spherical shape, a meteorite shape, an elliptical shape, an elliptical column shape, a needle shape, and a cubic shape. According to the powder particle distribution device 1, the powder particle P is uniformly distributed in the width direction Y of the base material 100 in the width direction Y even when the particle particle P has a true spherical shape, even if it has a shape other than the true spherical shape. Can do.

粉粒体散布装置1では、粉粒体Pと接触するホッパー2の内側壁20i及び傾斜内側壁20isの素材としては、粉粒体Pが付着しにくい素材であることが好ましい。例えば、粉粒体Pとして、塩化ナトリウム等の潮解性を有するものや、吸水性ポリマーのように吸水による変性を来たすような材料を使用する場合には、ホッパー2の内側壁20i及び傾斜内側壁20isとして、熱伝導性が比較的低い素材を用いることが好ましい。熱伝導率としては、粉粒体Pの散布が行われる作業時の温度下において、25W/m・K以下のものを使用すると好ましい。熱伝導性の低い材料をホッパー2の内側壁20i及び傾斜内側壁20isとして使用することで、ホッパー2内の結露を防止しやすくなるからである。また、ホッパー2の内側壁20i及び傾斜内側壁20isの素材としては、該内側壁20i及び傾斜内側壁20isとは反対側に位置してホッパー2の外面を構成する外側壁よりも、熱伝導性の低い素材などを選択することも可能である。そのような相対的に熱伝導性の低い内側壁20i及び傾斜内側壁20isをホッパー2に採用した場合には、特に、粉粒体Pとして吸水性ポリマーを用いる場合では、吸水性ポリマーが吸水によって膨張することや、粘着性を発現してお互いにくっついてしまうという不都合も生じ難くなるので、後述する本発明の効果を一層確実に奏する観点から好ましい。また、ホッパー2の内側壁20i及び傾斜内側壁20isの素材としては、粉粒体Pに起因する腐食が発生し難いものであることが好ましく、具体的には例えば、ステンレス鋼、ガラス、ジルコニア、窒化ケイ素等のセラミック材料等が挙げられる。さらに例えば、樹脂粉体のような非導電性材料で、粉粒体Pどうしの間や粉粒体Pと内側壁20i及び傾斜内側壁20isとの接触により静電気が発生しうる材料を粉粒体Pとして使用する場合には、ホッパー2の内側壁20i及び傾斜内側壁20isとして、導電性を有する素材を用いることが望ましい。導電性を有する材料をホッパー2の内側壁20i及び傾斜内側壁20isとして使用することで、静電気発生を防止できるからである。そのような材料としては、たとえば、ステンレス鋼、アルミニウム、銅のような金属材料、導電性セラミック、導電性樹脂のような導電性を付与した材料等が挙げられる。   In the granular material spreading | diffusion apparatus 1, as a raw material of the inner wall 20i of the hopper 2 which contacts the granular material P, and the inclination inner wall 20is, it is preferable that the granular material P does not adhere easily. For example, when the powder P has a deliquescent property such as sodium chloride, or a material that is denatured by water absorption such as a water-absorbing polymer, the inner wall 20i and the inclined inner wall of the hopper 2 are used. It is preferable to use a material having a relatively low thermal conductivity as 20is. As the thermal conductivity, it is preferable to use a thermal conductivity of 25 W / m · K or less at the temperature at which the powder P is dispersed. It is because it becomes easy to prevent dew condensation in the hopper 2 by using a material with low thermal conductivity as the inner wall 20i and the inclined inner wall 20is of the hopper 2. The material of the inner wall 20i and the inclined inner wall 20is of the hopper 2 is more thermally conductive than the outer wall that is located on the opposite side of the inner wall 20i and the inclined inner wall 20is and constitutes the outer surface of the hopper 2. It is also possible to select a material with a low value. When such an inner wall 20i and an inclined inner wall 20is having relatively low thermal conductivity are employed in the hopper 2, particularly when a water-absorbing polymer is used as the granular material P, the water-absorbing polymer is absorbed by water absorption. Since it is less likely to cause inconvenience of swelling and sticking to each other, it is preferable from the viewpoint of more surely achieving the effects of the present invention described later. Moreover, as a raw material of the inner wall 20i and the inclined inner wall 20is of the hopper 2, it is preferable that the corrosion caused by the granular material P is difficult to occur. Specifically, for example, stainless steel, glass, zirconia, Examples thereof include ceramic materials such as silicon nitride. Further, for example, a non-conductive material such as a resin powder, and a material that can generate static electricity between the powder particles P or between the powder particles P and the inner wall 20i and the inclined inner wall 20is. When used as P, it is desirable to use a conductive material for the inner wall 20i and the inclined inner wall 20is of the hopper 2. This is because static electricity can be prevented by using a conductive material as the inner wall 20i and the inclined inner wall 20is of the hopper 2. Examples of such materials include metal materials such as stainless steel, aluminum, and copper, conductive ceramics, and conductive materials such as conductive resins.

また、ホッパー2の内側壁20i及び傾斜内側壁20isとしては、粉粒体Pが円滑に排出口23へと流れ出るような表面性状を有することが好ましい。従って、ホッパー2の内側壁20i及び傾斜内側壁20isは、表面が滑らかであって、かつ、動摩擦係数が低いことが好ましい。特に、水平方向及び垂直方向の両方向に交差する方向に延びる傾斜内側壁20isが、そのような性状であることが好ましい。具体的には、ホッパー2の内側壁20i及び傾斜内側壁20isの表面粗さ(Ra)は、JIS B 0601−2001に従って測定された値で、10μm以下、特に1μm以下であることが好ましい。   Moreover, it is preferable that the inner wall 20i and the inclined inner wall 20is of the hopper 2 have a surface property that allows the powder P to smoothly flow out to the discharge port 23. Therefore, it is preferable that the inner wall 20i and the inclined inner wall 20is of the hopper 2 have a smooth surface and a low dynamic friction coefficient. In particular, it is preferable that the inclined inner wall 20is extending in a direction intersecting both the horizontal direction and the vertical direction has such a property. Specifically, the surface roughness (Ra) of the inner wall 20i and the inclined inner wall 20is of the hopper 2 is a value measured according to JIS B 0601-2001, and is preferably 10 μm or less, particularly preferably 1 μm or less.

基材100は、シート状の基材であることが好ましいが、シート状の基材に限られない。シート状の基材としては、各種製法による不織布、樹脂フィルム、織物、編み物、紙等、及びこれらのうちの同種又は異種のものを複数枚積層した積層体等が挙げられる。   The substrate 100 is preferably a sheet-like substrate, but is not limited to a sheet-like substrate. Examples of the sheet-like base material include non-woven fabrics, resin films, woven fabrics, knitted fabrics, papers, and the like produced by various manufacturing methods, and laminates obtained by laminating a plurality of the same or different materials.

また基材100としては、シート状の材料の上に機能性を有する材料や組成物を積層したものが挙げられる。例えば、フィルムや不織布等のシート状材料の上に、被酸化性金属及び水を含む発熱組成物を塗布するなどして配置したものを、基材100とすることができる。そのような形態の例としては、被酸化性金属の粒子、及び水を含む発熱シートを製造する際に、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子、金属粒子、固形の電解質等の1又は2以上を散布して、発熱組成物を形成する方法が挙げられる。この基材100の発熱組成物の層に、塩化ナトリウム等の電解質といった粉粒体を、本発明の粉粒体散布装置を用いて散布することにより、これら粉粒体が均一な状態で配置された発熱体を得ることができる。このような発熱体であれば、発熱ムラの少ない、優れた発熱特性を得られることが期待できる。尚、本発明の粉粒体散布装置は、発熱体の製造において好ましいものであるが、他の機能性シートの製造にも適用可能である。例えば、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子を散布し、吸水性シートを製造することができる。   Moreover, as the base material 100, what laminated | stacked the material and composition which have functionality on the sheet-like material is mentioned. For example, the base material 100 can be formed by applying a heat generating composition containing an oxidizable metal and water on a sheet-like material such as a film or a nonwoven fabric. As an example of such a form, when manufacturing a heat-generating sheet containing oxidizable metal particles and water, particles of a superabsorbent polymer are formed on a sheet-like substrate made of a fiber sheet that is continuously conveyed. And a method of forming a heat generating composition by spraying one or more of metal particles, solid electrolyte, and the like. By disperse | distributing the granular material, such as electrolytes, such as sodium chloride, to the layer of the exothermic composition of this base material 100 using the granular material distribution apparatus of this invention, these granular materials are arrange | positioned in a uniform state. A heating element can be obtained. With such a heating element, it can be expected that excellent heat generation characteristics with less unevenness in heat generation can be obtained. In addition, although the granular material dispersion | spreading apparatus of this invention is preferable in manufacture of a heat generating body, it is applicable also to manufacture of another functional sheet. For example, a water-absorbent sheet can be produced by spraying particles of a highly water-absorbent polymer on a sheet-like substrate made of a continuously conveyed fiber sheet.

また、基材100が水分を含む組成物等を含んでいることに起因して、該基材100上に散布された粉粒体がその散布直後から該基材100上を移動困難である場合には、排出口23から均一な粉粒体散布が行われることが重要となる。その観点から、本発明の粉粒体散布装置は非常に有用なものである。   Moreover, when the base material 100 contains the composition containing a water | moisture content, etc., when the granular material spread | dispersed on this base material 100 is difficult to move on this base material 100 immediately after the dispersion | spreading For this, it is important that uniform powder particles are sprayed from the discharge port 23. From this point of view, the powder particle distribution device of the present invention is very useful.

粉粒体散布装置1を用いて連続搬送されるシート状の基材100上に粉粒体Pを散布して粉粒体含有物品を製造する製造方法の一例として、被酸化性金属の粒子、及び水を含む発熱シートを製造する際に、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子、金属粒子、固形の電解質等を散布して発熱組成物を形成する発熱体の製造方法が挙げられる。この発熱組成物の層に、塩化ナトリウム等の電解質といった粉粒体を、本発明の粉粒体散布装置を用いて散布することにより、これら粉粒体が均一な状態で配置された発熱体を得ることができる。このような発熱体であれば、発熱ムラの少ない、優れた発熱特性を得られることが期待できる。なお、本発明の装置及び粉粒体含有物品の製造方法は、発熱体の製造方法において好ましいものであるが、他の機能性シートの製造方法にも適用可能である。   As an example of a manufacturing method for producing a granular material-containing article by dispersing the granular material P on a sheet-like base material 100 continuously conveyed using the granular material dispersing apparatus 1, particles of an oxidizable metal, When a heat-generating sheet containing water and water is produced, a heat-generating composition is formed by spraying superabsorbent polymer particles, metal particles, solid electrolyte, etc. on a sheet-like base material composed of a continuously conveyed fiber sheet. The manufacturing method of the heat generating body to form is mentioned. By disperse | distributing the granular material, such as electrolytes, such as sodium chloride, to the layer of this exothermic composition using the granular material spreading | diffusion apparatus of this invention, the exothermic body by which these granular material was arrange | positioned in the uniform state is obtained. Can be obtained. With such a heating element, it can be expected that excellent heat generation characteristics with less unevenness in heat generation can be obtained. In addition, although the manufacturing method of the apparatus of this invention and a granular material containing article is preferable in the manufacturing method of a heat generating body, it is applicable also to the manufacturing method of another functional sheet.

粉粒体散布装置1を用いて、連続搬送されるシート状の基材100上に粉粒体Pを散布する場合には、ホッパー2の排出口23を通じて該ホッパー2内に貯留されている粉粒体Pを落下させ、搬送散布部3の受取部30上に散布する。そして、先に述べた検量線の傾きの値から求めた変化量絶対値mが0より大きく、且つ0.4以下となる駆動周波数fで振動発生部31を作動して受取部30上の複数の粉粒体Pを所定の一方向に搬送して基材100上に散布する。該周波数で振動発生部31を作動して複数の粉粒体Pを所定の一方向に搬送することで、受取部30上の粉粒体Pを幅方向に均一に定量性よく基材100上に散布することができる。また、粉粒体散布装置1を用いた発熱体の製造方法では、振動発生部31の駆動周波数f(Hz)から粉粒体散布装置1の共振周波数frを差し引いた値(f−fr)が10Hzよりも大きく175Hzよりも低い周波数帯において粉粒体Pを散布する。前記値で粉粒体Pを散布することで、受取部30上の粉粒体Pの搬送性並びに基材100への散布の均一性及び定量性を向上させることができる。   When spraying the powder P on the sheet-like base material 100 that is continuously conveyed using the powder spraying device 1, the powder stored in the hopper 2 through the discharge port 23 of the hopper 2. The granular material P is dropped and sprayed on the receiving unit 30 of the transport spraying unit 3. Then, the vibration generating unit 31 is operated at a driving frequency f at which the absolute value m of change obtained from the slope value of the calibration curve described above is greater than 0 and less than or equal to 0.4. The granular material P is conveyed in a predetermined direction and dispersed on the substrate 100. By operating the vibration generating unit 31 at the frequency to convey the plurality of powder particles P in a predetermined direction, the powder particles P on the receiving unit 30 are uniformly distributed in the width direction on the base material 100 with good quantitativeness. Can be sprayed on. Moreover, in the manufacturing method of the heat generating body using the granular material spraying apparatus 1, the value (f-fr) which deducted the resonant frequency fr of the granular material spraying apparatus 1 from the drive frequency f (Hz) of the vibration generation part 31 is obtained. The granular material P is sprayed in a frequency band higher than 10 Hz and lower than 175 Hz. By spraying the granular material P with the said value, the conveyance property of the granular material P on the receiving part 30, and the uniformity and quantitative property of the distribution to the base material 100 can be improved.

粉粒体Pの落下に連れてホッパー2内での粉粒体Pの貯留量は次第に減少してくる。ホッパー2内での粉粒体Pの量は、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全重量の形で計量装置50によって連続的に計量される。なお、以下の説明においては、簡便のため、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全重量のことを「ホッパー込み粉粒体重量」とも言う。ホッパー込み粉粒体重量Aの連続計量に先立ち、粉粒体Pの満充填状態でのホッパー込み粉粒体重量A1を予め測定しておくことが好ましい。粉粒体Pの満充填状態でのホッパー込み粉粒体重量A1を予め測定しておくことで、ホッパー2から落下した粉粒体Pの重量AFを、A1−Aの計算から容易に算出することができる。   As the granular material P falls, the storage amount of the granular material P in the hopper 2 gradually decreases. The amount of the granular material P in the hopper 2 is continuously measured by the measuring device 50 in the form of the hopper 2 and the total weight of the granular material P stored in the hopper 2. In the following description, for the sake of simplicity, the total weight of the hopper 2 and the powder P stored in the hopper 2 is also referred to as “hopper-containing powder weight”. Prior to continuous weighing of the hopper-containing powder weight A, it is preferable to measure the hopper-containing powder weight A1 in a fully filled state of the powder P in advance. The weight AF of the granular material P dropped from the hopper 2 can be easily calculated from the calculation of A1-A by measuring the weight A1 including the hopper in the fully filled state of the granular material P in advance. be able to.

シート状の基材100上に粉粒体Pを定量で安定的に散布するためには、搬送散布部3における受取部30上に落下した粉粒体Pが、定量で基材100上に散布されるように、受取部30の振幅や振動数を制御することが望ましい。受取部30の振幅や振動数は、制御部40が振動発生部31を制御することによって行われる。制御部40による振動発生部31の制御は、具体的には以下の基準に従い行われることが好ましい。すなわち、制御部40は、計量装置50を用いてホッパー込み粉粒体重量Aを連続的に測定させ、ホッパー込み粉粒体重量Aの単位時間当たりの変化量ΔAを算出する。ΔAは(Aa−Ab)/tで定義される。Aaは、ある時刻でのホッパー込み粉粒体重量であり、Abは、時間t経過後のホッパー込み粉粒体重量である。ホッパー2の重量は不変であるから、ΔAは、ホッパー2内における粉粒体Pの重量の減少速度に等しい。この重量減少速度に応じて、搬送散布部3の搬送能力を制御部40にて制御し、該搬送散布部3によって基材100上に散布される粉粒体Pの単位時間当たりの散布量ΔSを、単位時間当たりの目標散布量ΔStに一致させる。制御部40による搬送散布部3の搬送能力の制御においては、例えばΔAがΔStよりも少ない場合には、制御部40は、搬送散布部3の搬送能力を高めて散布量ΔSを増加させる制御を行う。逆に、ΔAがΔStよりも多い場合には、制御部40は、搬送散布部3の搬送能力を低めて散布量ΔSを減少させる制御を行う。   In order to stably disperse the granular material P on the sheet-like base material 100 in a fixed amount, the granular material P dropped on the receiving unit 30 in the transporting and spraying unit 3 is sprayed on the base material 100 in a constant amount. As described above, it is desirable to control the amplitude and frequency of the receiving unit 30. The amplitude and frequency of the receiving unit 30 are determined by the control unit 40 controlling the vibration generating unit 31. Specifically, the control of the vibration generating unit 31 by the control unit 40 is preferably performed according to the following criteria. That is, the control unit 40 continuously measures the hopper-containing powder weight A using the weighing device 50, and calculates the change amount ΔA per unit time of the hopper-containing powder weight A. ΔA is defined by (Aa−Ab) / t. Aa is the weight of the hopper-containing powder at a certain time, and Ab is the weight of the hopper-containing powder after the elapse of time t. Since the weight of the hopper 2 is unchanged, ΔA is equal to the rate of decrease in the weight of the granular material P in the hopper 2. In accordance with this weight reduction rate, the transporting capacity of the transporting and spraying unit 3 is controlled by the control unit 40, and the spraying amount ΔS per unit time of the granular material P sprayed on the base material 100 by the transporting and spraying unit 3 Is made to coincide with the target application amount ΔSt per unit time. In the control of the transport capacity of the transport spray unit 3 by the control unit 40, for example, when ΔA is smaller than ΔSt, the control unit 40 performs control to increase the transport capacity of the transport spray unit 3 and increase the spray amount ΔS. Do. On the contrary, when ΔA is larger than ΔSt, the control unit 40 performs control to reduce the spray amount ΔS by reducing the transport capability of the transport spray unit 3.

搬送散布部3の搬送能力は、例えば振動発生部31の振動の振幅若しくは周波数又はそれら両者を制御することで変更が可能である。制御部40による振動発生部31の制御には、例えばP制御(比例制御)、PI制御又はPID制御などの公知のフィードバック制御方法を採用することができる。これらの各種の制御方法における係数は、トライアル・アンド・エラーによって決定することができる。   The conveyance capability of the conveyance scattering unit 3 can be changed, for example, by controlling the amplitude and / or frequency of vibration of the vibration generation unit 31 or both. For the control of the vibration generating unit 31 by the control unit 40, for example, a known feedback control method such as P control (proportional control), PI control, or PID control can be employed. The coefficients in these various control methods can be determined by trial and error.

ホッパー込み粉粒体重量の重量減少速度ΔAは、種々の方法で算出することができる。例えば所定時間t(秒)毎にホッパー込み粉粒体重量を計量し、計量した該ホッパー込み粉粒体重量と、t(秒)前に計量した該ホッパー込み粉粒体重量との差分を算出し、その値をt(秒)で除した値を重量減少速度ΔAと定義することができる。tの値は1秒以上300秒以下であることが好ましい。例えば、5秒ごとにホッパー込み粉粒体重量を測定し、最新の測定値と、5秒前の測定値との差分をとり、その差分を5秒で除すことで、重量減少速度ΔAを算出できる。   The weight reduction rate ΔA of the hopper-containing granule weight can be calculated by various methods. For example, the weight of the hopper-containing powder particles is measured every predetermined time t (seconds), and the difference between the measured weight of the hopper-containing powder particles and the weight of the hopper-containing powder particles measured before t (seconds) is calculated. A value obtained by dividing the value by t (seconds) can be defined as a weight reduction rate ΔA. The value of t is preferably 1 second or more and 300 seconds or less. For example, by measuring the weight of the powder containing hopper every 5 seconds, taking the difference between the latest measured value and the measured value 5 seconds ago, and dividing the difference by 5 seconds, the weight reduction rate ΔA is It can be calculated.

別法として、所定時間s(秒)毎にホッパー込み粉粒体重量を計量し、計量した該ホッパー込み粉粒体重量と、t(秒)(ただしs<tである。)前に計量した該ホッパー込み粉粒体重量との差分を算出し、その値をt(秒)で除した値を重量減少速度ΔAと定義することもできる。sとtの関係は、t/sの値が1以上3000以下であることが好ましい。またsの値は0.1秒以上10秒以下であることが好ましい。tの値はsの値よりも大きいことを条件として、1秒以上300秒以下であることが好ましい。例えば、1秒ごとにホッパー込み粉粒体重量を測定し、最新の測定値と、5秒前の測定値との差分をとり、その差分を5秒で除すことで、重量減少速度ΔAを算出できる。   Alternatively, the weight of the hopper-containing powder particles is measured every predetermined time s (seconds), and is measured before the measured weight of the hopper-containing powder particles and t (seconds) (where s <t). A value obtained by calculating a difference from the weight of the hopper-containing powder and dividing the value by t (seconds) can be defined as a weight reduction rate ΔA. Regarding the relationship between s and t, the value of t / s is preferably 1 or more and 3000 or less. Moreover, it is preferable that the value of s is 0.1 second or more and 10 seconds or less. It is preferable that the value of t is 1 second or more and 300 seconds or less on condition that the value of t is larger than the value of s. For example, by measuring the weight of the powder containing hopper every second, taking the difference between the latest measured value and the measured value five seconds ago, and dividing the difference by 5 seconds, the weight reduction rate ΔA is It can be calculated.

ところで、ホッパー込み粉粒体重量Aは、粉粒体Pを散布する時間の経過とともに次第に減少してくるが、粉粒体Pをホッパー2の下部から落下させる場合、ホッパー2内に貯留されている粉粒体Pの量に応じて落下量に差が生じる場合があることが経験的に知られている。その為、粉粒体散布装置1を用いた粉粒体Pの散布方法では、該粉粒体Pの満充填状態でのホッパー内粉粒体重量A4に対する閾値(例えば、満充填状態でのホッパー内粉粒体重量A4の40質量%の値)を設置し、ホッパー内粉粒体重量A3が閾値を下回ったら、ホッパー内粉粒体重量A3が、初期設定重量、すなわち粉粒体Pの満充填状態でのホッパー内粉粒体重量A4となるまで、ホッパー2内に粉粒体Pを補充する粉粒体補充操作を行う。   By the way, the hopper-containing powder weight A gradually decreases with the lapse of time for spraying the powder P, but when the powder P is dropped from the lower part of the hopper 2, it is stored in the hopper 2. It is empirically known that there may be a difference in the amount of fall depending on the amount of the powder P. Therefore, in the method of spraying the granular material P using the powder particle spraying device 1, a threshold (for example, a hopper in the fully filled state) with respect to the powder weight A4 in the hopper in the fully filled state of the granular material P When the hopper inner powder weight A3 falls below the threshold value, the hopper inner powder weight A3 is set to the initial set weight, that is, the powder P is full. The granular material replenishment operation for replenishing the granular material P in the hopper 2 is performed until the weight of the granular material A4 in the hopper in the filled state is reached.

本実施形態において実際に計測される重量はホッパー込み粉粒体重量A(すなわちホッパー内粉粒体重量A3+ホッパー重量A2)であり、ホッパー重量A2は粉粒体Pが空状態でのホッパー込み粉粒体重量なので不変であるから、上述の補充操作は、粉粒体Pの満充填状態でのホッパー内粉粒体重量A4の、例えば40質量%の値を閾値として設定し、ホッパー込み粉粒体重量Aを連続して計量して、ホッパー込み粉粒体重量Aが、計測値に対する閾値である0.4A4+A2を下回ったら、該ホッパー込み粉粒体重量Aが初期設定重量となるまで該ホッパー2内に該粉粒体を補充する粉粒体補充操作を行うことと同義である。なお「0.4A4+A2を下回ったら」とは、0.4A4+A2を下回ったその時点だけでなく、0.4A4+A2を下回った後の時点も包含する。この粉粒体補充操作は、制御部40から粉粒体供給装置90に向けて動作指令を発し、粉粒体供給装置90によって粉粒体Pをホッパー2内に供給することで行われる。また、この粉粒体補充操作は、先に述べた搬送能力の制御とは独立して行われる。「独立して行われる」とは、粉粒体補充操作と搬送能力制御操作とを、別個の制御系を用いて行うこと意図するものではなく、一つの制御系のみを用い、粉粒体補充操作と搬送能力制御操作とを並列処理によって行うことも包含される。   The weight actually measured in this embodiment is the hopper-containing powder weight A (that is, the hopper-internal powder weight A3 + the hopper weight A2), and the hopper weight A2 is the hopper-containing powder when the powder P is empty. Since the particle weight is unchanged, the above-described replenishment operation is performed by setting, for example, a value of 40% by mass of the powder weight A4 in the hopper in the fully filled state of the powder P as a threshold value. When the body weight A is continuously measured and the hopper-containing powder weight A falls below 0.4A4 + A2, which is the threshold value for the measured value, the hopper is mixed until the hopper-containing powder weight A reaches the initial set weight. It is synonymous with performing the granular material replenishment operation which replenishes this granular material in 2. FIG. Note that “when the value falls below 0.4A4 + A2” includes not only the time when the value falls below 0.4A4 + A2, but also the time after the value falls below 0.4A4 + A2. This granular material replenishment operation is performed by issuing an operation command from the control unit 40 to the granular material supply device 90 and supplying the granular material P into the hopper 2 by the granular material supply device 90. In addition, this powder and granule replenishment operation is performed independently of the control of the conveyance capability described above. “Independently performed” is not intended to carry out the powder replenishment operation and the conveyance capacity control operation using separate control systems, and uses only one control system to replenish the granules. Performing the operation and the conveyance capacity control operation by parallel processing is also included.

以上のように、粉粒体散布装置1を用いた発熱体の製造方法では、振動制御部32を用いて、振動発生部31の振幅Nと該受取部30の振動により基材100上に散布される粉粒体Pの散布量Qとの関係から求められた検量線の傾きmの値を、変化量として表した値が0よりも大きく0.4以下となる駆動周波数fで振動発生部31を作動させている。その為、連続搬送される基材100に対して、粉粒体Pを該基材100の幅方向Yに均一に定量性良く散布することができる。   As described above, in the method of manufacturing a heating element using the powder particle dispersion device 1, the vibration control unit 32 is used to spread the material on the substrate 100 by the amplitude N of the vibration generation unit 31 and the vibration of the receiving unit 30. The vibration generating part at a driving frequency f in which the value of the slope m of the calibration curve obtained from the relationship with the application amount Q of the granular material P to be applied is greater than 0 and less than or equal to 0.4. 31 is operating. Therefore, the granular material P can be uniformly distributed in the width direction Y of the base material 100 with good quantitativeness on the base material 100 that is continuously conveyed.

特に、粉粒体散布装置1を用いた製造方法では、振動制御部32を用いて、振動発生部31の駆動周波数f(Hz)から粉粒体散布装置1の共振周波数frを差し引いた値(f−fr)が10Hzよりも大きく175Hzよりも小さい周波数帯にて、振動発生部31を作動させて粉粒体Pを散布する。その為、受取部30上の粉粒体Pの搬送性並びに基材100への散布の均一性及び定量性を向上させることができる。   In particular, in the manufacturing method using the granular material spraying device 1, the vibration control unit 32 is used to subtract the resonance frequency fr of the granular material spraying device 1 from the drive frequency f (Hz) of the vibration generating unit 31 ( In the frequency band in which f-fr) is greater than 10 Hz and smaller than 175 Hz, the vibration generating unit 31 is operated and the granular material P is dispersed. Therefore, it is possible to improve the transportability of the granular material P on the receiving unit 30 and the uniformity and quantitativeness of dispersion on the base material 100.

本発明は、前記実施形態に制限されず適宜変更可能である。
ホッパー2の排出部21における排出口23の平面視形状は、図3に示す如き長方形形状に限定されず、任意に設定可能であり、例えば、円形、楕円形、多角形形状等とすることができる。尤も、前述したように、排出口23の平面視形状は、搬送散布部3による粉粒体Pの搬送方向Xと直交する幅方向Yの長さの方が搬送方向Xの長さよりも長いような、「一方向に長い形状」であることが好ましい。
The present invention is not limited to the above embodiment and can be modified as appropriate.
The plan view shape of the discharge port 23 in the discharge portion 21 of the hopper 2 is not limited to a rectangular shape as shown in FIG. 3 and can be arbitrarily set, for example, a circular shape, an elliptical shape, a polygonal shape, or the like. it can. However, as described above, the shape of the discharge port 23 in plan view is such that the length in the width direction Y perpendicular to the transport direction X of the powder P by the transport sprinkler 3 is longer than the length in the transport direction X. The “long shape in one direction” is preferable.

以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to such examples.

〔実施例1〕
図1〜図4に示す粉粒体散布装置1と同様の構成の粉粒体散布装置(共振周波数250Hz)を用い、一方向に連続搬送される基材(不織布、搬送速度40.95m/秒)上に粉粒体を散布した。
粉粒体としては、最大粒子径が1000μmの塩化ナトリウムを用いた。尚、粉粒体の最大粒子径は、動的光散乱法によって測定し、測定装置として、HORIBA社製レーザー回折/散乱式粒子径分布測定装置LA950V2を用いた。
粉粒体散布装置の振動発生部としては振動フィーダを用い、受取部としては上面が平滑なステンレス製の平板部材を用いた。駆動周波数325Hzで振動フィーダを作動させ、市販のロードセルを用いて常法に従って基材への粉粒体の散布重量を0.1秒間隔で測定した。これを振動発生部の振幅を変えて3回測定し、振動発生部の振幅と粉粒体の散布量との関係から得られる検量線を得た。振動発生部の振幅は振動フィーダに印加する電圧を変えて得た。検量線の傾きの値は13.0(mg/%・枚)であり、検量線の傾きの値を変化量として表した値は0.22(mg/%・枚/Hz)であった。
粉粒体散布装置のホッパーの排出口の平面視形状は長方形形状であった。ホッパーの移動路の搬送方向Xの最大幅Dは2mmであり、排出方向の長さHは30mmであり、Wは40mmであった。
[Example 1]
A base material (nonwoven fabric, transport speed 40.95 m / sec) continuously conveyed in one direction using a powder particle spray apparatus (resonance frequency 250 Hz) having the same configuration as the powder particle spray apparatus 1 shown in FIGS. ) Powder particles were sprayed on top.
As the powder, sodium chloride having a maximum particle size of 1000 μm was used. In addition, the maximum particle diameter of the granular material was measured by a dynamic light scattering method, and a laser diffraction / scattering particle diameter distribution measuring apparatus LA950V2 manufactured by HORIBA was used as a measuring apparatus.
A vibration feeder was used as the vibration generating part of the granular material spraying device, and a stainless steel flat plate member having a smooth upper surface was used as the receiving part. The vibration feeder was operated at a drive frequency of 325 Hz, and the weight of the powder particles applied to the substrate was measured at 0.1 second intervals using a commercially available load cell according to a conventional method. This was measured three times while changing the amplitude of the vibration generating portion, and a calibration curve obtained from the relationship between the amplitude of the vibration generating portion and the amount of powder particles was obtained. The amplitude of the vibration generating part was obtained by changing the voltage applied to the vibration feeder. The slope value of the calibration curve was 13.0 (mg /% / sheet), and the value representing the slope value of the calibration curve as the amount of change was 0.22 (mg /% / sheet / Hz).
The plan view shape of the discharge port of the hopper of the powder and particle distribution device was a rectangular shape. The maximum width D in the transport direction X of the hopper moving path was 2 mm, the length H in the discharge direction was 30 mm, and W was 40 mm.

〔実施例2〕
振動発生部の駆動周波数fを400Hzにしたこと以外は、実施例1と同じ条件で基材上に塩化ナトリウムを散布した。検量線の傾きの値は4.5(mg/%・枚)であり、検量線の傾きの値を変化量として表した値は0.03(mg/%・枚/Hz)であった。
[Example 2]
Sodium chloride was sprayed on the substrate under the same conditions as in Example 1 except that the drive frequency f of the vibration generating unit was 400 Hz. The slope value of the calibration curve was 4.5 (mg /% / sheet), and the value representing the slope value of the calibration curve as the amount of change was 0.03 (mg /% / sheet / Hz).

〔比較例1〕
振動発生部の駆動周波数fを255Hzにしたこと以外は、実施例1と同じ条件で基材上に塩化ナトリウムを散布した。検量線の傾きの値は376(mg/%・枚)であり、検量線の傾きの値を変化量として表した値は37.6(mg/%・枚/Hz)であった。
[Comparative Example 1]
Sodium chloride was sprayed on the base material under the same conditions as in Example 1 except that the drive frequency f of the vibration generating unit was 255 Hz. The slope value of the calibration curve was 376 (mg /% / sheet), and the value representing the slope value of the calibration curve as the amount of change was 37.6 (mg /% / sheet / Hz).

〔比較例2〕
振動発生部の駆動周波数fを300Hzにしたこと以外は、実施例1と同じ条件で基材上に塩化ナトリウムを散布した。検量線の傾きの値は25.1(mg/%・枚)であり、検量線の傾きの値を変化量として表した値は0.48(mg/%・枚/Hz)であった。
[Comparative Example 2]
Sodium chloride was sprayed on the base material under the same conditions as in Example 1 except that the drive frequency f of the vibration generating unit was 300 Hz. The slope value of the calibration curve was 25.1 (mg /% · sheet), and the value representing the slope value of the calibration curve as the amount of change was 0.48 (mg /% · sheet / Hz).

〔比較例3〕
振動発生部の駆動周波数fを425Hzで振動フィーダを作動させたが、搬送性が弱く、基材上に塩化ナトリウムを散布することができなかった。すなわち、検量線の傾きの値は0(mg/%・枚)であり、検量線の傾きの値を変化量として表した値も0(mg/%・枚/Hz)であった。
[Comparative Example 3]
Although the vibration feeder was operated with the drive frequency f of the vibration generating unit being 425 Hz, the transportability was weak and sodium chloride could not be spread on the substrate. That is, the slope value of the calibration curve was 0 (mg /% / sheet), and the value representing the slope value of the calibration curve as the amount of change was also 0 (mg /% / sheet / Hz).

〔評価試験〕 実施例1〜2及び比較例1〜3について、市販のロードセル(A&D製)を用いて常法に従って、基材への粉粒体の散布重量を0.1秒間隔で100秒測定した(N=1000)。その結果を表1に示す。 [Evaluation test] About Examples 1-2 and Comparative Examples 1-3, according to a conventional method using a commercially available load cell (manufactured by A & D), the dispersion weight of the granular material on the substrate is 100 seconds at 0.1 second intervals. Measured (N = 1000). The results are shown in Table 1.

表1に示すように、実施例1〜2は、比較例1〜2に比して粉粒体の散布量の最大値と最小値との差が小さく、目標どおりの散布量を得ることができ、散布の均一性及び定量性に優れることが明らかである。
上記結果から、検量線の傾きの値を変化量として表した値が0より大きく0.4(mg/%・枚/Hz)以下であると、粉粒体の散布の均一性及び定量性を向上させることが有効であることが分かった。
As shown in Table 1, in Examples 1 and 2, the difference between the maximum value and the minimum value of the spray amount of the granular material is smaller than in Comparative Examples 1 and 2, and the target spray amount can be obtained. It is clear that the dispersion is excellent in uniformity and quantitativeness.
From the above results, when the value representing the slope of the calibration curve as the amount of change is greater than 0 and less than or equal to 0.4 (mg /% / sheet / Hz), the uniformity and quantitativeness of the spraying of the granular material is It has been found that improvement is effective.

1 粉粒体散布装置
2 ホッパー
20 貯蔵部
21 排出部
22 粉粒体用移動路
23 排出口
3 搬送散布部
30 受取部
31 振動発生部
32 振動制御部
100 基材
A1〜G1 直線(検量線)
f 振動発生部の駆動周波数
fr 共振周波数
m 直線(検量線)の傾き
N 振動発生部の振幅
P 粉粒体
Q 粉粒体の散布量
X 搬送散布部による粉粒体の搬送方向
Y 粉粒体の搬送方向と直交する幅方向(基材の幅方向)
DESCRIPTION OF SYMBOLS 1 Powder body dispersion apparatus 2 Hopper 20 Storage part 21 Discharge part 22 Movement path for powder bodies 23 Discharge port 3 Conveyance part 30 Receiving part 31 Vibration generating part 32 Vibration control part 100 Base material A1-G1 Straight line (calibration curve)
f Driving frequency of vibration generating part fr Resonance frequency m Inclination of straight line (calibration curve) N Amplitude of vibration generating part P Granules Q Amount of spraying powder X X Direction of transport of powder by transporting spraying part Y Width direction (base material width direction) perpendicular to the conveyance direction

Claims (9)

内部に粉粒体を一時的に貯蔵可能な貯蔵部及び該貯蔵部内の粉粒体を排出する排出口を備えたホッパーと、該排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を所定の方向に搬送し、連続搬送される基材上に散布する搬送散布部とを備えた粉粒体散布装置であって、
前記搬送散布部は、前記ホッパーから排出された複数の粉粒体を受け取る受取部と、該受取部を振動させる振動発生部とを含んで構成され、該振動発生部を作動させて該受取部を振動させることによって、該受取部上の複数の粉粒体を前記所定の方向に搬送可能になされており、
前記振動発生部の振幅と、該受取部の振動により前記所定の方向に搬送されて前記基材上に散布される複数の粉粒体の散布量との関係から求められた検量線の傾きの値を、変化量として表した値が0より大きく、且つ0.4以下となる周波数で、前記振動発生部を作動させる粉粒体散布装置。
A hopper provided with a storage part capable of temporarily storing the powder particles therein and a discharge port for discharging the powder particles in the storage part, and arranged with a gap with respect to the discharge port, from the discharge port A granular material spraying device including a transporting and spraying unit that transports the discharged powdered material in a predetermined direction and sprays it onto a continuously transported base material,
The conveying / spreading unit includes a receiving unit that receives a plurality of powder particles discharged from the hopper, and a vibration generating unit that vibrates the receiving unit, and operates the vibration generating unit to receive the receiving unit. , The plurality of powder particles on the receiving part can be conveyed in the predetermined direction,
The slope of the calibration curve obtained from the relationship between the amplitude of the vibration generating unit and the amount of the plurality of powder particles that are conveyed in the predetermined direction and dispersed on the substrate by the vibration of the receiving unit. A granular material spraying device that operates the vibration generating unit at a frequency at which a value expressed as a change amount is greater than 0 and equal to or less than 0.4.
前記ホッパー及び該ホッパー内に貯蔵される前記粉粒体の全重量を連続して計量する計量装置と、
前記計量装置で前記全重量の単位時間当たりの変化量を測定し、且つ前記搬送散布部によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するように、該変化量に応じて前記搬送散布部の搬送能力の制御を行う制御部とを備える、請求項1に記載の粉粒体散布装置。
A weighing device for continuously weighing the total weight of the hopper and the granular material stored in the hopper;
The amount of change per unit time of the total weight is measured by the weighing device, and the amount of the powder particles sprayed by the transport spraying unit is consistent with the target amount sprayed per unit time. Thus, the granular material spreading | diffusion apparatus of Claim 1 provided with the control part which controls the conveyance capability of the said conveyance distribution part according to this change amount.
前記ホッパー内に前記粉粒体を供給する粉粒体供給装置を備え、
前記制御部は、前記全重量が閾値を下回ったら、該全重量が初期設定重量となるまで前記粉粒体供給装置によって該ホッパー内に該粉粒体を補充させる粉粒体補充操作を行う、請求項2に記載の粉粒体散布装置。
A powder supply device for supplying the powder in the hopper;
When the total weight falls below a threshold, the control unit performs a granular material replenishment operation for replenishing the granular material in the hopper by the granular material supply device until the total weight reaches an initial set weight. The granular material dispersion | spreading apparatus of Claim 2.
前記周波数が前記粉粒体散布装置の共振周波数よりも10Hz以上高い、請求項1〜3の何れか1項に記載の粉粒体散布装置。   The granular material spraying device according to any one of claims 1 to 3, wherein the frequency is 10 Hz or more higher than a resonance frequency of the granular material spraying device. 前記隙間は、前記粉粒体の最大粒子径の1倍以上10倍以下である請求項1〜4の何れか1項に記載の粉粒体散布装置。   The granular material spraying device according to any one of claims 1 to 4, wherein the gap is 1 to 10 times the maximum particle diameter of the granular material. ホッパーから排出された粉粒体を、所定の方向に搬送して連続搬送される基板上に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造方法であって、
前記ホッパーから排出された複数の粉粒体を受け取る受取部及び該受取部を振動させる振動発生部を含む搬送散布部を用い、
前記振動発生部の振幅と、前記受取部の振動により前記基材上に散布される複数の粉粒体の散布量との関係から検量線を求め、該検量線の傾きの値を共振周波数に対する変化量として表した変化量絶対値を求め、該変化量絶対値が0より大きく、且つ0.4以下となる周波数で前記振動発生部を作動して前記受取部を振動させて、該受取部上の複数の粉粒体を搬送する、粉粒体含有物品の製造方法。
A method for producing a granular material-containing article, wherein the granular material discharged from the hopper is conveyed in a predetermined direction and dispersed on a substrate that is continuously conveyed, thereby producing an article including the granular material. And
Using a receiving and receiving unit that receives a plurality of powder particles discharged from the hopper, and a conveying and dispersing unit that vibrates the receiving unit,
A calibration curve is obtained from the relationship between the amplitude of the vibration generating unit and the amount of the plurality of powder particles dispersed on the base material due to the vibration of the receiving unit, and the value of the slope of the calibration curve with respect to the resonance frequency is obtained. A change amount absolute value expressed as a change amount is obtained, and the receiving unit is vibrated by operating the vibration generating unit at a frequency at which the change amount absolute value is greater than 0 and equal to or less than 0.4. The manufacturing method of the granular material containing article which conveys several upper granular material.
前記ホッパー及び該ホッパー内に貯蔵される前記粉粒体の全重量を連続して計量する計量装置を用い、
前記計量装置で前記全重量の単位時間当たりの変化量を測定し、且つ前記搬送散布部によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するように、該変化量に応じて前記振動発生部を作動して、該搬送散布部の搬送能力を制御する、請求項6に記載の粉粒体含有物品の製造方法。
Using a weighing device that continuously weighs the total weight of the hopper and the granular material stored in the hopper,
The amount of change per unit time of the total weight is measured by the weighing device, and the amount of the powder particles sprayed by the transport spraying unit is consistent with the target amount sprayed per unit time. Thus, the manufacturing method of the granular material containing article of Claim 6 which operates the said vibration generation part according to this variation | change_quantity, and controls the conveyance capability of this conveyance distribution part.
前記ホッパー内に前記粉粒体を供給する粉粒体供給装置を用い、
前記全重量が閾値を下回ったら、該全重量が初期設定重量となるまで前記粉粒体供給装置によって該ホッパー内に該粉粒体を補充させる、請求項6又は7に記載の粉粒体含有物品の製造方法。
Using a granular material supply device for supplying the granular material into the hopper,
When the total weight falls below a threshold value, the granular material is contained in the hopper according to claim 6 or 7, wherein the granular material is replenished in the hopper until the total weight reaches an initial set weight. Article manufacturing method.
共振周波数よりも10Hz以上高い周波数で前記振動発生部を作動する、請求項6〜8の何れか1項に記載の粉粒体含有物品の製造方法。   The manufacturing method of the granular material containing article of any one of Claims 6-8 which act | operates the said vibration generation part by the frequency 10Hz or more higher than a resonant frequency.
JP2017176699A 2017-09-14 2017-09-14 Powder particle spraying device and method for producing powder particle-containing article Pending JP2019052013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017176699A JP2019052013A (en) 2017-09-14 2017-09-14 Powder particle spraying device and method for producing powder particle-containing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176699A JP2019052013A (en) 2017-09-14 2017-09-14 Powder particle spraying device and method for producing powder particle-containing article

Publications (1)

Publication Number Publication Date
JP2019052013A true JP2019052013A (en) 2019-04-04

Family

ID=66014203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176699A Pending JP2019052013A (en) 2017-09-14 2017-09-14 Powder particle spraying device and method for producing powder particle-containing article

Country Status (1)

Country Link
JP (1) JP2019052013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200181A (en) * 2019-06-13 2020-12-17 花王株式会社 Powder and granular material sprinkling device
WO2021166375A1 (en) * 2020-02-21 2021-08-26 花王株式会社 Particulate spraying apparatus and particulate spraying method
WO2021166731A1 (en) * 2020-02-21 2021-08-26 花王株式会社 Method for spraying particulate matter and method for producing article containing particulate matter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139337A (en) * 2011-12-07 2013-07-18 Kao Corp Method and device for spreading granular material, and method for manufacturing heating element employing the same
JP2016016956A (en) * 2014-07-10 2016-02-01 ゼンウェルオーダード株式会社 Article conveyance feeder
JP2017094294A (en) * 2015-11-26 2017-06-01 花王株式会社 Granule scattering method and granule scattering device, and granule containing article manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139337A (en) * 2011-12-07 2013-07-18 Kao Corp Method and device for spreading granular material, and method for manufacturing heating element employing the same
US20140356521A1 (en) * 2011-12-07 2014-12-04 Kao Corporation Method and device for applying powder or granule and method for manufacturing a heat generating element using the same
JP2016016956A (en) * 2014-07-10 2016-02-01 ゼンウェルオーダード株式会社 Article conveyance feeder
JP2017094294A (en) * 2015-11-26 2017-06-01 花王株式会社 Granule scattering method and granule scattering device, and granule containing article manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200181A (en) * 2019-06-13 2020-12-17 花王株式会社 Powder and granular material sprinkling device
WO2021166375A1 (en) * 2020-02-21 2021-08-26 花王株式会社 Particulate spraying apparatus and particulate spraying method
WO2021166731A1 (en) * 2020-02-21 2021-08-26 花王株式会社 Method for spraying particulate matter and method for producing article containing particulate matter
JP2021133360A (en) * 2020-02-21 2021-09-13 花王株式会社 Particulate matter spraying device and particulate matter spraying method
CN113795444A (en) * 2020-02-21 2021-12-14 花王株式会社 Powder distribution device and powder distribution method
CN113795444B (en) * 2020-02-21 2022-04-26 花王株式会社 Powder distribution device and powder distribution method

Similar Documents

Publication Publication Date Title
JP2017094294A (en) Granule scattering method and granule scattering device, and granule containing article manufacturing method
TWI682884B (en) Powder and granule dispersion device, powder and granule dispersion method, and method for manufacturing powder and granule-containing article
JP5889773B2 (en) Method and apparatus for spraying granular material and method for manufacturing heating element using the same
JP2019052013A (en) Powder particle spraying device and method for producing powder particle-containing article
KR101224563B1 (en) Metering and vaporizing particulate material
JP2013139337A5 (en)
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
KR101224564B1 (en) Metering of particulate material and vaporization thereof
AU740643B2 (en) Cross-feed auger and method
JP6719336B2 (en) How to spread powder
TWI759991B (en) Powder and granule dispersing device and powder and granule dispersing method
JP6882125B2 (en) Granule spraying device
JP6688710B2 (en) Powder-granulating device and powder-granulating method
JP2013177224A (en) Powder feeder
WO2019220748A1 (en) Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article
WO2021166731A1 (en) Method for spraying particulate matter and method for producing article containing particulate matter
JP2010168213A (en) Substance feeding and measuring device, particle machining apparatus, covering apparatus and covering system
JP2019073373A (en) Granular material sprayer
JP7228475B2 (en) Granule sprayer
JP6396791B2 (en) Powder and particle dispersion device and powder particle dispersion method
JP2021046305A (en) Sprinkling method of granular powder
JP7043662B1 (en) Gas transfer type ultrasonic squirt fine powder quantitative supply system and gas transfer type ultrasonic squirt fine powder quantitative supply method
JP2018070316A (en) Method of spraying granular material
KR101590002B1 (en) Continuous feeder of uniformly fine powder having a cohesion prevent unit
JP2019218186A (en) Granule scattering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315