JP2021133360A - Particulate matter spraying device and particulate matter spraying method - Google Patents

Particulate matter spraying device and particulate matter spraying method Download PDF

Info

Publication number
JP2021133360A
JP2021133360A JP2020175222A JP2020175222A JP2021133360A JP 2021133360 A JP2021133360 A JP 2021133360A JP 2020175222 A JP2020175222 A JP 2020175222A JP 2020175222 A JP2020175222 A JP 2020175222A JP 2021133360 A JP2021133360 A JP 2021133360A
Authority
JP
Japan
Prior art keywords
powder
granular material
discharge port
hopper
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020175222A
Other languages
Japanese (ja)
Other versions
JP6893276B1 (en
Inventor
良輔 真鍋
Ryosuke Manabe
良輔 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to CN202080031747.7A priority Critical patent/CN113795444B/en
Priority to TW109142856A priority patent/TWI759991B/en
Priority to PCT/JP2020/045148 priority patent/WO2021166375A1/en
Application granted granted Critical
Publication of JP6893276B1 publication Critical patent/JP6893276B1/en
Publication of JP2021133360A publication Critical patent/JP2021133360A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • B65G65/42Devices for emptying otherwise than from the top using belt or chain conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/04Apparatus specially adapted for applying particulate materials to surfaces the particulate material being projected, poured or allowed to flow onto the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/06Storage, supply or control of the application of particulate material; Recovery of excess particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • B65G65/44Devices for emptying otherwise than from the top using reciprocating conveyors, e.g. jigging conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G69/00Auxiliary measures taken, or devices used, in connection with loading or unloading
    • B65G69/04Spreading out the materials conveyed over the whole surface to be loaded; Trimming heaps of loose materials
    • B65G69/0425Spreading out the materials conveyed over the whole surface to be loaded; Trimming heaps of loose materials with vibrating or shaking means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/04Bulk
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

To provide a technique that can spray particulate matter with good quantitativity.SOLUTION: When a maximum length in a transport direction MD of a particulate matter P ny transport means 3 at an outlet 23 is represented by D and a maximum length in a direction CD orthogonal to the transport direction MD at the outlet 23 is represented by W, W/D is 100 or less. Further, when a discharge amount of the particulate matter P from the outlet 23 per minute is represented by M and a target value of a spray amount of the particulate matter P by the transport means 3 per minute is represented by m, M/m is 1.5 or less. In addition, when a bulk density of the particulate matter P is represented by ρ, an area of the outlet 23 is represented by S, and a clearance between the outlet 23 and the transport means 3 is represented by G, m/(ρ×S×G) is 21/min or more.SELECTED DRAWING: Figure 4

Description

本発明は、粉粒体散布装置及びそれを用いた粉粒体の散布方法、並びに該散布方法を用いた粉粒体含有物品及び機能性物品の製造方法に関する。 The present invention relates to a powder or granular material spraying device, a method for spraying powder or granular material using the powder or granular material spraying device, and a method for producing a powder or granular material-containing article or a functional article using the spraying method.

種々の製品の製造において、連続搬送される基材に対してその幅方向にわたって均一に粉粒体を散布させることが要望されている。斯かる要望に応えることを目的とした技術に関し、例えば特許文献1には、セメント原料等の粉粒体を貯蔵する粉粒体貯槽の排出部構造に関する改良技術が記載されている。前記粉粒体貯槽は、筒状の貯槽本体の下端部に所定の勾配で先窄まりのホッパーが形成され、該ホッパーの下端の排出口に、ベルトフィーダー等の排出手段が設けられて構成されている。前記ホッパーは、その導入部の面積よりも前記排出口の面積が小さく、前記貯槽本体と該排出口との間の側壁が所定勾配の傾斜面となっており、該貯槽本体内に貯留した粉粒体を徐々に小さい断面積に絞って排出するようになっているところ、該ホッパー内では、粉粒体が側方から圧縮されるために、粉粒体の詰まりが生じやすく、粉粒体が排出不能となるという問題があった。特許文献1に記載の技術は、この問題の解決を図るために排出口の縦横比を工夫したものであり、具体的には、排出手段による粉粒体の搬送方向を「MD」(Machine Direction)、MDと直交する方向を「CD」(Cross machine Direction)とした場合、「排出口のMDの長さ>排出口のCDの長さ」の大小関係が成立するようになされている。 In the production of various products, it is required that the powder or granular material is uniformly sprayed over the width direction of the base material which is continuously transported. Regarding a technique for meeting such a demand, for example, Patent Document 1 describes an improved technique for a discharge portion structure of a powder or granular material storage tank for storing powder or granular material such as a cement raw material. The powder or granular material storage tank is configured such that a hopper with a narrowed tip is formed at the lower end of a tubular storage tank body at a predetermined gradient, and a discharge means such as a belt feeder is provided at a discharge port at the lower end of the hopper. ing. In the hopper, the area of the discharge port is smaller than the area of the introduction portion, the side wall between the storage tank main body and the discharge port is an inclined surface having a predetermined slope, and the powder stored in the storage tank main body. When the particles are gradually narrowed down to a smaller cross-sectional area and discharged, the powder particles are compressed from the side in the hopper, so that the powder particles are likely to be clogged, and the powder particles are easily clogged. There was a problem that it could not be discharged. The technique described in Patent Document 1 devises the aspect ratio of the discharge port in order to solve this problem. Specifically, the transport direction of the powder and granules by the discharge means is set to "MD" (Machine Direction). ), When the direction orthogonal to the MD is set to "CD" (Cross machine Direction), the magnitude relationship of "MD length of the discharge port> CD length of the discharge port" is established.

本出願人は先に、粉粒体の貯蔵部を有するホッパーと、該ホッパーの下端の排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を一方向に搬送して基材上に散布する搬送手段とを備えた粉粒体散布装置を提案した(特許文献2)。特許文献2に記載の粉粒体散布装置においては、排出口のMD/CD比が、特許文献1に記載のものとは逆に「排出口のMDの長さ<排出口のCDの長さ」とされ、また、ホッパーの各部の寸法等が、粉粒体の粒子径との関係で特定範囲に設定されている。特許文献2に記載の粉粒体散布装置によれば、該装置内に設けられた粉粒体用移動路における粉粒体の流れを定常流化し且つ粉粒体の流動性を向上させ得るため、該移動路内で粉粒体の詰まりが発生し難く、連続搬送される基材に対して粉粒体を定量性よく散布することができる。 The applicant is first arranged with a gap between the hopper having the storage portion for the powder or granular material and the discharge port at the lower end of the hopper, and transports the powder or granular material discharged from the discharge port in one direction. Then, a powder or granular material spraying device provided with a transporting means for spraying on the base material was proposed (Patent Document 2). In the powder or granular material spraying device described in Patent Document 2, the MD / CD ratio of the discharge port is opposite to that described in Patent Document 1, “length of MD of discharge port <length of CD of discharge port”. In addition, the dimensions of each part of the hopper are set in a specific range in relation to the particle size of the powder or granular material. According to the powder or granular material spraying device described in Patent Document 2, the flow of the powder or granular material in the moving path for the powder or granular material provided in the device can be made steady and the fluidity of the powder or granular material can be improved. , The clogging of the powder or granular material is unlikely to occur in the moving path, and the powder or granular material can be sprayed quantitatively on the base material which is continuously transported.

特開2000−335682号公報Japanese Unexamined Patent Publication No. 2000-335682 特開2017−70944号公報Japanese Unexamined Patent Publication No. 2017-70944

特許文献2に記載の粉粒体散布装置は、粉粒体を高精度に定量散布し得るが、搬送手段による基材に対する粉粒体の単位時間当たりの散布量が比較的多量の場合には、改善の余地がある。 The powder or granular material spraying device described in Patent Document 2 can spray the powder or granular material with high accuracy in a quantitative manner, but when the amount of the powder or granular material sprayed on the base material by the transport means is relatively large per unit time. , There is room for improvement.

本発明の課題は、定量性よく粉粒体を散布し得る技術を提供することに関する。 An object of the present invention is to provide a technique capable of spraying powder or granular material with good quantitative property.

本発明は、内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び、該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して所定の離間距離を置いて配置され、該排出口から自重による自由落下により排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置でであって、
前記排出口における前記搬送手段による粉粒体の搬送方向の最大長さをD、該排出口における該搬送方向と直交する方向の最大長さをWとした場合、W/Dが100以下であり、
前記排出口からの粉粒体の1分間当たりの排出量をM、前記搬送手段による粉粒体の1分間当たりの散布量の目標値をmとした場合、M/mが1.5以上であり、
本発明の粉粒体散布装置の一実施形態では、粉粒体のかさ密度をρ、前記排出口の面積をS、前記排出口と前記搬送手段との離間距離をGとした場合、m/(ρ×S×G)が21以上である、粉粒体散布装置である。
The present invention is for a storage unit capable of temporarily storing powder or granular material inside, a discharge port for discharging the powder or granular material in the storage unit, and a powder or granular material connecting the storage unit and the discharge port. A hopper provided with a moving path and a powder or granular material that is arranged at a predetermined distance from the discharge port and discharged from the discharge port by free drop due to its own weight are transported in a predetermined direction and continuously transported. It is a powder or granular material spraying device provided with a transport means for spraying on the substrate to be sprayed.
When the maximum length in the transport direction of the powder or granular material by the transport means at the discharge port is D and the maximum length in the direction orthogonal to the transport direction at the discharge port is W, the W / D is 100 or less. ,
When the amount of powder or granular material discharged from the discharge port per minute is M, and the target value of the amount of powder or granular material sprayed per minute by the transport means is m, M / m is 1.5 or more. can be,
In one embodiment of the powder or granular material spraying device of the present invention, when the bulk density of the powder or granular material is ρ, the area of the discharge port is S, and the separation distance between the discharge port and the transport means is G, m / It is a powder or granular material spraying device having (ρ × S × G) of 21 or more.

また本発明は、連続搬送される基材に対し、前記の本発明の粉粒体散布装置を用いて、粉粒体を散布する工程を有する、粉粒体の散布方法である。
また本発明は、基材と、該基材に接触するように配置された粉粒体とを備えた粉粒体含有物品の製造方法であって、
連続搬送される基材に対し、前記の本発明の粉粒体散布装置を用いて、粉粒体を散布する工程を有する、粉粒体含有物品の製造方法である。
Further, the present invention is a method for spraying powder or granular material, which comprises a step of spraying the powder or granular material on a substrate that is continuously transported by using the above-mentioned powder or granular material spraying device of the present invention.
Further, the present invention is a method for producing a powder or granular material-containing article including a base material and powder or granular material arranged so as to be in contact with the base material.
This is a method for producing a powder or granular material-containing article, which comprises a step of spraying powder or granular material on a substrate that is continuously transported by using the powder or granular material spraying device of the present invention.

本発明によれば、連続搬送される基材に対して、粉粒体を該基材の幅方向(搬送方向と直交する方向)に均一に定量性良く散布することが可能である。 According to the present invention, it is possible to uniformly and quantitatively spray the powder or granular material on the base material to be continuously transported in the width direction (direction orthogonal to the transport direction) of the base material.

図1は、本発明の粉粒体散布装置の一実施形態を模式的に示す側面図である。FIG. 1 is a side view schematically showing an embodiment of the powder or granular material spraying device of the present invention. 図2は、図1に示す粉粒体散布装置を、搬送手段による粉粒体の搬送方向の下流側から見た様子を模式的に示す正面図である。FIG. 2 is a front view schematically showing a state in which the powder or granular material spraying device shown in FIG. 1 is viewed from the downstream side in the transport direction of the powder or granular material by the transport means. 図3は、図1に示す粉粒体散布装置におけるホッパーの斜視図である。FIG. 3 is a perspective view of a hopper in the powder or granular material spraying device shown in FIG. 図4は、図1に示す粉粒体散布装置における排出口及びその近傍を模式的に示す側面図である。FIG. 4 is a side view schematically showing a discharge port and its vicinity in the powder or granular material spraying device shown in FIG. 図5(a)及び図5(b)はそれぞれ、ホッパー及び該ホッパー内に貯蔵される粉粒体の全質量の計測値に基づき、該全質量の単位時間(1分間)当たりの変化量を算出する方法を説明する図である。5 (a) and 5 (b) show the amount of change in the total mass per unit time (1 minute) based on the measured values of the hopper and the total mass of the powder or granular material stored in the hopper, respectively. It is a figure explaining the calculation method. 図6(a)及び図6(b)はそれぞれ、本発明の粉粒体散布装置の他の実施形態の要部(搬送手段)を模式的に示す側面図である。6 (a) and 6 (b) are side views schematically showing a main part (transporting means) of another embodiment of the powder or granular material spraying device of the present invention, respectively. 図7(a)及び図7(b)はそれぞれ、本発明の粉粒体散布装置に係る排出口を模式的に示す平面図である。7 (a) and 7 (b) are plan views schematically showing the discharge port according to the powder or granular material spraying device of the present invention, respectively.

以下、本発明をその好ましい実施形態に基づき図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。図面は基本的に模式的なものであり、各寸法の比率などは現実のものとは異なる場合がある。 Hereinafter, the present invention will be described based on the preferred embodiment with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. The drawings are basically schematic, and the ratio of each dimension may differ from the actual one.

本発明の粉粒体散布装置は、内部に粉粒体(図中符号Pで示す)を一時的に貯蔵可能な貯蔵部(図中符号20で示す)、該貯蔵部内の粉粒体を排出する排出口(図中符号23で示す)、及び該貯蔵部と該排出口との間を結ぶ粉粒体用移動路(図中符号22で示す)を備えたホッパー(図中符号2で示す)を備える。
本発明の粉粒体散布装置の一実施形態では、前記排出口に対して所定の離間距離(図中符号Gで示す)を置いて配置され、該排出口から自重による自由落下により排出された粉粒体を所定の一方向(図中符号MDで示す)に搬送し、連続搬送される基材(図中符号100で示す)上に散布する搬送手段(図中符号3で示す)を備える。
図1〜図4には、本発明の粉粒体散布装置の一実施形態である粉粒体散布装置1又はその要部が示されており、粉粒体散布装置1は前記の構成を備えている。
なお、基材100及びその搬送装置は、粉粒体散布装置1を構成するものではない。基材100は、搬送ロール、ベルトコンベア等の公知の搬送装置により連続搬送される。
The powder or granular material spraying device of the present invention discharges a storage unit (indicated by reference numeral 20 in the figure) capable of temporarily storing powder or granular material (indicated by reference numeral P in the figure) and the powder or granular material in the storage unit. A hopper (indicated by reference numeral 2 in the figure) having a discharge port (indicated by reference numeral 23 in the figure) and a moving path for powder or granular material (indicated by reference numeral 22 in the figure) connecting the storage portion and the discharge port. ) Is provided.
In one embodiment of the powder or granular material spraying device of the present invention, a predetermined separation distance (indicated by reference numeral G in the figure) is provided with respect to the discharge port, and the powder or granular material is discharged from the discharge port by free fall due to its own weight. The powder or granular material is provided with a conveying means (indicated by reference numeral 3 in the figure) for conveying the powder or granular material in a predetermined direction (indicated by reference numeral MD in the figure) and spraying the powder or granular material on a substrate (indicated by reference numeral 100 in the figure) which is continuously conveyed. ..
1 to 4 show a powder or granular material spraying device 1 or a main part thereof, which is an embodiment of the powder or granular material spraying device of the present invention, and the powder or granular material spraying device 1 has the above-described configuration. ing.
The base material 100 and its transport device do not constitute the powder or granular material spraying device 1. The base material 100 is continuously conveyed by a known transfer device such as a transfer roll or a belt conveyor.

以下では、搬送手段3による粉粒体Pの搬送方向を「MD」(Machine Direction)、MDと直交する方向を「CD」(Cross machine Direction)又は「幅方向」とも言う。 Hereinafter, the transport direction of the powder or granular material P by the transport means 3 is also referred to as “MD” (Machine Direction), and the direction orthogonal to MD is also referred to as “CD” (Cross machine Direction) or “width direction”.

ホッパー2は、図1に示す如き側面視すなわちCDから見た場合において、上底が下底よりも長い台形形状をなしている貯蔵部20と、該貯蔵部20の下端に連接され、該側面視において長方形形状をなす直方体形状の排出部21とを含んで構成されている。
貯蔵部20は内部に粉粒体Pを貯蔵可能な空間を有し、その内部空間に粉粒体Pを一時的に貯蔵可能になされている。粉粒体Pは、貯蔵部20の上部開口から粉体供給装置90によって貯蔵部20の内部空間に供給される。
排出部21は、内部に粉粒体Pの移動路22を有している。排出部21の下端(貯蔵部20側とは反対側の端部)には、粉粒体Pの排出口23が形成されており、貯蔵部20の内部空間と排出口23とが移動路22を介して連通している。
ホッパー2は、斯かる構成により、貯蔵部20の内部に一時的に貯蔵した粉粒体Pを、移動路22を介して排出口23より排出可能になされている。
The hopper 2 is connected to a storage portion 20 having a trapezoidal shape in which the upper base is longer than the lower base and the lower end of the storage portion 20 when viewed from the side view as shown in FIG. It is configured to include a rectangular parallelepiped discharge portion 21 having a rectangular shape in view.
The storage unit 20 has a space inside which the powder or granular material P can be stored, and the powder or granular material P can be temporarily stored in the internal space. The powder or granular material P is supplied to the internal space of the storage unit 20 by the powder supply device 90 from the upper opening of the storage unit 20.
The discharge unit 21 has a moving path 22 for the powder or granular material P inside. A discharge port 23 for the powder or granular material P is formed at the lower end of the discharge section 21 (the end opposite to the storage section 20 side), and the internal space of the storage section 20 and the discharge port 23 are in a moving path 22. Communicate through.
With such a configuration, the hopper 2 is capable of discharging the powder or granular material P temporarily stored inside the storage unit 20 from the discharge port 23 via the moving path 22.

本実施形態では、ホッパー2の上部を構成し、粉粒体Pが貯蔵される内部空間を有する貯蔵部20では、図3に示すように、該内部空間を画成する貯蔵部20の側壁の内面20iの一部が、水平方向及び該水平方向と直交する垂直方向(より具体的には鉛直方向)の双方に交差する傾斜内面20isであり、内面20iの残りの部分は、垂直方向(より具体的には鉛直方向)に延びている。傾斜内面20isを有する傾斜側壁20sは、MDの一方側、より具体的にはMDの下流側に位置している。貯蔵部20の内面20iは、移動路22を画成する排出部21の側壁の内面21iと繋がっている。ホッパー2の内面がこのように構成されていることにより、貯蔵部20から排出部21に粉粒体Pの集合体が流れ込む際に、その集合体の流動方向と直交する方向の中央部分が周囲部分よりも流動速度が速くなることが抑制されるため、粉粒体Pの均一な散布に有利となる。 In the present embodiment, in the storage unit 20 that constitutes the upper portion of the hopper 2 and has an internal space in which the powder and granules P are stored, as shown in FIG. 3, the side wall of the storage unit 20 that defines the internal space. A part of the inner surface 20i is an inclined inner surface 20is that intersects both the horizontal direction and the vertical direction (more specifically, the vertical direction) orthogonal to the horizontal direction, and the remaining part of the inner surface 20i is the vertical direction (more specifically). Specifically, it extends in the vertical direction). The inclined side wall 20s having the inclined inner surface 20is is located on one side of the MD, more specifically, on the downstream side of the MD. The inner surface 20i of the storage unit 20 is connected to the inner surface 21i of the side wall of the discharge unit 21 that defines the moving path 22. Since the inner surface of the hopper 2 is configured in this way, when the aggregate of the powder or granular material P flows from the storage portion 20 to the discharge portion 21, the central portion in the direction orthogonal to the flow direction of the aggregate is around. Since it is suppressed that the flow velocity is higher than that of the portion, it is advantageous for uniform spraying of the powder or granular material P.

また本実施形態では、ホッパー2の下部を構成し、粉粒体Pの移動路22を内部に有する排出部21では、図3に示すように、移動路22を画成する排出部21の側壁の全部が、垂直方向(より具体的には鉛直方向)に延びる垂直壁であり、該側壁の内面21iの全部も同方向に延びている。つまり、排出部21の内部空間(移動路22及び排出口23)のMDの長さD及びCDの長さWは、それぞれ、排出部21の高さ方向(粉粒体Pの排出方向)の全長にわたって一定である。 Further, in the present embodiment, in the discharge portion 21 which constitutes the lower part of the hopper 2 and has the movement path 22 of the powder or granular material P inside, as shown in FIG. 3, the side wall of the discharge portion 21 which defines the movement path 22. All of them are vertical walls extending in the vertical direction (more specifically, in the vertical direction), and all of the inner surfaces 21i of the side wall also extend in the same direction. That is, the MD length D and the CD length W of the internal space (moving path 22 and discharge port 23) of the discharge unit 21 are in the height direction of the discharge unit 21 (discharge direction of the powder or granular material P), respectively. It is constant over the entire length.

このように本実施形態では、ホッパー2の高さ方向の上部(貯蔵部20)は、該上部の内部空間の水平方向に沿う断面(横断面)の面積が、該高さ方向の上方から下方に向かうに従って漸次減少し、また、ホッパー2の高さ方向の下部(排出部21)は、該下部の内部空間(移動路22及び排出口23)の横断面の面積が、該高さ方向において一定となっている。ホッパー2は斯かる構造を有することにより、粉粒体Pを排出口23から安定的に定量排出し得る。 As described above, in the present embodiment, the upper portion (storage portion 20) of the hopper 2 in the height direction has the area of the cross section (cross section) along the horizontal direction of the internal space of the upper portion from the upper side to the lower side in the height direction. The lower part of the hopper 2 in the height direction (discharging portion 21) gradually decreases toward It is constant. Since the hopper 2 has such a structure, the powder or granular material P can be stably quantitatively discharged from the discharge port 23.

本実施形態では、搬送手段3は、図1に示すように、ホッパー2から排出された粉粒体Pを受け取る受取手段(トラフ)30と、受取手段30を振動させる振動発生手段31とを含んで構成されている。
搬送手段3は、ホッパー2の下端に位置する排出口23に対して所定の離間距離Gを置いて配置されており、より具体的には、ホッパー2から排出された粉粒体Pを受け取って搬送する受取手段30の上面30aと排出口23との間に離間距離Gの隙間が形成されるように、配置されている。
振動発生手段31は、受取手段30の下面30bに固定されている。受取手段30において、粉粒体Pの受け取り及び搬送に利用される(粉粒体Pと接触する)のは、ホッパー2(排出口23)の下方に位置する部分及びその近傍であり、それ以外の部分は基本的に粉粒体Pと接触しない粉粒体非接触部であるところ、振動発生手段31は、受取手段30の該粉粒体非接触部における下面30bに固定されている。
In the present embodiment, as shown in FIG. 1, the transport means 3 includes a receiving means (trough) 30 for receiving the powder or granular material P discharged from the hopper 2 and a vibration generating means 31 for vibrating the receiving means 30. It is composed of.
The transport means 3 is arranged with a predetermined distance G from the discharge port 23 located at the lower end of the hopper 2, and more specifically, receives the powder or granular material P discharged from the hopper 2. It is arranged so that a gap of a separation distance G is formed between the upper surface 30a of the receiving means 30 to be conveyed and the discharge port 23.
The vibration generating means 31 is fixed to the lower surface 30b of the receiving means 30. In the receiving means 30, what is used for receiving and transporting the powder or granular material P (contacting with the powder or granular material P) is the portion located below the hopper 2 (discharge port 23) and its vicinity, and other than that. Is basically a non-contact portion of the powder or granular material that does not come into contact with the powder or granular material P, and the vibration generating means 31 is fixed to the lower surface 30b of the non-contact portion of the powder or granular material 30 of the receiving means 30.

搬送手段3は、振動発生手段31を作動させて受取手段30を振動させることによって、受取手段30上の粉粒体Pを所定の方向に搬送可能になされている。
粉粒体散布装置1は、図1に示すように、振動発生手段31に印加する電圧及び/又は周波数を制御する制御手段4を備えており、該制御手段4によって、受取手段30の振動数及び/又は振幅を制御し、延いては受取手段30上の粉粒体Pの搬送状態を制御する。すなわち、制御手段4による制御下、振動発生手段31の非作動時には、受取手段30は振動していないため、受取手段30上の粉粒体Pの搬送は停止又は抑制されている。斯かる状態から振動発生手段31を作動させると、受取手段30が振動を開始することによって、受取手段30上の粉粒体Pの停止又は抑制が解除され、粉粒体Pは、MDに搬送され、最終的には図1及び図2に示すように、受取手段30のMDの下流側端3DEから自重により自由落下して、受取手段30の下方を連続搬送されている基材100上に散布される。
The transporting means 3 is made capable of transporting the powder or granular material P on the receiving means 30 in a predetermined direction by operating the vibration generating means 31 to vibrate the receiving means 30.
As shown in FIG. 1, the powder or granular material spraying device 1 includes a control means 4 for controlling the voltage and / or frequency applied to the vibration generating means 31, and the frequency of the receiving means 30 is controlled by the control means 4. And / or the amplitude is controlled, and thus the transport state of the powder or granular material P on the receiving means 30 is controlled. That is, under the control of the control means 4, when the vibration generating means 31 is not operating, the receiving means 30 does not vibrate, so that the transport of the powder or granular material P on the receiving means 30 is stopped or suppressed. When the vibration generating means 31 is operated from such a state, the receiving means 30 starts the vibration, so that the stop or suppression of the powder or granular material P on the receiving means 30 is released, and the powder or granular material P is conveyed to the MD. Finally, as shown in FIGS. 1 and 2, the receiving means 30 freely falls from the downstream end 3DE of the MD due to its own weight, and is continuously conveyed under the receiving means 30 onto the base material 100. It is sprayed.

振動発生手段31によって発生する振動を受取手段30上の粉粒体Pに適切に伝えるようにする観点から、受取手段30は平板状のものであることが好ましく、より具体的には、図1に示す如き扁平な平板部材が好ましい。更に、排出口23から排出された粉粒体Pを、受取手段30のMDに対して先端部から均一に散布する観点から、MD以外からの散布を防止するために、受取手段30の側面にガイドを設けてもよい。斯かる平板部材からなる受取手段30の材質は特に制限されないが、例えば、各種プラスチックや各種金属などが挙げられる。 From the viewpoint of appropriately transmitting the vibration generated by the vibration generating means 31 to the powder or granular material P on the receiving means 30, the receiving means 30 is preferably flat, and more specifically, FIG. A flat flat plate member as shown in is preferable. Further, from the viewpoint of uniformly spraying the powder or granular material P discharged from the discharge port 23 on the MD of the receiving means 30 from the tip portion, in order to prevent spraying from other than the MD, the side surface of the receiving means 30 A guide may be provided. The material of the receiving means 30 made of such a flat plate member is not particularly limited, and examples thereof include various plastics and various metals.

振動発生手段31としては、受取手段30上の粉粒体Pを所望の一方向に搬送させ得る振動成分を発生可能なものであれば良く、例えば、圧電セラミック等の圧電素子、振動フィーダ等の公知の振動発生手段が挙げられる。中でも振動フィーダは、振動発生手段31として好ましく用いられる。また、振動発生手段31の振動数は特に制限されないが、粉粒体の搬送性並びに散布の均一性及び定量性等の観点から、好ましくは50Hz以上、より好ましくは100Hz以上であり、そして、好ましくは500Hz以下、より好ましくは300Hz以下である。 The vibration generating means 31 may be any as long as it can generate a vibration component capable of transporting the powder or granular material P on the receiving means 30 in a desired direction. For example, a piezoelectric element such as a piezoelectric ceramic, a vibration feeder, or the like. Known vibration generating means can be mentioned. Among them, the vibration feeder is preferably used as the vibration generating means 31. The frequency of the vibration generating means 31 is not particularly limited, but is preferably 50 Hz or higher, more preferably 100 Hz or higher, and preferably 100 Hz or higher, from the viewpoint of transportability of powders and granules, uniformity of spraying, and quantitativeness. Is 500 Hz or less, more preferably 300 Hz or less.

図1に示すように、ホッパー2には計量装置5が取り付けられている。計量装置5としては、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全質量を連続して計量可能なものが用いられる。連続して計量可能とは、計量データのサンプリングタイムが0秒超1秒以下であることを言う。計量装置5によって計量されたホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全質量の計量データは、データの取得のたびに、先に述べた制御手段4に送信されるようになっている。計量装置5の具体例としては電気式計量器が挙げられ、具体的には、ロードセル式計量器や電磁式計量器、音叉式計量器等を用いることができる。 As shown in FIG. 1, a weighing device 5 is attached to the hopper 2. As the measuring device 5, a device capable of continuously measuring the total mass of the hopper 2 and the powder or granular material P stored in the hopper 2 is used. Continuously measurable means that the sampling time of the measurement data is more than 0 seconds and 1 second or less. The measurement data of the total mass of the hopper 2 and the powder or granular material P stored in the hopper 2 measured by the measuring device 5 is transmitted to the control means 4 described above each time the data is acquired. It has become. A specific example of the measuring device 5 is an electric measuring instrument, and specifically, a load cell type measuring instrument, an electromagnetic measuring instrument, a tuning fork type measuring instrument, or the like can be used.

制御手段4は、前述のとおり、受取手段30の振動数及び/又は振幅を制御する機能を有する。また制御手段4は、計量装置5から送信された計量データを受信できるようになっている。更に制御手段4は、ホッパー2の貯蔵部20上に設置されている粉体供給装置90に接続されており、貯蔵部20内への粉粒体Pの供給も制御する機能を有する。制御手段4としては、例えば制御・処理用ソフトウエアがインストールされたコンピュータを用いることができる。 As described above, the control means 4 has a function of controlling the frequency and / or amplitude of the receiving means 30. Further, the control means 4 can receive the measurement data transmitted from the measurement device 5. Further, the control means 4 is connected to the powder supply device 90 installed on the storage unit 20 of the hopper 2, and has a function of controlling the supply of the powder or granular material P into the storage unit 20. As the control means 4, for example, a computer on which control / processing software is installed can be used.

粉粒体散布装置1を用いた散布の対象となる粉粒体Pとしては、例えば吸水性ポリマー粒子、砂糖、活性炭、小麦粉、ポリエチレンペレット、ポリプロピレンペレット、ポリエチレンテレフタレートチップ、ポリカーボネートチップ、ポリエチレングラニュール、ポリアクリル酸ブチルビーズ等の有機物の粉粒体や、金属粉、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、ガラス、石灰等の無機物の粉粒体が挙げられる。粉粒体Pの形状は特に制限されず、例えば、球状、碁石状、楕円形、楕円柱、針状、キュービック状等が挙げられる。粉粒体散布装置1によれば、粉粒体Pが真球状の場合は勿論のこと、真球状以外の形状であっても、基材100の長手方向(すなわちMD)及び/又はCDに均一に定量性良く散布することができる。 Examples of the powder or granular material P to be sprayed using the powder or granular material spraying device 1 include water-absorbent polymer particles, sugar, activated charcoal, wheat flour, polyethylene pellets, polypropylene pellets, polyethylene terephthalate chips, polycarbonate chips, polyethylene granules, and the like. Examples thereof include organic powders and granules such as butyl polyacrylate beads and inorganic powders and granules such as metal powder, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, glass and lime. The shape of the powder or granular material P is not particularly limited, and examples thereof include a spherical shape, a gostone shape, an elliptical shape, an elliptical pillar shape, a needle shape, and a cubic shape. According to the powder / granular material spraying device 1, not only when the powder / granular material P is spherical, but also when the powder / granular material P has a shape other than the true spherical shape, it is uniform in the longitudinal direction (that is, MD) and / or CD of the base material 100. Can be sprayed quantitatively.

基材100は、シート状の基材であることが好ましいが、シート状の基材に限られない。シート状の基材としては、各種製法による不織布、樹脂フィルム、織物、編み物、紙等、及びこれらのうちの同種又は異種のものを複数枚積層した積層体等が挙げられる。 The base material 100 is preferably a sheet-shaped base material, but is not limited to the sheet-shaped base material. Examples of the sheet-like base material include non-woven fabrics, resin films, woven fabrics, knitting, paper, etc. produced by various manufacturing methods, and laminates in which a plurality of the same or different kinds of these are laminated.

粉粒体散布装置1は、連続搬送される基材に対し粉粒体を散布する工程を有する、粉粒体の散布方法に好適に使用できる。
また粉粒体散布装置1は、基材と、該基材に接触するように配置された粉粒体とを備えた粉粒体含有物品の製造方法であって、連続搬送される基材に対し粉粒体を散布する工程を有する、粉粒体含有物品の製造方法に好適に使用できる。粉粒体が何らかの機能性を有する機能性粉粒体である場合、該機能性粉粒体を含有する粉粒体含有物品は機能性物品である。前記機能性粉粒体の具体例として、吸水性ポリマーの粒子、塩化ナトリウム等の電解質が挙げられる。
粉粒体散布装置1によれば、基材が連続で高速搬送され、且つ該基材への単位面積当たりの散布量が多い機能性物品においても、基材の長手方向(すなわちMD)及びCDに均一に定量良く散布することができる。散布量が多い機能性物品は、典型的には後述する吸収性シートである。
The powder or granular material spraying device 1 can be suitably used in a method for spraying powder or granular material, which comprises a step of spraying the powder or granular material on a substrate that is continuously conveyed.
Further, the powder or granular material spraying device 1 is a method for producing a powder or granular material-containing article including a base material and powder or granular material arranged so as to be in contact with the base material, and is a method for producing a powder or granular material-containing article, which is continuously conveyed to the base material. On the other hand, it can be suitably used in a method for producing a powder or granular material-containing article, which comprises a step of spraying the powder or granular material. When the powder or granular material is a functional powder or granular material having some functionality, the powder or granular material-containing article containing the functional powder or granular material is a functional article. Specific examples of the functional powder or granular material include particles of a water-absorbent polymer and an electrolyte such as sodium chloride.
According to the powder or granular material spraying device 1, even in a functional article in which the base material is continuously transported at high speed and the amount of spraying on the base material is large per unit area, the base material is in the longitudinal direction (that is, MD) and the CD. Can be sprayed uniformly and quantitatively. A functional article that is sprayed in a large amount is typically an absorbent sheet described later.

前記機能性物品の一例として、発熱体が挙げられる。例えば、連続搬送される基材に対し、粉粒体散布装置1を用いて、粉粒体として吸水性ポリマー又は電解質を散布することにより、シート状の発熱体(発熱シート)を製造できる。このように製造された発熱シートであれば、発熱ムラの少ない、優れた発熱特性を得られることが期待できる。斯かる発熱シートの製造方法において、基材としては、例えば、繊維シートと、該繊維シートの片面に付与され、被酸化性金属及び水を含む発熱組成物とを具備するものを用いることができ、その場合、該繊維シートにおける該発熱組成物が付与された面に粉粒体を散布する。 An example of the functional article is a heating element. For example, a sheet-shaped heating element (heating sheet) can be produced by spraying a water-absorbent polymer or an electrolyte as powders or granules on a substrate that is continuously transported using the powder or granular material spraying device 1. With the heat generating sheet manufactured in this way, it can be expected that excellent heat generation characteristics with less heat generation unevenness can be obtained. In such a method for producing a heat-generating sheet, as the base material, for example, a fiber sheet and a heat-generating composition provided on one side of the fiber sheet and containing an oxidizable metal and water can be used. In that case, the powder or granular material is sprayed on the surface of the fiber sheet to which the heat-generating composition is applied.

前記機能性物品の他の一例として、吸収体が挙げられる。例えば、連続搬送される紙や不織布等の繊維シート(基材)に対し、粉粒体散布装置1を用いて、粉粒体として吸水性ポリマーを散布することにより、繊維シートの一面に吸水性ポリマーが散布された構成のシート状の吸収体(吸収性シート)を製造できる。斯かる吸収性シートは、使い捨ておむつや生理用ナプキン等の吸収性物品における吸収体として好適である。 Another example of the functional article is an absorber. For example, by spraying a water-absorbent polymer as powder or granular material on a fiber sheet (base material) such as paper or non-woven fabric that is continuously conveyed, the water-absorbent polymer is sprayed as powder or granular material on one surface of the fiber sheet. A sheet-like absorber (absorbent sheet) having a structure in which a polymer is sprayed can be produced. Such absorbent sheets are suitable as absorbents in absorbent articles such as disposable diapers and sanitary napkins.

粉粒体散布装置1を用いて、連続搬送されるシート状の基材100上に粉粒体Pを散布する場合には、ホッパー2における排出口23を通じて該ホッパー2内に貯留されている粉粒体Pを自重により自由落下させ、搬送手段3の受取手段30上に散布する。粉粒体Pの落下に連れてホッパー2内での粉粒体Pの貯留量は次第に減少してくる。ホッパー2内での粉粒体Pの量は、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全質量の形で計量装置5によって連続的に計量される。なお、以下の説明においては、簡便のため、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全質量のことを「ホッパー込み粉粒体質量」とも言う。ホッパー込み粉粒体質量Aの連続計量に先立ち、粉粒体Pの満充填状態でのホッパー込み粉粒体質量Aを予め測定しておくことが好ましい。粉粒体Pの満充填状態でのホッパー込み粉粒体質量Aを予め測定しておくことで、ホッパー2から落下した粉粒体Pの重量Aを、A−Aの計算から容易に算出することができる。 When the powder or granular material P is sprayed on the sheet-shaped base material 100 that is continuously transported by using the powder or granular material spraying device 1, the powder stored in the hopper 2 through the discharge port 23 in the hopper 2. The granular material P is freely dropped by its own weight and sprayed on the receiving means 30 of the transporting means 3. As the powder or granular material P falls, the amount of the powder or granular material P stored in the hopper 2 gradually decreases. The amount of the powder or granular material P in the hopper 2 is continuously measured by the measuring device 5 in the form of the total mass of the powder or granular material P stored in the hopper 2 and the hopper 2. In the following description, for the sake of simplicity, the total mass of the hopper 2 and the powder or granular material P stored in the hopper 2 is also referred to as "the mass of the powder or granular material including the hopper". Prior to the continuous measurement of the hopper-containing powder or granular material mass A, it is preferable to measure the hopper-containing powder or granular material mass A 1 in a fully filled state of the powder or granular material P in advance. By previously measuring a hopper included granular mass A 1 in a fully filled state of the powder particles P, the weight A P of the particulate material P dropped from the hopper 2, facilitates the calculation of A 1 -A Can be calculated.

シート状の基材100上に粉粒体Pを定量で安定的に散布するためには、搬送手段3における受取手段30上に落下した粉粒体Pが、定量で基材100上に散布されるように、受取手段30の振幅や振動数を制御することが望ましい。受取手段30の振幅や振動数は、振動発生手段31によって制御される。振動発生手段31による振動の制御は、具体的には以下の基準に従い行われることが好ましい。すなわち、ホッパー込み粉粒体質量Aを連続的に測定し、ホッパー込み粉粒体質量Aの単位時間当たりの変化量ΔAを算出する。ΔAは(A−A)/tで定義される。Aは、ある時刻でのホッパー込み粉粒体質量であり、Aは、時間t経過後のホッパー込み粉粒体質量である。ΔAは制御手段4において演算される。ホッパー2の質量は不変であるから、ΔAは、ホッパー2内における粉粒体Pの質量の減少速度に等しい。制御手段4は、この質量減少速度ΔAに応じて、搬送手段3の搬送能力を制御し、該搬送手段3によって基材100上に散布される粉粒体Pの単位時間当たりの散布量M1を、単位時間当たりの目標散布量mに一致させる搬送能力制御操作を行う。搬送能力制御操作においては、例えばΔAが目標散布量mよりも少ない場合には、搬送手段3の搬送能力を高めて散布量M1を増加させる操作を行う。逆に、ΔAが目標散布量mよりも多い場合には、搬送手段3の搬送能力を低めて散布量M1を減少させる操作を行う。 In order to stably and quantitatively spray the powder or granular material P on the sheet-shaped base material 100, the powder or granular material P that has fallen on the receiving means 30 in the transporting means 3 is sprayed on the base material 100 in a quantitative manner. Therefore, it is desirable to control the amplitude and frequency of the receiving means 30. The amplitude and frequency of the receiving means 30 are controlled by the vibration generating means 31. Specifically, the vibration control by the vibration generating means 31 is preferably performed according to the following criteria. That is, the hopper-containing powder and granule mass A is continuously measured, and the amount of change ΔA of the hopper-containing powder and granule mass A per unit time is calculated. ΔA is defined as (A a- A b ) / t. A a is the mass of the hopper-containing powder and granules at a certain time, and A b is the mass of the hopper-containing powder and granule after the lapse of time t. ΔA is calculated by the control means 4. Since the mass of the hopper 2 is invariant, ΔA is equal to the rate of decrease in the mass of the powder or granular material P in the hopper 2. The control means 4 controls the transport capacity of the transport means 3 according to the mass reduction rate ΔA, and determines the spray amount M1 of the powder or granular material P sprayed on the base material 100 by the transport means 3 per unit time. , Perform a transport capacity control operation to match the target spray amount m per unit time. In the transport capacity control operation, for example, when ΔA is less than the target spray amount m, the transport capacity of the transport means 3 is increased to increase the spray amount M1. On the contrary, when ΔA is larger than the target spraying amount m, the transporting capacity of the transporting means 3 is lowered to reduce the spraying amount M1.

このように、制御手段4は、ホッパー込み粉粒体質量Aの単位時間(例えば1分間)当たりの変化量(質量減少速度)ΔAを測定し、且つ搬送手段3による粉粒体Pの単位時間(例えば1分間)当たりの散布量(散布量の実測値)Mが、搬送手段3による粉粒体Pの単位時間(例えば1分間)当たりの散布量の目標値mと一致するように、該変化量ΔAに応じて搬送手段3の搬送能力の制御を行う。
搬送手段3の搬送能力は、例えば振動発生手段31の振動の振幅若しくは周波数又はそれら両者を制御することで変更が可能である。振動発生手段31の制御には、例えばP制御(比例制御)、PI制御又はPID制御などの公知のフィードバック制御方法を採用することができる。これらの各種の制御方法における係数は、トライアル・アンド・エラーによって決定することができる。
In this way, the control means 4 measures the amount of change (mass reduction rate) ΔA per unit time (for example, 1 minute) of the powder or granular material mass A including the hopper, and the unit time of the powder or granular material P by the transport means 3. The spray amount per (for example, 1 minute) M (measured value of the spray amount) M matches the target value m of the spray amount per unit time (for example, 1 minute) of the powder or granular material P by the transport means 3. The transport capacity of the transport means 3 is controlled according to the amount of change ΔA.
The transport capacity of the transport means 3 can be changed, for example, by controlling the amplitude or frequency of the vibration of the vibration generating means 31 or both. For the control of the vibration generating means 31, for example, a known feedback control method such as P control (proportional control), PI control or PID control can be adopted. The coefficients in these various control methods can be determined by trial and error.

ホッパー込み粉粒体質量の質量減少速度ΔAは、種々の方法で算出することができる。例えば所定時間t(秒)毎にホッパー込み粉粒体質量を計量し、計量した該ホッパー込み粉粒体質量と、t(秒)前に計量した該ホッパー込み粉粒体質量との差分を算出し、その値をt(秒)で除した値を質量減少速度ΔAと定義することができる。tの値は1秒以上300秒以下であることが好ましい。一例として、図5(a)に示すとおり、5秒ごとにホッパー込み粉粒体質量を測定し、最新の測定値と、5秒前の測定値との差分をとり、その差分を5秒で除すことで、質量減少速度ΔAを算出できる。 The mass reduction rate ΔA of the mass of the powder and granules including the hopper can be calculated by various methods. For example, the mass of the hopper-containing powder and granules is measured every t (seconds) for a predetermined time, and the difference between the weighed hopper-containing powder and granule mass and the hopper-containing powder and granule mass measured before t (seconds) is calculated. Then, the value obtained by dividing the value by t (seconds) can be defined as the mass reduction rate ΔA. The value of t is preferably 1 second or more and 300 seconds or less. As an example, as shown in FIG. 5A, the mass of powder and granules including the hopper is measured every 5 seconds, the difference between the latest measured value and the measured value 5 seconds ago is taken, and the difference is taken in 5 seconds. By dividing, the mass reduction rate ΔA can be calculated.

別法として、所定時間s(秒)毎にホッパー込み粉粒体質量を計量し、計量した該ホッパー込み粉粒体質量と、t(秒)(ただしs≦tである。)前に計量した該ホッパー込み粉粒体質量との差分を算出し、その値をt(秒)で除した値を質量減少速度ΔAと定義することもできる。sとtとの関係は、t/sの値が1以上3000以下であることが好ましい。またsの値は0.1秒以上10秒以下であることが好ましい。tの値はsの値よりも大きいことを条件として、1秒以上300秒以下であることが好ましい。一例として、図5(b)に示すとおり、1秒ごとにホッパー込み粉粒体質量を測定し、最新の測定値と、5秒前の測定値との差分をとり、その差分を5秒で除すことで、質量減少速度ΔAを算出できる。 Alternatively, the mass of the hopper-containing powder and granules was weighed every predetermined time s (seconds), and the weighed mass of the hopper-containing powder and granules was weighed before t (seconds) (where s ≦ t). It is also possible to calculate the difference from the mass of the powder and granules including the hopper, and divide the value by t (seconds) to define the mass reduction rate ΔA. Regarding the relationship between s and t, it is preferable that the value of t / s is 1 or more and 3000 or less. The value of s is preferably 0.1 seconds or more and 10 seconds or less. The value of t is preferably 1 second or more and 300 seconds or less, provided that it is larger than the value of s. As an example, as shown in FIG. 5 (b), the mass of the powder and granules including the hopper is measured every second, the difference between the latest measured value and the measured value 5 seconds ago is taken, and the difference is taken in 5 seconds. By dividing, the mass reduction rate ΔA can be calculated.

図5(a)に示す質量減少速度ΔAの算出方法は、図5(b)に示す質量減少速度ΔAの算出方法よりも、制御手段40における演算の負荷が小さいという利点を有する。一方、図5(b)に示す質量減少速度ΔAの算出方法は、図5(a)に示す質量減少速度ΔAの算出方法よりも精密に質量減少速度ΔAを算出できるという利点がある。 The method for calculating the mass reduction rate ΔA shown in FIG. 5A has an advantage that the calculation load on the control means 40 is smaller than the method for calculating the mass reduction rate ΔA shown in FIG. 5B. On the other hand, the method for calculating the mass reduction rate ΔA shown in FIG. 5B has an advantage that the mass reduction rate ΔA can be calculated more accurately than the method for calculating the mass reduction rate ΔA shown in FIG. 5A.

搬送手段3による粉粒体Pの1分間当たりの目標散布量mは、本発明の効果が顕著になる観点から、好ましくは1g/min以上であり、より好ましくは50g/min以上、更に好ましくは100g/min以上である。
また、ハンドリングのしやすさの観点から、好ましくは100000g/min以下、より好ましくは10000g/min以下、更に好ましくは5000g/min以下である。
ところで、粉粒体散布装置1は、連続搬送される基材100に対して粉粒体Pを高精度に定量散布可能にすることを主要課題の1つとしており、これを可能にするために、粉粒体散布装置1では下記(i)及び(ii)が採用されている。
(i)排出口23におけるMDの最大長さをD、該排出口23におけるCDの最大長さをWとした場合、W/Dが100以下である(W/D≦100)。
(ii)排出口23からの粉粒体Pの単位時間当たりの排出量、具体的には1分間当たりの排出量をM、搬送手段3による粉粒体Pの1分間当たりの散布量の目標値をmとした場合、M/mが1.5以上である(M/m≧1.5)。
前記W/D及び前記M/mの単位は、それぞれ、無次元である。
The target spraying amount m of the powder or granular material P by the transporting means 3 per minute is preferably 1 g / min or more, more preferably 50 g / min or more, still more preferably 50 g / min or more, from the viewpoint that the effect of the present invention becomes remarkable. It is 100 g / min or more.
Further, from the viewpoint of ease of handling, it is preferably 100,000 g / min or less, more preferably 10,000 g / min or less, and further preferably 5000 g / min or less.
By the way, one of the main problems of the powder or granular material spraying device 1 is to enable the powder or granular material P to be quantitatively sprayed with high accuracy on the base material 100 which is continuously transported, and in order to make this possible. , The following (i) and (ii) are adopted in the powder or granular material spraying device 1.
(i) When the maximum length of MD at the discharge port 23 is D and the maximum length of CD at the discharge port 23 is W, W / D is 100 or less (W / D ≦ 100).
(ii) The amount of powder or granular material P discharged from the discharge port 23 per unit time, specifically, the amount of powder or granular material P discharged per minute is M, and the target of the amount of powder or granular material P sprayed per minute by the transport means 3 When the value is m, M / m is 1.5 or more (M / m ≧ 1.5).
The units of W / D and M / m are dimensionless, respectively.

前記(i)に関し、排出部21の下端に位置する排出口23の平面視形状は、排出部21内の移動路22における粉粒体Pの流れに少なからず影響を及ぼす。本発明者の知見によれば、前記W/Dの値が比較的小さい、すなわち排出口23の平面視形状が、CDに短くMDに長く且つ両者の差が比較的小さいものであると、移動路22において粉粒体Pにかかる外力(せん断力ないし摩擦力)を低減でき、移動路22内での粉粒体Pの流れを均一にできる。斯かる傾向は、特に1分間当たりの目標散布量mが比較的多量の場合に顕著であり、前記W/Dの値が比較的大きい設定で基材100に対して多量の粉粒体Pを散布しようとすると、基材100のCDにおける粉粒体Pの散布量が不均一となる等の不都合が生じやすく、最悪の場合、移動路22ないし排出口23が粉粒体Pで閉塞されて排出不良を招くおそれがある。以上を考慮し、不都合の発生を防止するべく採用されたのが、前記の「W/D≦100」の大小関係である。 Regarding (i), the plan-view shape of the discharge port 23 located at the lower end of the discharge unit 21 has a considerable influence on the flow of the powder or granular material P in the moving path 22 in the discharge unit 21. According to the findings of the present inventor, if the W / D value is relatively small, that is, the plan-view shape of the discharge port 23 is short for CD and long for MD, and the difference between the two is relatively small, the movement is performed. The external force (shearing force or frictional force) applied to the powder or granular material P in the road 22 can be reduced, and the flow of the powder or granular material P in the moving path 22 can be made uniform. Such a tendency is particularly remarkable when the target spraying amount m per minute is relatively large, and a large amount of powder or granular material P is applied to the base material 100 at a setting where the W / D value is relatively large. When spraying is attempted, inconveniences such as uneven spraying amount of the powder or granular material P on the CD of the base material 100 are likely to occur, and in the worst case, the moving path 22 or the discharge port 23 is blocked by the powder or granular material P. It may lead to poor discharge. In consideration of the above, the magnitude relationship of the above-mentioned "W / D ≦ 100" was adopted to prevent the occurrence of inconvenience.

前記W/Dは、少なくとも100以下であり、好ましくは80以下、より好ましくは40以下である。また、前記W/Dの下限については、CDにおける粉粒体Pの散布量を均一にする目的の観点から、好ましくは1以上、より好ましくは10以上、更に好ましくは13以上である。 The W / D is at least 100 or less, preferably 80 or less, and more preferably 40 or less. The lower limit of the W / D is preferably 1 or more, more preferably 10 or more, still more preferably 13 or more, from the viewpoint of making the amount of powder or granular material P sprayed uniformly on the CD.

本実施形態では、排出口23は、平面視においてCDに長い形状をなしている。具体的には図3に示すように、排出口23は長方形形状をなし、その長手方向がCDに一致している。つまり本実施形態では、前記W/Dが1を超えている。移動路22の水平方向に沿う断面(横断面)の形状も、排出口23の平面視形状と同じく長方形形状である。 In the present embodiment, the discharge port 23 has a long shape like a CD in a plan view. Specifically, as shown in FIG. 3, the discharge port 23 has a rectangular shape, and its longitudinal direction coincides with the CD. That is, in the present embodiment, the W / D exceeds 1. The shape of the cross section (cross section) of the moving path 22 along the horizontal direction is also a rectangular shape like the plan view shape of the discharge port 23.

排出口23の最大長さD及びWは、それぞれ、粉粒体Pの物性(粒子径、かさ密度等)、前記目標散布量mなどに応じて適宜調整すればよく、特に制限されない。例えば、最大粒子径rが1mm、かさ密度ρが1g/cmの粉粒体Pを、1分間当たりの前記目標散布量mが10〜100g/分となるように散布する場合、最大長さD及びWは、それぞれ、粉粒体Pの最大粒子径rを基準として、下記のように設定することができる。
排出口23の最大長さDと粉粒体Pの最大粒子径rとの比[D/r]は、好ましくは2以上、より好ましくは6以上、そして、好ましくは30以下、より好ましくは18以下。
排出口23の最大長さWと粉粒体Pの最大粒子径rとの比[W/r]は、好ましくは3以上、より好ましくは50以上、そして、好ましくは1000以下、より好ましくは200以下である。
前記D/r及び前記W/rの単位は、それぞれ、無次元である。
The maximum lengths D and W of the discharge port 23 may be appropriately adjusted according to the physical characteristics (particle size, bulk density, etc.) of the powder or granular material P, the target spraying amount m, and the like, and are not particularly limited. For example, when the powder or granular material P having a maximum particle diameter r of 1 mm and a bulk density ρ of 1 g / cm 3 is sprayed so that the target spray amount m per minute is 10 to 100 g / min, the maximum length. D and W can be set as follows with reference to the maximum particle size r of the powder or granular material P, respectively.
The ratio [D / r] of the maximum length D of the discharge port 23 to the maximum particle size r of the powder or granular material P is preferably 2 or more, more preferably 6 or more, and preferably 30 or less, more preferably 18. Less than.
The ratio [W / r] of the maximum length W of the discharge port 23 to the maximum particle size r of the powder or granular material P is preferably 3 or more, more preferably 50 or more, and preferably 1000 or less, more preferably 200. It is as follows.
The units of D / r and W / r are dimensionless, respectively.

なお、移動路22におけるMDの最大長さは、排出口23の最大長さDと同じに設定することができ、移動路22におけるCDの最大長さは、排出口23の最大長さWと同じに設定することができる。 The maximum length of the MD in the moving path 22 can be set to be the same as the maximum length D of the discharging port 23, and the maximum length of the CD in the moving path 22 is the maximum length W of the discharging port 23. Can be set to the same.

粉粒体Pの最大粒子径rは公知の方法により測定することができる。具体的には例えば、乾式篩法(JIS Z8815:1994)、動的光散乱法、レーザー回折法、遠心沈降法、重力沈降法、画像イメージング法、FFF(フィールド・フロー・フラクショネーション)法、静電気検知体法、コールター法等が挙げられる。これらの中でも、レーザー回折法又はコールター法で測定した最大粒子径rを採用することが、再現性と精度の点から好ましい。対象とする粉粒体の粒子径が5mm程度以下であれば、レーザー回折法を用いて粉粒体の最大粒子径rを測定することが好ましい。 The maximum particle size r of the powder or granular material P can be measured by a known method. Specifically, for example, dry sieving method (JIS Z8815: 1994), dynamic light scattering method, laser diffraction method, centrifugal sedimentation method, gravity sedimentation method, image imaging method, FFF (field flow fractionation) method, Examples include the electrostatic detector method and the Coulter method. Among these, it is preferable to adopt the maximum particle size r measured by the laser diffraction method or the Coulter method from the viewpoint of reproducibility and accuracy. When the particle size of the target powder or granular material is about 5 mm or less, it is preferable to measure the maximum particle size r of the powder or granular material by using a laser diffraction method.

前記(ii)に関し、「M/m≧1.5」という大小関係が成立するということは、単位時間(1分間)に粉粒体Pが排出口23から自重による自由落下により排出される質量(排出量M)が、同単位時間(1分間)に搬送手段3から基材100に対して散布されるべき粉粒体Pの質量(目標散布量m)の1.5倍以上であることを意味する。
例えば、移動路22内での粉粒体Pの流れが不均一になるなどして、排出口23からの排出量Mが減少した場合に、前述したように、制御手段4による変化量ΔAに応じた搬送手段3の搬送能力の制御を実施する。具体的には例えば、制御手段4による制御下で振動発生手段31の振動の振幅及び/又は周波数を高めることで、基材100に対する粉粒体Pの単位時間(1分間)当たりの散布量M1を増加させようとする。ここで、M/m≧1.5の関係が成立している場合には、目標散布量mに対して十分に多量の粉粒体Pが搬送手段3に対して排出されるので、搬送手段3の搬送能力を制御するだけでも排出口23からの排出量Mを調整するための時間的余裕が確保できる。前述したように、移動路22内での粉粒体Pの流れが不均一になる現象は、特に目標散布量mが比較的多量の場合に起こりやすいので、M/m≧1.5の大小関係の成立は、斯かる場合に特に有効であると言える。
Regarding (ii), the fact that the magnitude relationship of "M / m ≥ 1.5" is established means that the mass of the powder or granular material P discharged from the discharge port 23 by free fall due to its own weight in a unit time (1 minute). (Discharge amount M) is 1.5 times or more the mass (target spray amount m) of the powder or granular material P to be sprayed from the transport means 3 to the base material 100 in the same unit time (1 minute). Means.
For example, when the discharge amount M from the discharge port 23 decreases due to the flow of the powder or granular material P in the moving path 22 becoming non-uniform, the change amount ΔA by the control means 4 is changed as described above. The transport capacity of the transport means 3 is controlled accordingly. Specifically, for example, by increasing the vibration amplitude and / or frequency of the vibration generating means 31 under the control of the control means 4, the amount of powder or granular material P sprayed on the base material 100 per unit time (1 minute) M1 Try to increase. Here, when the relationship of M / m ≧ 1.5 is established, a sufficiently large amount of powder or granular material P is discharged to the transporting means 3 with respect to the target spraying amount m, so that the transporting means It is possible to secure a time margin for adjusting the discharge amount M from the discharge port 23 only by controlling the transport capacity of 3. As described above, the phenomenon that the flow of the powder or granular material P in the moving path 22 becomes non-uniform is likely to occur especially when the target spraying amount m is relatively large, so that the magnitude of M / m ≧ 1.5 is large or small. It can be said that the establishment of a relationship is particularly effective in such a case.

前記M/mは、少なくとも1.5以上であり、好ましくは2以上、より好ましくは3以上である。また、前記M/mの上限については、移動路22内での粉粒体Pの流れをより一層均一にする観点から、好ましくは80以下、より好ましくは8以下である。 The M / m is at least 1.5 or more, preferably 2 or more, and more preferably 3 or more. The upper limit of M / m is preferably 80 or less, more preferably 8 or less, from the viewpoint of making the flow of the powder or granular material P in the moving path 22 even more uniform.

前記M/mの調整は、任意に設定される目標散布量mに対し、排出口23からの粉粒体Pの単位時間(1分間)当たりの排出量Mを適宜調整することで実施でき、また、排出量Mの調整は、排出口23の平面視形状及び寸法(最大長さD,W)を適宜調整することで実施できる。粉粒体Pは排出口23から自重による自由落下によって排出されるので、その単位時間(1分間)当たりの排出量Mは、排出口23の形状及び寸法に依るとことが大きいためである。 The adjustment of M / m can be carried out by appropriately adjusting the discharge amount M per unit time (1 minute) of the powder or granular material P from the discharge port 23 with respect to the arbitrarily set target spray amount m. Further, the discharge amount M can be adjusted by appropriately adjusting the plan-view shape and dimensions (maximum lengths D and W) of the discharge port 23. This is because the powder or granular material P is discharged from the discharge port 23 by free fall due to its own weight, and therefore the discharge amount M per unit time (1 minute) largely depends on the shape and dimensions of the discharge port 23.

このように、前記(i)及び(ii)は何れも、粉粒体Pの単位時間(1分間)当たりの散布量(目標散布量m)が比較的多い場合にも対応できるように採用されたもので、且つ排出口23と密接に関連するものである。そうすると、前記(i)及び(ii)を満たすように排出口23が構成されることにより、粉粒体Pの単位時間(1分間)当たりの散布量が比較的多い場合でも、基材100に対して粉粒体PをCDに均一に定量性良く散布可能になることが期待できる。 As described above, both (i) and (ii) are adopted so as to be able to cope with the case where the spray amount (target spray amount m) per unit time (1 minute) of the powder or granular material P is relatively large. And is closely related to the outlet 23. Then, by configuring the discharge port 23 so as to satisfy the above (i) and (ii), even if the amount of the powder or granular material P sprayed per unit time (1 minute) is relatively large, the base material 100 is used. On the other hand, it can be expected that the powder or granular material P can be uniformly and quantitatively sprayed on the CD.

本発明者が種々検討した結果、目標散布量mが比較的多い場合には、前記(i)及び(ii)に加え以下の(iii)を満たすことが好ましいことが判明した。すなわち、図4に示すように、排出口23を搬送手段3(受取手段30の上面30a)に向けて仮想的に延長した場合に排出口23と搬送手段3との間の隙間に形成される、排出口23の仮想延長領域23Vが、目標散布量mとの関係で特定範囲にあることが重要であることを知見した。
(iii)粉粒体Pのかさ密度をρ、排出口23の面積をS、排出口23と搬送手段3との離間距離をGとした場合、m/(ρ×S×G)が21/min以上である[m/(ρ×S×G)≧20]。前記m/(ρ×S×G)の単位は[/min]である。
As a result of various studies by the present inventor, it has been found that when the target spraying amount m is relatively large, it is preferable to satisfy the following (iii) in addition to the above (i) and (ii). That is, as shown in FIG. 4, when the discharge port 23 is virtually extended toward the transport means 3 (upper surface 30a of the receiving means 30), it is formed in the gap between the discharge port 23 and the transport means 3. It was found that it is important that the virtual extension region 23V of the discharge port 23 is within a specific range in relation to the target spray amount m.
(iii) When the bulk density of the powder or granular material P is ρ, the area of the discharge port 23 is S, and the distance between the discharge port 23 and the transport means 3 is G, m / (ρ × S × G) is 21 /. It is min or more [m / (ρ × S × G) ≧ 20]. The unit of m / (ρ × S × G) is [/ min].

前記(iii)に関し、ρ×S×Gは、仮想延長領域23V(図4参照)の体積と同体積の粉粒体Pの質量に相当する。本発明者の知見によれば、仮想延長領域23Vの体積が大きくなる、あるいは目標散布量mが小さくなると、粉粒体Pの基材100に対する散布精度が低下する傾向がある。斯かる傾向を考慮し、種々検討した結果導き出されたのが、前記の「m/(ρ×S×G)≧20」という大小関係である。m/(ρ×S×G)が21/min以上であることにより、前記(i)及び(ii)との相乗効果によって本発明の所定の効果は奏される。すなわち、移動路22における粉粒体Pの流れを定常流化し且つ粉粒体Pの流動性が向上するため、粉粒体Pの単位時間(1分間)当たりの散布量(目標散布量m)が比較的多い場合でも、また、粉粒体Pが真球状ではない場合や粒度分布が比較的広い場合でも、粉粒体Pの詰まりが発生し難く、連続搬送される基材100に対し、MD(基材100の長手方向)及びCD(基材100の幅方向)の双方において、粉粒体Pを均一且つ高精度に定量散布し得る。 Regarding (iii), ρ × S × G corresponds to the mass of the powder or granular material P having the same volume as the volume of the virtual extension region 23V (see FIG. 4). According to the findings of the present inventor, when the volume of the virtual extension region 23V becomes large or the target spraying amount m becomes small, the spraying accuracy of the powder or granular material P on the base material 100 tends to decrease. In consideration of such a tendency, the above-mentioned magnitude relationship of "m / (ρ × S × G) ≧ 20" was derived as a result of various studies. When m / (ρ × S × G) is 21 / min or more, the predetermined effect of the present invention is exhibited by the synergistic effect with (i) and (ii). That is, in order to make the flow of the powder or granular material P steady in the moving path 22 and improve the fluidity of the powder or granular material P, the amount of the powder or granular material P sprayed per unit time (1 minute) (target spraying amount m). Even when the amount of powder or granular material P is relatively large, or when the powder or granular material P is not spherical or the particle size distribution is relatively wide, clogging of the powder or granular material P is unlikely to occur, and the substrate 100 is continuously transported. In both MD (longitudinal direction of the base material 100) and CD (width direction of the base material 100), the powder or granular material P can be uniformly and highly accurately quantitatively sprayed.

前記m/(ρ×S×G)は、少なくとも21/min以上であり、好ましくは30/min以上、より好ましくは50/min以上、更に好ましくは100/min以上である。また、前記m/(ρ×S×G)の上限については、搬送手段3上での粉粒体Pの流れをより一層均一にする観点から、好ましくは1000/min以下、より好ましくは800/min以下、更に好ましくは650/min以下である。 The m / (ρ × S × G) is at least 21 / min or more, preferably 30 / min or more, more preferably 50 / min or more, and further preferably 100 / min or more. The upper limit of m / (ρ × S × G) is preferably 1000 / min or less, more preferably 800 / min, from the viewpoint of making the flow of the powder or granular material P on the transport means 3 even more uniform. It is min or less, more preferably 650 / min or less.

粉粒体Pのかさ密度ρは公知の方法により測定することができる。本発明に係るかさ密度ρは、一定容積の容器内に粉粒体Pを充填し、該容器の内容積を粉粒体Pの充填体積としたときの密度である。利用可能な測定法の具体例として、例えばJISZ2504:2012、JISZ2512:2012に準ずる測定法などがある。
前記m/(ρ×S×G)の調整は、任意に設定される目標散布量m、固有値である粉粒体Pのかさ密度ρに対し、排出口23の面積S及び/又は排出口23と搬送手段3との離間距離Gを、粉粒体Pの最大粒子径rを基準として適宜調整することで実施できる。
排出口23の面積Sと粉粒体Pの最大粒子径rの二乗値との比[S/(r×r)]は、好ましくは4以上、より好ましくは1000以上、そして、好ましくは5000以下、より好ましくは1100以下である。前記S/(r×r)の単位は無次元である。
離間距離Gと粉粒体Pの最大粒子径rとの比[G/r]は、好ましくは1以上、より好ましくは3以上、更に好ましくは5以上、そして、好ましくは20以下、より好ましくは10以下である。前記G/rの単位は無次元である。
The bulk density ρ of the powder or granular material P can be measured by a known method. The bulk density ρ according to the present invention is the density when the powder or granular material P is filled in a container having a constant volume and the internal volume of the container is defined as the filling volume of the powder or granular material P. Specific examples of the available measurement methods include, for example, measurement methods according to JISZ2504: 2012 and JISZ2512: 2012.
The adjustment of m / (ρ × S × G) is performed by adjusting the area S of the discharge port 23 and / or the discharge port 23 with respect to the target spray amount m arbitrarily set and the bulk density ρ of the powder or granular material P which is an eigenvalue. It can be carried out by appropriately adjusting the separation distance G between the and the transport means 3 with reference to the maximum particle diameter r of the powder or granular material P.
The ratio [S / (r × r)] of the area S of the discharge port 23 to the square value of the maximum particle size r of the powder or granular material P is preferably 4 or more, more preferably 1000 or more, and preferably 5000 or less. , More preferably 1100 or less. The unit of S / (r × r) is dimensionless.
The ratio [G / r] of the separation distance G to the maximum particle size r of the powder or granular material P is preferably 1 or more, more preferably 3 or more, still more preferably 5 or more, and preferably 20 or less, more preferably 20 or less. It is 10 or less. The unit of G / r is dimensionless.

粉粒体Pの単位時間(1分間)当たりの散布量(目標散布量m)が多くなると、移動路22等のホッパー2の内部において粉粒体Pの流れが不均一になりやすい傾向があるところ、これはホッパー2内で粉粒体Pにかかる外力(せん断力ないし摩擦力)が増加することによるものと推察される。また、このホッパー2内で粉粒体Pにかかる外力はm/(ρ×(D/r))と密接に関連する。よって、この「m/(ρ×(D/r))」を適切に制御することで、前記(i)ないし(iii)を満たすことによる作用効果と相俟って、基材100のCDに粉粒体Pを均一に定量性良く散布することをより一層確実に行うことが可能となる。前記m/(ρ×(D/r))の単位は[mm/min]である。
前記m/(ρ×(D/r))の上限については、主として、粉粒体Pが移動路22を画成する排出部21の側壁の内面21iに係留する不都合を防止することで、粉粒体Pの流れの均一化を図る観点から、好ましくは100000mm/min以下、より好ましくは80000mm/min以下である。
前記m/(ρ×(D/r))の下限については、主として、粉粒体Pの流れの乱れを防止することで、粉粒体Pの流れの均一化を図る観点から、好ましくは1500mm/min以上、より好ましくは30000mm/min以上である。
前記m/(ρ×(D/r))の調整は、任意に設定される目標散布量m、固有値である粉粒体Pのかさ密度ρに対し、排出口23(移動路22)におけるMDの最大長さDを適宜調整することで実施できる。
When the spray amount (target spray amount m) per unit time (1 minute) of the powder or granular material P increases, the flow of the powder or granular material P tends to be uneven inside the hopper 2 such as the moving path 22. However, it is presumed that this is due to an increase in the external force (shearing force or frictional force) applied to the powder or granular material P in the hopper 2. Further, the external force applied to the powder or granular material P in the hopper 2 is closely related to m / (ρ × (D / r) 2). Therefore, by appropriately controlling this "m / (ρ × (D / r) 2 )", the CD of the base material 100 is combined with the action and effect of satisfying the above (i) to (iii). It becomes possible to more reliably spray the powder or granular material P uniformly and quantitatively. The unit of m / (ρ × (D / r) 2 ) is [mm 3 / min].
Regarding the upper limit of m / (ρ × (D / r) 2 ), the inconvenience that the powder or granular material P is moored on the inner surface 21i of the side wall of the discharge portion 21 defining the moving path 22 is mainly prevented. From the viewpoint of making the flow of the powder or granular material P uniform, it is preferably 100,000 mm 3 / min or less, and more preferably 80,000 mm 3 / min or less.
Regarding the lower limit of m / (ρ × (D / r) 2 ), it is preferable from the viewpoint of making the flow of the powder or granular material P uniform mainly by preventing the flow of the powder or granular material P from being disturbed. 1500 mm 3 / min or more, more preferably 30,000 mm 3 / min or more.
The adjustment of m / (ρ × (D / r) 2 ) is performed at the discharge port 23 (moving path 22) with respect to the arbitrarily set target spray amount m and the bulk density ρ of the powder or granular material P which is an eigenvalue. This can be carried out by appropriately adjusting the maximum length D of the MD.

基材100のCDに均一に定量性良く粉粒体Pを散布する観点から、排出口23におけるMDの最大長さDの、粉粒体Pの最大粒子径r(図4参照)に対する比、すなわちD/rは、好ましくは2以上、より好ましくは6以上である。すなわち「2≦D/r」が成立することが好ましい。斯かる構成により、排出口23において粉粒体Pの詰まりが発生することを効果的に防止できる。また、前記D/rの上限については、移動路22内での粉粒体Pの流れの均一化を図る目的の観点から、好ましくは30倍以下、より好ましくは15倍以下である。 From the viewpoint of uniformly and quantitatively spraying the powder or granular material P on the CD of the base material 100, the ratio of the maximum length D of the MD at the discharge port 23 to the maximum particle size r (see FIG. 4) of the powder or granular material P. That is, D / r is preferably 2 or more, more preferably 6 or more. That is, it is preferable that "2 ≦ D / r" is satisfied. With such a configuration, it is possible to effectively prevent clogging of the powder or granular material P at the discharge port 23. The upper limit of D / r is preferably 30 times or less, more preferably 15 times or less, from the viewpoint of making the flow of the powder or granular material P uniform in the moving path 22.

基材100のCDに均一に定量性良く粉粒体Pを散布する観点から、移動路22は、粉粒体Pの排出方向の長さH(図2及び図3参照)が粉粒体Pの最大粒子径rの1倍以上である(1≦H/r)ことも好ましい。斯かる構成により、移動路22において粉粒体Pの詰まりが発生することを効果的に防止でき、基材100に対して粉粒体PをCDに均一に定量性良く散布することができる。移動路22の長さHの、粉粒体Pの最大粒子径rに対する比、すなわちH/rは、好ましくは5以上、より好ましくは10以上である。移動路22の長さHの上限値としては、粉粒体Pの流れの定常流化の観点からは制限されないが、装置の適正な大きさの観点から決定することができ、例えば、H/rの上限は100以下であることが好ましい。 From the viewpoint of uniformly and quantitatively spraying the powder or granular material P on the CD of the base material 100, the length H (see FIGS. 2 and 3) of the powder or granular material P in the discharge direction of the moving path 22 is the powder or granular material P. It is also preferable that the maximum particle size r is 1 times or more (1 ≦ H / r). With such a configuration, it is possible to effectively prevent the clogging of the powder or granular material P in the moving path 22, and the powder or granular material P can be uniformly and quantitatively sprayed on the CD with respect to the base material 100. The ratio of the length H of the moving path 22 to the maximum particle size r of the powder or granular material P, that is, H / r is preferably 5 or more, more preferably 10 or more. The upper limit of the length H of the moving path 22 is not limited from the viewpoint of steady flow of the powder or granular material P, but can be determined from the viewpoint of the appropriate size of the apparatus, for example, H / The upper limit of r is preferably 100 or less.

ホッパー2内における粉粒体Pの流れの定常流化及び流動性の更なる向上の観点から、ホッパー2における粉粒体Pと接触する内面の水平方向に対する角度θ1(図1参照)が、粉粒体Pの安息角θ(図4参照)以上であることが好ましい。なお、ホッパー2における粉粒体Pと接触する内面が、傾斜内面20isの如き、水平方向及び鉛直方向の双方に交差する傾斜内面である場合、該内面の水平方向に対する角度θ1は、鋭角側の角度を指す。
本実施形態では、図3に示すように、ホッパー2(貯蔵部20及び排出部21)の側壁は、傾斜内面20isを有する貯蔵部20の傾斜側壁20s以外は全て、水平方向と直交する垂直方向(より具体的には鉛直方向)に延びる垂直壁であり、それら垂直壁の内面20i,21iの水平方向に対する角度θ1は、90°であって粉粒体Pの安息角θよりも大きく、また、傾斜内面20isの水平方向に対する角度θ1は、粉粒体Pの安息角θと同じかそれよりも大きくなされている。
ホッパー2における粉粒体Pと接触する内面の水平方向に対する角度θ1と粉粒体Pの安息角θとの比は、θ1/θとして、好ましくは1.2以上、より好ましくは1.5以上である。θ1は、好ましくは1.2θ以上であって90°以下、更に好ましくは1.5θ以上であって90°以下である。
From the viewpoint of steady flow of the powder or granular material P in the hopper 2 and further improvement of the fluidity, the angle θ1 (see FIG. 1) with respect to the horizontal direction of the inner surface of the hopper 2 in contact with the powder or granular material P is the powder. It is preferable that the angle of repose θ (see FIG. 4) or more of the granular material P or more. When the inner surface of the hopper 2 in contact with the powder or granular material P is an inclined inner surface that intersects both the horizontal direction and the vertical direction, such as the inclined inner surface 20is, the angle θ1 with respect to the horizontal direction of the inner surface is on the acute angle side. Refers to the angle.
In the present embodiment, as shown in FIG. 3, all the side walls of the hopper 2 (storage unit 20 and discharge unit 21) are in the vertical direction orthogonal to the horizontal direction except for the inclined side wall 20s of the storage unit 20 having the inclined inner surface 20is. It is a vertical wall extending in the vertical direction (more specifically, in the vertical direction), and the angles θ1 of the inner surfaces 20i and 21i of the vertical walls with respect to the horizontal direction are 90 °, which is larger than the angle of repose θ of the powder and granule P, and also. The angle θ1 of the inclined inner surface 20is with respect to the horizontal direction is the same as or larger than the angle of repose θ of the powder granules P.
The ratio of the angle θ1 of the inner surface in contact with the powder or granular material P in the hopper 2 to the horizontal direction and the angle of repose θ of the powder or granular material P is preferably 1.2 or more, more preferably 1.5 or more, as θ1 / θ. Is. θ1 is preferably 1.2θ or more and 90 ° or less, and more preferably 1.5θ or more and 90 ° or less.

基材100に対する粉粒体Pの散布精度を安定的に向上させる観点から、図4に示すとおり、排出口23の中心を通って垂直方向(鉛直方向)に延びる仮想直線VLと搬送手段3(受取手段30の上面30a)との交点23Aは、離間距離G、粉粒体Pの安息角θとの関係において、搬送手段3におけるMDの下流側端3DEからG/tanθ以上15G以下の範囲に位置していることが好ましい。換言すれば、搬送手段3(受取手段30)の下流側端3DEと交点23Aとの離間距離Lは、G/tanθ以上15G以下であることが好ましい。斯かる離間距離Lが短いほど、粉粒体Pの散布精度の点で好ましいが、離間距離Lが短すぎると、排出口23から排出された粉粒体Pが、搬送手段3と接触せずに直接その下方に位置する基材100に散布されてしまうおそれがあり、散布精度の安定的な向上を却って阻害するおそれがある。離間距離Lは、G/tanθ以上10G以下であることが更に好ましい。 From the viewpoint of stably improving the spraying accuracy of the powder or granular material P on the base material 100, as shown in FIG. 4, the virtual straight line VL extending in the vertical direction (vertical direction) through the center of the discharge port 23 and the transport means 3 ( The intersection 23A with the upper surface 30a) of the receiving means 30 is in a range of G / tan θ or more and 15 G or less from the downstream end 3DE of the MD in the transporting means 3 in relation to the separation distance G and the angle of repose θ of the powder or granular material P. It is preferably located. In other words, the separation distance L between the downstream end 3DE of the transport means 3 (reception means 30) and the intersection 23A is preferably G / tan θ or more and 15 G or less. The shorter the separation distance L is, the more preferable it is in terms of the spraying accuracy of the powder or granular material P. However, if the separation distance L is too short, the powder or granular material P discharged from the discharge port 23 does not come into contact with the transport means 3. There is a risk that it will be sprayed directly onto the base material 100 located below it, which may hinder the stable improvement of spraying accuracy. The separation distance L is more preferably G / tan θ or more and 10 G or less.

図6には、本発明の粉粒体散布装置の他の実施形態の要部が示されている。後述する他の実施形態については、前記粉粒体散布装置1と異なる構成部分を主として説明し、同様の構成部分は同一の符号を付して説明を省略する。特に説明しない構成部分は、前記粉粒体散布装置1についての説明が適宜適用される。 FIG. 6 shows the main parts of other embodiments of the powder or granular material spraying device of the present invention. Regarding other embodiments described later, components different from those of the powder or granular material spraying device 1 will be mainly described, and similar components will be designated by the same reference numerals and description thereof will be omitted. The description of the powder or granular material spraying device 1 is appropriately applied to the components not particularly described.

図6に示す粉粒体散布装置1A,1Bは、それぞれ搬送手段が、前記粉粒体散布装置1と異なる。
図6(a)に示す粉粒体散布装置1Aにおける搬送手段3Aは、ホッパー2の排出口23の下方に配置され、回転軸周りに回転する円筒状の搬送ロール32を含んで構成されており、排出口23から排出された粉粒体Pを搬送ロール32の外周面で受け取り、その受け取り位置から搬送ロール32の回転により、搬送ロール32の下方に位置する基材(図示せず)に向けて落下させて該基材に散布するようになされている。
図6(b)に示す粉粒体散布装置1Bにおける搬送手段3Bは、駆動ロール33及び従動ロール34に架け渡された無端状の搬送ベルト35を含んで構成されており、排出口23から排出された粉粒体Pを搬送ベルト35で受け取り、その受け取り位置から搬送ベルト35の移動により、搬送ベルト35の下方に位置する基材(図示せず)に向けて落下させて該基材に散布するようになされている。
The powder / granular material spraying devices 1A and 1B shown in FIG. 6 have different transport means from the powder / granular material spraying device 1.
The transporting means 3A in the powder or granular material spraying device 1A shown in FIG. 6A is arranged below the discharge port 23 of the hopper 2 and includes a cylindrical transport roll 32 that rotates around a rotation axis. , The powder or granular material P discharged from the discharge port 23 is received on the outer peripheral surface of the transport roll 32, and is directed toward the base material (not shown) located below the transport roll 32 by the rotation of the transport roll 32 from the receiving position. It is designed to be dropped and sprayed on the base material.
The transport means 3B in the powder or granular material spraying device 1B shown in FIG. 6B includes a drive roll 33 and an endless transport belt 35 bridged to the driven roll 34, and is discharged from the discharge port 23. The powder or granular material P is received by the transport belt 35, and by moving the transport belt 35 from the receiving position, the powder or granular material P is dropped toward a base material (not shown) located below the transport belt 35 and sprayed on the base material. It is made to do.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に何ら制限されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば、ホッパー2の排出部21における排出口23の平面視形状は、図3に示す如き長方形形状に限定されず、円形、楕円形、多角形形状等、任意に設定可能であり、例えば、図7(a)に示す如き長楕円形状、あるいは、図7(b)に示す如き一方向に長い五角形以上の多角形形状とすることができる。尤も、前述したように、排出口23の平面視形状は、CDの最大長さがMDの最大長さよりも長いような、「一方向に長い形状」であることが好ましく、図示の排出口23の何れもその具体例である。
また、排出口23がCDに複数の区画に分割され、排出部21が該複数の区画に1対1で対応する複数の移動路22を有していてもよく、その場合、複数の移動路22(排出口23)それぞれにおいて、前述の移動路22に関する説明が適用される。
前述した本発明の実施形態に関し、更に以下の付記を開示する。
Although the present invention has been described above based on the preferred embodiment, the present invention is not limited to the above-described embodiment and can be appropriately modified without departing from the spirit of the present invention.
For example, the plan-view shape of the discharge port 23 in the discharge portion 21 of the hopper 2 is not limited to the rectangular shape as shown in FIG. 3, and can be arbitrarily set to a circular shape, an elliptical shape, a polygonal shape, or the like. It can be an oblong shape as shown in 7 (a) or a polygonal shape that is longer than a pentagon as shown in FIG. 7 (b). However, as described above, the plan view shape of the discharge port 23 is preferably a "long shape in one direction" such that the maximum length of the CD is longer than the maximum length of the MD, and the discharge port 23 shown in the figure. All of these are specific examples.
Further, the discharge port 23 may be divided into a plurality of sections by the CD, and the discharge section 21 may have a plurality of movement paths 22 corresponding to the plurality of sections on a one-to-one basis. In that case, the plurality of movement paths may be provided. The above-mentioned description regarding the moving path 22 is applied to each of the 22 (exhaust ports 23).
The following additional notes will be further disclosed with respect to the above-described embodiments of the present invention.

<1>
内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び、該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して所定の離間距離を置いて配置され、該排出口から自重による自由落下により排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置であって、
前記排出口における前記搬送手段による粉粒体の搬送方向の最大長さをD、該排出口における該搬送方向と直交する方向の最大長さをWとした場合、W/Dが100以下であり、
前記排出口からの粉粒体の1分間当たりの排出量をM、前記搬送手段による粉粒体の1分間当たりの散布量の目標値をmとした場合、M/mが1.5以上であり、
粉粒体のかさ密度をρ、前記排出口の面積をS、前記排出口と前記搬送手段との離間距離をGとした場合、m/(ρ×S×G)が21/min以上である、粉粒体散布装置。
<2>
前記W/Dが、80以下、好ましくは40以下である、前記<1>に記載の粉粒体散布装置。
<3>
前記W/Dが、1以上、好ましくは10以上である、前記<1>又は<2>に記載の粉粒体散布装置。
<4>
前記m/(ρ×S×G)が、30/min以上、好ましくは50/min以上、より好ましくは100/min以上である、前記<1>〜<3>の何れか1項に記載の粉粒体散布装置。
<5>
前記m/(ρ×S×G)が、1000/min以下、好ましくは800/min以下、より好ましくは650/min以下である、前記<1>〜<4>の何れか1項に記載の粉粒体散布装置。
<6>
前記M/mが80以下であり、好ましくは8以下である、前記<1>〜<5>の何れか1項に記載の粉粒体散布装置。
<7>
前記M/mが2以上、好ましくは3以上である、前記<1>〜<6>の何れか1項に記載の粉粒体散布装置。
<8>
粉粒体の最大粒子径をrとした場合、m/(ρ×(D/r))が100000mm/min以下、好ましくは80000mm/min以下である、前記<1>〜<7>の何れか1項に記載の粉粒体散布装置。
<9>
粉粒体の最大粒子径をrとした場合、前記m/(ρ×(D/r))が1500mm/min以上、好ましくは30000mm/min以上である、前記<1>〜<8>の何れか1項に記載の粉粒体散布装置。
<1>
It is provided with a storage unit that can temporarily store powder or granular material, a discharge port for discharging powder or granular material in the storage unit, and a movement path for powder or granular material connecting the storage unit and the discharge port. A base material that is arranged at a predetermined distance from the hopper and the discharge port, and the powder or granular material discharged from the discharge port by free drop due to its own weight is conveyed in a predetermined direction and continuously conveyed. It is a powder or granular material spraying device provided with a transport means for spraying on the top.
When the maximum length in the transport direction of the powder or granular material by the transport means at the discharge port is D and the maximum length in the direction orthogonal to the transport direction at the discharge port is W, the W / D is 100 or less. ,
When the amount of powder or granular material discharged from the discharge port per minute is M, and the target value of the amount of powder or granular material sprayed per minute by the transport means is m, M / m is 1.5 or more. can be,
When the bulk density of the powder or granular material is ρ, the area of the discharge port is S, and the separation distance between the discharge port and the transport means is G, m / (ρ × S × G) is 21 / min or more. , Powder and granular material spraying device.
<2>
The powder or granular material spraying device according to <1>, wherein the W / D is 80 or less, preferably 40 or less.
<3>
The powder or granular material spraying device according to <1> or <2>, wherein the W / D is 1 or more, preferably 10 or more.
<4>
The item according to any one of <1> to <3>, wherein the m / (ρ × S × G) is 30 / min or more, preferably 50 / min or more, and more preferably 100 / min or more. Powder and granular material spraying device.
<5>
The item according to any one of <1> to <4>, wherein the m / (ρ × S × G) is 1000 / min or less, preferably 800 / min or less, more preferably 650 / min or less. Powder and granular material spraying device.
<6>
The powder or granular material spraying device according to any one of <1> to <5>, wherein the M / m is 80 or less, preferably 8 or less.
<7>
The powder or granular material spraying device according to any one of <1> to <6>, wherein the M / m is 2 or more, preferably 3 or more.
<8>
When the maximum particle size of the powder or granular material is r, m / (ρ × (D / r) 2 ) is 100,000 mm 3 / min or less, preferably 80,000 mm 3 / min or less. The powder or granular material spraying device according to any one of the above items.
<9>
If the maximum particle size of the particulate material was r, the m / (ρ × (D / r) 2) is 1500 mm 3 / min or more, preferably 30,000 mm 3 / min or more, the <1> to <8 > The powder or granular material spraying device according to any one of the items.

<10>
粉粒体の最大粒子径をrとした場合、D/rが、2以上、好ましくは6以上である、前記<1>〜<9>の何れか1項に記載の粉粒体散布装置。
<11>
粉粒体の最大粒子径をrとした場合、D/rが、30以下、好ましくは18以下である、前記<1>〜<10>の何れか1項に記載の粉粒体散布装置。
<12>
粉粒体の最大粒子径をrとした場合、W/rが、3以上、好ましくは50以上である、前記<1>〜<11>の何れか1項に記載の粉粒体散布装置。
<13>
粉粒体の最大粒子径をrとした場合、W/rが、1000以下、好ましくは200以下である、前記<1>〜<12>の何れか1項に記載の粉粒体散布装置。
<14>
粉粒体の最大粒子径をrとした場合、S/(r×r)が、4以上、好ましくは1000以上である、前記<1>〜<13>の何れか1項に記載の粉粒体散布装置。
<15>
粉粒体の最大粒子径をrとした場合、S/(r×r)が、5000以下、好ましくは1100以下である、前記<1>〜<14>の何れか1項に記載の粉粒体散布装置。
<16>
粉粒体の最大粒子径をrとした場合、G/rが、1以上、好ましくは3以上、より好ましくは5以上である、前記<1>〜<15>の何れか1項に記載の粉粒体散布装置。
<17>
粉粒体の最大粒子径をrとした場合、G/rが、20以下、好ましくは10以下である、前記<1>〜<16>の何れか1項に記載の粉粒体散布装置。
<18>
前記ホッパー及び該ホッパー内に貯蔵される粉粒体の全質量を連続して計量する計量装置と、該全質量の単位時間当たりの変化量を測定し、且つ前記搬送手段による粉粒体の単位時間当たりの散布量が前記目標値mと一致するように、該変化量に応じて該搬送手段の搬送能力の制御を行う制御手段とを備えた、前記<1>〜<17>の何れか1項に記載の粉粒体散布装置。
<19>
前記搬送手段は、前記ホッパーから排出された粉粒体を受け取る受取手段と、該受取手段を振動させる振動発生手段とを含む、前記<1>〜<18>の何れか1項に記載の粉粒体散布装置。
<20>
前記振動発生手段は、前記受取手段の粉粒体非接触部における下面に固定されている、前記<19>に記載の粉粒体散布装置。
<21>
前記制御手段は、前記振動発生手段に印加する電圧及び/又は周波数を制御する、前記<19>又は<20>に記載の粉粒体散布装置。
<22>
前記計量装置が粉粒体の全質量を連続して計量するとは、計量データのサンプリングタイムが0秒超1秒以下であることを言う、前記<18>〜<21>の何れか1項に記載の粉粒体散布装置。
<23>
前記制御手段は、前記ホッパーの前記貯蔵部上に設置されている粉体供給装置に接続されており、該貯蔵部内への粉粒体の供給も制御する機能を有する、前記<18>〜<22>の何れか1項に記載の粉粒体散布装置。
<10>
The powder or granular material spraying device according to any one of <1> to <9>, wherein the D / r is 2 or more, preferably 6 or more, where r is the maximum particle size of the powder or granular material.
<11>
The powder or granular material spraying device according to any one of <1> to <10>, wherein the D / r is 30 or less, preferably 18 or less, where r is the maximum particle size of the powder or granular material.
<12>
The powder or granular material spraying device according to any one of <1> to <11>, wherein the W / r is 3 or more, preferably 50 or more, where r is the maximum particle size of the powder or granular material.
<13>
The powder or granular material spraying device according to any one of <1> to <12>, wherein W / r is 1000 or less, preferably 200 or less, where r is the maximum particle size of the powder or granular material.
<14>
Item 2. The powder or granular material according to any one of <1> to <13>, wherein S / (r × r) is 4 or more, preferably 1000 or more, where r is the maximum particle size of the powder or granular material. Body sprayer.
<15>
Item 2. The powder or granular material according to any one of <1> to <14>, wherein S / (r × r) is 5000 or less, preferably 1100 or less, where r is the maximum particle size of the powder or granular material. Body sprayer.
<16>
The item according to any one of <1> to <15>, wherein G / r is 1 or more, preferably 3 or more, and more preferably 5 or more, where r is the maximum particle size of the powder or granular material. Powder and granular material spraying device.
<17>
The powder or granular material spraying device according to any one of <1> to <16>, wherein G / r is 20 or less, preferably 10 or less, where r is the maximum particle size of the powder or granular material.
<18>
A weighing device that continuously measures the total mass of the hopper and the powder or granular material stored in the hopper, and a unit of the powder or granular material that measures the amount of change in the total mass per unit time and is carried by the transport means. Any of the above <1> to <17> provided with a control means for controlling the transport capacity of the transport means according to the change amount so that the spray amount per hour matches the target value m. The powder or granular material spraying device according to item 1.
<19>
The powder according to any one of <1> to <18>, wherein the transport means includes a receiving means for receiving the powder or granular material discharged from the hopper and a vibration generating means for vibrating the receiving means. Granule spraying device.
<20>
The powder or granular material spraying device according to <19>, wherein the vibration generating means is fixed to the lower surface of the non-contact portion of the powder or granular material of the receiving means.
<21>
The powder or granular material spraying device according to <19> or <20>, wherein the control means controls a voltage and / or a frequency applied to the vibration generating means.
<22>
When the measuring device continuously measures the total mass of the powder or granular material, it means that the sampling time of the measuring data is more than 0 seconds and 1 second or less, according to any one of <18> to <21>. The described powder or granular material spraying device.
<23>
The control means is connected to a powder supply device installed on the storage unit of the hopper, and has a function of controlling the supply of powder or granular material into the storage unit. 22> The powder or granular material spraying device according to any one of.

<24>
連続搬送される基材に対し、前記<1>〜<23>の何れか1項に記載の粉粒体散布装置を用いて、粉粒体を散布する工程を有する、粉粒体の散布方法。
<25>
前記mが、1g/min以上、好ましくは50g/min以上、より好ましくは100g/min以上である、前記<24>に記載の粉粒体の散布方法。
<26>
前記mが、100000g/min以下、好ましくは10000g/min以下、より好ましくは5000g/min以下である、前記<24>又は<25>に記載の粉粒体の散布方法。
<24>
A method for spraying powder or granular material, which comprises a step of spraying the powder or granular material on the base material to be continuously transported by using the powder or granular material spraying device according to any one of <1> to <23>. ..
<25>
The method for spraying powder or granular material according to <24>, wherein the m is 1 g / min or more, preferably 50 g / min or more, and more preferably 100 g / min or more.
<26>
The method for spraying powder or granular material according to <24> or <25>, wherein the m is 100,000 g / min or less, preferably 10000 g / min or less, more preferably 5000 g / min or less.

<27>
基材と、該基材に接触するように配置された粉粒体とを備えた粉粒体含有物品の製造方法であって、
連続搬送される基材に対し、前記<1>〜<23>の何れか1項に記載の粉粒体散布装置を用いて、粉粒体を散布する工程を有する、粉粒体含有物品の製造方法。
<28>
前記粉粒体が吸水性ポリマー又は電解質である、前記<27>に記載の粉粒体含有物品の製造方法。
<29>
前記mが、1g/min以上、好ましくは50g/min以上、より好ましくは100g/min以上である、前記<27>又は<28>に記載の粉粒体含有物品の製造方法。
<30>
前記mが、100000g/min以下、好ましくは10000g/min以下、より好ましくは5000g/min以下である、前記<27>〜<29>に記載の粉粒体含有物品の製造方法。
<27>
A method for producing a powder or granular material-containing article comprising a base material and powder or granular material arranged so as to be in contact with the base material.
A powder or granular material-containing article having a step of spraying powder or granular material on a substrate to be continuously transported by using the powder or granular material spraying device according to any one of <1> to <23>. Production method.
<28>
The method for producing a powder or granular material-containing article according to <27>, wherein the powder or granular material is a water-absorbent polymer or an electrolyte.
<29>
The method for producing a powder or granular material-containing article according to <27> or <28>, wherein the m is 1 g / min or more, preferably 50 g / min or more, and more preferably 100 g / min or more.
<30>
The method for producing a powder or granular material-containing article according to <27> to <29>, wherein the m is 100,000 g / min or less, preferably 10000 g / min or less, and more preferably 5000 g / min or less.

以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to such Examples.

〔実施例1〜4及び比較例1〜3〕
前述した粉粒体散布装置1と同様の基本構成を有する粉粒体散布装置を使用し、一方向に連続搬送される基材上に粉粒体(吸水性ポリマー粒子)を散布した。使用した粉粒体散布装置におけるホッパーは、内側壁を含め、その内外面全体がステンレス鋼で形成されていた。粉粒体の最大粒子径rは、動的光散乱法によって測定し、測定装置として、株式会社堀場製作所製レーザー回折/散乱式粒子径分布測定装置LA950V2を用いた。
粉粒体散布装置による基材への粉粒体の散布工程を約50時間連続して行い、該散布工程中におけるホッパーの排出口の詰まり(移動路内での粉粒体の係留等)の有無を評価した。また、計量装置により、粉粒体の供給精度を評価した。これらの評価結果を、使用した粉粒体散布装置の各部の寸法、散布した粉粒体の物性値等とともに、下記表1に示す。
[Examples 1 to 4 and Comparative Examples 1 to 3]
Using a powder or granular material spraying device having the same basic configuration as the powder or granular material spraying device 1 described above, powder or granular material (water-absorbent polymer particles) was sprayed on a substrate that was continuously conveyed in one direction. The entire inner and outer surfaces of the hopper in the powder or granular material spraying device used, including the inner side wall, were made of stainless steel. The maximum particle size r of the powder or granular material was measured by a dynamic light scattering method, and a laser diffraction / scattering type particle size distribution measuring device LA950V2 manufactured by HORIBA, Ltd. was used as the measuring device.
The step of spraying the powder or granular material on the base material by the powder or granular material spraying device is continuously performed for about 50 hours, and the clogging of the discharge port of the hopper (such as mooring of the powder or granular material in the moving path) during the spraying process is performed. The presence or absence was evaluated. In addition, the supply accuracy of the powder or granular material was evaluated by a measuring device. These evaluation results are shown in Table 1 below together with the dimensions of each part of the powder or granular material spraying device used, the physical property values of the sprayed powder or granular material, and the like.

前記の「散布工程中におけるホッパーの排出口の詰まりの有無」は、目視で確認した。
前記の「粉粒体の供給精度」の評価指標として、標準偏差に加えて、変動係数(Coefficient of Variation:CV)を用いた。変動係数は下記式(1)によって算出される。
変動係数(%)=(標準偏差/粉粒体の平均散布量)×100 …(1)
標準偏差、変動係数ともに、数値が小さいほど、粉粒体の単位時間(1分間)当たりの散布量のばらつきが小さく、高評価となる。特に変動係数は、データの規模(平均)に左右されない指標であり、変動係数の値が小さいほど好ましいと言える。
The above-mentioned "presence or absence of clogging of the outlet of the hopper during the spraying process" was visually confirmed.
In addition to the standard deviation, a coefficient of variation (CV) was used as an evaluation index for the "supply accuracy of powder or granular material". The coefficient of variation is calculated by the following equation (1).
Coefficient of variation (%) = (standard deviation / average amount of powder or granular material sprayed) x 100 ... (1)
The smaller the values of both the standard deviation and the coefficient of variation, the smaller the variation in the amount of powder or granular material sprayed per unit time (1 minute), and the higher the evaluation. In particular, the coefficient of variation is an index that does not depend on the scale (average) of the data, and it can be said that the smaller the value of the coefficient of variation is, the more preferable it is.

また、表1中の「操作量範囲」は下記式(2)によって算出される。
操作量範囲(g/min/%)= 粉粒体の単位時間(1分間)当たりの散布量(g)/搬送手段出力)・・・(2)
前記式(2)中、「搬送手段出力」は、本実施例では搬送手段に構成されている振動発生手段の出力値を表す。例えば振動発生手段が電圧値の大きさに比例して振動の大きさを制御する装置とした場合、搬送手段出力 = (出力電圧値/最大電圧値)×100となる。「操作量範囲」は、散布量の調整範囲の指標となるもので、操作量範囲の値が小さいほど、散布量を調整できる範囲が広く、高評価となる。
Further, the "operation amount range" in Table 1 is calculated by the following formula (2).
Operation amount range (g / min /%) = Spray amount (g) per unit time (1 minute) of powder or granular material / Transport means output) ... (2)
In the above equation (2), the "transport means output" represents the output value of the vibration generating means configured in the transport means in this embodiment. For example, when the vibration generating means is a device that controls the magnitude of vibration in proportion to the magnitude of the voltage value, the transport means output = (output voltage value / maximum voltage value) × 100. The "manipulation amount range" is an index of the spray amount adjustment range, and the smaller the value of the spray amount range, the wider the range in which the spray amount can be adjusted, and the higher the evaluation.

Figure 2021133360
Figure 2021133360

実施例1は、比較例4と比して、また実施例2は比較例3と比して、それぞれ目標散布量mが同じであるが、供給精度の評価指標である標準偏差と変動係数が小さく供給精度が良いことは明らかである。すなわちm/(ρ×S×G)≧21の大小関係が供給精度に関して有効であることが分かる。
実施例2は、比較例1と比して目標散布量mが同じであり、標準偏差と変動係数はほぼ同等であるが、W/D≦100の大小関係が排出部の詰まりに関して有効であることが分かる。
また実施例2は、比較例2と比して目標散布量mが同じであり、W/D≦100の大小関係は満たしているが、M/m≧1.5の大小関係が目標散布量の達成に有効であることが分かる。
実施例3は、実施例1と比してそれぞれW/D≦100、M/m≧1.5、m/(ρ×S×G)≧2021/minという、3つの大小関係をすべて満たしているため排出口の詰まりがないことが分かり、さらに変動係数は小さいことから目標散布量mが大きい方が本発明の定量性良く散布する効果が高いことが分かる。さらに操作量範囲も実施例3の方が小さいため、目標散布量mの調整範囲が大きく有利であることは明らかである。
Example 1 has the same target spray amount m as compared with Comparative Example 4 and Example 2 as compared with Comparative Example 3, but the standard deviation and the coefficient of variation, which are evaluation indexes of supply accuracy, are the same. It is clear that it is small and the supply accuracy is good. That is, it can be seen that the magnitude relationship of m / (ρ × S × G) ≧ 21 is effective for the supply accuracy.
In Example 2, the target spray amount m is the same as that in Comparative Example 1, the standard deviation and the coefficient of variation are almost the same, but the magnitude relationship of W / D ≦ 100 is effective for clogging of the discharge portion. You can see that.
Further, in Example 2, the target spray amount m is the same as that in Comparative Example 2, and the magnitude relationship of W / D ≦ 100 is satisfied, but the magnitude relationship of M / m ≧ 1.5 is the target spray amount. It turns out that it is effective in achieving.
Compared with Example 1, Example 3 satisfies all three magnitude relationships of W / D ≦ 100, M / m ≧ 1.5, and m / (ρ × S × G) ≧ 2021 / min, respectively. Therefore, it can be seen that the discharge port is not clogged, and further, since the coefficient of variation is small, it can be seen that the larger the target spraying amount m, the higher the effect of spraying with good quantitativeness of the present invention. Further, since the operation amount range is also smaller in Example 3, it is clear that the adjustment range of the target spray amount m is large and advantageous.

1,1A,1B 粉粒体散布装置
2 ホッパー
20 貯蔵部
21 排出部
22 移動路
23 排出口
23V 排出口の仮想延長領域
3,3A,3B 搬送手段
30 受取手段
31 振動発生手段
32 搬送ロール
33 駆動ロール
34 従動ロール
35 搬送ベルト
4 制御手段
5 計量装置
100 基材
P 粉粒体
MD 搬送手段による粉粒体の搬送方向
CD 粉粒体の搬送方向と直交する方向
1,1A, 1B Powder or granular material spraying device 2 Hopper 20 Storage unit 21 Discharge unit 22 Movement path 23 Discharge port 23V Virtual extension area of discharge port 3,3A, 3B Transport means 30 Receiving means 31 Vibration generating means 32 Transport roll 33 Drive Roll 34 Driven roll 35 Conveyance belt 4 Control means 5 Weighing device 100 Base material P Powder or granular material MD Conveyance direction of powder or granular material by transport means CD Direction orthogonal to the transport direction of powder or granular material

Claims (8)

内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び、該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して所定の離間距離を置いて配置され、該排出口から自重による自由落下により排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置であって、
前記排出口における前記搬送手段による粉粒体の搬送方向の最大長さをD、該排出口における該搬送方向と直交する方向の最大長さをWとした場合、W/Dが100以下であり、
前記排出口からの粉粒体の1分間当たりの排出量をM、前記搬送手段による粉粒体の1分間当たりの散布量の目標値をmとした場合、M/mが1.5以上であり、
粉粒体のかさ密度をρ、前記排出口の面積をS、前記排出口と前記搬送手段との離間距離をGとした場合、m/(ρ×S×G)が21/min以上である、粉粒体散布装置。
It is provided with a storage unit that can temporarily store powder or granular material, a discharge port for discharging powder or granular material in the storage unit, and a movement path for powder or granular material connecting the storage unit and the discharge port. A base material that is arranged at a predetermined distance from the hopper and the discharge port, and the powder or granular material discharged from the discharge port by free drop due to its own weight is conveyed in a predetermined direction and continuously conveyed. It is a powder or granular material spraying device provided with a transport means for spraying on the top.
When the maximum length in the transport direction of the powder or granular material by the transport means at the discharge port is D and the maximum length in the direction orthogonal to the transport direction at the discharge port is W, the W / D is 100 or less. ,
When the amount of powder or granular material discharged from the discharge port per minute is M, and the target value of the amount of powder or granular material sprayed per minute by the transport means is m, M / m is 1.5 or more. can be,
When the bulk density of the powder or granular material is ρ, the area of the discharge port is S, and the separation distance between the discharge port and the transport means is G, m / (ρ × S × G) is 21 / min or more. , Powder and granular material spraying device.
前記M/mが100以下である、請求項1に記載の粉粒体散布装置。 The powder or granular material spraying apparatus according to claim 1, wherein the M / m is 100 or less. 粉粒体の最大粒子径をrとした場合、m/(ρ×(D/r))が100000mm/min以下である、請求項1又は2に記載の粉粒体散布装置。 The powder or granular material spraying apparatus according to claim 1 or 2, wherein m / (ρ × (D / r) 2 ) is 100,000 mm 3 / min or less, where r is the maximum particle size of the powder or granular material. 粉粒体の最大粒子径をrとした場合、m/(ρ×(D/r))が1500mm/min以上である、請求項1〜3の何れか1項に記載の粉粒体散布装置。 The powder or granular material according to any one of claims 1 to 3, wherein m / (ρ × (D / r) 2 ) is 1500 mm 3 / min or more, where r is the maximum particle size of the powder or granular material. Sprayer. 前記ホッパー及び該ホッパー内に貯蔵される粉粒体の全質量を連続して計量する計量装置と、該全質量の単位時間当たりの変化量を測定し、且つ前記搬送手段による粉粒体の単位時間当たりの散布量が前記目標値mと一致するように、該変化量に応じて該搬送手段の搬送能力の制御を行う制御手段とを備えた、請求項1〜4の何れか1項に記載の粉粒体散布装置。 A weighing device that continuously measures the total mass of the hopper and the powder or granular material stored in the hopper, and a unit of the powder or granular material that measures the amount of change in the total mass per unit time and is carried by the transport means. 3. The described powder or granular material spraying device. 連続搬送される基材に対し、請求項1〜5の何れか1項に記載の粉粒体散布装置を用いて、粉粒体を散布する工程を有する、粉粒体の散布方法。 A method for spraying powder or granular material, which comprises a step of spraying the powder or granular material on a substrate that is continuously transported by using the powder or granular material spraying device according to any one of claims 1 to 5. 基材と、該基材に接触するように配置された粉粒体とを備えた粉粒体含有物品の製造方法であって、
連続搬送される基材に対し、請求項1〜5の何れか1項に記載の粉粒体散布装置を用いて、粉粒体を散布する工程を有する、粉粒体含有物品の製造方法。
A method for producing a powder or granular material-containing article comprising a base material and powder or granular material arranged so as to be in contact with the base material.
A method for producing a powder or granular material-containing article, which comprises a step of spraying powder or granular material on a substrate that is continuously transported by using the powder or granular material spraying device according to any one of claims 1 to 5.
前記粉粒体が吸水性ポリマー又は電解質である、請求項7に記載の粉粒体含有物品の製造方法。

The method for producing a powder or granular material-containing article according to claim 7, wherein the powder or granular material is a water-absorbent polymer or an electrolyte.

JP2020175222A 2020-02-21 2020-10-19 Powder / granular material spraying device and powder / granular material spraying method Active JP6893276B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080031747.7A CN113795444B (en) 2020-02-21 2020-12-04 Powder distribution device and powder distribution method
TW109142856A TWI759991B (en) 2020-02-21 2020-12-04 Powder and granule dispersing device and powder and granule dispersing method
PCT/JP2020/045148 WO2021166375A1 (en) 2020-02-21 2020-12-04 Particulate spraying apparatus and particulate spraying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020028840 2020-02-21
JP2020028840 2020-02-21

Publications (2)

Publication Number Publication Date
JP6893276B1 JP6893276B1 (en) 2021-06-23
JP2021133360A true JP2021133360A (en) 2021-09-13

Family

ID=76464570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020175222A Active JP6893276B1 (en) 2020-02-21 2020-10-19 Powder / granular material spraying device and powder / granular material spraying method

Country Status (4)

Country Link
JP (1) JP6893276B1 (en)
CN (1) CN113795444B (en)
TW (1) TWI759991B (en)
WO (1) WO2021166375A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115352662B (en) * 2022-10-19 2023-01-17 江苏永道科技有限公司 Powder material packaging system based on intelligent metering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177865A (en) * 2000-12-18 2002-06-25 Kozen Honten:Kk Powder scattering apparatus
WO2013084831A1 (en) * 2011-12-07 2013-06-13 花王株式会社 Application method for powder and application device and method for manufacturing heating element using same
JP2017094294A (en) * 2015-11-26 2017-06-01 花王株式会社 Granule scattering method and granule scattering device, and granule containing article manufacturing method
JP2019052013A (en) * 2017-09-14 2019-04-04 花王株式会社 Powder particle spraying device and method for producing powder particle-containing article
WO2019220748A1 (en) * 2018-05-14 2019-11-21 花王株式会社 Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003702B1 (en) * 2005-11-10 2010-12-27 울박, 인크 Applicator and method for transferring dispersion liquid
JP6473928B2 (en) * 2015-02-17 2019-02-27 ニッカ株式会社 Powder spraying device
CN108137243B (en) * 2015-10-06 2019-12-06 花王株式会社 Powder/granular material distribution device, powder/granular material distribution method, and method for manufacturing powder/granular material-containing article
JP6647947B2 (en) * 2016-04-06 2020-02-14 ジャパンマテリアル株式会社 High viscosity liquid sprayer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177865A (en) * 2000-12-18 2002-06-25 Kozen Honten:Kk Powder scattering apparatus
WO2013084831A1 (en) * 2011-12-07 2013-06-13 花王株式会社 Application method for powder and application device and method for manufacturing heating element using same
JP2013139337A (en) * 2011-12-07 2013-07-18 Kao Corp Method and device for spreading granular material, and method for manufacturing heating element employing the same
JP2017094294A (en) * 2015-11-26 2017-06-01 花王株式会社 Granule scattering method and granule scattering device, and granule containing article manufacturing method
JP2019052013A (en) * 2017-09-14 2019-04-04 花王株式会社 Powder particle spraying device and method for producing powder particle-containing article
WO2019220748A1 (en) * 2018-05-14 2019-11-21 花王株式会社 Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article

Also Published As

Publication number Publication date
TWI759991B (en) 2022-04-01
JP6893276B1 (en) 2021-06-23
TW202132010A (en) 2021-09-01
WO2021166375A1 (en) 2021-08-26
CN113795444B (en) 2022-04-26
CN113795444A (en) 2021-12-14

Similar Documents

Publication Publication Date Title
JP5889773B2 (en) Method and apparatus for spraying granular material and method for manufacturing heating element using the same
JP2013139337A5 (en)
JP2017094294A (en) Granule scattering method and granule scattering device, and granule containing article manufacturing method
TWI682884B (en) Powder and granule dispersion device, powder and granule dispersion method, and method for manufacturing powder and granule-containing article
JP6893276B1 (en) Powder / granular material spraying device and powder / granular material spraying method
JP2010094507A (en) Device for dosing powdery or granular substance into capsule or the like
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
JP2019052013A (en) Powder particle spraying device and method for producing powder particle-containing article
JP3427633B2 (en) Powder spraying equipment
US9055767B2 (en) Food coating apparatuses, systems, and methods
JP2007178371A (en) Powder and grain weighing device and method
JP6688710B2 (en) Powder-granulating device and powder-granulating method
JP6719336B2 (en) How to spread powder
WO2021166731A1 (en) Method for spraying particulate matter and method for producing article containing particulate matter
JP7228475B2 (en) Granule sprayer
JP6882125B2 (en) Granule spraying device
JP7017901B2 (en) Granule spraying device
JP2016120987A (en) Granule spraying apparatus and spraying method of granule
JP2021046305A (en) Sprinkling method of granular powder
JP6682321B2 (en) Method for manufacturing inorganic plate
KR101590002B1 (en) Continuous feeder of uniformly fine powder having a cohesion prevent unit
RU2316735C2 (en) Method and device for precision batching of high-energy agent
WO2008056514A1 (en) Particulate supply device and particulate measuring device
RU2190835C2 (en) Process of microdosing pulverized material and device for its implementation
CN206494442U (en) A kind of novel vibration dispenser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R151 Written notification of patent or utility model registration

Ref document number: 6893276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250