JP6687082B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP6687082B2
JP6687082B2 JP2018192896A JP2018192896A JP6687082B2 JP 6687082 B2 JP6687082 B2 JP 6687082B2 JP 2018192896 A JP2018192896 A JP 2018192896A JP 2018192896 A JP2018192896 A JP 2018192896A JP 6687082 B2 JP6687082 B2 JP 6687082B2
Authority
JP
Japan
Prior art keywords
light
light emitting
filler
emitting device
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018192896A
Other languages
Japanese (ja)
Other versions
JP2019004191A (en
Inventor
耕治 阿部
耕治 阿部
康志 岡本
康志 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2018192896A priority Critical patent/JP6687082B2/en
Publication of JP2019004191A publication Critical patent/JP2019004191A/en
Application granted granted Critical
Publication of JP6687082B2 publication Critical patent/JP6687082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光素子を備える発光装置及びその製造方法に関する。   The present invention relates to a light emitting device including a light emitting element and a method for manufacturing the same.

発光ダイオード(LED)は、照明器具、パーソナルコンピュータ(PC)やテレビのバックライト、大型ディスプレイなど、様々な用途に使用されている。LED光源は、このような種々の用途向けの需要が増えるとともに、光出力向上の要求も高まってきている。
例えば、特許文献1には、凹部を有する配線基板と、凹部に収容される発光素子と、発光素子を封止する透光封止部材と、を備え、透光封止部材の表面を粗面化された光半導体装置が開示されている。特許文献2には、基体と、基体上に載置された発光素子と、発光素子を封止する封止部材と、を備え、封止部材の表面側に充填剤の粒子を配置することで凹凸を設けた発光装置が開示されている。
Light emitting diodes (LEDs) are used in various applications such as lighting fixtures, personal computer (PC) and TV backlights, and large displays. As for the LED light source, the demand for such various applications is increasing and the demand for improving the light output is also increasing.
For example, Patent Document 1 includes a wiring substrate having a recess, a light emitting element housed in the recess, and a translucent sealing member that seals the light emitting element, and the surface of the translucent sealing member is a rough surface. An improved optical semiconductor device is disclosed. Patent Document 2 includes a base body, a light emitting element mounted on the base body, and a sealing member for sealing the light emitting element, and disposing filler particles on the surface side of the sealing member. A light emitting device provided with unevenness is disclosed.

特開2007−324220号公報JP, 2007-324220, A 特開2012−151466号公報JP 2012-151466 A

しかしながら、このような手法は、構成部材の材料や形状の変更が必要となるため、適用可能な発光装置の形状や材料などが限定されることがある。   However, since such a method requires changing the material and shape of the constituent members, the shape and material of the applicable light emitting device may be limited.

本開示に係る実施形態は、光取り出し効率が向上する発光装置及びその製造方法を提供することを課題とする。   It is an object of an embodiment according to the present disclosure to provide a light emitting device that improves light extraction efficiency and a manufacturing method thereof.

本開示の実施形態に係る発光装置は、基台と、前記基台に載置される発光素子と、前記発光素子を覆う透光性部材と、を備え、前記透光性部材及び前記基台は、それぞれの上面に複数の突起を有し、前記透光性部材は、前記透光性部材の母材よりも屈折率の低い透光性の第1充填剤の粒子を含有し、前記第1充填剤の粒子の一部が、前記透光性部材の上面において前記透光性部材の母材から露出している。   A light emitting device according to an embodiment of the present disclosure includes a base, a light emitting element mounted on the base, and a translucent member that covers the light emitting element, and the translucent member and the base. Has a plurality of protrusions on the upper surface of each, and the translucent member contains particles of a translucent first filler having a refractive index lower than that of the base material of the translucent member. Part of the particles of the filler 1 is exposed from the base material of the translucent member on the upper surface of the translucent member.

本開示の実施形態に係る発光装置の製造方法は、基台と、前記基台に載置される発光素子と、前記発光素子を覆う透光性部材と、を備える発光装置の製造方法であって、前記基台に前記発光素子が載置された後に、前記発光素子を覆う前記透光性部材を形成する工程と、前記透光性部材及び前記基台のそれぞれの上面にブラスト加工処理を施す工程と、を含み、前記透光性部材を形成する工程において、前記透光性部材は、母材として透光性樹脂を用い、当該母材よりも屈折率の低い透光性の第1充填剤の粒子を含有した樹脂材料を用いて形成され、前記ブラスト加工処理を施す工程によって、前記透光性部材の上面において、前記第1充填剤の粒子の一部を前記透光性部材の母材から露出させる。   A method for manufacturing a light emitting device according to an embodiment of the present disclosure is a method for manufacturing a light emitting device including a base, a light emitting element mounted on the base, and a translucent member that covers the light emitting element. Then, after the light emitting element is mounted on the base, a step of forming the translucent member covering the light emitting element, and a blasting process on the upper surface of each of the translucent member and the base. In the step of forming the translucent member, the translucent member uses a translucent resin as a base material, and the translucent first member has a refractive index lower than that of the base material. A part of the particles of the first filler is formed on the upper surface of the translucent member by a step of performing the blasting treatment, which is formed by using a resin material containing particles of the filler. Exposed from the base material.

本開示の実施形態に係る発光装置及びその製造方法によれば、光取り出し効率が向上する発光装置を提供することができる。   According to the light emitting device and the manufacturing method thereof according to the embodiment of the present disclosure, it is possible to provide a light emitting device with improved light extraction efficiency.

第1実施形態に係る発光装置の構成を示す斜視図である。It is a perspective view which shows the structure of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の構成を示す平面図である。It is a top view which shows the structure of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の構成を示す断面図であり、図1BのIC−IC線における断面を示す。It is sectional drawing which shows the structure of the light-emitting device which concerns on 1st Embodiment, and shows the cross section in the IC-IC line of FIG. 1B. 第1実施形態に係る発光装置における透光性部材及びフィラーの一部を示す断面図である。It is sectional drawing which shows some translucent members and a filler in the light-emitting device which concerns on 1st Embodiment. 従来の発光装置における透光性部材及びフィラーの一部を示す断面図である。It is sectional drawing which shows some translucent members and a filler in the conventional light-emitting device. 第1実施形態に係る発光装置において、透光性部材及び遮光性部材の上面での光反射を説明するための断面図である。FIG. 6 is a cross-sectional view for explaining light reflection on the upper surfaces of the translucent member and the light shielding member in the light emitting device according to the first embodiment. 第1実施形態に係る発光装置の製造方法の手順を示すフローチャートである。6 is a flowchart showing a procedure of a method for manufacturing the light emitting device according to the first embodiment. 第1実施形態に係る発光装置の製造方法のパッケージ準備工程で準備されるパッケージの構成を示す断面図である。FIG. 5 is a cross-sectional view showing a configuration of a package prepared in a package preparing step of the method for manufacturing the light emitting device according to the first embodiment. 第1実施形態に係る発光装置の製造方法の発光素子実装工程を示す断面図である。FIG. 5 is a cross-sectional view showing a light emitting element mounting step of the method for manufacturing the light emitting device according to the first embodiment. 第1実施形態に係る発光装置の製造方法の樹脂供給工程を示す断面図である。FIG. 6 is a cross-sectional view showing a resin supply step of the method for manufacturing the light emitting device according to the first embodiment. 第1実施形態に係る発光装置の製造方法の樹脂硬化工程を示す断面図である。It is sectional drawing which shows the resin hardening process of the manufacturing method of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法のブラスト加工処理工程を示す断面図である。It is sectional drawing which shows the blasting process process of the manufacturing method of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、研磨剤を投射する方向の第1の例を示す平面図である。It is a top view which shows the 1st example of the direction which blasts an abrasive in the blasting process process of the manufacturing method of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、研磨剤を投射する方向の第2の例を示す平面図である。It is a top view which shows the 2nd example of the direction which blasts an abrasive in the blasting process process of the manufacturing method of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、研磨剤を投射する方向の第3の例を示す平面図である。It is a top view which shows the 3rd example of the direction which blasts an abrasive in the blasting process process of the manufacturing method of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、第1工程を示す断面図である。It is sectional drawing which shows a 1st process in the blasting process process of the manufacturing method of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、第2工程を示す断面図である。It is sectional drawing which shows the 2nd process in the blasting process process of the manufacturing method of the light-emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置を用いた画像表示装置の構成を示す斜視図である。FIG. 3 is a perspective view showing a configuration of an image display device using the light emitting device according to the first embodiment. 第1実施形態に係る発光装置を用いた画像表示装置の構成を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a configuration of an image display device using the light emitting device according to the first embodiment. 第2実施形態に係る発光装置の構成を示す斜視図である。It is a perspective view which shows the structure of the light-emitting device which concerns on 2nd Embodiment. 第2実施形態に係る発光装置の構成を示す平面図である。It is a top view which shows the structure of the light-emitting device which concerns on 2nd Embodiment. 第2実施形態に係る発光装置の構成を示す断面図であり、図8BのVIIIC−VIIIC線における断面を示す。It is sectional drawing which shows the structure of the light-emitting device which concerns on 2nd Embodiment, and shows the cross section in the VIIIC-VIIIC line of FIG. 8B. 第2実施形態に係る発光装置の製造方法の手順を示すフローチャートである。9 is a flowchart showing a procedure of a method for manufacturing a light emitting device according to a second embodiment.

以下、実施形態に係る発光装置及びその製造方法について説明する。なお、以下の説明において参照する図面は、本実施形態を概略的に示したものであるため、各部材のスケールや間隔、位置関係などが誇張、又は、部材の一部の図示が省略されている場合がある。また、以下の説明において、同一の名称及び符号を付したものについては、原則として同一又は同質の部材を示しており、詳細説明を適宜省略することとする。   Hereinafter, the light emitting device and the method for manufacturing the same according to the embodiment will be described. Since the drawings referred to in the following description schematically show the present embodiment, scales, intervals, positional relationships, etc. of the respective members are exaggerated, or a part of the members is not shown. There is a case. Further, in the following description, components having the same names and reference numerals indicate the same or similar members in principle, and detailed description thereof will be appropriately omitted.

<第1実施形態>
[発光装置の構成]
第1実施形態に係る発光装置の構成について、図1A〜図1Cを参照して説明する。
図1Aは、第1実施形態に係る発光装置の構成を示す斜視図である。図1Bは、第1実施形態に係る発光装置の構成を示す平面図である。図1Cは、第1実施形態に係る発光装置の構成を示す断面図であり、図1BのIC−IC線における断面を示す。
<First Embodiment>
[Configuration of light emitting device]
The configuration of the light emitting device according to the first embodiment will be described with reference to FIGS. 1A to 1C.
FIG. 1A is a perspective view showing the configuration of the light emitting device according to the first embodiment. FIG. 1B is a plan view showing the configuration of the light emitting device according to the first embodiment. FIG. 1C is a cross-sectional view showing the configuration of the light emitting device according to the first embodiment, and shows a cross section taken along the line IC-IC of FIG. 1B.

なお、図1Cにおいて、遮光性部材及び透光性部材の上面近傍の破線で囲んだ部分をそれぞれ拡大して示している。また、図1Cにおいて、2種類の第1充填剤を円形及び菱形で示し、第2充填剤を円形で示している。これらの形状は該当する部材の具体的な形状を示すものではなく、充填剤の粒子の種類を区別するために便宜的に用いている。   Note that, in FIG. 1C, the portions surrounded by broken lines near the upper surfaces of the light-shielding member and the light-transmitting member are shown in an enlarged manner. Further, in FIG. 1C, the two types of first fillers are indicated by circles and diamonds, and the second filler is indicated by circles. These shapes do not indicate the specific shapes of the corresponding members, but are used for convenience in order to distinguish the type of the filler particles.

第1実施形態に係る発光装置100は、基台と、基台に載置される発光素子1と、発光素子1を覆う透光性部材5と、を備える。透光性部材5及び基台は、それぞれの上面に凹凸形状すなわち複数の突起を有する。透光性部材5は、透光性部材5の母材51よりも屈折率の低い透光性の第1充填剤52の粒子を含有し、第1充填剤52の粒子の一部が、透光性部材5の上面において透光性部材5の母材51から露出している。基台はパッケージ2に相当する。
より具体的には、発光装置100は平面視形状が略正方形であり、上面側に開口する凹部2aを有するパッケージ2と、凹部2a内に実装される発光素子1と、凹部2a内に配置され、発光素子1を覆う透光性部材5と、を備えている。また、パッケージ2は、リード電極3と遮光性部材4とを有し、発光素子1は、ワイヤ6を用いて凹部2aの底面に配置されているリード電極3と電気的に接続されている。
The light emitting device 100 according to the first embodiment includes a base, a light emitting element 1 mounted on the base, and a translucent member 5 that covers the light emitting element 1. The translucent member 5 and the base have an uneven shape, that is, a plurality of protrusions on their upper surfaces. The translucent member 5 contains particles of the translucent first filler 52 having a lower refractive index than the base material 51 of the translucent member 5, and some of the particles of the first filler 52 are translucent. It is exposed from the base material 51 of the transparent member 5 on the upper surface of the transparent member 5. The base is equivalent to the package 2.
More specifically, the light emitting device 100 has a substantially square shape in a plan view, and has a package 2 having a recess 2a opening to the upper surface side, a light emitting element 1 mounted in the recess 2a, and arranged in the recess 2a. , And a translucent member 5 that covers the light emitting element 1. Further, the package 2 has a lead electrode 3 and a light shielding member 4, and the light emitting element 1 is electrically connected to the lead electrode 3 arranged on the bottom surface of the recess 2 a using a wire 6.

発光素子1は、パッケージ2の凹部2a内に実装されている。本実施形態では、互いに発光色の異なる3個の発光素子11,12,13が凹部2a内に実装されている。例えば、発光素子11の発光色を青色、発光素子12の発光色を緑色、発光素子13の発光色を赤色とすることができる。
なお、以降は、3個の発光素子11,12,13のそれぞれを特に区別しない場合には、「発光素子1」と呼ぶことがある。
The light emitting element 1 is mounted in the recess 2 a of the package 2. In the present embodiment, three light emitting elements 11, 12, 13 having different emission colors are mounted in the recess 2a. For example, the emission color of the light emitting element 11 can be blue, the emission color of the light emitting element 12 can be green, and the emission color of the light emitting element 13 can be red.
Note that, hereinafter, each of the three light emitting elements 11, 12, and 13 may be referred to as a “light emitting element 1” unless particularly distinguished.

発光素子11,12,13は、凹部2aの底面2bの中央部に配置されているリード電極33上にダイボンドされている。また、発光素子11,12,13の一方の電極であるアノード電極が、ワイヤ6を用いてリード電極34に電気的に接続されている。また、発光素子11,12,13の他方の電極であるカソード電極が、ワイヤ6を用いてそれぞれに対応するリード電極31,32,33の何れかと電気的に接続されている。つまり、3つの発光素子11,12,13は、それぞれ独立して電圧を印加できるように構成されている。これによって、発光素子11,12,13を個別に点灯させたり、発光素子11,12,13の輝度レベルを任意に調節したりすることが可能であり、発光装置100の発光色及び明るさを任意に変化させることができる。従って、発光装置100は、カラー画像表示装置の1画素として用いることができる。   The light emitting elements 11, 12 and 13 are die-bonded on the lead electrode 33 arranged at the center of the bottom surface 2b of the recess 2a. Further, the anode electrode, which is one of the electrodes of the light emitting elements 11, 12, and 13, is electrically connected to the lead electrode 34 using the wire 6. The cathode electrode, which is the other electrode of the light emitting elements 11, 12, and 13, is electrically connected to any of the corresponding lead electrodes 31, 32, and 33 using the wire 6. That is, the three light emitting elements 11, 12, and 13 are configured to be able to independently apply a voltage. Accordingly, it is possible to individually turn on the light emitting elements 11, 12, and 13, or to arbitrarily adjust the brightness levels of the light emitting elements 11, 12, and 13, and to control the emission color and brightness of the light emitting device 100. It can be changed arbitrarily. Therefore, the light emitting device 100 can be used as one pixel of a color image display device.

ここで用いられる発光素子1は、形状や大きさ、半導体材料などが特に限定されるものではない。発光素子1の発光色としては、用途に応じて任意の波長のものを選択することができる。青色や緑色に発光する発光素子11、12は、近紫外から可視光領域に発光波長を有する、InXAlYGa1-X-YN(0≦X≦1、0≦Y≦1、X+Y≦1)で表される窒化物半導体からなる発光素子を好適に用いることができる。また、赤色に発光する発光素子13としては、GaAs、AlInGaP、AlGaAs系の半導体を用いることもできる。
本実施形態においては、発光素子1として、正負の電極が同じ面側に配置されたものでもよく、正負の電極が互いに異なる面側に配置されたものでもよい。正負の電極が同じ面側に配置された発光素子1を用いる場合は、フェイスアップ実装型、フェイスダウン実装型のいずれであってもよい。また、複数の発光素子1を搭載する場合に、実装型の異なるものが混在してもよい。
The light emitting element 1 used here is not particularly limited in shape, size, semiconductor material and the like. The emission color of the light emitting element 1 can be selected to have any wavelength according to the application. The light emitting elements 11 and 12 that emit blue and green light have In X Al Y Ga 1 -XY N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, X + Y ≦ 1) emission wavelengths in the near-ultraviolet to visible light region. It is possible to preferably use a light emitting device made of a nitride semiconductor represented by). Further, as the light emitting element 13 that emits red light, a GaAs, AlInGaP, or AlGaAs-based semiconductor can also be used.
In the present embodiment, the light emitting element 1 may have positive and negative electrodes arranged on the same surface side, or may have positive and negative electrodes arranged on different surface sides. When using the light emitting element 1 in which positive and negative electrodes are arranged on the same surface side, either a face-up mounting type or a face-down mounting type may be used. When mounting a plurality of light emitting elements 1, different mounting types may be mixed.

なお、凹部2a内に実装される発光素子1の数は1個以上であればよく、発光素子1を複数個搭載する場合の発光色の組み合わせ、発光素子1の外形形状などは適宜に変更することができる。   The number of the light emitting elements 1 mounted in the recess 2a may be one or more, and the combination of emission colors when mounting a plurality of the light emitting elements 1 and the outer shape of the light emitting element 1 are appropriately changed. be able to.

パッケージ2は、リード電極3と遮光性部材4とを有しており、平面視で略正方形の外形形状を有し、上面側に開口を有する凹部2aが設けられている。凹部2aは、発光素子1を実装するための領域であり、凹部2aの底面2bは、リード電極3と、遮光性部材4とで構成されている。また、凹部2aの側壁は、遮光性部材4で構成されている。   The package 2 has a lead electrode 3 and a light shielding member 4, has a substantially square outer shape in a plan view, and is provided with a recess 2a having an opening on the upper surface side. The recess 2 a is a region for mounting the light emitting element 1, and the bottom surface 2 b of the recess 2 a is composed of the lead electrode 3 and the light shielding member 4. The side wall of the recess 2a is formed of the light shielding member 4.

リード電極3は、4つのリード電極31〜34で構成されており、ワイヤ6を介して電気的に接続されている3つの発光素子11〜13と外部電源とを接続するための配線である。
リード電極31〜34は、それぞれの一部が凹部2aの底面2bを構成しており、平面視でそれぞれ遮光性部材4の端部まで延伸して当該端部で下方に折れ曲がり、遮光性部材4の側面に沿って延伸し、更に遮光性部材4の下面に沿って内側に折れ曲がるように配置されている。発光装置100は、下面側が実装面であり、遮光性部材4の下面側において内側に折れ曲がって設けられているリード電極31〜34の部位が、半田などの導電性接合部材を用いて接合される接合部である。
The lead electrode 3 is composed of four lead electrodes 31 to 34, and is a wiring for connecting the three light emitting elements 11 to 13 electrically connected via the wire 6 to an external power source.
Part of each of the lead electrodes 31 to 34 constitutes the bottom surface 2b of the recess 2a, and each extends to the end of the light shielding member 4 in plan view and bends downward at the end, so that the light shielding member 4 is formed. Are arranged so as to extend along the side surfaces of the light shielding member 4 and to be bent inward along the lower surface of the light shielding member 4. In the light emitting device 100, the lower surface side is a mounting surface, and the lead electrodes 31 to 34, which are bent inward on the lower surface side of the light shielding member 4, are joined together by using a conductive joining member such as solder. It is a junction.

また、リード電極31〜34の凹部2aの底面2bに露出している部分が、ワイヤ6を介して発光素子11〜13と電気的に接続される部位である。リード電極31は発光素子11のカソード電極と、リード電極32は発光素子12のカソード電極と、リード電極33は発光素子13のカソード電極と、それぞれ電気的に接続されている。リード電極34は、発光素子11〜13のそれぞれのアノード電極と電気的に接続されている。
また、リード電極33は、凹部2aの底面2bの中央部に配置されており、発光素子11〜13がダイボンド部材を用いて接合される発光素子配置領域を兼ねている。
Further, the portions of the lead electrodes 31 to 34 exposed on the bottom surface 2b of the recess 2a are the portions electrically connected to the light emitting elements 11 to 13 via the wires 6. The lead electrode 31 is electrically connected to the cathode electrode of the light emitting element 11, the lead electrode 32 is electrically connected to the cathode electrode of the light emitting element 12, and the lead electrode 33 is electrically connected to the cathode electrode of the light emitting element 13. The lead electrode 34 is electrically connected to the respective anode electrodes of the light emitting elements 11 to 13.
Further, the lead electrode 33 is arranged at the center of the bottom surface 2b of the recess 2a, and also serves as a light emitting element disposition region where the light emitting elements 11 to 13 are bonded using a die bond member.

リード電極3は、平板状の板金に、プレス加工の穴抜きや折り曲げを施すことで形成することができる。原材料である板金は、発光素子のパッケージのリードフレームに用いられるものであれば、特に限定されるものではない。板金の厚さは、パッケージの形状や大きさなどに応じて適宜に選択されるが、例えば、100〜500μm程度の厚さのものが用いられ、120〜300μmの厚さが更に好ましい。また、板金の材料としては、例えば、Cu系の合金が用いられる。
また、凹部2aの底面2bとなるリード電極3の上面は、光反射性又は/及びワイヤ6やダイボンド部材などとの接合性を高めるために、Ag、Au、Niなどのメッキ処理を施すようにしてもよい。
The lead electrode 3 can be formed by punching or bending a flat metal plate by press working. The sheet metal as a raw material is not particularly limited as long as it is used for the lead frame of the package of the light emitting element. The thickness of the sheet metal is appropriately selected according to the shape and size of the package, but for example, a thickness of about 100 to 500 μm is used, and a thickness of 120 to 300 μm is more preferable. Further, as the material of the sheet metal, for example, a Cu-based alloy is used.
In addition, the upper surface of the lead electrode 3, which is the bottom surface 2b of the recess 2a, is plated with Ag, Au, Ni or the like in order to improve the light reflectivity and / or the bondability with the wire 6 or the die bond member. May be.

遮光性部材4は、4つのリード電極31〜34を互いに離間して固定するとともに、凹部2aの側壁を構成する部材である。遮光性部材4は、光を透過せずに遮光する材料で構成されており、光を反射することで遮光する光反射性材料、又は、光を吸収することで遮光する光吸収性材料が用いられる。
遮光性部材4は、具体的には、透光性を有する樹脂を母材41とし、フィラーとして遮光性を付与するための第2充填剤42を含有した樹脂材料を用いて形成することができる。また、凹部2aの側壁の上面である遮光性部材4の上面4aは、第2充填剤42の粒子の一部が母材41から露出しており、第2充填剤42の粒子に起因する凹凸形状すなわち突起を有している。
The light-shielding member 4 is a member that separates and fixes the four lead electrodes 31 to 34 from each other and forms a side wall of the recess 2a. The light-blocking member 4 is made of a material that blocks light without transmitting it, and a light-reflecting material that blocks light by reflecting light or a light-absorbing material that blocks light by absorbing light is used. To be
Specifically, the light-shielding member 4 can be formed by using a resin material having a light-transmitting property as a base material 41 and a resin material containing a second filler 42 for imparting a light-shielding property as a filler. . Further, on the upper surface 4a of the light shielding member 4 which is the upper surface of the side wall of the recess 2a, some of the particles of the second filler 42 are exposed from the base material 41, and the unevenness caused by the particles of the second filler 42 is formed. It has a shape or protrusion.

遮光性部材4に光反射性材料を用いる場合は、遮光性部材4は、発光素子1から出射して、透光性部材5を伝播して遮光性部材4に到達した光を透光性部材5内に戻すように機能する。これによって、発光装置100の上面からの光取り出し効率を向上させることができる。
また、遮光性部材4に光吸収性材料を用いる場合は、遮光性部材4は、発光素子1から出射して、透光性部材5を透過して遮光性部材4に入射する光を吸収する。このため、発光装置100の上面のみから光を出射させることができる。
When a light-reflecting material is used for the light-blocking member 4, the light-blocking member 4 transmits the light emitted from the light emitting element 1, propagating through the light-transmitting member 5, and reaching the light-blocking member 4. Function to return to within 5. Thereby, the light extraction efficiency from the upper surface of the light emitting device 100 can be improved.
When a light absorbing material is used for the light blocking member 4, the light blocking member 4 absorbs light emitted from the light emitting element 1, transmitted through the light transmitting member 5, and incident on the light blocking member 4. . Therefore, light can be emitted only from the upper surface of the light emitting device 100.

また、光反射性材料又は光吸収性材料の何れを遮光性部材4に用いる場合であっても、このような遮光性部材4を設けることで、発光装置100からの光の出射が透光性部材5の上面に限定されるため、発光領域と非発光領域とのコントラストが高い、いわゆる「見切り性」の良好な発光装置100とすることができる。   Further, regardless of whether a light-reflecting material or a light-absorbing material is used for the light-shielding member 4, by providing such a light-shielding member 4, the light emission from the light emitting device 100 is transparent. Since it is limited to the upper surface of the member 5, the light emitting device 100 having a high contrast between the light emitting region and the non-light emitting region and having a good so-called “parting-off property” can be provided.

遮光性部材4の母材41に用いられる樹脂としては、例えば熱可塑性樹脂や熱硬化性樹脂を挙げることができる。
熱可塑性樹脂の場合、例えば、ポリフタルアミド樹脂、液晶ポリマー、ポリブチレンテレフタレート(PBT)、不飽和ポリエステルなどを用いることができる。
熱硬化性樹脂の場合、例えば、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂などを用いることができる。
Examples of the resin used as the base material 41 of the light shielding member 4 include thermoplastic resin and thermosetting resin.
In the case of a thermoplastic resin, for example, polyphthalamide resin, liquid crystal polymer, polybutylene terephthalate (PBT), unsaturated polyester and the like can be used.
In the case of a thermosetting resin, for example, epoxy resin, modified epoxy resin, silicone resin, modified silicone resin or the like can be used.

遮光性部材4が光反射性を有する場合は、母材41に第2充填剤42として光反射性物質の粒子を含有させて光反射性を付与した樹脂材料を用いて遮光性部材4を形成することができる。光反射性物質としては、例えば、TiO2,Al23,ZrO2,MgOなどを挙げることができる。
また、凹部2aの内側面は、発光素子1が発する光の波長域において反射率が70%以上であることが好ましく、80%以上がより好ましい。遮光性部材4における光反射性物質である第2充填剤42の含有量は、5質量%以上50質量%以下であればよく、10質量%以上30質量%以下が好ましい。
また、第2充填剤42の粒径は、0.1μm以上0.5μm以下程度とすることが好ましい。第2充填剤42の粒径をこの範囲とすることで、遮光性部材4は、良好な光反射性を得ることができる。
なお、特に断らない限り、本明細書において、各種のフィラーや研磨剤などの粒径の値は、空気透過法又はFisher−SubSieve−Sizers−No.(F.S.S.S.法)によるものとする。
When the light-shielding member 4 has a light-reflecting property, the light-shielding member 4 is formed using a resin material in which particles of a light-reflecting substance are contained in the base material 41 as the second filler 42 to impart light reflectivity. can do. Examples of the light-reflecting substance include TiO 2 , Al 2 O 3 , ZrO 2 , and MgO.
Further, the inner surface of the recess 2a preferably has a reflectance of 70% or more, more preferably 80% or more in the wavelength range of the light emitted by the light emitting element 1. The content of the second filler 42, which is a light-reflecting substance, in the light-shielding member 4 may be 5% by mass or more and 50% by mass or less, and preferably 10% by mass or more and 30% by mass or less.
The particle size of the second filler 42 is preferably about 0.1 μm or more and 0.5 μm or less. By setting the particle size of the second filler 42 within this range, the light shielding member 4 can obtain good light reflectivity.
Unless otherwise specified, in the present specification, the values of particle diameters of various fillers, abrasives, and the like are determined by air permeation method or Fisher-SubSieve-Sizers-No. (FSSS method).

また、遮光性部材4の上面4aの複数の突起は、JIS規格B0601:2013で規定される算術平均粗さRaで、0.090μm以上0.210μm以下程度となるように形成することが好ましい。特に、遮光性部材4の上面4aを算術平均粗さRaで、0.130μm以上とすることで外来光を、より効率よく散乱させることができる。   Further, it is preferable that the plurality of protrusions on the upper surface 4a of the light shielding member 4 are formed so that the arithmetic mean roughness Ra defined by JIS standard B0601: 2013 is about 0.090 μm or more and 0.210 μm or less. In particular, by setting the arithmetic average roughness Ra of the upper surface 4a of the light shielding member 4 to be 0.130 μm or more, it is possible to more efficiently scatter the external light.

遮光性部材4が光吸収性を有する場合は、前記した母材41に、第2充填剤42として光吸収性物質の粒子を含有させて光吸収性を付与された樹脂材料を用いて形成することができる。第2充填剤42に用いる光吸収性物質としては、黒色顔料を挙げることができ、より具体的には、カーボンブラックやグラファイトなどの炭素系顔料を挙げることができる。
なお、第2充填剤42として光吸収性物質を用いる場合の粒径及び含有量は、前記した反射性物質を用いる場合と同程度とすることができる。例えば、第2充填剤42としてカーボンブラックを添加する場合は、1質量%程度とすることができる。更に、例えば、強化剤であるワラストナイトなどを、その他のフィラーとして25質量%程度添加してもよい。
When the light-shielding member 4 has a light-absorbing property, the base material 41 is made of a resin material having light-absorbing property by containing particles of a light-absorbing substance as the second filler 42. be able to. Examples of the light absorbing material used for the second filler 42 include black pigments, and more specifically, carbon-based pigments such as carbon black and graphite.
The particle size and content of the light-absorbing substance used as the second filler 42 can be the same as those of the above-mentioned reflective substance. For example, when carbon black is added as the second filler 42, it may be about 1% by mass. Furthermore, for example, wollastonite, which is a reinforcing agent, may be added as another filler in an amount of about 25% by mass.

遮光性部材4は、母材41に第2充填剤42を含有することで光反射性又は光吸収性を付与された樹脂材料を用いて、金型を用いたトランスファーモールド法、射出成形法、圧縮成形法などの成形法、スクリーン印刷法などの塗布法などによって形成することができる。   The light-shielding member 4 is made of a resin material having a light-reflecting property or a light-absorbing property by containing the second filler 42 in the base material 41, and is formed by a transfer molding method using a mold, an injection molding method, It can be formed by a molding method such as a compression molding method or a coating method such as a screen printing method.

また、遮光性部材4の上面4aの複数の突起は、上面4aにブラスト加工処理を施して、第2充填剤42の粒子の一部を母材41から露出させることで形成することができる。つまり、遮光性部材4の上面4aの複数の突起は、第2充填剤42の粒子に起因して形成されることが好ましい。
前記した範囲の粒径の第2充填剤42の粒子に起因して形成される複数の突起によって、遮光性部材4の上面4aで反射される外光の正反射光成分を良好に低減することができる。発光装置100を画像表示装置の画素として用いる場合は、外光が画像表示装置に照射される場合であっても、外光の正反射光成分が低減されるため、観察方向に依らずに画素の明暗や色彩を良好に認識できることができる。
The plurality of protrusions on the upper surface 4 a of the light shielding member 4 can be formed by subjecting the upper surface 4 a to a blasting process to expose some of the particles of the second filler 42 from the base material 41. That is, it is preferable that the plurality of protrusions on the upper surface 4 a of the light shielding member 4 be formed due to the particles of the second filler 42.
The plurality of protrusions formed due to the particles of the second filler 42 having the particle diameter within the above-described range satisfactorily reduce the specular reflection light component of the external light reflected by the upper surface 4a of the light shielding member 4. You can When the light emitting device 100 is used as a pixel of an image display device, even if external light is applied to the image display device, the specularly reflected light component of the external light is reduced, so that the pixel does not depend on the viewing direction. It is possible to satisfactorily recognize the brightness and colors of

透光性部材5は、パッケージ2の凹部2a内に設けられ、発光素子1を封止する封止部材である。
透光性部材5は、透光性を有する樹脂を母材51として用いて形成する際に未硬化の樹脂の粘度を調整したり、透光性部材5に光拡散性を付与したりするためのフィラーとして第1充填剤52を含有している。また、透光性部材5の上面5aは、第1充填剤52の粒子の一部が母材51から露出しており、第1充填剤52の粒子に起因する凹凸形状すなわち複数の突起を有している。
The translucent member 5 is a sealing member that is provided in the recess 2 a of the package 2 and seals the light emitting element 1.
The translucent member 5 is for adjusting the viscosity of the uncured resin when it is formed by using a translucent resin as the base material 51, and for imparting the light transmissive property to the translucent member 5. The first filler 52 is contained as a filler. Further, the upper surface 5 a of the translucent member 5 has a part of the particles of the first filler 52 exposed from the base material 51, and has an uneven shape, that is, a plurality of protrusions caused by the particles of the first filler 52. is doing.

透光性部材5に含有させる第1充填剤52は、1種類でもよいが、本実施形態のように2種類の第1充填剤52a,52bを含有させてもよく、更に3種類以上であってもよい。具体的には、第1充填剤52aと第1充填剤52bとで、異なる材質のものを用いるようにしてもよく、同じ材質であっても粒径や形状が異なるものを用いるようにしてもよい。   The first filler 52 to be contained in the translucent member 5 may be one kind, but may be two kinds of the first fillers 52a and 52b as in the present embodiment, and three or more kinds. May be. Specifically, the first filler 52a and the first filler 52b may be made of different materials, or may be made of the same material but having different particle sizes and shapes. Good.

また、透光性部材5は、透光性が損なわれない程度に、カーボンブラックなどの光吸収性物質の粒子を他のフィラーとして含有するようにしてもよい。透光性部材5に適量の光吸収性物質の粒子を含有させることで、リード電極3の表面などでの正反射光の光取り出し面からの出射を抑制することができる。これによって、発光装置100からの出射光の配光特性を改善することができる。
更にまた、透光性部材5は、必要に応じて、蛍光体や着色顔料、母材51よりも屈折率の高い光拡散性物質などの粒子を含有させるようにしてもよい。
Further, the translucent member 5 may contain particles of a light absorbing substance such as carbon black as another filler to the extent that the translucency is not impaired. By allowing the translucent member 5 to contain an appropriate amount of particles of the light absorbing substance, it is possible to suppress the emission of specularly reflected light from the light extraction surface on the surface of the lead electrode 3 or the like. Thereby, the light distribution characteristic of the light emitted from the light emitting device 100 can be improved.
Furthermore, the translucent member 5 may contain particles such as a phosphor, a color pigment, and a light diffusing substance having a higher refractive index than the base material 51, if necessary.

透光性部材5の母材51としては、透光性を有する熱硬化性樹脂を用いることができ、例えば、シリコーン樹脂、エポキシ樹脂、ユリア樹脂などを挙げることができる。また、第1充填剤52としては、母材51よりも屈折率の低い透光性材料が用いられる。第1充填剤52は、具体的には、SiO2を挙げることができる。例えば、母材51として、屈折率が1.53のエポキシ樹脂を用いた場合に、第1充填剤52として、屈折率が1.46のSiO2を用いることができる。
また、第1充填剤52の粒径は、0.5μm以上10μm以下程度とすることが好ましい。第1充填剤52の粒径をこの範囲とすることで、第1充填剤52の粒子に起因して形成される複数の突起によって、上面5aにおける外光の正反射光成分を効率よく低減することができる。
また、透光性部材5における第1充填剤52の含有量は、2質量%以上40質量%以下程度とすることが好ましい。
As the base material 51 of the translucent member 5, a translucent thermosetting resin can be used, and examples thereof include a silicone resin, an epoxy resin, and a urea resin. Further, as the first filler 52, a translucent material having a lower refractive index than the base material 51 is used. Specific examples of the first filler 52 include SiO 2 . For example, when an epoxy resin having a refractive index of 1.53 is used as the base material 51, SiO 2 having a refractive index of 1.46 can be used as the first filler 52.
The particle size of the first filler 52 is preferably 0.5 μm or more and 10 μm or less. By setting the particle size of the first filler 52 in this range, the specularly reflected light component of the external light on the upper surface 5a is efficiently reduced by the plurality of protrusions formed due to the particles of the first filler 52. be able to.
The content of the first filler 52 in the translucent member 5 is preferably about 2% by mass or more and 40% by mass or less.

透光性部材5の上面5aの複数の突起は、JIS規格B0601:2013で規定される算術平均粗さRaで、0.095μm以上0.220μm以下程度となるように形成することが好ましく、0.180μm以下が更に好ましい。   It is preferable that the plurality of protrusions on the upper surface 5a of the light-transmissive member 5 are formed so that the arithmetic mean roughness Ra defined by JIS standard B0601: 2013 is about 0.095 μm or more and 0.220 μm or less. More preferably, it is less than 180 μm.

また、発光装置100の光取り出し面である透光性部材5の上面5aにおいて、母材51よりも低屈折率の第1充填剤52を露出させることで、透光性部材5と光が取り出される先の媒質である空気(屈折率1.0)との屈折率差を小さくすることができる。また、光が取り出される界面における屈折率差を小さくすることで、当該界面での光反射率を小さくすることができる。従って、発光装置100の外部への光取り出し効率を高めることができる。ここで、母材51と第1充填剤52との屈折率差は、0.03以上あれば、第1充填剤52を露出させることで発光装置100の光取り出し効率を高めることができる。
なお、発光装置100の光取り出し効率が向上するメカニズムの詳細については後記する。
Further, by exposing the first filler 52 having a refractive index lower than that of the base material 51 on the upper surface 5a of the light transmissive member 5 which is the light extraction surface of the light emitting device 100, the light transmissive member 5 and the light are extracted. It is possible to reduce the difference in the refractive index from the air (refractive index 1.0), which is the medium to which the laser beam is applied. Further, by reducing the difference in refractive index at the interface from which light is extracted, the light reflectance at the interface can be reduced. Therefore, the efficiency of extracting light to the outside of the light emitting device 100 can be improved. Here, if the difference in refractive index between the base material 51 and the first filler 52 is 0.03 or more, the light extraction efficiency of the light emitting device 100 can be increased by exposing the first filler 52.
The details of the mechanism of improving the light extraction efficiency of the light emitting device 100 will be described later.

また、発光装置100の上面である遮光性部材4の上面4a及び透光性部材の上面5aに複数の突起を設けることで、上面が他の部材と接触した場合に点接触となるため、接触した他の部材のタック(付着)を防止することができ、製造する際や実装する際の発光装置100の取り扱いが容易となる。   Further, by providing a plurality of protrusions on the upper surface 4a of the light-shielding member 4 and the upper surface 5a of the translucent member, which are the upper surfaces of the light emitting device 100, when the upper surface comes into contact with another member, a point contact is made. It is possible to prevent tacking (adhesion) of other members described above, and it becomes easy to handle the light emitting device 100 at the time of manufacturing or mounting.

ワイヤ6は、発光素子1や保護素子などの電子部品と、リード電極31〜34とを電気的に接続するための配線である。ワイヤ6の材質としては、Au(金)、Ag(銀)、Cu(銅)、Pt(白金)、Al(アルミニウム)などの金属、及び、それらの合金を用いたものが挙げられるが、特に、熱伝導率等に優れたAuを用いるのが好ましい。なお、ワイヤ6の太さは特に限定されず、目的及び用途に応じて適宜選択することができる。   The wire 6 is a wiring for electrically connecting the lead electrodes 31 to 34 and electronic components such as the light emitting element 1 and the protective element. Examples of the material of the wire 6 include metals such as Au (gold), Ag (silver), Cu (copper), Pt (platinum), and Al (aluminum), and alloys thereof. It is preferable to use Au, which has excellent thermal conductivity. The thickness of the wire 6 is not particularly limited and can be appropriately selected according to the purpose and application.

[発光装置の動作]
次に、発光装置100の動作について、図1C及び図2A〜図2Cを参照して説明する。
図2Aは、第1実施形態に係る発光装置における透光性部材及びフィラーの一部を示す断面図である。図2Bは、従来の発光装置における透光性部材及びフィラーの一部を示す断面図である。図2Cは、第1実施形態に係る発光装置において、透光性部材及び遮光性部材の上面での光反射を説明するための断面図である。
なお、発光装置100の光取り出し面である透光性部材5の上面5aは、空気と接しているものとして説明する。
[Operation of light emitting device]
Next, the operation of the light emitting device 100 will be described with reference to FIGS. 1C and 2A to 2C.
FIG. 2A is a cross-sectional view showing a part of the translucent member and the filler in the light emitting device according to the first embodiment. FIG. 2B is a cross-sectional view showing a part of the translucent member and the filler in the conventional light emitting device. FIG. 2C is a cross-sectional view for explaining light reflection on the upper surfaces of the translucent member and the light shielding member in the light emitting device according to the first embodiment.
The upper surface 5a of the translucent member 5, which is the light extraction surface of the light emitting device 100, is described as being in contact with air.

リード電極31〜34に外部電源を接続することで、発光素子1が発光する。発光素子1からの光は、透光性部材5内を伝播して、直接又は凹部2aの底面や内側面で反射されて、上面5aから外部に取り出される。上面5aにおいて、発光素子1からの光は、一部は母材41と空気との界面を通って外部に取り出される。また、上面5a近傍に第1充填剤52の粒子が配置されている部分では、発光素子1からの光は、第1充填剤52と空気との界面を通って外部に取り出される。   By connecting an external power source to the lead electrodes 31 to 34, the light emitting element 1 emits light. The light from the light emitting element 1 propagates through the transparent member 5 and is directly or reflected on the bottom surface or the inner side surface of the recess 2a and is extracted to the outside from the top surface 5a. On the upper surface 5a, part of the light from the light emitting element 1 is extracted to the outside through the interface between the base material 41 and air. Further, in the portion where the particles of the first filler 52 are arranged near the upper surface 5a, the light from the light emitting element 1 is extracted to the outside through the interface between the first filler 52 and the air.

ここで、第1充填剤52を通って外部に光が取り出される場合について説明する。
図2Aに示すように、第1充填剤52の表面が母材51から露出している場合は、透光性部材5内を上方に伝播する光L1は、第1充填剤52と空気との界面を通って外部に取り出される。
また、図2Bに示すように、第1充填剤52の表面が母材51で被覆されている場合は、透光性部材5内を上方に伝播する光L2は、母材51と空気との界面を通って外部に取り出される。
Here, a case where light is extracted to the outside through the first filler 52 will be described.
As shown in FIG. 2A, when the surface of the first filler 52 is exposed from the base material 51, the light L1 propagating upward in the translucent member 5 is generated by the first filler 52 and the air. It is taken out through the interface.
Further, as shown in FIG. 2B, when the surface of the first filler 52 is covered with the base material 51, the light L2 propagating upward in the translucent member 5 is generated by the base material 51 and the air. It is taken out through the interface.

一般に、屈折率差のある界面に光が入射した際には、界面への入射光は、屈折率差に応じて一部が反射される。界面を挟んだ2つの媒体の屈折率をn1,n2とすると、その界面に垂直に入射する光の反射率Rは、式(1)で表すことができる。
R=(n1−n22/(n1+n22 ・・・(1)
Generally, when light is incident on an interface having a difference in refractive index, part of the incident light on the interface is reflected according to the difference in refractive index. Assuming that the refractive indices of the two media that sandwich the interface are n 1 and n 2 , the reflectance R of light that is perpendicularly incident on the interface can be expressed by equation (1).
R = (n 1 −n 2 ) 2 / (n 1 + n 2 ) 2 (1)

従って、発光装置100の光取り出し面が空気と接する場合には、光取り出し面である透光性部材5の上面5aの最表面が、母材51である樹脂よりも、より低屈折率、すなわち空気との屈折率差の小さい第1充填剤52とする方が、空気との界面での光反射を低減することができる。その結果として、発光装置100の光取り出し効率を高めることができる。
また、相対的に高屈折率な媒体から低屈折率な媒体に光が伝播する場合は、スネルの法則に基づいて、界面で光が全反射される。透光性部材5と空気との界面における屈折率差を小さくすることで、当該界面で全反射される光量を低減することができる。つまり、全反射を低減する点からも、外部への光取り出し効率を高めることができる。
Therefore, when the light extraction surface of the light emitting device 100 is in contact with air, the outermost surface of the upper surface 5a of the translucent member 5 that is the light extraction surface has a lower refractive index than that of the resin that is the base material 51, that is, The first filler 52 having a smaller difference in refractive index from air can reduce light reflection at the interface with air. As a result, the light extraction efficiency of the light emitting device 100 can be improved.
When light propagates from a medium having a relatively high refractive index to a medium having a low refractive index, the light is totally reflected at the interface based on Snell's law. By reducing the refractive index difference at the interface between the translucent member 5 and air, the amount of light totally reflected at the interface can be reduced. That is, the efficiency of extracting light to the outside can be increased also in terms of reducing total reflection.

また、発光装置100を、例えば、画像表示装置の画素として用いる場合において、発光装置100の上面に、蛍光灯などの照明光が外光として入射することがある。発光装置100の上面が平坦面である場合は、当該上面は光沢面となり、外光の多くの成分が正反射(鏡面反射)される。図2Cに示すように、外光として光L3が透光性部材5の上面5aに入射した場合、その多くが光L5のように正反射される。このため、外光が正反射される方向(光L5の進行方向)から観察すると、外光の正反射光成分の影響で発光装置100の表面が明るく光って見え、発光装置100の本来の出射光の明暗のコントラストが低下する。すなわち、表面のいわゆる「テカリ」によって、画像表示装置が表示する画像の視認性が低下する。   Further, when the light emitting device 100 is used as a pixel of an image display device, for example, illumination light such as a fluorescent lamp may enter the upper surface of the light emitting device 100 as external light. When the upper surface of the light emitting device 100 is a flat surface, the upper surface becomes a glossy surface, and many components of external light are specularly reflected (specular reflection). As shown in FIG. 2C, when the light L3 as external light is incident on the upper surface 5a of the translucent member 5, most of it is specularly reflected like the light L5. Therefore, when observing from the direction in which the external light is specularly reflected (the traveling direction of the light L5), the surface of the light emitting device 100 appears to shine brightly due to the effect of the specularly reflected light component of the external light, and the light emitting device 100 is originally projected. The contrast of light and darkness of the light is reduced. That is, the visibility of the image displayed by the image display device is deteriorated due to the so-called “shine” on the surface.

ここで、上面5aに第1充填剤52の粒径に起因する突起を設けることで、光L3を光L4のように拡散反射させることができる。言い換えれば、正反射光成分を低減することができる。このため、外光が正反射される方向から観察しても、発光装置100からの出射光の明暗のコントラストの低下を低減することができる。   Here, the light L3 can be diffusely reflected like the light L4 by providing the protrusions due to the particle diameter of the first filler 52 on the upper surface 5a. In other words, the specular reflection light component can be reduced. Therefore, even when the light is observed from the direction in which the external light is specularly reflected, it is possible to reduce a decrease in contrast of light and dark of the light emitted from the light emitting device 100.

なお、遮光性部材4の上面4aにおいても透光性部材5の上面5aと同様に、外光である光L6は、一部が上面4aで光L8のように正反射される。ここで、上面4aに第2充填剤42の粒径に起因する突起を設けることで、光L6を光L7のように拡散反射させることができる。このため、外光が正反射される方向(光L8の進行方向)から観察しても、発光装置100からの出射光の明暗のコントラストの低下を低減することができる。   As with the upper surface 5a of the translucent member 5, a part of the light L6 that is external light is also specularly reflected by the upper surface 4a of the upper surface 4a of the light shielding member 4 like the light L8. Here, the light L6 can be diffusely reflected like the light L7 by providing the protrusions due to the particle diameter of the second filler 42 on the upper surface 4a. Therefore, even when the light is observed from the direction in which the external light is specularly reflected (the traveling direction of the light L8), it is possible to reduce the decrease in the contrast of the light and dark of the light emitted from the light emitting device 100.

なお、上面5a及び上面4aの表面粗さは、前記した範囲とすることが好ましい。表面が粗過ぎると、発光装置100の上面5a及び上面4aが白濁して見え、発光装置100の明暗のコントラストが却って低下することがある。第1充填剤52及び第2充填剤42の粒径を前記した範囲とし、上面5a及び上面4aに、第1充填剤52及び第2充填剤42に起因する突起を設けることで、表面粗さを適切な範囲とすることができる。   The surface roughness of the upper surface 5a and the upper surface 4a is preferably in the above range. If the surface is too rough, the upper surface 5a and the upper surface 4a of the light emitting device 100 may appear clouded, and the contrast of light and dark of the light emitting device 100 may be rather deteriorated. By setting the particle diameters of the first filler 52 and the second filler 42 to the ranges described above and providing the protrusions caused by the first filler 52 and the second filler 42 on the upper surface 5a and the upper surface 4a, the surface roughness can be improved. Can be in an appropriate range.

[発光装置の製造方法]
次に、第1実施形態に係る発光装置の製造方法について、図3〜図6Bを参照して説明する。
図3は、第1実施形態に係る発光装置の製造方法の手順を示すフローチャートである。図4Aは、第1実施形態に係る発光装置の製造方法のパッケージ準備工程で準備されるパッケージの構成を示す断面図である。図4Bは、第1実施形態に係る発光装置の製造方法の発光素子実装工程を示す断面図である。図4Cは、第1実施形態に係る発光装置の製造方法の樹脂供給工程を示す断面図である。図4Dは、第1実施形態に係る発光装置の製造方法の樹脂硬化工程を示す断面図である。図4Eは、第1実施形態に係る発光装置の製造方法のブラスト加工処理工程を示す断面図である。図5Aは、第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、研磨剤を投射する方向の第1の例を示す平面図である。図5Bは、第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、研磨剤を投射する方向の第2の例を示す平面図である。図5Cは、第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、研磨剤を投射する方向の第3の例を示す平面図である。図6Aは、第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、第1工程を示す断面図である。図6Bは、第1実施形態に係る発光装置の製造方法のブラスト加工処理工程において、第2工程を示す断面図である。
なお、図4A〜図4Eにおいて、パッケージ2は、凹部2aの底面2b及び側壁を構成する上部のみを示し、下部は省略している。
[Method of manufacturing light emitting device]
Next, a method of manufacturing the light emitting device according to the first embodiment will be described with reference to FIGS. 3 to 6B.
FIG. 3 is a flowchart showing the procedure of the method for manufacturing the light emitting device according to the first embodiment. FIG. 4A is a cross-sectional view showing the configuration of the package prepared in the package preparing step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 4B is a sectional view showing a light emitting element mounting step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 4C is a sectional view showing a resin supplying step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 4D is a cross-sectional view showing the resin curing step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 4E is a cross-sectional view showing the blast processing step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 5A is a plan view showing a first example of a direction in which an abrasive is projected in the blast processing step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 5B is a plan view showing a second example of the direction in which the abrasive is projected in the blast processing step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 5C is a plan view showing a third example of the direction in which the abrasive is projected in the blast processing step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 6A is a cross-sectional view showing a first step in the blasting process step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 6B is a cross-sectional view showing a second step in the blasting process step of the method for manufacturing the light-emitting device according to the first embodiment.
4A to 4E, the package 2 shows only the bottom surface 2b of the recess 2a and the upper portion forming the side wall, and the lower portion is omitted.

第1実施形態に係る発光装置100の製造方法は、パッケージ2に発光素子1が載置された後に、発光素子1を覆う透光性部材5を形成する工程と、透光性部材5及びパッケージ2のそれぞれの上面にブラスト加工処理を施す工程と、を含む。透光性部材5を形成する工程において、透光性部材5は、母材51として透光性樹脂を用い、母材51よりも屈折率の低い透光性の第1充填剤52の粒子を含有した樹脂材料を用いて形成される。ブラスト加工処理を施す工程によって、透光性部材5の上面において、第1充填剤52の粒子の一部を透光性部材5の母材51から露出させる。
第1実施形態に係る発光装置100の製造方法は、パッケージ準備工程S11と、発光素子実装工程S12と、透光性部材形成工程S13と、ブラスト加工処理工程S14と、を含んでいる。また、透光性部材形成工程S13は、樹脂供給工程S131と、樹脂硬化工程S132と、を含んでいる。
The method for manufacturing the light emitting device 100 according to the first embodiment includes a step of forming the light transmissive member 5 that covers the light emitting element 1 after the light emitting element 1 is placed on the package 2, and the light transmissive member 5 and the package. And the step of subjecting the upper surface of each of the two to a blasting process. In the step of forming the light-transmissive member 5, the light-transmissive member 5 uses a light-transmissive resin as the base material 51, and includes particles of the light-transmissive first filler 52 having a lower refractive index than the base material 51. It is formed using the contained resin material. Through the step of performing the blasting process, some of the particles of the first filler 52 are exposed from the base material 51 of the transparent member 5 on the upper surface of the transparent member 5.
The method for manufacturing the light emitting device 100 according to the first embodiment includes a package preparation step S11, a light emitting element mounting step S12, a translucent member forming step S13, and a blast processing step S14. The translucent member forming step S13 includes a resin supply step S131 and a resin curing step S132.

パッケージ準備工程S11は、リード電極3が底面2bに配置され、遮光性部材4を側壁として囲まれて上方に開口する凹部2aを有するパッケージ2を準備する工程である。
具体的には、本工程において、まず、板金をプレス加工で穴抜きすることで、リード電極3の外形を備えたリードフレームを形成する。次に、遮光性部材4の形状に相当する空洞を有する上下金型でリードフレームを挟み込む。次に、金型内の空洞に、母材41となる樹脂に第2充填剤42を含有した樹脂材料を注入し、樹脂材料を固化又は硬化後に金型から取り出すことで、遮光性部材4がリード電極3と一体的に形成される。次に、遮光性部材4の側面から突出しているリード電極3を、遮光性部材4の側面及び下面に沿って折り曲げることで、パッケージ2が準備される。
なお、本工程で準備されるパッケージ2において、遮光性部材4の上面4a近傍に配置されている第2充填剤42は、母材41で被覆されている。
The package preparation step S11 is a step of preparing the package 2 in which the lead electrode 3 is disposed on the bottom surface 2b, the light shielding member 4 is surrounded by the side wall, and the recess 2a is opened upward.
Specifically, in this step, first, a sheet metal is punched by press working to form a lead frame having the outer shape of the lead electrode 3. Next, the lead frame is sandwiched by upper and lower molds having a cavity corresponding to the shape of the light shielding member 4. Next, the light-shielding member 4 is obtained by injecting the resin material containing the second filler 42 into the resin to be the base material 41 into the cavity inside the mold and taking out from the mold after the resin material is solidified or cured. It is formed integrally with the lead electrode 3. Next, the package 2 is prepared by bending the lead electrodes 3 protruding from the side surface of the light shielding member 4 along the side surface and the lower surface of the light shielding member 4.
In the package 2 prepared in this step, the second filler 42 disposed near the upper surface 4a of the light shielding member 4 is covered with the base material 41.

発光素子実装工程S12は、パッケージ2の凹部2a内に、発光素子1を実装する工程である。本工程において、発光素子1(11〜13)は、リード電極33上にダイボンドされ、ワイヤ6を用いて、各発光素子1が対応するリード電極31〜34と電気的に接続される。   The light emitting element mounting step S12 is a step of mounting the light emitting element 1 in the recess 2a of the package 2. In this step, the light emitting elements 1 (11 to 13) are die-bonded onto the lead electrodes 33, and the wires 6 are used to electrically connect the respective light emitting elements 1 to the corresponding lead electrodes 31 to 34.

透光性部材形成工程S13は、凹部2a内に発光素子1を実装された後に、凹部2a内に発光素子1を被覆する透光性部材5を形成する工程である。前記したように、透光性部材形成工程S13は、樹脂供給工程S131と樹脂硬化工程S132とを含んでいる。   The transparent member forming step S13 is a step of forming the transparent member 5 that covers the light emitting element 1 in the recess 2a after the light emitting element 1 is mounted in the recess 2a. As described above, the translucent member forming step S13 includes the resin supply step S131 and the resin curing step S132.

まず、樹脂供給工程S131において、母材51となる未硬化の樹脂に第1充填剤52(52a,52b)を含有した樹脂材料を、例えば、ディスペンサ71を用いたポッティング法で凹部2aに供給する。
次に、樹脂硬化工程S132において、ヒーターやリフロー炉などの加熱装置72を用いて加熱することで、樹脂材料を硬化させる。これによって、透光性部材5が形成される。
なお、本工程で形成される透光性部材5において、上面5a近傍に配置されている第1充填剤52は、母材51で被覆されている。
First, in the resin supply step S131, a resin material containing the first filler 52 (52a, 52b) in an uncured resin serving as the base material 51 is supplied to the recess 2a by a potting method using the dispenser 71, for example. .
Next, in a resin curing step S132, the resin material is cured by heating with a heating device 72 such as a heater or a reflow furnace. Thereby, the translucent member 5 is formed.
In addition, in the translucent member 5 formed in this step, the first filler 52 disposed near the upper surface 5a is covered with the base material 51.

ブラスト加工処理工程S14は、透光性部材5の上面5a及び遮光性部材4の上面4aにブラスト加工処理を施す工程である。本工程により、上面5a近傍に配置されている第1充填剤52及び上面4a近傍に配置されている第2充填剤42を露出させ、上面5aに第1充填剤52に起因する突起が形成されるとともに、上面4aに第2充填剤42に起因する突起が形成される。
第1充填剤52及び第2充填剤42が露出するようにブラスト加工処理を施すことで、上面5a及び上面4aが微細に荒らされるため、上面5a及び上面4aの光拡散性が向上し、これらの面において反射防止効果を得ることができる。
The blasting process step S14 is a process of performing a blasting process on the upper surface 5a of the translucent member 5 and the upper surface 4a of the light shielding member 4. By this step, the first filler 52 disposed near the upper surface 5a and the second filler 42 disposed near the upper surface 4a are exposed, and a protrusion due to the first filler 52 is formed on the upper surface 5a. At the same time, a protrusion due to the second filler 42 is formed on the upper surface 4a.
By performing the blasting process so that the first filler 52 and the second filler 42 are exposed, the upper surface 5a and the upper surface 4a are finely roughened, so that the light diffusion properties of the upper surface 5a and the upper surface 4a are improved. It is possible to obtain an antireflection effect on the surface.

ブラスト加工処理は、ウェットブラスト法で行うことが好ましく、例えば、純水に研磨剤74を含有させたスラリーをノズル73から加工対象面に投射することで行われる。ウェットブラスト法は、ドライブラスト法に比べて、加工対象物に対する研磨剤74による衝撃を小さくすることができる。このため、第1充填剤52や第2充填剤42に用いられる無機物の粒子に大きな損傷を与えずに、比較的に軟質な樹脂材料を選択的に削り取ることで除去することできる。また、ウェットブラスト法によれば、より小径の研磨剤74を用いることができるため微細な加工に適している。このため、透光性部材5の上面5aや遮光性部材4の上面4aに粗い凹凸を形成することなく、第1充填剤52や第2充填剤42の表面を被覆する母材51及び母材41を除去することができる。これによって、上面5a及び上面4aに、それぞれ第1充填剤52の粒子及び第2充填剤42の粒子が露出して、第1充填剤52の粒子及び第2充填剤42の粒子に起因する突起を形成することができる。   The blast processing is preferably performed by a wet blast method, for example, by spraying a slurry in which pure water contains an abrasive 74 from a nozzle 73 onto a surface to be processed. The wet blast method can reduce the impact of the abrasive 74 on the object to be processed, as compared with the dry blast method. Therefore, the relatively soft resin material can be selectively shaved and removed without significantly damaging the inorganic particles used for the first filler 52 and the second filler 42. Further, according to the wet blast method, the polishing agent 74 having a smaller diameter can be used, which is suitable for fine processing. Therefore, the base material 51 and the base material that cover the surfaces of the first filler 52 and the second filler 42 without forming rough irregularities on the upper surface 5a of the translucent member 5 or the upper surface 4a of the light shielding member 4. 41 can be removed. As a result, the particles of the first filler 52 and the particles of the second filler 42 are exposed on the upper surface 5a and the upper surface 4a, respectively, and the protrusions caused by the particles of the first filler 52 and the particles of the second filler 42 are exposed. Can be formed.

具体的には、上面5a近傍の第1充填剤52の上方を被覆する母材51及び上面4a近傍の第2充填剤42の上方を被覆する母材41を除去する際に、第1充填剤52及び第2充填剤42ができる限りそれぞれ母材51及び母材41から剥離しないように、ブラスト加工処理を行うことが好ましい。
具体的には、研磨剤74の粒径は、3μm以上14μm以下程度とすることが好ましい。また、ウェットブラスト法により、純水に研磨剤74を含有させたスラリーを用いる場合、スラリーにおける研磨剤74の含有量は、5体積%以上30体積%以下程度とすることが好ましい。
また、研磨剤74は、ブラスト加工処理によって除去される母材51及び母材41よりも硬度の高いものが好ましく、例えば、アルミナ(Al23)、炭化ケイ素(SiC)、ステンレス、ジルコニア(ZrO2)、ガラスなどを挙げることができる。
Specifically, when removing the base material 51 covering the upper part of the first filler 52 near the upper surface 5a and the base material 41 covering the upper part of the second filler 42 near the upper surface 4a, the first filler is removed. It is preferable to perform a blasting treatment so that 52 and the second filler 42 are not separated from the base material 51 and the base material 41 as much as possible.
Specifically, it is preferable that the particle size of the abrasive 74 be about 3 μm or more and 14 μm or less. Further, when a slurry in which pure water contains the abrasive 74 is used by the wet blast method, the content of the abrasive 74 in the slurry is preferably about 5% by volume or more and 30% by volume or less.
Further, it is preferable that the abrasive 74 has a higher hardness than the base material 51 and the base material 41 removed by the blasting treatment, and for example, alumina (Al 2 O 3 ), silicon carbide (SiC), stainless steel, zirconia ( ZrO 2 ), glass and the like can be mentioned.

また、研磨剤74を含有するスラリーの投射角度73aは、加工処理の対象面である上面5a及び上面4aに対して、15°以上45°以下とすることが好ましく、30°近傍とすることがより好ましい。
加工処理の対象面に対して垂直(90°)に近い投射角度73aで研磨剤74を投射すると、研磨剤74が母材41や母材51に突き刺さり、ブラスト加工処理後のパッケージ2に残存し易くなる。また、水平に近い投射角度73aで研磨剤74を投射すると、研磨剤74で母材41や母材51を除去する効率が低下することがある。従って、投射角度73aを前記した範囲とすることで、母材51及び母材41を効率よく除去することができる。
Further, the projection angle 73a of the slurry containing the abrasive 74 is preferably 15 ° or more and 45 ° or less with respect to the upper surface 5a and the upper surface 4a which are the target surfaces of the processing, and it is preferably around 30 °. More preferable.
When the abrasive 74 is projected at a projection angle 73a close to the vertical (90 °) with respect to the surface to be processed, the abrasive 74 sticks into the base material 41 or the base material 51 and remains in the package 2 after the blast processing. It will be easier. Further, when the abrasive 74 is projected at a projection angle 73a that is nearly horizontal, the efficiency with which the abrasive 74 removes the base material 41 and the base material 51 may decrease. Therefore, the base material 51 and the base material 41 can be efficiently removed by setting the projection angle 73a within the above range.

また、ウェットブラスト法では、前記したスラリーを圧縮空気とともに噴射銃のノズル73から加工処理の対象面に向かって噴射させる。このときの圧縮空気の圧力(噴射銃のガン圧)は、ノズル73の形状や投射角度73a、研磨剤74の材質や形状、粒径などによって最適値は異なるが、例えば、0.1MPa〜0.5MPa程度とすることができる。   In the wet blast method, the above-mentioned slurry is jetted together with compressed air from the nozzle 73 of the jet gun toward the target surface of the processing. The optimum value of the pressure of the compressed air (gun pressure of the injection gun) at this time varies depending on the shape of the nozzle 73, the projection angle 73a, the material and shape of the abrasive 74, the particle size, etc., but is, for example, 0.1 MPa to 0 MPa. It can be set to about 0.5 MPa.

また、前記した投射角度73aで研磨剤74を、平面視で一方向D1のみから投射すると、第1充填剤52の片側(図6Aにおいて、左側)の母材51が除去され、反対側の母材51が残存し易くなる。このため、方向D1から研磨剤74を投射した後で、ノズル73の向きを変更して、反対方向(図6Bにおいて、右側)である方向D2からも研磨剤74を投射することが好ましい。
更に、平面視で、方向D1,D2と直交する方向D3,D4からも研磨剤74を投射するようにしてもよい。また、例えば、平面視で、互いに120°ずつ異なる3方向から、研磨剤74を投射するようにしてもよい。
なお、複数の方向から研磨剤74を投射する場合は、上面5a及び上面4aの全面に対して一方向に処理を施した後に、順次にノズル73の方向を変更して処理を行う。また、ノズル73は、発光装置100に対して相対的に方向を変更すればよく、ノズル73を固定したままで、発光装置100の向きを変更するようにしてもよい。
Further, when the abrasive 74 is projected from only one direction D1 in a plan view at the above-described projection angle 73a, the base material 51 on one side (left side in FIG. 6A) of the first filler 52 is removed and the base material 51 on the opposite side is removed. The material 51 is likely to remain. Therefore, it is preferable that after the abrasive 74 is projected from the direction D1, the direction of the nozzle 73 is changed and the abrasive 74 is also projected from the opposite direction (the right side in FIG. 6B), the direction D2.
Further, the abrasive 74 may be projected from the directions D3 and D4 orthogonal to the directions D1 and D2 in a plan view. Further, for example, in plan view, the abrasive 74 may be projected from three directions different from each other by 120 °.
When the abrasive 74 is projected from a plurality of directions, the entire surface of the upper surface 5a and the upper surface 4a is processed in one direction, and then the direction of the nozzle 73 is sequentially changed to perform the processing. The direction of the nozzle 73 may be changed relative to the light emitting device 100, and the direction of the light emitting device 100 may be changed while the nozzle 73 is fixed.

以上は、透光性部材5の上面5aについて説明したが、発光装置100の上面全体に一様にブラスト加工処理を施すことで、遮光性部材4の上面4aについても、第2充填剤42の表面から母材41が除去される。
以上説明したように各工程を行うことにより、発光装置100が製造される。
Although the upper surface 5a of the light-transmissive member 5 has been described above, the entire upper surface of the light emitting device 100 is uniformly blasted so that the upper surface 4a of the light-shielding member 4 is also covered with the second filler 42. The base material 41 is removed from the surface.
The light emitting device 100 is manufactured by performing each process as described above.

<応用例>
[画像表示装置の構成]
次に、第1実施形態に係る発光装置100の応用例として、発光装置100を用いた画像表示装置について、図7A及び図7Bを参照して説明する。
図7Aは、第1実施形態に係る発光装置を用いた画像表示装置の構成を示す斜視図である。図7Bは、第1実施形態に係る発光装置を用いた画像表示装置の構成を示す分解斜視図である。
<Application example>
[Structure of image display device]
Next, as an application example of the light emitting device 100 according to the first embodiment, an image display device using the light emitting device 100 will be described with reference to FIGS. 7A and 7B.
FIG. 7A is a perspective view showing a configuration of an image display device using the light emitting device according to the first embodiment. FIG. 7B is an exploded perspective view showing the configuration of the image display device using the light emitting device according to the first embodiment.

画像表示装置200は、回路基板210と、回路基板210の上面に実装されている複数の発光装置100と、発光装置100及び回路基板210の電極や配線部を被覆する保護部材220と、複数の発光装置100の間を覆うように設けられている枠部材230と、を備えている。画像表示装置200は、1個の発光装置100を1画素として用いるものである。   The image display device 200 includes a circuit board 210, a plurality of light emitting devices 100 mounted on an upper surface of the circuit board 210, a protective member 220 that covers electrodes and wiring portions of the light emitting device 100 and the circuit board 210, and a plurality of protection members 220. The frame member 230 provided so as to cover the space between the light emitting devices 100. The image display device 200 uses one light emitting device 100 as one pixel.

画像表示装置200は、3×3のマトリクス状に9個の発光装置100が回路基板210に実装されているが、更に多くの発光装置100が実装されるように構成してもよい。また、例えば、3×3の発光装置100が搭載されている回路基板210を1ユニットとして、複数のユニットを配列して用いることで、更に画素数の多い画像表示装置を構成するようにしてもよい。   In the image display device 200, nine light emitting devices 100 are mounted on the circuit board 210 in a 3 × 3 matrix, but more light emitting devices 100 may be mounted. Further, for example, the circuit board 210 on which the 3 × 3 light emitting device 100 is mounted is set as one unit, and a plurality of units are arranged and used to configure an image display device having a larger number of pixels. Good.

回路基板210は、複数の発光装置100を機械的に保持するとともに電気的に接続するための基板である。回路基板210は、矩形平板状に形成されている。また、回路基板210は、具体的には、発光装置100を駆動する駆動制御回路や通信回路などを実装したガラスエポキシなどからなる基板で構成することができる。   The circuit board 210 is a board for mechanically holding and electrically connecting the plurality of light emitting devices 100. The circuit board 210 is formed in a rectangular flat plate shape. Further, the circuit board 210 can be specifically configured by a board made of glass epoxy or the like on which a drive control circuit for driving the light emitting device 100, a communication circuit, and the like are mounted.

保護部材220は、発光装置100の内部に外気中の雨水や湿気などの水分が浸入することを防止するものである。保護部材220は、シリコーン樹脂などの防水性材料を用いることができ、回路基板210上において、発光装置100の側面を覆うように形成されている。   The protection member 220 prevents moisture such as rainwater and humidity in the outside air from entering the inside of the light emitting device 100. The protective member 220 can be made of a waterproof material such as silicone resin, and is formed on the circuit board 210 so as to cover the side surface of the light emitting device 100.

枠部材230は、回路基板210及び回路基板210上の保護部材220を保護するための部材である。枠部材230は、矩形平板状に形成され、回路基板210と略同じ面積で形成されている。また、枠部材230には、個々の発光装置100の面積に対応した開口部230aが、発光装置100と同じ個数だけ形成されている。そして、枠部材230は、開口部230aから発光装置100の上面が露出するように配置され、回路基板210とネジ部材などによって接合される。
また、枠部材230は、金属、樹脂、セラミックスなどを用いて形成することができるが、上面は粗面化するなどして、外光の正反射を抑制するように構成することが好ましい。
The frame member 230 is a member for protecting the circuit board 210 and the protection member 220 on the circuit board 210. The frame member 230 is formed in a rectangular flat plate shape and has substantially the same area as the circuit board 210. Further, the same number of openings 230 a as the light emitting devices 100 are formed in the frame member 230, the openings 230 a corresponding to the area of each light emitting device 100. The frame member 230 is arranged such that the upper surface of the light emitting device 100 is exposed through the opening 230a, and is joined to the circuit board 210 by a screw member or the like.
The frame member 230 can be formed using metal, resin, ceramics, or the like, but it is preferable that the upper surface is roughened so as to suppress regular reflection of external light.

発光装置100は、前記したように上面側に複数の突起を設けることで、外光の正反射光成分が低減されている。このため、発光装置100を画素として用いた画像表示装置200は、外光の影響が低減され、観察方向に依らずに画素の明暗や色彩を良好に認識できることができる。   As described above, the light emitting device 100 is provided with the plurality of protrusions on the upper surface side, so that the specularly reflected light component of external light is reduced. Therefore, in the image display device 200 using the light emitting device 100 as a pixel, the influence of external light is reduced, and the brightness and color of the pixel can be satisfactorily recognized regardless of the viewing direction.

<第2実施形態>
[発光装置の構成]
次に、第2実施形態に係る発光装置について、図8A〜図8Cを参照して説明する。
図8Aは、第2実施形態に係る発光装置の構成を示す斜視図である。図8Bは、第2実施形態に係る発光装置の構成を示す平面図である。図8Cは、第2実施形態に係る発光装置の構成を示す断面図であり、図8BのVIIIC−VIIIC線における断面を示す。
なお、図8Cにおいて、2種類の第1充填剤を円形及び菱形で示し、第2充填剤を円形で示し、波長変換物質を五角形で示している。これらの形状は該当する部材の具体的な形状を示すものではなく、充填剤の粒子の種類を区別するために便宜的に用いている。
<Second Embodiment>
[Configuration of light emitting device]
Next, the light emitting device according to the second embodiment will be described with reference to FIGS. 8A to 8C.
FIG. 8A is a perspective view showing the configuration of the light emitting device according to the second embodiment. FIG. 8B is a plan view showing the configuration of the light emitting device according to the second embodiment. FIG. 8C is a cross-sectional view showing the configuration of the light emitting device according to the second embodiment, and shows a cross section taken along line VIIIC-VIIIC of FIG. 8B.
In FIG. 8C, the two types of first fillers are indicated by circles and diamonds, the second filler is indicated by circles, and the wavelength conversion substance is indicated by pentagons. These shapes do not indicate the specific shapes of the corresponding members, but are used for convenience in order to distinguish the type of the filler particles.

第2実施形態に係る発光装置100Aは、平面視形状が長方形であり、上面側に開口する凹部2Aaを有するパッケージ2Aと、凹部2Aa内に実装される発光素子1と、凹部2Aa内に設けられて発光素子1を封止する透光性部材5Aと、を備えている。また、パッケージ2Aは、リード電極3Aと遮光性部材4Aとを有し、発光素子1は、ワイヤ6を用いて凹部2Aaの底面に設けられているリード電極3Aと電気的に接続されている。また、発光装置100Aは、凹部2Aa内に、保護素子8が実装されている。
なお、保護素子8は、例えば、ツェナーダイオードであり、発光素子1を静電放電による破壊から保護する素子である。
A light emitting device 100A according to the second embodiment has a rectangular shape in a plan view and has a package 2A having a recess 2Aa that is open to the upper surface side, a light emitting element 1 mounted in the recess 2Aa, and provided in the recess 2Aa. And a translucent member 5A for sealing the light emitting element 1. Further, the package 2A has a lead electrode 3A and a light shielding member 4A, and the light emitting element 1 is electrically connected to the lead electrode 3A provided on the bottom surface of the recess 2Aa using a wire 6. In the light emitting device 100A, the protective element 8 is mounted in the recess 2Aa.
The protective element 8 is, for example, a Zener diode, and is an element that protects the light emitting element 1 from being destroyed by electrostatic discharge.

第2実施形態に係る発光装置100Aは、第1実施形態に係る発光装置100のパッケージ2と外形形状が異なるパッケージ2Aを備えている。更に、発光装置100Aは、実装されている発光素子1が1個であること、保護素子8が実装されていること、及び、透光性部材5Aに、第1充填剤52(52a,52b)に加えて、波長変換物質53の粒子が含有されていること、が発光装置100と異なる。   The light emitting device 100A according to the second embodiment includes a package 2A having an outer shape different from that of the package 2 of the light emitting device 100 according to the first embodiment. Further, in the light emitting device 100A, the number of the light emitting element 1 mounted is one, the protection element 8 is mounted, and the first filler 52 (52a, 52b) is provided on the translucent member 5A. In addition to the fact that the particles of the wavelength conversion substance 53 are contained, it is different from the light emitting device 100.

パッケージ2Aは、リード電極3Aと遮光性部材4Aとから構成されており、平面視で略長方形の外形形状を有し、上面側に開口を有する凹部2Aaが設けられている。凹部2Aaは、発光素子1を実装するための領域であり、凹部2Aaの底面2Abは、リード電極3Aと、遮光性部材4Aとで構成されている。また、凹部2Aaの側壁は、遮光性部材4Aで構成されている。
また、パッケージ2Aの下面は、平坦面であるとともに、リード電極31A,32Aが露出するように設けられており、当該下面が発光装置100Aの実装面となっている。
The package 2A is composed of a lead electrode 3A and a light-shielding member 4A, has a substantially rectangular outer shape in a plan view, and is provided with a recess 2Aa having an opening on the upper surface side. The recess 2Aa is a region for mounting the light emitting element 1, and the bottom surface 2Ab of the recess 2Aa is composed of the lead electrode 3A and the light shielding member 4A. Further, the side wall of the recess 2Aa is composed of the light shielding member 4A.
The lower surface of the package 2A is a flat surface and is provided so that the lead electrodes 31A and 32A are exposed, and the lower surface is a mounting surface of the light emitting device 100A.

リード電極3Aは、平板状のリード電極31A及びリード電極32Aからなり、互いに離間してパッケージ2Aの底部に設けられている。リード電極31A,32Aは、外周の端部に、下面側が凹むように段差が設けられており、遮光性部材4Aから剥がれ難いように構成されている。
リード電極31A,32Aは、上面の一部が凹部2Aaの底面2Abを構成しており、リード電極31A上に発光素子1がダイボンドされているとともに、リード電極32A上に保護素子8がダイボンドされている。また、発光素子1は、ワイヤ6を介してリード電極31A,32Aと電気的に接続されている。保護素子8は、下面側に設けられている一方の電極がダイボンドされることでリード電極32Aと電気的に接続され、上面側に設けられている他方の電極がワイヤ6を介してリード電極31Aと電気的に接続されている。
The lead electrode 3A is composed of a flat lead electrode 31A and a lead electrode 32A, and is provided on the bottom of the package 2A so as to be separated from each other. The lead electrodes 31A and 32A are provided with a step at their outer peripheral ends so as to be recessed on the lower surface side, and are configured so as not to be easily peeled off from the light shielding member 4A.
The lead electrodes 31A and 32A have upper surfaces partially forming the bottom surface 2Ab of the recess 2Aa. The light emitting element 1 is die-bonded onto the lead electrode 31A, and the protective element 8 is die-bonded onto the lead electrode 32A. There is. Further, the light emitting element 1 is electrically connected to the lead electrodes 31A and 32A via the wire 6. The protective element 8 is electrically connected to the lead electrode 32A by die-bonding one electrode provided on the lower surface side, and the other electrode provided on the upper surface side is connected to the lead electrode 31A via the wire 6. Is electrically connected to.

遮光性部材4Aは、第1実施形態における遮光性部材4と同様の材料を用いて形成することができ、上面4Aaに第2充填剤42の粒子の一部が露出している。   4 A of light-shielding members can be formed using the same material as the light-shielding member 4 in 1st Embodiment, and a part of particle of the 2nd filler 42 is exposed to 4 Aa of upper surfaces.

透光性部材5Aは、凹部2Aa内に設けられ、発光素子1及び保護素子8を封止している。透光性部材5Aは、母材51に第1充填剤52(52a,52b)に加えて、波長変換物質53の粒子を含有している。透光性部材5Aは、上面5Aaに第1充填剤52の粒子の一部が母材51から露出している。また、波長変換物質53は、主として発光素子1の周囲及び凹部2Aaの底面2Abの近傍に配置され、上面5Aaから露出しないように配置されている。
なお、母材51及び第1充填剤52は、第1実施形態における透光性部材5と同様の材料を用いることができる。
The translucent member 5A is provided in the recess 2Aa and seals the light emitting element 1 and the protective element 8. The translucent member 5A contains particles of the wavelength conversion substance 53 in addition to the first filler 52 (52a, 52b) in the base material 51. A part of the particles of the first filler 52 is exposed from the base material 51 on the upper surface 5Aa of the translucent member 5A. Further, the wavelength conversion substance 53 is arranged mainly around the light emitting element 1 and in the vicinity of the bottom surface 2Ab of the recess 2Aa, and is arranged so as not to be exposed from the upper surface 5Aa.
The base material 51 and the first filler 52 may be made of the same material as the translucent member 5 in the first embodiment.

波長変換物質53は、発光素子1からの光の一部又は全部を吸収して、異なる波長の光を発することで波長変換する蛍光体である。
例えば、青色光を発する発光素子1と、青色光を吸収して黄色光を発する波長変換物質53とを組み合わせることで、白色光を生成することができる。なお、波長変換物質53は、1種類に限定されず、発光色が異なる複数種類を用いるようにしてもよい。
The wavelength conversion substance 53 is a phosphor that absorbs a part or all of the light from the light emitting element 1 and emits light of a different wavelength to convert the wavelength.
For example, white light can be generated by combining the light emitting element 1 that emits blue light and the wavelength conversion substance 53 that absorbs blue light and emits yellow light. The wavelength conversion substance 53 is not limited to one type, and a plurality of types having different emission colors may be used.

波長変換物質53としては、発光素子1からの光を吸収し、波長変換するものを用いることができる。波長変換物質53は、製造時における未硬化の透光性部材5Aの母材51よりも比重が大きいものが好ましい。波長変換物質53は、未硬化の母材51よりも比重が大きいと、製造時の透光性部材5Aを形成する際に波長変換物質53の粒子を沈降させて、発光素子1やリード電極31A,32Aの表面の近傍に配置することができる。
波長変換物質53を発光素子1やリード電極31A,32Aの表面の近傍に配置することで、波長変換の効率を高めることができる。また、波長変換物質53を上面5Aaから露出しないように配置することで、外気との接触による波長変換物質53の劣化や変質を抑制することができる。
As the wavelength conversion substance 53, a substance that absorbs light from the light emitting element 1 and converts the wavelength can be used. The wavelength conversion substance 53 preferably has a larger specific gravity than the base material 51 of the uncured light-transmissive member 5A at the time of manufacturing. When the wavelength conversion substance 53 has a larger specific gravity than the uncured base material 51, the particles of the wavelength conversion substance 53 are settled when forming the translucent member 5A at the time of manufacturing, and the light emitting element 1 and the lead electrode 31A. , 32A can be placed near the surface.
By disposing the wavelength conversion substance 53 near the surface of the light emitting element 1 or the lead electrodes 31A and 32A, the efficiency of wavelength conversion can be improved. Further, by disposing the wavelength conversion substance 53 so as not to be exposed from the upper surface 5Aa, deterioration or alteration of the wavelength conversion substance 53 due to contact with the outside air can be suppressed.

波長変換物質53としては、具体的には、例えば、Y3Al512:Ceで表されるYAG蛍光体やシリケートなどの黄色蛍光体、あるいは、CaAlSiN3:Euで表されるCASN蛍光体やK2SiF6:Mnで表されるKSF蛍光体などの赤色蛍光体、を挙げることができる。 Specific examples of the wavelength conversion substance 53 include YAG phosphors represented by Y 3 Al 5 O 12 : Ce, yellow phosphors such as silicates, and CASN phosphors represented by CaAlSiN 3 : Eu. And a red phosphor such as a KSF phosphor represented by K 2 SiF 6 : Mn.

[発光装置の動作]
発光装置100Aは、発光素子1からの光の一部又は全部が、波長変換物質53によって波長変換されて光取り出し面である透光性部材5Aの上面5Aaから外部に取り出される。
なお、発光装置100Aの上面に照射される外光の少なくとも一部が、上面5Aa及び上面4Aaに設けられた複数の突起によって拡散反射されることで、表面の「テカリ」が低減されることは、第1実施形態と同様である。また、透光性部材5Aの上面5Aaから第1充填剤52の一部が露出することで、光取り出し効率が向上することも、第1実施形態と同様である。
[Operation of light emitting device]
In the light emitting device 100A, a part or all of the light from the light emitting element 1 is wavelength-converted by the wavelength conversion substance 53 and is extracted to the outside from the upper surface 5Aa of the translucent member 5A which is a light extraction surface.
In addition, at least a part of the external light with which the upper surface of the light emitting device 100A is irradiated is diffused and reflected by the plurality of protrusions provided on the upper surface 5Aa and the upper surface 4Aa, so that the "shine" on the surface is reduced. The same as in the first embodiment. Further, the light extraction efficiency is improved by exposing a part of the first filler 52 from the upper surface 5Aa of the translucent member 5A, as in the first embodiment.

[発光装置の製造方法]
次に、第2実施形態に係る発光装置の製造方法について、図8A〜図8C及び図9を参照して説明する。
図9は、第2実施形態に係る発光装置の製造方法の手順を示すフローチャートである。
[Method of manufacturing light emitting device]
Next, a method of manufacturing the light emitting device according to the second embodiment will be described with reference to FIGS. 8A to 8C and FIG. 9.
FIG. 9 is a flowchart showing the procedure of the method for manufacturing the light emitting device according to the second embodiment.

第2実施形態に係る発光装置100Aの製造方法は、パッケージ準備工程S21と、発光素子実装工程S22と、透光性部材形成工程S23と、ブラスト加工処理工程S24と、を含んでいる。また、透光性部材形成工程S23は、樹脂供給工程S231と、波長変換物質沈降工程S232と、樹脂硬化工程S233と、を含んでいる。   The method for manufacturing the light emitting device 100A according to the second embodiment includes a package preparation step S21, a light emitting element mounting step S22, a translucent member forming step S23, and a blast processing step S24. Further, the translucent member forming step S23 includes a resin supply step S231, a wavelength conversion substance settling step S232, and a resin curing step S233.

パッケージ準備工程S21は、パッケージ2Aを準備する工程である。準備するパッケージの形状は異なるが、第1実施形態におけるパッケージ準備工程S11と同様の方法でパッケージ2Aを準備することができる。
なお、本工程で準備されるパッケージ2Aにおいて、遮光性部材4Aの上面4Aa近傍に配置されている第2充填剤42は、母材41で被覆されている。
The package preparation step S21 is a step of preparing the package 2A. Although the shape of the package to be prepared is different, the package 2A can be prepared by the same method as the package preparing step S11 in the first embodiment.
In the package 2A prepared in this step, the second filler 42 disposed near the upper surface 4Aa of the light shielding member 4A is covered with the base material 41.

発光素子実装工程S22は、パッケージ2Aの凹部2Aa内に発光素子1を実装する工程である。発光素子1は、第1実施形態における発光素子実装工程S12と同様の方法で行うことができる。
なお、本工程において、凹部2Aa内に保護素子8も実装する。
The light emitting element mounting step S22 is a step of mounting the light emitting element 1 in the recess 2Aa of the package 2A. The light emitting element 1 can be performed by the same method as the light emitting element mounting step S12 in the first embodiment.
In this step, the protective element 8 is also mounted in the recess 2Aa.

透光性部材形成工程S23は、凹部2Aa内に透光性部材5Aを形成する工程であり、前記したように、樹脂供給工程S231と波長変換物質沈降工程S232と樹脂硬化工程S233とを含んでいる。   The translucent member forming step S23 is a step of forming the translucent member 5A in the recess 2Aa, and as described above, includes the resin supply step S231, the wavelength conversion substance settling step S232, and the resin curing step S233. There is.

樹脂供給工程S231は、第1実施形態における樹脂供給工程S131と同様の方法で行うことができる。凹部2Aa内に供給する樹脂材料は、未硬化の母材51に、第1充填剤52と波長変換物質53とを含有するように調製する。また、波長変換物質53及び母材51は、波長変換物質53が未硬化の母材51よりも比重が大きくなるようにそれぞれの材料を選択することが好ましい。   The resin supply step S231 can be performed by the same method as the resin supply step S131 in the first embodiment. The resin material supplied into the recess 2Aa is prepared such that the uncured base material 51 contains the first filler 52 and the wavelength conversion substance 53. Further, it is preferable that the wavelength conversion substance 53 and the base material 51 are selected so that the wavelength conversion substance 53 has a larger specific gravity than the uncured base material 51.

波長変換物質沈降工程S232は、樹脂供給工程S231において、凹部2Aa内に未硬化の樹脂材料を供給した後、樹脂材料に含有されている波長変換物質53を沈降させる工程である。具体的には、未硬化の母材51よりも比重の大きな波長変換物質53が、重力によって沈降して、発光素子1やリード電極311,32Aの表面近傍に来るまで放置する工程である。   The wavelength conversion substance settling step S232 is a step of, in the resin supply step S231, supplying the uncured resin material into the recess 2Aa and then causing the wavelength conversion material 53 contained in the resin material to settle. Specifically, this is a step in which the wavelength conversion substance 53 having a larger specific gravity than the uncured base material 51 is settled by gravity and left until near the surface of the light emitting element 1 or the lead electrodes 311 and 32A.

樹脂硬化工程S233は、第1実施形態における樹脂硬化工程S132と同様に行うことができるため、説明は省略する。   Since the resin curing step S233 can be performed in the same manner as the resin curing step S132 in the first embodiment, the description thereof will be omitted.

ブラスト加工処理工程S24は、第1実施形態におけるブラスト加工処理工程S14と同様に行うことができるため、説明は省略する。
なお、波長変換物質53を沈降させない場合は、樹脂供給工程S231後に、速やかに樹脂硬化工程S233が行われる。
以上の工程を行うことで、発光装置100Aを製造することができる。
The blasting process step S24 can be performed in the same manner as the blasting process step S14 in the first embodiment, and thus the description thereof will be omitted.
When the wavelength conversion substance 53 is not allowed to settle, the resin curing step S233 is performed immediately after the resin supply step S231.
By performing the above steps, the light emitting device 100A can be manufactured.

次に、本発明の実施例について説明する。
図1Aに示した形態の発光装置及び図8Aに示した形態の発光装置を、それぞれ前記した製造方法で作製した。このとき、ブラスト加工処理の条件を変えて、複数のサンプルを作製した。
Next, examples of the present invention will be described.
The light emitting device of the form shown in FIG. 1A and the light emitting device of the form shown in FIG. 8A were manufactured by the above-described manufacturing method. At this time, a plurality of samples were prepared by changing the conditions of the blast processing.

(発光装置の形状及び材料:第1実施形態のサンプル)
・透光性部材:
母材:エポキシ樹脂(屈折率1.53)
第1充填剤:シリカ(SiO2)(屈折率1.46、粒径1.5μm、含有量40質量%)
・遮光性部材(光吸収性部材):
母材:ポリフタルアミド樹脂
第2充填剤:カーボンブラック(粒径3μm、含有量1質量%)
・パッケージ:
平面視での外形寸法:1辺が3mm
透光性部材の開口径:1辺が2.6mm
・発光素子:青色LED、緑色LED、赤色LEDを各1個実装
(Shape and Material of Light-Emitting Device: Sample of First Embodiment)
・ Translucent material:
Base material: Epoxy resin (refractive index 1.53)
First filler: silica (SiO 2 ) (refractive index 1.46, particle size 1.5 μm, content 40% by mass)
・ Light blocking member (light absorbing member):
Base material: polyphthalamide resin Second filler: carbon black (particle size 3 μm, content 1% by mass)
·package:
External dimensions in plan view: One side is 3 mm
Aperture diameter of translucent member: 2.6 mm on a side
-Light emitting element: 1 blue LED, 1 green LED, 1 red LED mounted

(発光装置の形状及び材料:第2実施形態のサンプル)
・透光性部材:
母材:シリコーン樹脂(屈折率1.52)
第1充填部材:シリカ(SiO2)(屈折率1.46、粒径6μm、含有量15質量%)
波長変換物質:YAG系蛍光体
・遮光性部材(光反射性部材):
母材:エポキシ樹脂
第2充填剤:TiO2(粒径0.3μm、含有量17質量%)
・パッケージ:
平面視での外形寸法:長辺が3mm、短辺が1.4mm
透光性部材の開口径:長辺が2.6mm、短辺が1.0mm
・発光素子:青色LEDを1個実装
(Shape and Material of Light-Emitting Device: Sample of Second Embodiment)
・ Translucent material:
Base material: Silicone resin (refractive index 1.52)
First filling member: silica (SiO 2 ) (refractive index 1.46, particle size 6 μm, content 15% by mass)
Wavelength conversion material: YAG phosphor / light-shielding member (light-reflecting member):
Base material: epoxy resin Second filler: TiO 2 (particle size 0.3 μm, content 17% by mass)
·package:
External dimensions in plan view: 3 mm long side, 1.4 mm short side
Opening diameter of translucent member: long side is 2.6 mm, short side is 1.0 mm
・ Light emitting element: 1 blue LED mounted

(ブラスト加工処理の条件:各実施形態のサンプルに共通)
・研磨液(スラリー):
溶媒:純水
研磨剤:アルミナ(Al23)(粒径3μm(D50)、含有量5体積%)
・投射角度:30°/90°
・投射方向:1方向/2方向/4方向
・ガン圧:0.2/0.3/0.4(MPa)
・加工処理速度:40mm/秒
上記の各条件で、空気圧を加えて研磨液をノズルから霧状に噴射することで、発光装置のサンプルの上面にブラスト加工処理を施した。
(Conditions for blast processing: common to the samples of each embodiment)
・ Polishing liquid (slurry):
Solvent: Pure water Abrasive: Alumina (Al 2 O 3 ) (particle size 3 μm (D50), content 5% by volume)
・ Projection angle: 30 ° / 90 °
・ Projection direction: 1 direction / 2 directions / 4 directions ・ Gun pressure: 0.2 / 0.3 / 0.4 (MPa)
-Processing speed: 40 mm / sec Under each of the conditions described above, a blasting process was performed on the upper surface of the sample of the light emitting device by applying air pressure and spraying the polishing liquid in a mist form from the nozzle.

(評価)
ブラスト加工処理の条件を変えて作製した各サンプルについて、ブラスト加工処理を行わないサンプルを基準としたときの、光出力、上面の光反射防止効果、上面の表面粗さ、フィラー(第1充填剤及び第2充填剤)の脱落の有無、について確認した。
何れの条件でブラスト加工処理を行ったサンプルも、加工面においてフィラーが露出していることが確認された。
ガン圧を高くするほどフィラーの露出量が多くなり、表面からフィラーが脱落しているサンプルも確認されたが、他の条件が同じ場合は、ガン圧が高いほど光出力(光束)が高くなることが確認された。光出力の向上は、第1実施形態の各サンプルで1〜2.9%、第2実施形態の各サンプルで、0.3〜0.9%である。
(Evaluation)
For each sample prepared by changing the conditions of the blasting treatment, the light output, the light reflection preventing effect of the upper surface, the surface roughness of the upper surface, the filler (the first filler And whether or not the second filler) has fallen off.
It was confirmed that the filler was exposed on the processed surface of the samples that were blasted under any of the conditions.
The higher the gun pressure, the more the filler was exposed, and some samples were found to have the filler falling off the surface. However, under other conditions, the higher the gun pressure, the higher the light output (luminous flux). It was confirmed. The improvement of the light output is 1 to 2.9% in each sample of the first embodiment and 0.3 to 0.9% in each sample of the second embodiment.

投射角度を90°、すなわち、加工面に垂直に研磨剤を投射した場合は、同じガン圧で比較すると、投射角度を30°とした場合よりもフィラーの露出量が少なかった。
また、投射角度を30°としたときに、一方向から投射した場合は、投射方向に対向するフィラーの面は露出しているが、反対側の面は、フィラー自身の陰になるため、あまり露出していなかった。投射方向を二方向、更には四方向とすることで、フィラーの露出量が増加し、投射角度90°としたときよりも露出量が増加した。投射角度を垂直よりも小さくすることで、研磨剤が樹脂を剥ぎ取り易くなったものと考えられる。投射角度を90°、ガン圧を0.4MPaとしたときのサンプルと、投射角度を30°、ガン圧を0.2MPa、投射方向を四方向としたときにサンプルとが、光出力が同程度に向上することが確認できた。
When the projection angle was 90 °, that is, when the abrasive was projected perpendicularly to the machined surface, the amount of filler exposed was smaller than when the projection angle was 30 ° when compared at the same gun pressure.
Also, when the projection angle is set to 30 °, when the projection is performed from one direction, the surface of the filler facing the projection direction is exposed, but the surface on the opposite side is a shadow of the filler itself, so it is not so much. It wasn't exposed. By setting the projection direction to two directions, and further to four directions, the exposure amount of the filler increased, and the exposure amount increased compared to when the projection angle was 90 °. It is considered that by making the projection angle smaller than the vertical angle, the abrasive easily peeled off the resin. The light output is similar between the sample when the projection angle is 90 ° and the gun pressure is 0.4 MPa, and the sample when the projection angle is 30 °, the gun pressure is 0.2 MPa, and the projection directions are four directions. It was confirmed that it could be improved.

また、各サンプルとも、ブラスト加工処理を施さないサンプルに比べて、外光の反射防止効果があることが、目視で確認できた。
なお、各サンプルとも、上面の表面粗さ(算術平均粗さRa)は、ブラスト加工処理を施してないサンプルと略同程度であった。つまり、ブラスト加工処理によって樹脂部材である透光性部材の本体に対して大きな凹凸ができるようなダメージを与えることなく、フィラーの表面を被覆する樹脂のみが除去されていることが確認できた。
Further, it was visually confirmed that each sample has an effect of preventing reflection of external light as compared with the sample not subjected to the blasting treatment.
The surface roughness (arithmetic mean roughness Ra) of the upper surface of each sample was about the same as that of the sample not subjected to the blasting treatment. That is, it was confirmed that only the resin coating the surface of the filler was removed by the blasting treatment without damaging the main body of the light-transmissive member, which is a resin member, to form large irregularities.

[形態1]
基台と、前記基台に載置される発光素子と、前記発光素子を覆う透光性部材と、を備え、前記透光性部材及び前記基台は、それぞれの上面に複数の突起を有し、前記透光性部材は、前記透光性部材の母材よりも屈折率の低い透光性の第1充填剤の粒子を含有し、前記第1充填剤の粒子の一部が、前記透光性部材の上面において前記透光性部材の母材から露出している発光装置。
[形態2]
前記基台は、リード電極及び前記リード電極を固定する遮光性部材を備える、形態1に記載の発光装置。
[形態3]
前記基台は、上面に開口を有する凹部を成し、前記発光素子が前記凹部内に載置され、前記凹部を囲む側壁の上面に前記突起が形成されている、形態1又は形態2に記載の発光装置。
[形態4]
前記第1充填剤と前記透光性部材の母材との屈折率差が、0.03以上である形態1乃至形態3の何れか一項に記載の発光装置。
[形態5]
前記透光性部材及び前記遮光性部材は、母材として透光性を有する樹脂を用いる形態1乃至形態4の何れか一項に記載の発光装置。
[形態6]
前記透光性部材の上面に設けられる前記突起は、前記第1充填剤の粒子に起因する形態1乃至形態5の何れか一項に記載の発光装置。
[形態7]
前記第1充填剤は、空気透過法又はFisher−SubSieve−Sizers―No.で規定される粒径が、0.5μm以上10μm以下である形態6に記載の発光装置。
[形態8]
前記透光性部材の上面は、JIS規格B0601:2013で規定される算術平均粗さRaが、0.095μm以上0.220μm以下である形態1乃至形態7の何れか一項に記載の発光装置。
[形態9]
前記第1充填剤は、SiO2である形態1乃至形態8の何れか一項に記載の発光装置。
[形態10]
前記透光性部材の母材は、エポキシ樹脂、シリコーン樹脂から選択される材料からなる形態1乃至形態9の何れか一項に記載の発光装置。
[形態11]
前記遮光性部材は、樹脂からなる母材に第2充填剤の粒子を含有し、前記第2充填剤の粒子の一部が、前記遮光性部材の上面において前記遮光性部材の母材から露出しており、前記遮光性部材の上面に設けられる前記突起は、前記第2充填剤の粒子に起因する形態1乃至形態10の何れか一項に記載の発光装置。
[形態12]
前記透光性部材は、前記発光素子からの光を異なる波長の光に変換する波長変換物質の粒子を更に含有し、
前記波長変換物質の粒子は、前記透光性部材の母材から露出しないように設けられている形態1乃至形態11の何れか一項に記載の発光装置。
[形態13]
基台と、前記基台に載置される発光素子と、前記発光素子を覆う透光性部材と、を備える発光装置の製造方法であって、前記基台に前記発光素子が載置された後に、前記発光素子を覆う前記透光性部材を形成する工程と、前記透光性部材及び前記基台のそれぞれの上面にブラスト加工処理を施す工程と、を含み、前記透光性部材を形成する工程において、前記透光性部材は、母材として透光性樹脂を用い、当該母材よりも屈折率の低い透光性の第1充填剤の粒子を含有した樹脂材料を用いて形成され、前記ブラスト加工処理を施す工程によって、前記透光性部材の上面において、前記第1充填剤の粒子の一部を前記透光性部材の母材から露出させる発光装置の製造方法。
[形態14]
前記基台は、リード電極及び前記リード電極を固定する遮光性部材を備える、形態13に記載の発光装置の製造方法。
[形態15]
前記基台は、上面に開口を有する凹部を成しており、前記凹部内に前記発光素子が載置されている、形態13又は形態14に記載の発光装置の製造方法。
[形態16]
前記第1充填剤の粒子は、空気透過法又はFisher−SubSieve−Sizers―No.で規定される粒径が、0.5μm以上10μm以下である形態13乃至形態15の何れか一項に記載の発光装置の製造方法。
[形態17]
前記ブラスト加工処理は、水と研磨剤とを含有するスラリーを投射するウェットブラスト加工処理である形態13乃至形態16の何れか一項に記載の発光装置の製造方法。
[形態18]
前記ブラスト加工処理は、前記透光性部材の上面に対して、15°以上45°以下の角度で前記スラリーを投射する形態17に記載の発光装置の製造方法。
[形態19]
前記ブラスト加工処理は、平面視において異なる2以上の方向から、前記スラリーを順次に投射する形態18に記載の発光装置の製造方法。
[形態20]
前記遮光性部材は、母材として樹脂を用い、当該母材に第2充填剤の粒子を分散した樹脂材料を用いて形成され、
前記ブラスト加工処理によって、前記遮光性部材の上面において、前記第2充填剤の粒子の一部を前記遮光性部材の母材から露出させる形態13乃至形態19の何れか一項に記載に発光装置の製造方法。
[形態21]
前記透光性部材は、前記第1充填剤の粒子に加えて、前記発光素子からの光を異なる波長の光に変換する波長変換物質の粒子を前記透光性部材の母材に更に含有した樹脂材料を用いて形成され、
前記透光性部材を形成する工程において、前記第1充填剤の粒子及び前記波長変換物質の粒子を含有する未硬化の前記樹脂材料を前記凹部内に供給し、前記波長変換物質の粒子が沈降した後で、前記樹脂材料を硬化させる形態13乃至形態20の何れか一項に記載の発光装置の製造方法。
[Form 1]
A base, a light emitting element mounted on the base, and a translucent member covering the light emitting element are provided, and the translucent member and the base have a plurality of protrusions on respective upper surfaces. The translucent member contains particles of a translucent first filler having a lower refractive index than the base material of the translucent member, and a part of the particles of the first filler is A light emitting device, which is exposed from a base material of the translucent member on an upper surface of the translucent member.
[Form 2]
The light emitting device according to aspect 1, wherein the base includes a lead electrode and a light blocking member that fixes the lead electrode.
[Form 3]
3. The form 1 or form 2, wherein the base has a concave portion having an opening on an upper surface, the light emitting element is placed in the concave portion, and the protrusion is formed on an upper surface of a side wall surrounding the concave portion. Light emitting device.
[Form 4]
4. The light emitting device according to any one of modes 1 to 3, wherein a difference in refractive index between the first filler and the base material of the translucent member is 0.03 or more.
[Form 5]
The light emitting device according to any one of modes 1 to 4, wherein a resin having a light-transmitting property is used as a base material for the light-transmitting member and the light-shielding member.
[Form 6]
The light emitting device according to any one of modes 1 to 5, wherein the protrusion provided on the upper surface of the translucent member is caused by particles of the first filler.
[Form 7]
The first filler may be an air permeation method or Fisher-SubSieve-Sizers-No. 7. The light-emitting device according to aspect 6, wherein the particle size defined by is 0.5 μm or more and 10 μm or less.
[Form 8]
The light emitting device according to any one of modes 1 to 7, wherein the upper surface of the translucent member has an arithmetic average roughness Ra defined by JIS B0601: 2013 of 0.095 μm or more and 0.220 μm or less. .
[Form 9]
9. The light emitting device according to any one of modes 1 to 8, wherein the first filler is SiO 2 .
[Form 10]
10. The light emitting device according to any one of modes 1 to 9, wherein a base material of the translucent member is made of a material selected from an epoxy resin and a silicone resin.
[Form 11]
The light shielding member contains particles of a second filler in a base material made of resin, and a part of the particles of the second filler is exposed from the base material of the light shielding member on the upper surface of the light shielding member. 11. The light emitting device according to any one of modes 1 to 10, wherein the protrusion provided on the upper surface of the light shielding member is caused by particles of the second filler.
[Form 12]
The translucent member further contains particles of a wavelength conversion material that converts light from the light emitting element into light of different wavelengths,
12. The light emitting device according to any one of modes 1 to 11, wherein the particles of the wavelength conversion substance are provided so as not to be exposed from the base material of the translucent member.
[Mode 13]
A method of manufacturing a light emitting device comprising a base, a light emitting element mounted on the base, and a translucent member covering the light emitting element, wherein the light emitting element is mounted on the base. After that, the step of forming the translucent member covering the light emitting element, and the step of subjecting the upper surfaces of the translucent member and the base to a blasting process are performed to form the translucent member. In the step of forming, the translucent member is formed by using a translucent resin as a base material and a resin material containing particles of a translucent first filler having a lower refractive index than the base material. A method for manufacturing a light emitting device, wherein a part of the particles of the first filler is exposed from the base material of the transparent member on the upper surface of the transparent member by the step of performing the blasting process.
[Mode 14]
14. The method for manufacturing a light emitting device according to mode 13, wherein the base includes a lead electrode and a light shielding member that fixes the lead electrode.
[Form 15]
15. The method for manufacturing a light emitting device according to mode 13 or mode 14, wherein the base has a recess having an opening on an upper surface, and the light emitting element is mounted in the recess.
[Mode 16]
The particles of the first filler may be air permeation or Fisher-SubSieve-Sizers-No. 16. The method for manufacturing a light-emitting device according to any one of modes 13 to 15, wherein the particle size defined by is 0.5 μm or more and 10 μm or less.
[Form 17]
The method for manufacturing a light-emitting device according to any one of modes 13 to 16, wherein the blasting treatment is a wet blasting treatment in which a slurry containing water and an abrasive is sprayed.
[Form 18]
18. The method for manufacturing a light-emitting device according to mode 17, wherein the blasting treatment projects the slurry at an angle of 15 ° or more and 45 ° or less on the upper surface of the translucent member.
[Form 19]
19. The method for manufacturing a light-emitting device according to mode 18, wherein the blasting treatment sequentially projects the slurry from two or more different directions in a plan view.
[Form 20]
The light-shielding member is formed by using a resin as a base material and a resin material in which particles of the second filler are dispersed in the base material,
20. The light emitting device according to any one of modes 13 to 19, wherein a part of the particles of the second filler is exposed from the base material of the light blocking member on the upper surface of the light blocking member by the blasting treatment. Manufacturing method.
[Form 21]
The translucent member further contains, in addition to the particles of the first filler, particles of a wavelength conversion substance that converts light from the light emitting element into light of different wavelengths in the base material of the translucent member. Formed using resin material,
In the step of forming the translucent member, the uncured resin material containing the particles of the first filler and the particles of the wavelength conversion material is supplied into the recess, and the particles of the wavelength conversion material settle. 21. The method for manufacturing a light emitting device according to any one of modes 13 to 20, wherein the resin material is cured.

本開示の実施形態に係る発光装置は、液晶ディスプレイのバックライト光源、各種照明器具、大型ディスプレイ、広告や行き先案内などの各種表示装置、更には、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナなどにおける画像読取装置、プロジェクタ装置などに利用することができる。   A light emitting device according to an embodiment of the present disclosure is used in a backlight light source of a liquid crystal display, various lighting devices, a large-sized display, various display devices such as advertisements and destination guidance, and further in digital video cameras, facsimiles, copiers, scanners, and the like. It can be used for an image reading device, a projector device, and the like.

1 発光素子
11,12,13 発光素子
2,2A パッケージ(基台)
2a,2Aa 凹部
2b,2Ab 底面
3,3A リード電極
31,32,33,34 リード電極
31A,32A リード電極
4,4A 遮光性部材
4a,4Aa 上面
4b 切り欠き部
41 母材
42 第2充填剤
5,5A 透光性部材
5a,5Aa 上面
51 母材
52,52a,52b 第1充填剤
53 波長変換物質
6 ワイヤ
71 ディスペンサ
72 加熱装置
73 ノズル
73a 投射角度
74 研磨剤
100 発光装置
200 画像表示装置
210 回路基板
220 保護部材
230 枠部材
230a 開口部
1 Light emitting element 11, 12, 13 Light emitting element 2, 2A package (base)
2a, 2Aa Recesses 2b, 2Ab Bottom surface 3,3A Lead electrodes 31, 32, 33, 34 Lead electrodes 31A, 32A Lead electrodes 4, 4A Light-shielding members 4a, 4Aa Upper surface 4b Cutout portion 41 Base material 42 Second filler 5 , 5A Translucent member 5a, 5Aa Upper surface 51 Base material 52, 52a, 52b First filler 53 Wavelength conversion material 6 Wire 71 Dispenser 72 Heating device 73 Nozzle 73a Projection angle 74 Abrasive 100 Light emitting device 200 Image display device 210 Circuit Substrate 220 Protective member 230 Frame member 230a Opening

Claims (11)

底面と側壁を持つ凹部を有する基台と、
前記基台の凹部の底面に載置される発光素子と、
前記発光素子を覆う透光性部材と、を備え、
前記透光性部材は、前記透光性部材の母材よりも屈折率の低い透光性の第1充填剤の粒子を含有し、
前記透光性部材の上面に、前記第1充填剤の粒子に起因する凹凸形状である複数の第1突起を有し、前記第1充填剤の粒子の一部が、前記透光性部材の上面において前記透光性部材の母材から露出しており、
前記透光性部材の上面は、JIS規格B0601:2013で規定される算術平均粗さRaが、0.095μm以上0.220μm以下であり、
前記基台は、リード電極及び前記リード電極を固定する遮光性部材を備え、
前記遮光性部材は、前記基台の凹部の側壁の少なくとも一部を構成し、
前記遮光性部材は、透光性を有する樹脂を母材とし、第2充填剤の粒子を含有した樹脂材料であり、
前記基台の凹部の側壁の上面である前記遮光性部材の上面に、前記第2充填剤の粒子に起因する複数の第2突起が設けられており、前記第2充填剤の粒子の一部が前記遮光性部材の前記母材から露出している発光装置。
A base having a recess having a bottom surface and side walls ,
A light emitting element mounted on the bottom surface of the recess of the base ;
E Bei and a light transmissive member covering the light emitting element,
The translucent member contains particles of a translucent first filler having a refractive index lower than that of the base material of the translucent member,
On the upper surface of the translucent member, a plurality of first protrusions having an uneven shape due to the particles of the first filler are provided, and a part of the particles of the first filler is a part of the translucent member. Exposed from the base material of the transparent member on the upper surface,
The upper surface of the translucent member has an arithmetic average roughness Ra defined by JIS B0601: 2013 of 0.095 μm or more and 0.220 μm or less ,
The base includes a lead electrode and a light-shielding member that fixes the lead electrode,
The light shielding member constitutes at least a part of a side wall of the recess of the base,
The light-shielding member is a resin material containing a resin having a light-transmitting property as a base material and containing particles of a second filler,
A plurality of second protrusions caused by the particles of the second filler are provided on the upper surface of the light shielding member, which is the upper surface of the side wall of the recess of the base, and a part of the particles of the second filler is provided. A light-emitting device in which is exposed from the base material of the light-shielding member .
前記基台の凹部の側壁の上面である前記遮光性部材の上面は、JIS規格B0601:2013で規定される算術平均粗さRaで、0.090μm以上0.210μm以下である請求項に記載の発光装置。 Upper surface of the light-shielding member is a top of the side wall of the base of the recess, JIS Standard B0601: an arithmetic mean roughness Ra defined by 2013, according to claim 1 is at least 0.090 0.210Myuemu less Light emitting device. 前記第1充填剤は、空気透過法又はFisher−SubSieve−Sizers―No.で規定される粒径が、0.5μm以上10μm以下である請求項1又は請求項2に記載の発光装置。 The first filler may be an air permeation method or Fisher-SubSieve-Sizers-No. 3. The light emitting device according to claim 1 , wherein the particle size defined by is 0.5 μm or more and 10 μm or less. 前記第1充填剤は、SiO2である請求項1乃至請求項の何れか一項に記載の発光装置。 Wherein the first filler, the light emitting device according to any one of claims 1 to 3 is SiO 2. 前記透光性部材の母材は、前記第1充填剤よりも屈折率が高い、エポキシ樹脂、シリコーン樹脂から選択される材料からなる請求項1乃至請求項の何れか一項に記載の発光装置。 The light emission according to any one of claims 1 to 4 , wherein the base material of the translucent member is made of a material having a higher refractive index than the first filler and selected from an epoxy resin and a silicone resin. apparatus. 前記第2充填剤は、TiO2,Al23,ZrO2,MgOのいずれかである請求項に記載の発光装置。 The light emitting device according to claim 1 , wherein the second filler is any one of TiO 2 , Al 2 O 3 , ZrO 2 , and MgO. 記凹部の内側面は、前記発光素子が発する光の波長域において反射率が70%以上である請求項1乃至請求項の何れか一項に記載の発光装置。 Anteromedial surface of SL recess, the light emitting device according to any one of claims 1 to 6 reflectance is 70% or more in the wavelength range of the light the light emitting element emits. リード電極及び前記リード電極を固定する遮光性部材を備えると共に底面と側壁を持つ凹部を有する基台と、前記基台の凹部の底面に載置される発光素子と、前記発光素子を覆う透光性部材と、を備え、前記遮光性部材は、前記基台の凹部の側壁の少なくとも一部を構成し、透光性を有する樹脂を母材とし、第2充填剤の粒子を含有した樹脂材料である発光装置の製造方法であって、
前記基台に前記発光素子が載置された後に、前記発光素子を覆う前記透光性部材を形成する工程と、
前記透光性部材及び前記基台のそれぞれの上面にブラスト加工処理を施す工程と、を含み、
前記透光性部材を形成する工程において、前記透光性部材は、母材として透光性樹脂を用い、当該母材よりも屈折率の低い透光性の第1充填剤の粒子を含有した樹脂材料を用いて形成され、
前記第1充填剤の粒子は、空気透過法又はFisher−SubSieve−Sizers―No.で規定される粒径が、0.5μm以上10μm以下であり、
前記ブラスト加工処理を施す工程によって、前記透光性部材の上面に前記第1充填剤の粒子に起因する凹凸形状である複数の第1突起を有するように、前記第1充填剤の粒子の一部を、前記透光性部材の上面において前記透光性部材の母材から露出させると共に、
前記基台の凹部の側壁の上面である前記遮光性部材の上面に、前記第2充填剤の粒子に起因する複数の第2突起が設けられるように、前記第2充填剤の粒子の一部を、前記遮光性部材の前記母材から露出させる発光装置の製造方法。
A base having a lead electrode and a light-shielding member for fixing the lead electrode and having a recess having a bottom surface and a sidewall, a light emitting element mounted on the bottom surface of the recess of the base , and a light-transmitting material covering the light emitting element. A light-transmitting member , the light-shielding member constitutes at least a part of a side wall of the concave portion of the base, a resin material having a light-transmitting property is used as a base material, and a resin material containing particles of the second filler. a method of manufacturing a der Ru emitting device,
A step of forming the translucent member covering the light emitting element after the light emitting element is mounted on the base,
A step of performing a blasting process on the respective upper surfaces of the translucent member and the base,
In the step of forming the translucent member, the translucent member uses a translucent resin as a base material and contains particles of a translucent first filler having a lower refractive index than the base material. Formed using resin material,
The particles of the first filler may be air permeation or Fisher-SubSieve-Sizers-No. Has a particle size of 0.5 μm or more and 10 μm or less,
The step of performing the blasting treatment, the upper surface of the translucent member, so as to have a plurality of first projections are uneven due to the particles of the first filler, the particles of the first filler Part of the upper surface of the transparent member is exposed from the base material of the transparent member ,
Part of the particles of the second filler so that a plurality of second protrusions caused by the particles of the second filler are provided on the upper surface of the light-shielding member, which is the upper surface of the side wall of the recess of the base. A method for manufacturing a light emitting device , wherein the light is exposed from the base material of the light shielding member .
前記ブラスト加工処理は、前記透光性部材の上面に対して、15°以上45°以下の角度でスラリーを投射する請求項に記載の発光装置の製造方法。 The method for manufacturing a light-emitting device according to claim 8 , wherein the blasting treatment projects the slurry onto the upper surface of the translucent member at an angle of 15 ° or more and 45 ° or less. 前記ブラスト加工処理は、平面視において異なる2以上の方向から、前記スラリーを順次に投射する請求項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 9 , wherein the blasting treatment sequentially projects the slurry from two or more different directions in a plan view. 前記ブラスト加工処理は、水と研磨剤とを含有するスラリーを投射するウェットブラスト加工処理であり、前記研磨剤の粒径は、3μm以上14μm以下である請求項乃至請求項10の何れか一項に記載の発光装置の製造方法。 The blasting process is a wet blasting process for projecting a slurry containing water and an abrasive, the particle size of the abrasive, any one of claims 8 to 10 is 3μm or more 14μm or less Item 8. A method for manufacturing a light-emitting device according to item.
JP2018192896A 2018-10-11 2018-10-11 Light emitting device and manufacturing method thereof Active JP6687082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192896A JP6687082B2 (en) 2018-10-11 2018-10-11 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192896A JP6687082B2 (en) 2018-10-11 2018-10-11 Light emitting device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016109433A Division JP6418200B2 (en) 2016-05-31 2016-05-31 Light emitting device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020065649A Division JP7078863B2 (en) 2020-04-01 2020-04-01 Light emitting device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019004191A JP2019004191A (en) 2019-01-10
JP6687082B2 true JP6687082B2 (en) 2020-04-22

Family

ID=65008199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192896A Active JP6687082B2 (en) 2018-10-11 2018-10-11 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6687082B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4452464B2 (en) * 2003-08-08 2010-04-21 スタンレー電気株式会社 Light emitting diode
JP3881653B2 (en) * 2003-12-25 2007-02-14 京セラ株式会社 Light emitting device
JP4167717B1 (en) * 2007-11-21 2008-10-22 E&E Japan株式会社 Light emitting device and manufacturing method thereof
EP2472578B1 (en) * 2010-12-28 2020-06-03 Nichia Corporation Light emitting device
JP6107510B2 (en) * 2013-07-25 2017-04-05 日亜化学工業株式会社 Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019004191A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
TWI722193B (en) Light-emitting device and method for manufacturing the same
EP2573812B1 (en) Light-emitting apparatus
JP5013905B2 (en) Semiconductor light emitting device
US10680149B2 (en) Method for manufacturing light-emitting device
JP7174216B2 (en) Light-emitting modules and integrated light-emitting modules
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
US11168865B2 (en) Light-emitting device and backlight
JP6387787B2 (en) LIGHT EMITTING DEVICE, PACKAGE AND METHOD FOR MANUFACTURING THE SAME
WO2011016295A1 (en) Light emitting device and method for manufacturing light emitting device
CN109616567B (en) Light emitting device
US10741733B2 (en) Light emitting device
JP7078863B2 (en) Light emitting device and its manufacturing method
JP2011014555A (en) Light-emitting device
JP6687082B2 (en) Light emitting device and manufacturing method thereof
CN111916471A (en) LED light source substrate and lighting device
JP2007207939A (en) Light emitting device
JP6680081B2 (en) Light emitting device and manufacturing method thereof
JP6791105B2 (en) Manufacturing method of light emitting device
KR20120034484A (en) Light emitting device package

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6687082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250