JP4452464B2 - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP4452464B2
JP4452464B2 JP2003290032A JP2003290032A JP4452464B2 JP 4452464 B2 JP4452464 B2 JP 4452464B2 JP 2003290032 A JP2003290032 A JP 2003290032A JP 2003290032 A JP2003290032 A JP 2003290032A JP 4452464 B2 JP4452464 B2 JP 4452464B2
Authority
JP
Japan
Prior art keywords
light
led chip
led
emitted
transmitting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003290032A
Other languages
Japanese (ja)
Other versions
JP2005064111A (en
Inventor
光範 原田
一彦 上野
佳織 立花
崇 戎谷
安 谷田
雅生 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2003290032A priority Critical patent/JP4452464B2/en
Publication of JP2005064111A publication Critical patent/JP2005064111A/en
Application granted granted Critical
Publication of JP4452464B2 publication Critical patent/JP4452464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光ダイオードに関するものであり、詳しくは発光ダイオードチップから出射した光と、発光ダイオードチップから出射して蛍光体によって波長変換された光との加法混色によって任意の発光色を発する発光ダイオードに関する。 The present invention relates to light emitting diodes, and more particularly that Hassu the light emitted from the light emitting diode chip, any emission color by additive color mixing of the wavelength converted light by the phosphor is emitted from the light emitting diode chip emitting The present invention relates to a photodiode.

発光ダイオード(LED)は半導体を材料とする発光素子であり、p型半導体とn型半導体を接合させて順方向にバイアス電圧を印加することにより接合部(活性層)で電気エネルギーが光エネルギーに変換されて光を発するという原理のものである。LEDのピーク発光波長は半導体材料によって異なるが、近紫外〜可視光〜近赤外の領域にあり、発光スペクトルは急峻な特性を有している。   A light-emitting diode (LED) is a light-emitting element made of a semiconductor. By applying a bias voltage in the forward direction by bonding a p-type semiconductor and an n-type semiconductor, electrical energy is converted into light energy at the junction (active layer). It is based on the principle that it is converted to emit light. The peak emission wavelength of the LED varies depending on the semiconductor material, but is in the near ultraviolet to visible light to near infrared region, and the emission spectrum has a steep characteristic.

また、LEDの発光体(LEDチップ)は、1辺の長さが0.5mm程度の6面体(サイコロ状)の形状をしており、小さくて発光光量が少なく、点光源に近い光学特性を有している。したがって、このような特性のLEDチップを光源にした表示素子を設計・製作するに当たっては、LEDチップの活性層で発光された光の量に対するLEDチップの光出射面からLEDチップ外に出射される光の量の割合(外部量子効率)を高め、且つLEDチップから出射される光を一方向に集めてLEDの軸上光度を上げるような手法が施されている。   The LED light emitter (LED chip) has a hexahedron shape with a side length of about 0.5 mm, which is small, has a small amount of emitted light, and has optical characteristics close to a point light source. Have. Therefore, when designing and manufacturing a display element using an LED chip having such characteristics as a light source, the light is emitted from the light emitting surface of the LED chip to the outside of the LED chip with respect to the amount of light emitted from the active layer of the LED chip. A technique has been applied in which the ratio of the amount of light (external quantum efficiency) is increased and the light emitted from the LED chip is collected in one direction to increase the on-axis luminous intensity of the LED.

具体的には、基板上に配設された一対の電極の一方に導電性接着剤を介してLEDチップを載置して電気的導通を図り、他方の電極には一方の端部がLEDチップに接続されたワイヤの他方の端部を接続して同様に電気的導通を図る。そしてLEDチップから光を出射する光出射面を形成する半導体材料より屈折率の高い光透過性樹脂によってLEDチップの上方にレンズを形成してLEDチップ及びワイヤを樹脂封止する。ここでLEDチップ及びワイヤを光透過性樹脂によって封止する目的は、LEDチップ及びワイヤを振動、衝撃等の機械的応力や水分等の環境条件から保護し、LEDチップの活性層で発光された光の量に対するLEDチップの光出射面からLEDチップ外に出射される光の量の割合(外部量子効率)を高め、LEDチップの光出射面から出射されて光透過性樹脂内部を導光してレンズ内面に至った光を、レンズの光出射面で屈折させて一方向に集めるように出射させることによってLEDの光軸方向の輝度を上げるためのものである。   Specifically, an LED chip is placed on one of a pair of electrodes disposed on a substrate via a conductive adhesive to achieve electrical conduction, and one end of the other electrode is an LED chip. The other end of the wire connected to is connected to achieve electrical conduction in the same manner. Then, a lens is formed above the LED chip with a light-transmitting resin having a refractive index higher than that of the semiconductor material forming the light emitting surface that emits light from the LED chip, and the LED chip and the wire are resin-sealed. Here, the purpose of sealing the LED chip and the wire with a light-transmitting resin is to protect the LED chip and the wire from mechanical conditions such as vibration and impact and environmental conditions such as moisture, and to emit light in the active layer of the LED chip. The ratio (external quantum efficiency) of the amount of light emitted outside the LED chip from the light emitting surface of the LED chip to the amount of light is increased, and the light emitted from the light emitting surface of the LED chip is guided inside the light-transmitting resin. The light reaching the inner surface of the lens is refracted by the light exit surface of the lens and emitted so as to be collected in one direction, thereby increasing the brightness in the optical axis direction of the LED.

このようなLEDの基本構成に基づいて、一対の電極を介してLEDチップに順方向電圧を印加することによってLEDチップで発光されてLEDチップから出射された光を蛍光体に照射して励起し、照射された光の波長よりも長波長に波長変換された光とLEDチップから出射された光との加法混色によって白色系の光色を呈するようなLEDが提案されている。具体的な構造は、外部からLEDチップに電力を供給するための一対の電極の一方にエポキシ樹脂、シリコーン樹脂、ポリイミド樹脂等のバインダに金、銀、銅、アルミニウム等の無機部材を分散した接着剤を介してLEDチップを載置すると同時に、LEDチップの上面に設けられた一対の電極(アノード及びカソード)夫々に接続された一対のワイヤの一方の端部を同一の電極に接続して電気的導通を図り、他方のワイヤの端部を他方の電極に接続して同様に電気的導通を図る。そして、エラストマー或いはゲル状シリコーン樹脂、アモルファスフッ素樹脂、ポリイミド樹脂等のバインダに蛍光体を分散させた波長変換部材でLEDチップを被覆し、更にそれを覆うように光透過性樹脂からなるモールド部材で封止するものである。そしてこのよう構成のLEDの外観形状は、一対のリードの一方の端部にLEDチップを載置して砲弾形の光透過性樹脂レンズで封止し、プリント基板のスルーホールにリードを挿入して部品面の反対方向から半田付固定して実装するタイプ(縦型LED)と、平面基板上にLEDチップを載置して光透過性樹脂で封止し、プリント基板の部品面に半田付固定して実装するタイプ(表面実装型LED)との2つに大別される。
(例えば、特許文献1参照。)。
特開平10−228249号公報(第2−7頁、図1−図2)
Based on such a basic configuration of an LED, a forward voltage is applied to the LED chip through a pair of electrodes, and the phosphor emits light emitted from the LED chip and emitted from the LED chip to excite the phosphor. There has been proposed an LED that exhibits a white light color by additive color mixing of light that has been converted to a wavelength longer than the wavelength of the irradiated light and light emitted from the LED chip. The specific structure is that one of a pair of electrodes for supplying power to the LED chip from the outside is bonded with an inorganic member such as gold, silver, copper, or aluminum dispersed in a binder such as epoxy resin, silicone resin, polyimide resin, etc. At the same time as placing the LED chip via the agent, one end of a pair of wires connected to each of the pair of electrodes (anode and cathode) provided on the upper surface of the LED chip is connected to the same electrode to Electrical conduction is achieved by connecting the end of the other wire to the other electrode. The LED chip is covered with a wavelength conversion member in which a phosphor is dispersed in a binder such as an elastomer or a gel-like silicone resin, an amorphous fluororesin, or a polyimide resin, and further a mold member made of a light-transmitting resin so as to cover it. It is what is sealed. The external shape of the LED having such a configuration is such that an LED chip is placed on one end of a pair of leads, sealed with a bullet-shaped light-transmitting resin lens, and the lead is inserted into the through hole of the printed circuit board. The LED chip is mounted on a flat board and sealed with a light-transmitting resin, and soldered to the component side of the printed circuit board. It is roughly divided into two types, that is, a fixed mounting type (surface mounting type LED).
(For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 10-228249 (page 2-7, FIG. 1 to FIG. 2)

上述した白色系の光色を発するLEDは、蛍光体を分散したバインダの材質とバインダと接触して界面を形成するモールド部材との材質が異なるため(モールド部材となる光透過性樹脂の材質はエポキシ樹脂或いはガラスが一般的である)モールド部材が加熱硬化されて冷却するときの収縮率の違いによってバインダとモールド部材との界面に剥離が生ずることになる。その結果、バインダとモールド部材との間に間隙が発生し、LEDチップから出射された光及びLEDチップから出射されて蛍光体で波長変換された光とがモールド部材の入射面に至る光路で間隙によって低減されレンズの内面に至るまでに光量が減少することになる。また、バインダーとモールド部材との界面の剥離によって機械的強度が弱くなり、使用環境によっては破損の要因となる可能性もあり、信頼性を損なうものとなる。   The LED emitting white light color described above is different in the material of the binder in which the phosphor is dispersed and the material of the mold member that contacts the binder to form the interface (the material of the light-transmitting resin that becomes the mold member is Separation occurs at the interface between the binder and the mold member due to the difference in shrinkage when the mold member is heated and cured and cooled. As a result, a gap is generated between the binder and the mold member, and the light emitted from the LED chip and the light emitted from the LED chip and wavelength-converted by the phosphor are transmitted along the optical path to the entrance surface of the mold member. As a result, the amount of light decreases until reaching the inner surface of the lens. In addition, the mechanical strength is weakened due to the peeling of the interface between the binder and the mold member, which may cause damage depending on the use environment, and the reliability is impaired.

また、発光ダイオードの性能を評価する光学特性として光度、輝度、光束発散度等がある。これらの測光量は光源から放射された光束が一定の範囲内(光度、輝度については単位立体角当たり、光束発散度については単位面積当たり)にどれほど存在するかを表すもので、光源から放射される光束が同じであれば、これらの測光量の値が大きいほど光源から放射された光が効率良く集められたことになる。これを上述した白色系光色の縦型LEDに当て嵌めてみると、LEDチップから出射される光の出射方向はLEDチップの光出射面の上方全域に亘っており、内側面を反射面とする擂鉢状の凹部の底面にLEDチップを載置することによって、LEDチップの光軸に略垂直な方向(略横方向)に出射されて擂鉢状の反射面に向かう光を反射面で反射させてレンズ方向に向かうようにしてLEDから外部に放出される光の取り出し効率を上げるようにするのが一般的な手法である。   Further, optical characteristics for evaluating the performance of the light emitting diode include luminous intensity, luminance, luminous flux divergence, and the like. These photometric quantities indicate how much the luminous flux emitted from the light source exists within a certain range (luminosity and luminance per unit solid angle, and luminous flux divergence per unit area). If the luminous flux is the same, the light emitted from the light source is collected more efficiently as the value of these photometric quantities increases. When this is applied to the vertical LED of the white light color described above, the emission direction of the light emitted from the LED chip extends over the entire upper area of the light emission surface of the LED chip, and the inner surface is defined as the reflection surface. By placing the LED chip on the bottom surface of the bowl-shaped recess, the light that is emitted in the direction substantially perpendicular to the optical axis of the LED chip (substantially lateral direction) and directed toward the bowl-shaped reflection surface is reflected by the reflection surface. It is a general technique to increase the extraction efficiency of light emitted from the LED to the outside in the direction of the lens.

この場合、LEDチップから出射されて直接レンズ内面に至り、レンズと空気の界面で屈折されてレンズの光放出面から外部に放出された光は光軸を中心にした略線対称の分布になっている。一方、LEDチップから出射されて擂鉢状の反射面で反射されてレンズの光放出面から外部に放出された光は光軸とは無関係に様々な方向に向かう。従って、LEDチップから出射された光の取り出し効率は上がっているものの、LEDチップから出射された光に光軸方向の輝度或いは光束発散度に寄与しないものがあるため輝度或いは光束発散度は不十分なものと言わざるを得ない。   In this case, the light emitted from the LED chip directly reaches the inner surface of the lens, refracted at the lens-air interface, and emitted to the outside from the light emitting surface of the lens has a substantially line-symmetric distribution around the optical axis. ing. On the other hand, the light emitted from the LED chip, reflected by the bowl-shaped reflecting surface, and emitted to the outside from the light emitting surface of the lens travels in various directions regardless of the optical axis. Therefore, although the extraction efficiency of the light emitted from the LED chip is increased, the light emitted from the LED chip does not contribute to the luminance in the optical axis direction or the luminous flux divergence, so the luminance or luminous flux divergence is insufficient. I have to say that.

また、球面レンズ或いは非球面レンズによって効率良く光を集めるためには、光源が点光源であることが求められ、光学系が0.5mm程度の6面体(サイコロ状)のLEDチップを点光源と見なすためには、光源となるLEDチップからレンズまでの距離の限界が0.5mmの10倍以上の5mm以上必要であると言われており、またレンズにおいてはLEDチップからの距離が長くなるにつれてレンズ表面積を大きくし、曲率半径も集光を効率良く確保するだけの大きさが必要である。従って、LEDに求められるこのような条件を確保するためには、LEDの小型化に逆行せざるを得ないことになる。   Further, in order to efficiently collect light by using a spherical lens or an aspheric lens, the light source is required to be a point light source, and a hexahedral (dice-shaped) LED chip having an optical system of about 0.5 mm is used as the point light source. To be considered, it is said that the limit of the distance from the LED chip serving as the light source to the lens needs to be 5 mm or more, which is 10 times or more of 0.5 mm, and in the lens, as the distance from the LED chip becomes longer The lens surface area must be large, and the radius of curvature must be large enough to ensure efficient light collection. Therefore, in order to ensure such conditions required for the LED, it is necessary to go back to the downsizing of the LED.

一方、表面実装型のLEDにおいては、縦型LEDに比べて寸法が非常に小さいためLEDチップの上方に樹脂レンズを形成したとしてもLEDチップからレンズまでの距離や曲率半径を光学系として満足するほどには確保できない。従って、集光のレンズ効果も少なく、光度、輝度、光束発散度等の測光量も不十分なものになってしまう。   On the other hand, the surface mount type LED has a very small size as compared with the vertical type LED, so even if a resin lens is formed above the LED chip, the distance from the LED chip to the lens and the radius of curvature are satisfied as an optical system. It cannot be secured as much. Therefore, the lens effect of condensing is small, and the photometric quantity such as luminous intensity, luminance, luminous flux divergence and the like becomes insufficient.

本発明は上記問題に鑑みて創案なされたもので、光取り出し効率が良く、集光率の高い発光ダイオードを提供するものである。   The present invention has been made in view of the above problems, and provides a light-emitting diode having high light extraction efficiency and high light collection efficiency.

上記課題を解決するために、本発明の請求項1に記載された発明は、基材上に載置された発光ダイオードチップを第1光透過性樹脂に蛍光体を分散した波長変換部材で封止し、前記波長変換部材の少なくとも光出射面に、前記第1光透過性樹脂及び第2光透過性樹脂より屈折率が小さい多数のマイクロビーズを分散した前記第2光透過性樹脂を覆設し輝度を向上させたことを特徴とするものである。 In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention is to seal a light emitting diode chip placed on a substrate with a wavelength conversion member in which a phosphor is dispersed in a first light transmitting resin. sealed, wherein at least the light emitting surface of the wavelength conversion member, Kutsugae設the first light transmitting resin and the second light transmitting resin having a refractive index than that of the second light transmitting resin is dispersed a small number of microbeads However, the brightness is improved .

小型の白色発光ダイオードの光取り出し効率及び集光率を向上させる目的を、発光ダイオードチップを封止した蛍光体が分散された光透過性樹脂の光放出面に多数のマイクロビーズを覆設して実現した。   For the purpose of improving the light extraction efficiency and light collection efficiency of a small white light emitting diode, a large number of microbeads are placed on the light emitting surface of a light transmitting resin in which a phosphor encapsulating a light emitting diode chip is dispersed. It was realized.

以下、この発明の好適な実施形態を図1から図8を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIG. 1 to FIG. 8 (the same parts are given the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. As long as there is no description of the effect, it is not restricted to these aspects.

図1は本発明の第1実施例を示す断面図である。内側面1を反射面とする擂鉢状の凹部を有する基板2の底面3にLEDチップに電力を供給するための一対の電極4の一方に導電性接着剤5を介してLEDチップ6を載置して電気的導通を図り、他方の電極(図示せず)には一方の端部がLEDチップ6に接続されたワイヤ7の他方の端部を接続して同様に電気的導通を図る。そして、LEDチップ6で発光された光を出射する光出射面11を形成する半導体材料により近い屈折率を持つ第1光透過性樹脂のバインダに蛍光体8を分散させた波長変換部材9をLEDチップ6を載置した擂鉢状の凹部に充填してLEDチップ6及びワイヤ7を封止してLED12を形成する。このとき、LEDチップ6から出射された光が波長変換部材9内を導光されて外部に放出される光放出面13は連続する凹凸で形成されている。   FIG. 1 is a sectional view showing a first embodiment of the present invention. The LED chip 6 is placed on one of a pair of electrodes 4 for supplying power to the LED chip on the bottom surface 3 of the substrate 2 having a bowl-shaped recess having the inner side surface 1 as a reflection surface via a conductive adhesive 5. The other electrode (not shown) is connected to the other end of the wire 7 whose one end is connected to the LED chip 6 to achieve the same electrical continuity. Then, the wavelength conversion member 9 in which the phosphor 8 is dispersed in the binder of the first light transmitting resin having a refractive index closer to that of the semiconductor material that forms the light emitting surface 11 that emits the light emitted from the LED chip 6 is used as the LED. The LED 12 is formed by filling the mortar-shaped recess on which the chip 6 is placed and sealing the LED chip 6 and the wire 7. At this time, the light emission surface 13 from which the light emitted from the LED chip 6 is guided through the wavelength conversion member 9 and emitted to the outside is formed with continuous unevenness.

このようなLED12において、LEDチップ6に設けられた一対の(アノード及びカソード)電極に電気的導通された一対の電極4を介してLEDチップ6に方向電圧を印加することにより、LEDチップ6の活性層で発光して光出射面11に至った光は、光出射面11と光出射面11を形成する半導体材料により近い屈折率を持つ第1光透過性樹脂との界面で屈折されて効率良く第1光透過性樹脂内に出射され、その多くは第1光透過性樹脂に分散された蛍光体8を励起し、波長変換されて波長変換部材9の光放出面13に至る。一方LEDチップ6から第1光透過性樹脂内に出射されて蛍光体の励起に寄与しない光は、第1光透過性樹脂内を導光されて波長変換部材9の光放出面13に至る。ここで、波長変換部材9の光放出面13は第1光透過性樹脂と空気とで界面が形成されており、屈折率は第1光透過性樹脂が空気よりも大きい。従って、波長変換部材9の光放出面13が平面の場合はLEDチップ6から出射されて光放出面13に至った入射光線のうち入射点における界面の法線との交角(入射角)が臨界角以上のときは屈折光線は光放出面13で全反射してLED12からは放出されず、光取り出し効率が良くないものとなる。それに対し、本発明の第1実施例では、波長変換部材9の光放出面13が連続する凸凹で形状されており、LEDチップ6から出射されて光放出面13に至った光の殆んどは光放出面13からLED12の外部に放出される。従って光取り出し効率が良いLEDを可能にするものである。   In such an LED 12, by applying a directional voltage to the LED chip 6 through a pair of electrodes 4 electrically connected to a pair of (anode and cathode) electrodes provided on the LED chip 6, The light emitted from the active layer and reaching the light emitting surface 11 is refracted at the interface between the light emitting surface 11 and the first light-transmitting resin having a refractive index closer to the semiconductor material forming the light emitting surface 11. The light is often emitted into the first light transmissive resin, most of which excites the phosphor 8 dispersed in the first light transmissive resin, undergoes wavelength conversion, and reaches the light emission surface 13 of the wavelength conversion member 9. On the other hand, light that is emitted from the LED chip 6 into the first light-transmitting resin and does not contribute to excitation of the phosphor is guided through the first light-transmitting resin and reaches the light emitting surface 13 of the wavelength conversion member 9. Here, the light emitting surface 13 of the wavelength conversion member 9 has an interface formed by the first light-transmitting resin and air, and the refractive index of the first light-transmitting resin is larger than that of air. Therefore, when the light emitting surface 13 of the wavelength converting member 9 is a flat surface, the angle of incidence (incident angle) with the normal of the interface at the incident point out of the incident light rays that are emitted from the LED chip 6 and reach the light emitting surface 13 is critical. When the angle is larger than the angle, the refracted light is totally reflected by the light emitting surface 13 and is not emitted from the LED 12, and the light extraction efficiency is not good. On the other hand, in the first embodiment of the present invention, the light emitting surface 13 of the wavelength conversion member 9 has a continuous uneven shape, and most of the light emitted from the LED chip 6 and reaching the light emitting surface 13. Is emitted from the light emitting surface 13 to the outside of the LED 12. Therefore, an LED having a high light extraction efficiency is made possible.

なお、全ての実施例に共通することであるが、LEDチップ6から出射される光が青色光の場合、LEDチップ6から出射されて蛍光体8で波長変換された光と、波長変換されない光との加法混色によってLED12から放出される光色は白色を呈するものとなる。ただし、本発明ではこれに限らず、LEDチップ6から出射される光が他の色の可視光や、赤外、紫外であっても良く、蛍光体8の材料との組み合わせにより種々な発光色を得るようにしても良いものである。   As is common to all the embodiments, when the light emitted from the LED chip 6 is blue light, the light emitted from the LED chip 6 and wavelength-converted by the phosphor 8 and the light not wavelength-converted. The color of light emitted from the LED 12 due to the additive color mixture with the white color is white. However, the present invention is not limited to this, and the light emitted from the LED chip 6 may be other colors of visible light, infrared light, or ultraviolet light. You may make it get.

図2は本発明の第2実施例を示す断面図である。本実施例の基本構成は上記第1実施例と同様であるが、第1実施例と異なる点は、第1光透過性樹脂のバインダに蛍光体8を分散した波長変換部材9の光放出面13にガラス、シリコーン樹脂等の光透過性部材からなる粉末やフレーク等の不定形の透明拡散片15を直接覆設したことである。この場合、透明拡散片15は光放出面13上に覆設してもよいし、透明拡散片15の一部分を光放出面13から波長変換部材9内に埋設させた状態で覆設してもよいが、透明拡散片15を覆設する目的を考慮すると後者のほうが望ましい。これによって、LEDチップ6から出射されて蛍光体8に励起されて波長変換された光と、LEDチップ6から出射されて第1光透過性樹脂内を導光された光とが透明拡散片15内に入射し、屈折されてLED12の外部に放出されるものである。したがって、平面の光放出面13に至った光が光放射面11で全反射される割合が少ないため光取り出し効率が良いLED12が可能となるものである。この場合、第1光透過性樹脂と透明拡散片15との屈折率が近いほど光取り出し効率は良くなる。   FIG. 2 is a sectional view showing a second embodiment of the present invention. The basic configuration of the present embodiment is the same as that of the first embodiment, except that the light emitting surface of the wavelength conversion member 9 in which the phosphor 8 is dispersed in the binder of the first light transmitting resin. 13 is that an indeterminate transparent diffusion piece 15 such as powder or flake made of a light transmissive member such as glass or silicone resin is directly covered. In this case, the transparent diffusion piece 15 may be covered on the light emission surface 13 or may be covered in a state where a part of the transparent diffusion piece 15 is embedded in the wavelength conversion member 9 from the light emission surface 13. However, the latter is preferable in consideration of the purpose of covering the transparent diffusion piece 15. As a result, the light emitted from the LED chip 6 and excited by the phosphor 8 and subjected to wavelength conversion, and the light emitted from the LED chip 6 and guided through the first light-transmitting resin are transparent diffusion pieces 15. It is incident on the inside, refracted and emitted to the outside of the LED 12. Therefore, since the ratio of the light that reaches the planar light emitting surface 13 is totally reflected by the light emitting surface 11, the LED 12 with high light extraction efficiency is possible. In this case, the light extraction efficiency is improved as the refractive indexes of the first light-transmitting resin and the transparent diffusion piece 15 are closer.

図3は本発明の第3実施例を示す断面図である。本実施例は上記第2実施例の透明拡散片15をシリコーン樹脂等の第2光透過性樹脂16のバインダに分散したものを第1光透過性樹脂バインダに蛍光体8を分散した波長換部材9の光放出面13に覆設したものである。この場合、波長変換部材9を構成する第1光透過性樹脂と透明拡散片15のバインダとなる第2光透過性樹脂16と透明拡散片15との屈折率が近いほど光取り出し効率が良くなる。本実施例の構成は、透明拡散片15を波長変換部材9の光放出面13に直接覆設することが困難な場合に有効な手法である。   FIG. 3 is a sectional view showing a third embodiment of the present invention. In this embodiment, the wavelength changing member in which the transparent diffusion piece 15 of the second embodiment is dispersed in the binder of the second light transmissive resin 16 such as silicone resin and the phosphor 8 is dispersed in the first light transmissive resin binder. 9 is covered with the light emission surface 13. In this case, the light extraction efficiency improves as the refractive index of the first light transmissive resin constituting the wavelength conversion member 9 and the second light transmissive resin 16 serving as the binder of the transparent diffusion piece 15 and the transparent diffusion piece 15 are closer. . The configuration of the present embodiment is an effective method when it is difficult to directly cover the transparent diffusion piece 15 on the light emitting surface 13 of the wavelength conversion member 9.

図4は本発明の第4実施例を示す断面図である。本実施例は上記第3実施例の透明拡散片15に替えてガラス、シリコーン樹脂等の光透過性部材からなる略球状レンズ(マイクロビーズ)17を多数第2光透過性樹脂16のバインダに分散したものである。この場合、不定形の透明拡散片15と違って多数のマイクロビーズに一定の角度で入射した光は一定の方向に屈折されて放出されるため光取り出し効率が良好であると同時に集光効率も向上するものである。なおこの場合も、波長変換部材9を構成する第1光透過性樹脂とマイクロビーズ17のバインダとなる第2光透過性樹脂16とマイクロビーズ17との屈折率が近いほど光取り出し効率が良くなる。   FIG. 4 is a sectional view showing a fourth embodiment of the present invention. In this embodiment, a large number of substantially spherical lenses (microbeads) 17 made of a light transmissive member such as glass or silicone resin are dispersed in the binder of the second light transmissive resin 16 in place of the transparent diffusion piece 15 of the third embodiment. It is a thing. In this case, unlike the amorphous transparent diffusion piece 15, light incident on a large number of microbeads at a certain angle is refracted and emitted in a certain direction, so that the light extraction efficiency is good and the light collection efficiency is also high. It will improve. In this case as well, the light extraction efficiency improves as the refractive index between the first light-transmitting resin constituting the wavelength conversion member 9 and the second light-transmitting resin 16 serving as the binder of the microbeads 17 and the microbeads 17 is closer. .

図5、図6及び図7は本実施例の構造に基づいて、マイクロビーズ17のバインダとなる第2光透過性樹脂16に対するマイクロビーズ17の空気中への露出量と光取り出し効率との関係をシミュレージョンした条件及びその結果を示したものである。図5はシミュレーションの条件を示すもので、蛍光体8を分散する第1光透過性樹脂の屈折率を1.50、マイクロビーズを分散する第2光透過性樹脂16の屈折率を同じく1.50として、(a)は直径100μmのマイクロビーズの直径の25%を第2光透過性樹脂16から空気中に露出させた状態、(b)は直径100μmのマイクロビーズの直径の50%を第2光透過性樹脂16から空気中に露出させた状態、(c)は直径100μmのマイクロビーズの直径の75%を第2光透過性樹脂16から空気中に露出させた状態を示すものである。   FIG. 5, FIG. 6 and FIG. 7 show the relationship between the amount of exposure of the microbeads 17 to the air and the light extraction efficiency with respect to the second light-transmitting resin 16 serving as the binder of the microbeads 17 based on the structure of this embodiment. The conditions and results of simulating the above are shown. FIG. 5 shows the simulation conditions. The refractive index of the first light-transmitting resin that disperses the phosphor 8 is 1.50, and the refractive index of the second light-transmitting resin 16 that disperses the microbeads is 1. 50A shows a state in which 25% of the diameter of the microbead having a diameter of 100 μm is exposed from the second light-transmitting resin 16 to the air, and FIG. (C) shows a state in which 75% of the diameter of the microbead having a diameter of 100 μm is exposed in the air from the second light transmissive resin 16. .

図6は光取り出し効率のシミュレーション結果(1)を示すもので、マイクロビーズ17を覆設しない場合の光取り出し効率を1.0とし、マイクロビーズ17の空気中への露出量をパラメータにしてマイクロビーズの屈折率を横軸に、光取り出し効率を縦軸に取ったものである。なお、パラメータの凸50%、凸25%、凸75%はマイクロビーズ17の空気中への露出量がマイクロビーズ17の直径の夫々50%、25%、75%であることを示す。この結果、マイクロビーズ17の直径の50%を空気中への露出した場合が最も光取り出し効率が良く、そのなかでも第1光透過性樹脂、及び第2光透過性樹脂16の屈折率よりもマイクロビーズ17の屈折率が小さいほうが光取り出し効率が良いことがわかる。   FIG. 6 shows a simulation result (1) of the light extraction efficiency. The light extraction efficiency when the microbeads 17 are not covered is 1.0, and the exposure amount of the microbeads 17 in the air is used as a parameter. The refractive index of beads is plotted on the horizontal axis and the light extraction efficiency is plotted on the vertical axis. The convexity of 50%, the convexity of 25%, and the convexity of 75% indicate that the exposure amount of the microbeads 17 in the air is 50%, 25%, and 75% of the diameter of the microbeads 17, respectively. As a result, the light extraction efficiency is best when 50% of the diameter of the microbeads 17 is exposed to the air, and the refractive index of the first light-transmitting resin and the second light-transmitting resin 16 is particularly high. It can be seen that the light extraction efficiency is better when the refractive index of the microbeads 17 is smaller.

図7はシミュレーション結果(2)を示すもので、マイクロビーズ17を覆設しない場合の光取り出し効率を1.0、マイクロビーズ17の空気中への露出量をマイクロビーズ17の直径の50%(凸50%)とし、マイクロビーズの屈折率を横軸に、光取り出し効率を縦軸に取り、マイクロビーズ17の屈折率に対するマイクロビーズ17から放出される光束及び最大輝度の関係を示したものである。なお、最大輝度としたのは、光源を観測する方向によって輝度が異なるためである。この結果、マイクロビーズ17の屈折率が第1光透過性樹脂、及び第2光透過性樹脂16の屈折率よりも小さい方がマイクロビーズ17から放出される光束が多いことがわかる。これは、図6のマイクロビーズ17の露出量(凸50%)をパラメータにしたグラフと同一の内容を示している。但し、最大輝度はマイクロビーズ17の屈折率が1.45で最大を示している。これは、最大輝度を示すマイクロビーズ17の屈折率が絶対値で決まるものではなく、第1光透過性樹脂及び第2光透過性樹脂16の屈折率との相対関係で決まることを示している。   FIG. 7 shows the simulation result (2). The light extraction efficiency when the microbeads 17 are not covered is 1.0, and the exposure amount of the microbeads 17 in the air is 50% of the diameter of the microbeads 17 ( Convex 50%), the refractive index of the microbeads is plotted on the horizontal axis, the light extraction efficiency is plotted on the vertical axis, and the relationship between the luminous flux emitted from the microbeads 17 and the maximum luminance with respect to the refractive index of the microbeads 17 is shown. is there. The reason why the maximum luminance is used is that the luminance varies depending on the direction in which the light source is observed. As a result, it can be seen that when the refractive index of the microbeads 17 is smaller than the refractive index of the first light-transmitting resin 16 and the second light-transmitting resin 16, more light is emitted from the microbeads 17. This shows the same content as the graph with the exposure amount (convex 50%) of the microbeads 17 in FIG. 6 as a parameter. However, the maximum luminance is maximum when the refractive index of the microbeads 17 is 1.45. This indicates that the refractive index of the microbeads 17 exhibiting the maximum luminance is not determined by the absolute value, but is determined by the relative relationship between the refractive indexes of the first light transmitting resin and the second light transmitting resin 16. .

いずれにしても、蛍光体8を分散した波長変換部材9の光放出面13にマイクロビーズ17を覆設することによって、LED12から放出される全光量(光束)及び集光量(輝度)が、マイクロビーズ17を覆設しない場合の10%以上増加することが検証されたことになる。   In any case, by covering the light emitting surface 13 of the wavelength converting member 9 in which the phosphor 8 is dispersed with the microbeads 17, the total amount of light (light flux) emitted from the LED 12 and the amount of collected light (brightness) are reduced to micro. It has been verified that the increase is 10% or more when the beads 17 are not covered.

図8は本発明の第5実施例を示す断面図である。本実施例は、フリップチップ型のLEDチップ6の外周部にマイクロビーズ17を覆設した場合のLED12の構成を示している。この構造は、LED12の実装基板20に配設された一対の電極4にLEDチップ6に設けられた一対の電極(バンプ)21を接続固定して電気的導通を図る。そしてLEDチップ6の外周部を第1光透過性樹脂に蛍光体8を分散した波長変換部材9で封止し、更にその外側に第2光透過性樹脂16に分散されたマイクロビーズ17が、マイクロビーズ17の直径の50%が空気中に露出するように覆設されている。   FIG. 8 is a sectional view showing a fifth embodiment of the present invention. The present embodiment shows the configuration of the LED 12 when the microbeads 17 are covered on the outer peripheral portion of the flip chip type LED chip 6. In this structure, a pair of electrodes (bumps) 21 provided on the LED chip 6 are connected and fixed to a pair of electrodes 4 provided on the mounting substrate 20 of the LED 12 to achieve electrical conduction. Then, the outer peripheral portion of the LED chip 6 is sealed with a wavelength conversion member 9 in which the phosphor 8 is dispersed in the first light-transmitting resin, and the microbeads 17 dispersed in the second light-transmitting resin 16 are further provided on the outer side. The microbeads 17 are covered so that 50% of the diameter is exposed to the air.

以上、実施例1から実施例5で述べたように、本発明の高輝度LEDは、光透過性樹脂をバインダとして蛍光体を分散した波長変換部材と熱収縮率が異なるモール樹脂レンズとが界面を形成していないため、界面で発生する剥離が要因となる光取り出し効率の低下及び機械的振動、衝撃等によって生じる信頼性の低下が回避される。また、LEDの小型化を推進するうえで、従来のように光取り出し効率の向上及び集光性の向上のために曲率半径が大きいレンズを、光源となるLEDチップからの距離を設けて配置することが困難な場合、例えば表面実装型LEDが該当するが、LEDを本発明の構成にすることで従来の構成のLEDに匹敵する光取り出し効率及び集光性を確保するものである。などの優れた効果を奏するものである。   As described above in Examples 1 to 5, the high-brightness LED of the present invention has an interface between a wavelength conversion member in which a phosphor is dispersed using a light-transmitting resin as a binder and a Mole resin lens having a different heat shrinkage rate. Therefore, a decrease in light extraction efficiency and a decrease in reliability caused by mechanical vibration, impact, etc. caused by peeling occurring at the interface are avoided. In order to promote downsizing of the LED, a lens having a large radius of curvature is disposed with a distance from the LED chip serving as a light source in order to improve light extraction efficiency and light condensing performance as in the past. If this is difficult, for example, a surface-mount type LED is applicable. However, by making the LED have the configuration of the present invention, light extraction efficiency and light condensing performance comparable to those of the conventional configuration of the LED are ensured. It has excellent effects such as.

本発明の第1実施例に係わる高輝度発光ダイオードの断面図である。1 is a cross-sectional view of a high brightness light emitting diode according to a first embodiment of the present invention. 本発明の第2実施例に係わる高輝度発光ダイオードの断面図である。It is sectional drawing of the high-intensity light emitting diode concerning 2nd Example of this invention. 本発明の第3実施例に係わる高輝度発光ダイオードの断面図である。It is sectional drawing of the high-intensity light emitting diode concerning 3rd Example of this invention. 本発明の第4実施例に係わる高輝度発光ダイオードの断面図である。It is sectional drawing of the high-intensity light emitting diode concerning 4th Example of this invention. シミュレーションの条件を示す部分断面図であり、(a)はマイクロレンズの直径の25%が空気中に露出した状態を示し、(b)はマイクロレンズの直径の50%が空気中に露出した状態を示し、(c)はマイクロレンズの直径の75%が空気中に露出した状態を示す。It is a fragmentary sectional view showing conditions of simulation, (a) shows the state where 25% of the diameter of the micro lens was exposed in the air, and (b) shows the state where 50% of the diameter of the micro lens was exposed in the air. (C) shows a state in which 75% of the diameter of the microlens is exposed to the air. シミュレーション結果(1)を示す。A simulation result (1) is shown. シミュレーション結果(2)を示す。A simulation result (2) is shown. 本発明の第5実施例に係わる高輝度発光ダイオードの断面図である。It is sectional drawing of the high-intensity light emitting diode concerning 5th Example of this invention.

符号の説明Explanation of symbols

1 内側面
2 基板
3 底面
4 電極
5 導電性接着剤
6 LEDチップ
7 ワイヤ
8 蛍光体
9 波長変換部材
11 光出射面
12 LED
13 光放出面
15 透明拡散片
16 第2光透過性樹脂
17 マイクロビーズ
20 実装基板
21 バンプ
DESCRIPTION OF SYMBOLS 1 Inner side surface 2 Board | substrate 3 Bottom surface 4 Electrode 5 Conductive adhesive 6 LED chip 7 Wire 8 Phosphor 9 Wavelength conversion member 11 Light-emitting surface 12 LED
13 Light emission surface 15 Transparent diffusion piece 16 Second light transmitting resin 17 Microbead 20 Mounting substrate 21 Bump

Claims (1)

基材上に載置された発光ダイオードチップを第1光透過性樹脂に蛍光体を分散した波長変換部材で封止し、前記波長変換部材の少なくとも光出射面に、前記第1光透過性樹脂及び第2光透過性樹脂より屈折率が小さい多数のマイクロビーズを分散した前記第2光透過性樹脂を覆設し輝度を向上させたことを特徴とする発光ダイオード。 A light-emitting diode chip placed on a substrate is sealed with a wavelength conversion member in which a phosphor is dispersed in a first light-transmitting resin, and the first light-transmitting resin is formed on at least a light emission surface of the wavelength conversion member. And a light-emitting diode, wherein the second light-transmitting resin in which a large number of microbeads having a refractive index smaller than that of the second light-transmitting resin is dispersed is covered to improve luminance .
JP2003290032A 2003-08-08 2003-08-08 Light emitting diode Expired - Fee Related JP4452464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290032A JP4452464B2 (en) 2003-08-08 2003-08-08 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290032A JP4452464B2 (en) 2003-08-08 2003-08-08 Light emitting diode

Publications (2)

Publication Number Publication Date
JP2005064111A JP2005064111A (en) 2005-03-10
JP4452464B2 true JP4452464B2 (en) 2010-04-21

Family

ID=34368182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290032A Expired - Fee Related JP4452464B2 (en) 2003-08-08 2003-08-08 Light emitting diode

Country Status (1)

Country Link
JP (1) JP4452464B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896004B2 (en) 2005-04-26 2014-11-25 Kabushiki Kaisha Toshiba White LED, backlight using the same, and liquid crystal display device
KR100742987B1 (en) 2005-10-10 2007-07-26 (주)더리즈 High efficiency LED and LED package of using UV epoxy, and manufacturing method thereof
JP4937845B2 (en) 2006-08-03 2012-05-23 日立マクセル株式会社 Illumination device and display device
DE102006037730A1 (en) * 2006-08-11 2008-02-14 Merck Patent Gmbh LED conversion phosphors in the form of ceramic bodies
JP5334088B2 (en) * 2007-01-15 2013-11-06 フューチャー ライト リミテッド ライアビリティ カンパニー Semiconductor light emitting device
JP2009141051A (en) * 2007-12-05 2009-06-25 Stanley Electric Co Ltd Light-emitting diode device using silicone resin
JP4535163B2 (en) 2008-04-08 2010-09-01 ソニー株式会社 Information processing system, communication terminal, information processing apparatus, and program
JP5724183B2 (en) * 2010-02-26 2015-05-27 日亜化学工業株式会社 Light emitting device
CN101814572A (en) * 2010-03-05 2010-08-25 矽畿科技股份有限公司 Optical diode packaging structure
WO2013095950A1 (en) * 2011-12-19 2013-06-27 3M Innovative Properties Company Color shift sign
JP2014022451A (en) * 2012-07-13 2014-02-03 Citizen Electronics Co Ltd Phosphor lens sheet and production method therefor, and light-emitting device including phosphor lens sheet
JP6520736B2 (en) * 2016-01-28 2019-05-29 日亜化学工業株式会社 Lighting device
JP6418200B2 (en) * 2016-05-31 2018-11-07 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6536560B2 (en) 2016-12-27 2019-07-03 日亜化学工業株式会社 Light emitting device and method of manufacturing the same
KR102530124B1 (en) 2017-06-12 2023-05-08 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and manufacturing method thereof
US11387393B2 (en) * 2018-02-12 2022-07-12 Signify Holding B.V LED light source with fluoride phosphor
JP6687082B2 (en) * 2018-10-11 2020-04-22 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
KR20200088950A (en) * 2019-01-15 2020-07-24 삼성디스플레이 주식회사 Display device and method of fabricating the same
JP7078863B2 (en) * 2020-04-01 2022-06-01 日亜化学工業株式会社 Light emitting device and its manufacturing method

Also Published As

Publication number Publication date
JP2005064111A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4452464B2 (en) Light emitting diode
KR101389719B1 (en) Semiconductor light-emitting device
US10355183B2 (en) LED package
US7276739B2 (en) Low thermal resistance light emitting diode
JP4747726B2 (en) Light emitting device
US7842960B2 (en) Light emitting packages and methods of making same
KR100927077B1 (en) Optical semiconductor device and manufacturing method thereof
US10043954B2 (en) Lighting device with a phosphor layer on a peripheral side surface of a light-emitting element and a reflecting layer on an upper surface of the light-emitting element and on an upper surface of the phosphor layer
KR101825473B1 (en) Light emitting device package and method of fabricating the same
US7652306B2 (en) Light emitting diode package
TWI445200B (en) Semiconductor optical device
KR100851183B1 (en) Semiconductor light emitting device package
US8368085B2 (en) Semiconductor package
KR101766297B1 (en) Light emitting device package and method of fabricating the same
WO2016093325A1 (en) Light emitting device
EP2492982A2 (en) Light emitting device package
JP2010135488A (en) Light-emitting device, and method of manufacturing the same
KR20090044306A (en) Light emitting diode package
KR101669281B1 (en) Light-emitting device
JP2020091994A (en) Vehicular illuminating device, and vehicular lighting fixture
US20120299036A1 (en) Thermally enhanced light emitting device package
JP2008072043A (en) Optical semiconductor device
KR101192816B1 (en) Led package and its manufacturing method
JP2007266246A (en) Led module
JP2014011461A (en) Light emitting diode light bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4452464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees