JP6685588B2 - Microbial carrier - Google Patents

Microbial carrier Download PDF

Info

Publication number
JP6685588B2
JP6685588B2 JP2015242176A JP2015242176A JP6685588B2 JP 6685588 B2 JP6685588 B2 JP 6685588B2 JP 2015242176 A JP2015242176 A JP 2015242176A JP 2015242176 A JP2015242176 A JP 2015242176A JP 6685588 B2 JP6685588 B2 JP 6685588B2
Authority
JP
Japan
Prior art keywords
resin
microbial carrier
cross
sludge
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015242176A
Other languages
Japanese (ja)
Other versions
JP2017104829A (en
Inventor
義久 高森
義久 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2015242176A priority Critical patent/JP6685588B2/en
Publication of JP2017104829A publication Critical patent/JP2017104829A/en
Application granted granted Critical
Publication of JP6685588B2 publication Critical patent/JP6685588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

本発明は、水中沈降性及び嫌気性微生物の付着性に優れると共に、付着した微生物の脱落を抑えることのできる微生物担体に関する。   TECHNICAL FIELD The present invention relates to a microbial carrier that is excellent in sedimentation properties in water and anaerobic microbial adherence and that can prevent the adhered microbials from falling off.

従来、排水等に対する水処理には、嫌気性微生物による働きで溶存有機物を分解させる嫌気性処理がある。嫌気性処理においては、汚水浄化槽における反応槽(嫌気濾床層)に流動性の微生物担体を投入または充填して汚水(有機性排水)を通水させることで、微生物担体に付着した嫌気性微生物による働きで汚水中の溶存有機物を分解している(特許文献1、特許文献2)。   Conventionally, water treatment for wastewater and the like includes anaerobic treatment in which dissolved organic matter is decomposed by the action of anaerobic microorganisms. In the anaerobic treatment, the anaerobic microorganisms adhering to the microbial carrier are introduced by introducing or filling the reaction tank (anaerobic filter bed) in the sewage purification tank with a fluid microbial carrier to pass sewage (organic wastewater). Is used to decompose dissolved organic matter in wastewater (Patent Documents 1 and 2).

嫌気性処理では、嫌気性雰囲気で微生物が働くため、反応槽等内に投入された流動性の微生物担体は速やかに水中に沈降して水面に長く浮き上がっていない事が、水処理能力向上に必要となる。特に有機性排水を上向流通水して高速処理を行う場合、水沈降性が高いことが求められる。
水沈降性の向上を図った嫌気性処理用の微生物担体として、オレフィン系樹脂とセルロース系粉末を含むオレフィン系樹脂発泡体からなり、あるいはさらに無機粉末を含むオレフィン系樹脂発泡体からなり、発泡体の表面にメルトフラクチャー状態を有するものがある(特許文献2、特許文献3)。
In anaerobic treatment, microorganisms work in an anaerobic atmosphere, so the fluid microbial carrier that is put into the reaction tank, etc. quickly settles in the water and does not float on the water surface for a long time. Becomes In particular, when performing high-speed treatment by upwardly circulating organic wastewater, it is required to have high water sedimentation property.
As a microbial carrier for anaerobic treatment with improved water sedimentation, an olefin resin foam containing an olefin resin and a cellulose powder, or an olefin resin foam containing an inorganic powder, Some of them have a melt fracture state on their surfaces (Patent Documents 2 and 3).

しかしながら、オレフィン系樹脂とセルロース系粉末を含むオレフィン系樹脂発泡体、あるいはさらに無機粉末を含むオレフィン系樹脂発泡体で構成されて、発泡体の表面にメルトフラクチャー状態を有する微生物担体は、発泡剤を使用することで表面の凹凸状態を発現させているものの、発泡体で中空状態からなるため、依然として水沈降性が良好ではなく、水処理能力も充分ではなく、さらに含有されている木粉等のセルロース系粉末が微生物担体自体を脆くさせるため、水中で長時間使用されると微生物担体の破片が水中に流れ出し、水中汚染を生じる問題がある。さらに、微生物担体の発泡体のセル内部に、微生物から発生するガスが溜まることによって浮力が増加して水沈降性が低下する問題がある。   However, an olefinic resin foam containing an olefinic resin and a cellulose powder, or an olefinic resin foam containing an inorganic powder, and a microbial carrier having a melt fracture state on the surface of the foam is a foaming agent. Although the surface irregularities are developed by using it, since it is a hollow state in the foam, the water settling property is still not good, the water treatment capacity is not sufficient, and the contained wood powder etc. Since the cellulosic powder makes the microbial carrier itself brittle, when used in water for a long time, fragments of the microbial carrier flow out into the water, resulting in water contamination. Further, there is a problem that the gas generated from the microorganisms is accumulated inside the cells of the foam of the microbial carrier to increase the buoyancy and reduce the water settling property.

また、ポリオレフィン系樹脂と無機粉末を含む非多孔質体からなる筒状の外周面を、大径部と小径部が交互に存在する波形状の凹凸にして、凹部に微生物が付着保持されるようにした微生物担体がある(特許文献4)。
しかしながら、大径部と小径部が交互に存在する波形状の凹凸とした円柱状の微生物担体は、排水等の処理時に微生物担体同士が衝突した際に、微生物担体の表面に付着している微生物が脱落するおそれがあり、その場合に排水処理性能を十分に発揮できなくなる。
In addition, the cylindrical outer peripheral surface made of a non-porous body containing a polyolefin resin and an inorganic powder is made into a corrugated irregular shape in which a large diameter portion and a small diameter portion are alternately present, so that microorganisms can be attached and retained in the concave portion. There is a microbial carrier (Patent Document 4).
However, the column-shaped microbial carrier with corrugated irregularities in which the large-diameter portion and the small-diameter portion are alternately present is a microorganism attached to the surface of the microbial carrier when the microbial carriers collide with each other during the treatment of wastewater and the like. May fall off, in which case the wastewater treatment performance cannot be fully exerted.

特開2001−211881号公報JP 2001-211881 A 特開2012−110843号公報JP, 2012-110843, A 特開2009−66592号公報JP, 2009-66592, A 特開2014−73476号公報JP, 2014-73476, A

本発明は前記の点に鑑みなされたものであって、水沈降性及び付着した嫌気性微生物による水処理能力に優れ、かつ微生物が脱落し難い嫌気性処理用の微生物担体の提供を目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a microbial carrier for anaerobic treatment, which is excellent in water-sedimentability and water-treating ability by attached anaerobic microorganisms, and microorganisms are difficult to drop off. .

請求項1の発明は、嫌気性微生物を表面に保持する微生物担体において、前記微生物担体は、ポリオレフィン系樹脂と、前記ポリオレフィン系樹脂とは異なる樹脂である非相溶性樹脂と、無機粉末を含み、真比重(JIS Z 8807準拠)が1より大の非多孔質体の樹脂からなり、断面形状が断面周方向において3個以上の突起が形成された形状の中実体であって、前記断面周方向に隣合う突起同士の基部が接触して該突起の表面間に谷部が形成され、前記突起の表面に凹凸形状を有することを特徴とする。 The invention of claim 1 is a microbial carrier that holds anaerobic microorganisms on its surface, wherein the microbial carrier includes a polyolefin resin, an incompatible resin that is a resin different from the polyolefin resin, and an inorganic powder. made from the true specific gravity (JIS Z 8807 compliant) large nonporous material of the resin than 1, the cross-sectional shape a solid body having the shape of three or more projections in the cross-sectional circumferential direction is formed, the cross-sectional circumferential direction The base portions of the protrusions adjacent to each other are in contact with each other to form a valley portion between the surfaces of the protrusions, and the surface of the protrusion has an uneven shape.

請求項2の発明は、請求項1において、前記非相溶性樹脂は、アクリル樹脂(ポリメタクリル酸メチル:PMMA)、ポリカーボネート樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリエチレンテレフタレート樹脂、ポリウレタン樹脂の一種類または複数種類であることを特徴とする。 The invention according to claim 2 is the incompatible resin according to claim 1, which is one type of acrylic resin (polymethyl methacrylate: PMMA), polycarbonate resin, ABS resin, polyvinyl chloride resin, polyethylene terephthalate resin, polyurethane resin. Alternatively, there are a plurality of types .

請求項3の発明は、請求項1または2において、前記断面形状が十字形であることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect, the cross-sectional shape is a cross shape.

本発明の微生物担体は、ポリオレフィン系樹脂と、前記ポリオレフィン系樹脂とは異なる樹脂である非相溶性樹脂と、無機粉末を含み、真比重(JIS Z 8807準拠)が1より大の非多孔質体の樹脂からなるため、排水等に投入された際に、速やかに沈降することができ、微生物担体に付着した嫌気性微生物による汚水処理を効率良く行うことができる。 The microbial carrier of the present invention contains a polyolefin resin, an incompatible resin that is a resin different from the polyolefin resin, and an inorganic powder, and has a true specific gravity (JIS Z 8807 compliant) of greater than 1. Since it is made of the above resin, it can be quickly settled when it is put into drainage or the like, and the sewage treatment by the anaerobic microorganisms attached to the microorganism carrier can be efficiently performed.

また、本発明の微生物担体は、断面形状が、断面周方向において3個以上の突起が形成された形状であり、断面周方向において隣接する突起間の基部を中心とする隣接する各突起の表面(斜面)との間に、いわゆる谷部を形成する。このため、表面積が増え、付着する嫌気性微生物の量を増大させ、嫌気性微生物による処理能力を高めることができる。さらに本発明の微生物担体は、汚水処理中に微生物担体同士が衝突する際、奥まった位置となる断面周方向において隣接する突起間の基部については、いわゆる各突起間の谷部が存在するので、他の微生物担体と接触し難いため、突起の基部に付着した嫌気性微生物が脱落し難くなり、嫌気性微生物による良好な汚水処理性能を維持することが可能となる。   The microbial carrier of the present invention has a cross-sectional shape in which three or more projections are formed in the circumferential direction of the cross section, and the surface of each adjacent projection centered on the base between the projections adjacent in the circumferential direction of the cross section. A so-called valley is formed between the (slope). Therefore, the surface area is increased, the amount of anaerobic microorganisms attached can be increased, and the treatment capacity by the anaerobic microorganisms can be enhanced. Furthermore, the microbial carrier of the present invention, when the microbial carriers collide with each other during sewage treatment, as for the base between adjacent protrusions in the circumferential direction of the cross section, which is a recessed position, there is a so-called valley between the protrusions, Since it is difficult to contact with other microbial carriers, the anaerobic microorganisms attached to the bases of the protrusions are less likely to drop off, and good sewage treatment performance by the anaerobic microorganisms can be maintained.

さらに、本発明の微生物担体において、微生物担体の表面に凹凸形状を設けることにより、表面の凹部に付着した嫌気性微生物をより確実に保持することができ、嫌気性微生物による良好な処理性能を維持することが可能となる。   Further, in the microbial carrier of the present invention, by providing an uneven shape on the surface of the microbial carrier, it is possible to more reliably hold the anaerobic microorganisms attached to the recesses on the surface, and maintain good treatment performance by the anaerobic microorganisms. It becomes possible to do.

本発明の第1実施形態に係る微生物担体の斜視図である。It is a perspective view of the microorganisms carrier concerning a 1st embodiment of the present invention. 突起形状が三角の場合を示す本発明の第2実施形態に係る微生物担体の斜視図である。FIG. 6 is a perspective view of a microbial carrier according to a second embodiment of the present invention showing a case where the shape of a protrusion is triangular. 表面に凹凸形状を有する本発明の第3実施形態に係る微生物担体の斜視図である。It is a perspective view of the microorganism carrier concerning the 3rd embodiment of the present invention which has unevenness on the surface. 本発明の微生物担体を製造する装置の概略図である。1 is a schematic view of an apparatus for producing a microbial carrier of the present invention. 実施例1の押出成形体と実施例2の押出成形体の側部外面を撮影した写真である。3 is a photograph of the outer side surface of the extruded body of Example 1 and the extruded body of Example 2.

以下、本発明の実施形態に係る微生物担体について説明する。図1に示す第1実施形態の微生物担体10は、排水等に対する嫌気性処理に使用されるものであり、ポリオレフィン系樹脂と無機粉末を含み、真比重(JIS Z 8807準拠)が1より大の非多孔質体(非発泡体)からなり、長さ方向に垂直な断面形状が、断面周方向において3個以上の突起が形成された形状(断面複数突起形状)のものである。前記微生物担体10は長さ方向に垂直な断面形状が、断面周方向において3個以上の突起が形成された形状の押出成形体を所定長に切断して得られる。なお、前記微生物担体10の長さ方向は、微生物担体の製造時に押出機から押し出す押出方向と一致する。   Hereinafter, the microorganism carrier according to the embodiment of the present invention will be described. The microbial carrier 10 of the first embodiment shown in FIG. 1 is used for anaerobic treatment of wastewater and the like, contains a polyolefin resin and inorganic powder, and has a true specific gravity (JIS Z 8807 compliant) of greater than 1. It is made of a non-porous body (non-foamed body) and has a cross-sectional shape perpendicular to the length direction in which three or more projections are formed in the circumferential direction of the cross-section (multi-projection shape in cross section). The microbial carrier 10 is obtained by cutting an extruded body having a cross section perpendicular to the length direction, which has a shape in which three or more protrusions are formed in the circumferential direction of the cross section, to a predetermined length. The length direction of the microbial carrier 10 corresponds to the extrusion direction extruded from the extruder at the time of manufacturing the microbial carrier.

第1実施形態の微生物担体10では、中央部11とその長さ方向に垂直な断面周方向に形成された3個以上の突起(図示の例では十字形を構成する4個の突起)12とよりなる。前記突起12は、第1実施形態では断面が正方形あるいは長方形などの四角形からなる。前記微生物担体10の外寸法(突起12の先端間寸法)a及び奥行き長さbは、それぞれ1mm〜20mmの範囲であり、より好ましくは4〜8mm程度である。また、前記微生物担体10の突起12は、突起12の長さcが0.1mm〜8.5mmの範囲であり、より好ましくは2〜4mmであり、突起12の基部における幅dが0.1mm〜19mmの範囲であり、より好ましくは1〜3mm程度である。   In the microbial carrier 10 of the first embodiment, a central portion 11 and three or more protrusions (four protrusions forming a cross in the illustrated example) 12 formed in a circumferential direction of a cross section perpendicular to the length direction thereof, Consists of. The protrusion 12 has a quadrangle such as a square or a rectangle in cross section in the first embodiment. The outer dimension (dimension between tips of the protrusions 12) a and the depth length b of the microorganism carrier 10 are each in the range of 1 mm to 20 mm, and more preferably about 4 to 8 mm. The protrusion 12 of the microorganism carrier 10 has a length c of the protrusion 12 in the range of 0.1 mm to 8.5 mm, more preferably 2 to 4 mm, and a width d of the protrusion 12 at the base of 0.1 mm. It is in the range of -19 mm, more preferably about 1-3 mm.

また、断面周方向における突起12の数は、3個以上(図示の例では十字形を構成する4個)であり、より好ましくは3〜8個であり、更により好ましくは4〜6個である。後述する実施例の測定結果に示す通り、断面周方向における突起12の数を3〜8個とすることで、初期付着汚泥重量を9.5g以上に増やすことができ、撹拌後付着汚泥重量を7.3g以上とすることができ、また、汚泥付着減少率を34.5%以下とすることができる。
更に断面周方向における突起12の数を4〜6個とすることで、撹拌後付着汚泥重量の評価試験後の汚泥重量の脱落量(差:脱落汚泥重量)を1.3〜2.2gに減らすことができ、汚泥付着減少率を7.8〜23.2%と小さくすることができる。
断面周方向における突起12の数が3個より少ないと、表面積は増えるものの有効な谷間を形成することができず、基部に付着した汚泥付着減少率が大きくなる。8個より多くなると、谷間の空間がかえって狭くなって、基部に付着した初期付着汚泥重量が少なくなる。
Further, the number of the projections 12 in the circumferential direction of the cross section is 3 or more (4 in the illustrated example, which form a cross shape), more preferably 3 to 8, and even more preferably 4 to 6. is there. As shown in the measurement results of Examples described later, by setting the number of the protrusions 12 in the circumferential direction of the cross section to 3 to 8, the weight of the initially attached sludge can be increased to 9.5 g or more, and the weight of the attached sludge after stirring is increased. It can be 7.3 g or more, and the sludge adhesion reduction rate can be 34.5% or less.
Further, by setting the number of the projections 12 in the circumferential direction of the cross section to 4 to 6, the amount of sludge weight loss after the evaluation test of the weight of adhered sludge after stirring (difference: weight of sludge dropout) is 1.3 to 2.2 g. It can be reduced, and the sludge adhesion reduction rate can be reduced to 7.8 to 23.2%.
If the number of the projections 12 in the circumferential direction of the cross section is less than three, the surface area increases, but an effective valley cannot be formed, and the reduction rate of sludge adhesion to the base increases. When the number is more than 8, the valley space becomes rather narrow, and the weight of the initially attached sludge attached to the base portion decreases.

前記突起12の断面形状は四角形に限られず、三角形であってもよい。図2に、突起12Aが三角形からなる第2実施形態の微生物担体10Aを示す。三角形の突起12aの寸法は、前記四角形の突起12の寸法と同様である。なお、第2実施形態の微生物担体10Aにおいて、符号11aは前記微生物担体10Aの断面の中央部である。また、前記微生物担体10Aの長さ方向に垂直な断面周方向における突起12の数は、3個以上であり、より好ましくは図示の例のように十字形を構成する4個である。   The sectional shape of the protrusion 12 is not limited to a quadrangle, and may be a triangle. FIG. 2 shows a microbial carrier 10A of the second embodiment in which the protrusion 12A has a triangular shape. The dimensions of the triangular protrusion 12 a are the same as the dimensions of the quadrangular protrusion 12. In the microbial carrier 10A of the second embodiment, reference numeral 11a is the central portion of the cross section of the microbial carrier 10A. Further, the number of the projections 12 in the circumferential direction of the cross section perpendicular to the length direction of the microorganism carrier 10A is 3 or more, and more preferably 4 forming a cross shape as in the illustrated example.

前記微生物担体10及び10Aは、表面に凹凸を有するものがより好ましい。
図3に、表面に凹凸を有する一例として、第3実施形態の微生物担体10Bを示す。第3実施形態の微生物担体10Bは、突起12bの形状が四角形の場合であり、前記微生物担体10Bの表面に凹凸13bを有する。符号11bは中央部である。前記凹凸13bは、前記微生物担体10B用の押出成形体を押出成形する際に、押出成形体の表面に形成される凹凸であり、メルトフラクチャーとも称される。
It is more preferable that the microbial carriers 10 and 10A have irregularities on the surface.
FIG. 3 shows a microbial carrier 10B of the third embodiment as an example having irregularities on the surface. In the microbial carrier 10B of the third embodiment, the projections 12b have a quadrangular shape, and the microbial carrier 10B has irregularities 13b on the surface thereof. Reference numeral 11b is a central portion. The unevenness 13b is an unevenness formed on the surface of the extrusion molded body when the extrusion molded body for the microorganism carrier 10B is extrusion-molded, and is also called a melt fracture.

前記ポリオレフィン系樹脂としては、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、エチレン−酢酸ビニル共重合体(EVA)樹脂、ポリスチレン(PS)樹脂等を挙げることができ、それらが単独で又は二種類以上組み合わせて使用される。特にポリエチレン樹脂は、本発明において好適なポリオレフィン系樹脂の一つである。ポリオレフィン系樹脂の量は、非多孔質体100質量%中、30〜90質量%が好ましく、特に30〜70質量%が好ましい。30質量%未満の場合には非多孔質体の結合力が弱くなる。   Examples of the polyolefin resin include polyethylene (PE) resin, polypropylene (PP) resin, ethylene-vinyl acetate copolymer (EVA) resin, polystyrene (PS) resin, and the like, which may be used alone or in two kinds. The above is used in combination. In particular, polyethylene resin is one of the polyolefin resins suitable for the present invention. The amount of the polyolefin resin is preferably 30 to 90% by mass, and particularly preferably 30 to 70% by mass in 100% by mass of the non-porous body. If it is less than 30% by mass, the binding force of the non-porous body becomes weak.

前記無機粉末としては、炭酸カルシウム、硫酸バリウム、ゼオライト、タルク、酸化チタン、チタン酸カリウム、水酸化アルミニウム等を挙げることができ、それらの一種あるいは複数種類を組み合わせて使用することができる。特に炭酸カルシウムは好適である。無機粉末は、前記微生物担体10、10A、10Bを構成する非多孔質体の比重を増大させる作用を有する。無機粉末の量は、非多孔質体100質量部中、10〜70質量部が好ましく、特に30〜50質量部が好ましい。無機粉末の量を非多孔質体100質量部中10〜70質量部とすれば、微生物担体10の真比重を1より大で1.6までの非多孔質体(非発泡体)とすることができ、嫌気性処理に適したものとなる。70質量部を超える場合には、結合力が弱くなって水中で微生物担体10が分離し易くなる。   Examples of the inorganic powder include calcium carbonate, barium sulfate, zeolite, talc, titanium oxide, potassium titanate, aluminum hydroxide and the like, and one kind or a combination of plural kinds thereof can be used. Calcium carbonate is particularly preferable. The inorganic powder has a function of increasing the specific gravity of the non-porous body forming the microbial carrier 10, 10A, 10B. The amount of the inorganic powder is preferably 10 to 70 parts by mass, and particularly preferably 30 to 50 parts by mass in 100 parts by mass of the non-porous body. If the amount of the inorganic powder is 10 to 70 parts by mass in 100 parts by mass of the non-porous body, the true specific gravity of the microbial carrier 10 should be a non-porous body (non-foamed body) of more than 1 and up to 1.6. And is suitable for anaerobic treatment. When it exceeds 70 parts by mass, the binding force becomes weak and the microbial carrier 10 is easily separated in water.

前記ポリエチレン系樹脂及び無機粉末と共に非相溶性樹脂が添加されるのが好ましい。前記非相溶性樹脂は、前記ポリオレフィン系樹脂とは異なる樹脂であって、前記ポリオレフィン系樹脂よりも溶解度パラメータδ(SP値)が1〜5(MJ/m1/2大きいものが好ましい。SP値の差が1(MJ/m1/2未満では、ポリエチレン(PE)樹脂およびポリプロピレン(PP)樹脂中において相溶化しやすく、表面に凹凸を発生させる作用を生じにくく、逆に、SP値の差が5(MJ/m1/2より大きい場合、押し出し成形時にストランドが切断されやすく、微生物担体として長期使用中に分離しやすくなる。 An incompatible resin is preferably added together with the polyethylene resin and the inorganic powder. The incompatible resin is preferably a resin different from the polyolefin resin and having a solubility parameter δ (SP value) of 1 to 5 (MJ / m 3 ) 1/2 larger than that of the polyolefin resin. When the difference in SP value is less than 1 (MJ / m 3 ) 1/2, they are easily compatibilized in a polyethylene (PE) resin and a polypropylene (PP) resin, and an effect of generating unevenness on the surface hardly occurs. When the difference in SP value is larger than 5 (MJ / m 3 ) 1/2 , the strands are likely to be cut during extrusion molding and easily separated during long-term use as a microorganism carrier.

前記非相溶性樹脂としては、アクリル樹脂(ポリメタクリル酸メチル:PMMA)、ポリカーボネート樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリエチレンテレフタレート樹脂、ポリウレタン樹脂等を挙げることができ、それらの一種類あるいは複数種類を組み合わせて使用することができる。特にアクリル樹脂、ポリカーボネート樹脂およびABS樹脂は、ポリエチレン(PE)樹脂およびポリプロピレン(PP)樹脂よりもSP値が大きく、その差は1〜5(MJ/m1/2であるため、ポリエチレン(PE)樹脂やポリプロピレン(PP)樹脂と混合されると、押し出し成形時にダイ内壁面で臨界せん断応力を超え、表面に凹凸を発生させやすく、好ましいものである。前記非相溶性樹脂は、前記非多孔質体に適宜含まれる添加剤であり、非多孔質体に含まれることによって表面の凹凸を形成し易くできる。前記アクリル樹脂は、前記非多孔質体に含有させる場合、前記非多孔質体100質量%中1〜20質量%が好ましい。1質量%未満の場合、アクリル樹脂による効果が得られず、一方、20質量%を超える場合には、ポリオレフィン系樹脂の含有量が少なくなって成形しにくくなる。 Examples of the incompatible resin include acrylic resin (polymethyl methacrylate: PMMA), polycarbonate resin, ABS resin, polyvinyl chloride resin, polyethylene terephthalate resin, polyurethane resin, and the like, and one or more of them may be used. Can be used in combination. In particular, acrylic resin, polycarbonate resin, and ABS resin have a larger SP value than polyethylene (PE) resin and polypropylene (PP) resin, and the difference is 1 to 5 (MJ / m 3 ) 1/2. When it is mixed with a PE) resin or a polypropylene (PP) resin, it exceeds the critical shear stress on the inner wall surface of the die during extrusion molding and is likely to cause unevenness on the surface, which is preferable. The immiscible resin is an additive appropriately contained in the non-porous body, and by being contained in the non-porous body, it is possible to easily form irregularities on the surface. When the acrylic resin is contained in the non-porous body, it is preferably 1 to 20 mass% in 100 mass% of the non-porous body. If the amount is less than 1% by mass, the effect of the acrylic resin cannot be obtained. On the other hand, if the amount is more than 20% by mass, the content of the polyolefin-based resin becomes small and molding becomes difficult.

なお、溶解度パラメータδ(SP値)は、フェダーズ(Fedors)の方法により決定される25℃におけるポリマーの繰り返し単位の値を指す。当該方法は、R.F.Fedors,Polym.Eng.Sci.,14(2),147(1974)に記載されている。即ち、求める化合物の構造式において、原子および原子団の蒸発エネルギーとモル体積のデータより次式により決定される。
δ=(ΣΔei/ΣΔvi)1/2
ただし、式中、ΔeiおよびΔviは、それぞれ原子または原子団の蒸発エネルギーおよびモル体積を表す。求める化合物の構造式はIR、NMR、マススペクトルなどの通常の構造分析手法を用いて決定する。
The solubility parameter δ (SP value) refers to the value of the repeating unit of the polymer at 25 ° C. determined by the method of Fedors. The method is described in RF Fedors, Polym. Eng. Sci., 14 (2), 147 (1974). That is, in the structural formula of the compound to be obtained, it is determined by the following formula from the data of the evaporation energy of atoms and atomic groups and the molar volume.
δ = (ΣΔei / ΣΔvi) 1/2
However, in the formula, Δei and Δvi represent the evaporation energy and the molar volume of the atom or atomic group, respectively. The structural formula of the compound to be obtained is determined by using an ordinary structural analysis method such as IR, NMR, or mass spectrum.

図4は前記微生物担体10、10A、10Bの製造装置の概略図である。前記製造装置30は、押出機(単軸又は多軸押出機)31、水中冷却槽33、ストランドカッター(引き取り装置及び切断装置)35からなる。前記製造装置30を用いる微生物担体10、10A、10Bの製造は、次のようにして行われる。   FIG. 4 is a schematic diagram of an apparatus for producing the microorganism carriers 10, 10A, 10B. The manufacturing apparatus 30 includes an extruder (single-screw or multi-screw extruder) 31, an underwater cooling tank 33, and a strand cutter (a take-up device and a cutting device) 35. The production of the microorganism carriers 10, 10A, 10B using the production apparatus 30 is performed as follows.

まず、前記ポリオレフィン系樹脂、無機粉末、及び適宜添加する非相溶性樹脂を前記の割合で押出機31に投入し、前記押出機31内で溶融混練して押出機31から気相中に非多孔質状態で断面形状が長さ方向に垂直な断面周方向において3個以上の突起が形成されたストランド状に押し出し、水中冷却槽33中を通して冷却硬化させ、前記ストランドをストランドカッター35の引き取り装置で引き取って、所定長に切断装置で切断することにより、前記微生物担体10、10A、10Bを得る。なお、押出機のダイ形状は、前記微生物担体10、10Bに対しては、先端が四角形をした十字形であり、一方、前記微生物担体10Aについては、先端が三角形をした十字形である。前記微生物担体10Bの表面の凹凸(メルトフラクチャー)13bは、押出機31のバレル設定温度を通常温度よりも低めに設定することによって形成することができる。   First, the polyolefin-based resin, the inorganic powder, and the incompatible resin that is appropriately added are charged into the extruder 31 in the above proportions, melt-kneaded in the extruder 31, and non-porous in the gas phase from the extruder 31. In the quality state, the cross-sectional shape is extruded in the form of a strand having three or more protrusions in the circumferential direction of the cross-section perpendicular to the longitudinal direction, passed through the underwater cooling tank 33 to be cooled and hardened, and the strand is taken by the take-up device of the strand cutter The microbial carriers 10, 10A, 10B are obtained by taking them out and cutting them with a cutting device into a predetermined length. The die shape of the extruder is a cruciform with a quadrangular tip for the microbial carriers 10 and 10B, and a cruciform with a triangular tip for the microbial carrier 10A. The irregularities (melt fracture) 13b on the surface of the microorganism carrier 10B can be formed by setting the barrel set temperature of the extruder 31 to be lower than the normal temperature.

以下の原料と図4に示した製造装置30を用いて表1に示す参考例1、実施例2、実施例3及び実施例4を製造した。参考例1は、前記第1実施形態の微生物担体10と同様、複数の突起として十字形を構成する4個の突起12の形状が四角形からなって、表面に凹凸(メルトフラクチャー)を有しない例である。実施例2は、前記第3実施形態の微生物担体10Bと同様、複数の突起として十字形を構成する4個の突起12bの形状が四角形からなって、表面に凹凸(メルトフラクチャー)13bを有する例である。実施例3は、複数の突起として3個の突起を有し、かつ突起の形状が四角形からなって、表面に凹凸(メルトフラクチャー)を有する例である。実施例4は、複数の突起として5個の突起を有し、かつ突起の形状が四角形からなって、表面に凹凸(メルトフラクチャー)を有する例である。なお、参考例1、実施例2、実施例3及び実施例4の微生物担体の長さ(ストランドの切断長さ)は何れも3mmである。 The following raw materials and the production apparatus 30 shown in FIG. 4 were used to produce Reference Example 1, Example 2, Example 3 and Example 4 shown in Table 1. In the reference example 1, like the microbial carrier 10 of the first embodiment, the shape of the four protrusions 12 forming a cross as a plurality of protrusions is a quadrangle, and there is no unevenness (melt fracture) on the surface. Is. Example 2 is an example in which, like the microbial carrier 10B of the third embodiment, the shape of the four protrusions 12b forming a cross as a plurality of protrusions is a quadrangle and the surface has irregularities (melt fracture) 13b. Is. Example 3 is an example in which three protrusions are provided as a plurality of protrusions, the protrusions are formed in a quadrangular shape, and unevenness (melt fracture) is formed on the surface. Example 4 is an example in which five protrusions are provided as a plurality of protrusions, the protrusions are formed in a quadrangular shape, and unevenness (melt fracture) is formed on the surface. The length of the microbial carrier of Reference Example 1, Example 2, Example 3 and Example 4 (cut length of strand) is 3 mm.

・ポリオレフィン系樹脂:ポリエチレン樹脂、品名;ニポロンハード5700、MFR1.0(g/10min)、東ソー社製
・無機粉末:炭酸カルシウム、品名;BF300、備北粉化工業社製
・アクリル樹脂:品名;アクリペットVH−001、三菱レイヨン社製
ポリオレフィン系樹脂/無機粉末/アクリル樹脂=45質量部/50質量部/5質量部
-Polyolefin resin: polyethylene resin, product name; Nipolon Hard 5700, MFR 1.0 (g / 10min), manufactured by Tosoh Corporation-Inorganic powder: calcium carbonate, product name: BF300, Bihoku Kogaku Co., Ltd.-Acrylic resin: product name: Acrypet VH-001, Mitsubishi Rayon Co., Ltd. polyolefin resin / inorganic powder / acrylic resin = 45 parts by mass / 50 parts by mass / 5 parts by mass

前記押出機31は、品名;二軸押出機KTX30、神戸製鋼社製である。押出機の条件は、ダイが参考例1、実施例2〜4の何れもストランド押出用の穴×4つ、バレル設定温度が参考例1では220℃、実施例2〜4では180℃、吐出量が参考例1、実施例2〜4の何れも60kg/時、押し出し速度が参考例1、実施例2〜4の何れも10m/分、スクリュー回転数が参考例1、実施例2〜4の何れも400rpm、引き取り速度が参考例1、実施例2〜4の何れも11m/分である。なお、ダイのストランド押出用の穴の寸法は、突起を十字形に4個設ける参考例1と実施例2用のダイについては、図1のaに対応する寸法が6mm、cに対応する寸法が2mm、dに対応する寸法が2mmである。また、突起の数が3個の実施例3用のダイ及び突起の数が4個の実施例4用のダイについては、図1とは突起の数が相違するが、aに相当する部分の寸法が6mm、cに相当する部分の寸法が2mm、dに相当する部分の寸法が2mmである。 The extruder 31 is a product name; twin-screw extruder KTX30, manufactured by Kobe Steel. Extruder conditions are as follows: the die is Reference Example 1 and all of Examples 2 to 4 are holes for strand extrusion × 4, the barrel set temperature is 220 ° C. in Reference Example 1, 180 ° C. in Examples 2 to 4, and the discharge is performed. The amount is 60 kg / hour in each of Reference Example 1 and Examples 2 to 4, the extrusion speed is 10 m / min in each of Reference Example 1 and Examples 2 to 4, and the screw rotation speed is Reference Example 1 and Examples 2 to 4. 400 rpm, and the take-up speed is 11 m / min in each of Reference Example 1 and Examples 2 to 4. Regarding the size of the die for strand extrusion, the size of the die for Reference Example 1 and Example 2 in which four protrusions are provided in a cross shape is 6 mm for the die corresponding to FIG. Is 2 mm, and the dimension corresponding to d is 2 mm. Further, the die for Example 3 having three protrusions and the die for Example 4 having four protrusions have a different number of protrusions from FIG. The dimension is 6 mm, the dimension of the portion corresponding to c is 2 mm, and the dimension of the portion corresponding to d is 2 mm.

図5は、前記ストランドカッターで切断する前の参考例1の押出成形体100と実施例2の押出成形体100Aについて側部を、スケール110と共に撮影した写真である。スケール110の目盛りの値「1」は1cm(10mm)であり、「2」は2cm(20mm)である。参考例1の押出成形体100は、表面に凹凸(メルトフラクチャー)が無く、一方、実施例2の押出成形体100Aは、表面に凹凸を有する。押出成形体100及び110は、その後に前記ストランドカッターで長さ3mmに切断されて参考例1の微生物担体と実施例2の微生物担体となる。 FIG. 5 is a photograph of the side portion of the extruded body 100 of Reference Example 1 and the extruded body 100A of Example 2 taken with the scale 110 before being cut by the strand cutter. The value “1” on the scale of the scale 110 is 1 cm (10 mm), and the value “2” is 2 cm (20 mm). The extrusion molded body 100 of Reference Example 1 has no unevenness (melt fracture) on the surface, while the extrusion molded body 100A of Example 2 has unevenness on the surface. The extruded bodies 100 and 110 are then cut into a length of 3 mm by the strand cutter to be the microbial carrier of Reference Example 1 and the microbial carrier of Example 2.

また、比較例1として、外径10mm、内径8mmのポリエチレン製中空パイプを長さ10mmに切断して微生物担体を形成した。
比較例2、3として、参考例1、実施例2〜4と同一の配合からなる原料及び同一の製造装置を用い、以下に示す押出機の条件で微生物担体を製造した。比較例2は、表面に凹凸(メルトフラクチャー)が無い円柱状のものであり、比較例3は、表面に凹凸(メルトフラクチャー)を有する円柱状のものである。
Further, as Comparative Example 1, a polyethylene hollow pipe having an outer diameter of 10 mm and an inner diameter of 8 mm was cut into a length of 10 mm to form a microorganism carrier.
As Comparative Examples 2 and 3, a microbial carrier was produced under the conditions of the extruder shown below, using the same raw material and the same production apparatus as those of Reference Example 1 and Examples 2 to 4. Comparative Example 2 is a columnar one having no irregularities (melt fracture) on the surface, and Comparative Example 3 is a columnar one having irregularities (melt fracture) on the surface.

比較例2、3に対する押出機の条件は、ダイが比較例2、3の何れも直径3mm×4つ、バレル設定温度が比較例2では220℃、比較例3では180℃、吐出量が比較例2、3の何れも60kg/時、押し出し速度が比較例2、3の何れも9m/分、スクリュー回転数が比較例2、3の何れも400rpm、引き取り速度が比較例2、3の何れも9m/分である。また、比較例2及び比較例3の微生物担体の長さ(ストランドカッターによる切断長さ)は、何れも3mmである。   Extruder conditions for Comparative Examples 2 and 3 are as follows: the dies each have a diameter of 3 mm × 4 in Comparative Examples 2 and 3, the barrel set temperature is 220 ° C. in Comparative Example 2, 180 ° C. in Comparative Example 3, and the discharge amount is compared. In each of Examples 2 and 3, 60 kg / hour, in each case, the extrusion speed was 9 m / min in each of Comparative Examples 2 and 3, the screw rotation speed was 400 rpm in each of Comparative Examples 2 and 3, and the take-up speed was each in Comparative Examples 2 and 3. Is also 9 m / min. In addition, the length of the microbial carrier of Comparative Example 2 and Comparative Example 3 (length cut by a strand cutter) is 3 mm.

Figure 0006685588
Figure 0006685588

参考例1、実施例2〜4と比較例1〜3の微生物担体に対して、真比重(JIS Z 8807準拠)、かさ比重(JIS K 7365準拠)、体積充填率(%)、沈降性(mm/s)、汚泥付着減少率(%)を測定した。なお、比較例1は、沈降しなかったため、沈降性については測定できなかった。測定結果を表1に示す。 For the microbial carriers of Reference Example 1, Examples 2 to 4 and Comparative Examples 1 to 3, true specific gravity (JIS Z 8807 compliant), bulk specific gravity (JIS K 7365 compliant), volume filling rate (%), sedimentation property ( mm / s) and sludge adhesion reduction rate (%) were measured. In Comparative Example 1, no sedimentation occurred, and thus sedimentation properties could not be measured. The measurement results are shown in Table 1.

体積充填率は、[体積充填率=かさ比重/真比重]の式で計算した。体積充填率が高い(大きい)ほど、排水(処理用液体)と担体との接触面積が大きくなり、微生物担体に付着した微生物による処理能力を高くできる。   The volume filling rate was calculated by the formula [volume filling rate = bulk specific gravity / true specific gravity]. The higher (larger) the volume filling rate is, the larger the contact area between the waste water (treatment liquid) and the carrier is, and the higher the treatment capacity of the microorganisms attached to the microorganism carrier can be.

沈降性は、200mm×200mm×350mmの水槽を用い、その水槽内に底から300mmの位置まで水を投入し、微生物担体を水槽表面で水に漬けて微生物担体の表面に水を付着させた後、水面の位置(水槽の底から300mmの位置)で微生物担体を静かに放して水槽の底に到達するまでの時間をストップウオッチで測定し、[(底までの距離(300mm))/(底に到達するまでの時間(秒))]の式で沈降速度(mm/秒)を計算した。沈降速度が大であるほど沈降性が高く、嫌気性微生物による処理に好適であると。なお、沈降速度は、n=5で測定して平均値を算出した。   For sedimentation, after using a 200 mm × 200 mm × 350 mm water tank, water is poured into the water tank up to a position 300 mm from the bottom, and the microbial carrier is immersed in water on the surface of the water tank to attach the water to the surface of the microbial carrier. , Stop the microbial carrier gently at the position of the water surface (position of 300 mm from the bottom of the water tank) and measure the time to reach the bottom of the water tank with a stopwatch, [(distance to the bottom (300 mm)) / ( Settling velocity (mm / sec) was calculated according to the formula: Time to reach (sec)). The higher the settling rate, the higher the settling property, which is suitable for treatment with anaerobic microorganisms. The sedimentation velocity was measured at n = 5 and the average value was calculated.

汚泥付着減少率は、次のようにして測定した。
・初期付着汚泥重量の測定
園芸用土壌2kgに水1リットルを加え、よく混ぜて粘りのある汚泥を作成した。次に重量測定済みの容器にサンプル(微生物担体)を所定量収容して、[容器+サンプル]の重量を測定し、得られた[容器+サンプル]の重量から容器の重量を差し引いてサンプル重量(初期サンプル重量)を算出する。次に、前記初期サンプル重量のサンプル(微生物担体)が収容されている容器に、サンプル(微生物担体)が埋まるように過剰の汚泥を投入し、汚泥とサンプル(微生物担体)を撹拌してサンプル(微生物担体)表面に汚泥を絡ませる。容器から汚泥とサンプル(微生物担体)をふるい(JIS Z8801 規格;平織金網 目開き2mm)上に落とし、1分間ふるいにかけてサンプル(微生物担体)に絡まって(付着して)いない汚泥をふるい落とす。ふるい上に残ったサンプル(微生物担体)を熱風オーブン式乾燥機(品名;DKM600、YAMATO製)で80℃×10時間乾燥させた後、乾燥後のサンプル重量(乾燥後サンプル重量)を測定する。乾燥後サンプル重量から初期サンプル重量を減算して初期付着汚泥重量を算出する。初期付着汚泥重量は、多いほうが良く、9g以上であれば良い。
・撹拌後付着汚泥重量の測定
容積1リットルの容器に、初期付着汚泥重量の測定で得られた乾燥後サンプル(微生物担体)を投入し、スターラー(条件;300rpm)で1分間撹拌させた後、容器内の収容物(汚泥とサンプル(微生物担体))を、ふるい(JIS Z8801 規格;平織金網 目開き2mm)上に落とし、1分間ふるいにかけてサンプル(微生物担体)から脱落した汚泥をふるい落とす。ふるい上に残ったサンプル(微生物担体)を熱風オーブン式乾燥機(品名;DKM600、YAMATO製)で80℃×10時間乾燥させた後、乾燥後のサンプル重量(撹拌後サンプル重量)を測定する。撹拌後サンプル重量から初期サンプル重量を減算して撹拌後付着汚泥重量を算出する。撹拌後付着汚泥重量は、多いほうが良く、7g以上であれば良い。
また、初期付着汚泥重量から撹拌後付着汚泥重量を減算して脱落汚泥重量を算出し、さらに[脱落汚泥重量/初期付着汚泥重量×100]の式によって汚泥付着減少率を算出する。汚泥付着減少率は、少ないほうが良いが、36%以下であれば良い。
The sludge adhesion reduction rate was measured as follows.
-Measurement of initial attached sludge weight 1 liter of water was added to 2 kg of horticultural soil and mixed well to prepare a sticky sludge. Next, store a predetermined amount of sample (microorganism carrier) in a container whose weight has been measured, measure the weight of [Container + Sample], and subtract the weight of the container from the obtained [Container + Sample] weight. Calculate (initial sample weight). Next, an excess sludge is put into a container containing the sample (microorganism carrier) having the initial sample weight so as to fill the sample (microorganism carrier), and the sludge and the sample (microorganism carrier) are stirred to give a sample ( Enclose the sludge on the surface of the microbial carrier. The sludge and the sample (microorganism carrier) are dropped from the container onto a sieve (JIS Z8801 standard; plain weave wire mesh opening 2 mm) and sieved for 1 minute to remove sludge not entangled (attached) to the sample (microorganism carrier). The sample (microorganism carrier) remaining on the sieve is dried by a hot air oven dryer (product name; DKM600, manufactured by YAMATO) at 80 ° C. for 10 hours, and then the sample weight after drying (sample weight after drying) is measured. After the drying, the initial sample weight is subtracted from the sample weight to calculate the initial attached sludge weight. The weight of the initially attached sludge is preferably as high as possible, and may be 9 g or more.
-Measurement of weight of adhered sludge after stirring In a container having a volume of 1 liter, the dried sample (microorganism carrier) obtained by the measurement of the weight of initial adhered sludge was put, and after stirring for 1 minute with a stirrer (condition: 300 rpm), The contents (sludge and sample (microorganism carrier)) in the container are dropped on a sieve (JIS Z8801 standard; plain weave wire mesh opening 2 mm) and sieved for 1 minute to remove sludge that has fallen off from the sample (microorganism carrier). The sample (microorganism carrier) remaining on the sieve is dried by a hot air oven dryer (product name; DKM600, manufactured by YAMATO) at 80 ° C. for 10 hours, and then the sample weight after drying (sample weight after stirring) is measured. The weight of the initial sample is subtracted from the weight of the sample after stirring to calculate the weight of the attached sludge after stirring. The weight of the sludge attached after stirring is preferably as high as possible, and may be 7 g or more.
Further, the weight of sludge adhered after stirring is subtracted from the weight of initial adhered sludge to calculate the weight of sludge sludge, and further, the sludge adherence reduction rate is calculated by the formula [weight of sludge lost / weight of initial adhered sludge × 100]. The sludge adhesion reduction rate is preferably as low as possible, but may be 36% or less.

表1の参考例1、実施例2〜4及び比較例1〜3の測定結果について以下に示す。
参考例1は、微生物担体の断面形状が4個の複数突起(=十字形)を有するため、円柱の比較例2と比べて初期付着汚泥重量が大であり、嫌気性微生物による処理性能が良好となる。
The measurement results of Reference Example 1, Examples 2 to 4 and Comparative Examples 1 to 3 in Table 1 are shown below.
In Reference Example 1, since the cross-sectional shape of the microbial carrier has four protrusions (= cruciform shape), the weight of the initially attached sludge is larger than that of Comparative Example 2 of the column, and the treatment performance by the anaerobic microorganisms is good. Becomes

実施例2は、参考例1と同様に微生物担体の断面形状が4個の複数突起(十字形)を有するため、円柱の比較例2と比べて初期付着汚泥重量が大であり、さらに、実施例2では表面に凹凸(メルトフラクチャー)を有するため、凹凸(メルトフラクチャー)の無い参考例1よりも、初期付着汚泥重量が大であって、かつ撹拌による汚泥付着減少率が小さく、嫌気性微生物による処理性能がより良好なものである。また、実施例2と比較例3を比較すると、両者は何れも表面に凹凸(メルトフラクチャー)を有するが、4個の複数突起(十字形)を有する実施例2は、円柱形の比較例3よりも、初期付着汚泥重量が大であって、かつ撹拌による汚泥付着減少率が小さく、嫌気性微生物による処理性能がより良好なものである。
In Example 2, since the cross-sectional shape of the microbial carrier has four protrusions (cross shape) as in Reference Example 1, the weight of the initially attached sludge is larger than that of Comparative Example 2 in the form of a cylinder. Since the surface of Example 2 has unevenness (melt fracture), the weight of initially attached sludge is larger than that of Reference Example 1 in which there is no unevenness (melt fracture), and the sludge adhesion reduction rate due to stirring is small, and anaerobic microorganisms are present. The processing performance by is better. Further, comparing Example 2 and Comparative Example 3, both have irregularities (melt fractures) on the surface, but Example 2 having four multiple protrusions (cross shapes) is a cylindrical Comparative Example 3 The weight of the initially attached sludge is large, the reduction rate of sludge attachment due to stirring is small, and the treatment performance with anaerobic microorganisms is better.

実施例3は、微生物担体の断面形状が3個の複数突起を有するものであり、実施例2と比べて初期付着汚泥重量が大であるが、撹拌による汚泥付着減少率が大きく、実施例2と比べて嫌気性微生物による処理性能が劣るものである。しかし、実施例3は、比較例3よりは嫌気性微生物による処理性能が良好なものである。   In Example 3, the cross-sectional shape of the microbial carrier has three protrusions, and although the weight of initially attached sludge is larger than that of Example 2, the sludge attachment reduction rate due to stirring is large, and Example 2 The treatment performance by anaerobic microorganisms is inferior to that of. However, Example 3 has better treatment performance with anaerobic microorganisms than Comparative Example 3.

実施例4は、微生物担体の断面形状が5個の複数突起を有するものであり、実施例2と比べて初期付着汚泥重量が小であって、撹拌による汚泥付着減少率が若干大きく、実施例2と比べて嫌気性微生物による処理性能が劣るものである。しかし、比較例3よりは嫌気性微生物による処理性能が良好なものである。   In Example 4, the cross-sectional shape of the microbial carrier had a plurality of protrusions of 5, and the weight of the initially deposited sludge was smaller than that in Example 2, and the sludge deposition reduction rate due to stirring was slightly large. Compared with 2, the treatment performance by anaerobic microorganisms is inferior. However, the treatment performance with anaerobic microorganisms is better than that of Comparative Example 3.

比較例1は、中空円柱形状のため、体積充填率が小さく、しかも真比重が1より小で沈降性が低く、浮上するため、嫌気性微生物による処理には不適である。
比較例2は、体積充填率は大であるが、円柱形のため、初期付着汚泥量が少なくなっている。
比較例3は、表面の凹凸(メルトフラクチャー)により初期付着汚泥量は多いが、外形が円柱形のため、撹拌による汚泥付着減少率が大きく、嫌気性微生物による処理性能に劣ることになる。
Comparative Example 1 is not suitable for treatment with anaerobic microorganisms because it has a hollow columnar shape and thus has a small volume filling rate, a true specific gravity of less than 1, a low sedimentation property, and is floated.
In Comparative Example 2, the volume filling rate is large, but the amount of initially deposited sludge is small because of the columnar shape.
In Comparative Example 3, the amount of initially attached sludge is large due to the surface irregularities (melt fracture), but since the outer shape is cylindrical, the sludge attachment reduction rate due to stirring is large and the treatment performance with anaerobic microorganisms is inferior.

このように、本発明の微生物担体は、円柱形状の微生物担体に比べて嫌気性微生物による良好な汚水処理性能を得ることが可能となる。   As described above, the microbial carrier of the present invention can obtain good sewage treatment performance by anaerobic microorganisms as compared with the cylindrical microbial carrier.

10、10A、10B 微生物担体
12、12a、12b 突起
13b 表面の凹凸(メルトフラクチャー)
10, 10A, 10B Microorganism carrier 12, 12a, 12b Protrusion 13b Surface irregularities (melt fracture)

Claims (3)

嫌気性微生物を表面に保持する微生物担体において、
前記微生物担体は、ポリオレフィン系樹脂と、前記ポリオレフィン系樹脂とは異なる樹脂である非相溶性樹脂と、無機粉末を含み、真比重(JIS Z 8807準拠)が1より大の非多孔質体の樹脂からなり、断面形状が断面周方向において3個以上の突起が形成された形状の中実体であって、前記断面周方向に隣合う突起同士の基部が接触して該突起の表面間に谷部が形成され、前記突起の表面に凹凸形状を有することを特徴とする微生物担体。
In a microbial carrier that holds anaerobic microorganisms on the surface,
The microbial carrier includes a polyolefin resin, an incompatible resin that is a resin different from the polyolefin resin, and an inorganic powder, and a non-porous resin having a true specific gravity (JIS Z 8807 compliant) of greater than 1. The cross-sectional shape is a solid body in which three or more projections are formed in the circumferential direction of the cross section, and the bases of the projections adjacent to each other in the circumferential direction of the cross section are in contact with each other to form a valley between the surfaces of the projections. The microbial carrier, wherein the microbial carrier is formed, and the projections have an uneven shape on the surface.
前記非相溶性樹脂は、アクリル樹脂(ポリメタクリル酸メチル:PMMA)、ポリカーボネート樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリエチレンテレフタレート樹脂、ポリウレタン樹脂の一種類または複数種類であることを特徴とする請求項1に記載の微生物担体。 The incompatible resin is one or more types of acrylic resin (polymethyl methacrylate: PMMA), polycarbonate resin, ABS resin, polyvinyl chloride resin, polyethylene terephthalate resin, polyurethane resin. The microbial carrier according to 1. 前記断面形状が十字形であることを特徴とする請求項1または2に記載の微生物担体。   The microbial carrier according to claim 1 or 2, wherein the cross-sectional shape is a cross shape.
JP2015242176A 2015-12-11 2015-12-11 Microbial carrier Active JP6685588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015242176A JP6685588B2 (en) 2015-12-11 2015-12-11 Microbial carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015242176A JP6685588B2 (en) 2015-12-11 2015-12-11 Microbial carrier

Publications (2)

Publication Number Publication Date
JP2017104829A JP2017104829A (en) 2017-06-15
JP6685588B2 true JP6685588B2 (en) 2020-04-22

Family

ID=59058263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242176A Active JP6685588B2 (en) 2015-12-11 2015-12-11 Microbial carrier

Country Status (1)

Country Link
JP (1) JP6685588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773545A (en) * 2019-09-19 2020-02-11 百沃星联(上海)环保科技有限公司 Microorganism medium for food decomposition, and apparatus and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761671B2 (en) * 1997-05-16 2006-03-29 昭和エンジニアリング株式会社 Carrier for attaching microorganisms
JP2001239293A (en) * 2000-03-02 2001-09-04 Hitachi Chem Co Ltd Cylindrical microorganism carrier having fin heading toward core part
JP2004174491A (en) * 2002-11-12 2004-06-24 Dainippon Plastics Co Ltd Microorganism carrier for treating sewage, method for preparing the same, and method for treating sewage using the same
JP5964195B2 (en) * 2012-10-05 2016-08-03 株式会社イノアック技術研究所 Microbial carrier
JP6364769B2 (en) * 2013-12-26 2018-08-01 東ソー株式会社 Resin composition, microorganism-immobilized carrier and purification method

Also Published As

Publication number Publication date
JP2017104829A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
BE1004007A5 (en) Articles in mould resins thermoplastic biodegradable.
CN103717648A (en) Method for producing resin composite material, and resin composite material
EP3030402B1 (en) A system comprising a three-dimensional printer and a printer cartridge, and a method for forming a three-dimensional object
JP2015016473A (en) Carrier for treating fluid
TWI507367B (en) Anaerobic treatment
JP5568561B2 (en) Method for separating spent organic material and at the same time improving purity by aqueous medium of selected density
JP6685588B2 (en) Microbial carrier
SE521148C2 (en) Process for biological purification of water in a reactor containing carrier for biofilm growth
JPH10257885A (en) Microorganism immobilized carrier for fluidized bed
JP6869307B2 (en) Microbial carrier
CN1246131A (en) Biaxially oriented polypropylene-base film
KR20150137061A (en) Anaerobic treatment method
JP5964195B2 (en) Microbial carrier
JP2009516046A (en) Semi-crystalline polymer microporous membrane and method for producing the same
RU2682532C1 (en) Method for obtaining biomass carrier material for biological wastewater treatment
JP2015052045A (en) Polyester resin composition, polyester resin foam and method for producing the same
JP2974565B2 (en) Contact material for biological filter beds
JP2004174491A (en) Microorganism carrier for treating sewage, method for preparing the same, and method for treating sewage using the same
JP2012110843A (en) Method and apparatus for anaerobic treatment
JP2013202538A (en) Water treatment device
JP6295877B2 (en) Wastewater treatment system containing animal and vegetable oils
JP6571471B2 (en) Resin composition, foam, microbial carrier and method for producing foam
KR100918587B1 (en) Method for manufacturing porous biological film microbic carrier containing yellow ocher, and carrier produced thereby
JP6494244B2 (en) Holding material and waste water treatment device
EP1500486A2 (en) Process for producing polymer foam and polymer foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250