JP2017104829A - Microorganism carrier - Google Patents

Microorganism carrier Download PDF

Info

Publication number
JP2017104829A
JP2017104829A JP2015242176A JP2015242176A JP2017104829A JP 2017104829 A JP2017104829 A JP 2017104829A JP 2015242176 A JP2015242176 A JP 2015242176A JP 2015242176 A JP2015242176 A JP 2015242176A JP 2017104829 A JP2017104829 A JP 2017104829A
Authority
JP
Japan
Prior art keywords
carrier
microorganism
cross
protrusions
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015242176A
Other languages
Japanese (ja)
Other versions
JP6685588B2 (en
Inventor
義久 高森
Yoshihisa Takamori
義久 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2015242176A priority Critical patent/JP6685588B2/en
Publication of JP2017104829A publication Critical patent/JP2017104829A/en
Application granted granted Critical
Publication of JP6685588B2 publication Critical patent/JP6685588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microorganism carrier that treats drainage (sewage) and the like by an anaerobic microorganism adhered to a surface of the carrier, is excellent in water settleability and drainage treatment capacity by an anaerobic microorganism and hardly causes the anaerobic microorganism adhered to the carrier surface to drop off from the carrier.SOLUTION: In a microorganism carrier holding an anaerobic microorganism on a surface of the carrier, a microorganism carrier 10B includes a polyolefin-based resin and an inorganic powder, is composed of a nonporous resin having a true specific gravity (in accordance with JIS Z 8807) of more than 1 and has a structure that a cross-sectional shape having 3 or more protrusions is formed in a circumferential direction of a cross section and a shape of unevenness 13b composed of melt fracture formed during extrusion molding is formed so as to have a large initial adhesion amount of microorganism and inhibit the microorganism from dropping-off by agitation by virtue of protrusions and surface unevenness.SELECTED DRAWING: Figure 3

Description

本発明は、水中沈降性及び嫌気性微生物の付着性に優れると共に、付着した微生物の脱落を抑えることのできる微生物担体に関する。   The present invention relates to a microbial carrier that is excellent in subsidence in water and adherence to anaerobic microorganisms and can suppress the falling off of attached microorganisms.

従来、排水等に対する水処理には、嫌気性微生物による働きで溶存有機物を分解させる嫌気性処理がある。嫌気性処理においては、汚水浄化槽における反応槽(嫌気濾床層)に流動性の微生物担体を投入または充填して汚水(有機性排水)を通水させることで、微生物担体に付着した嫌気性微生物による働きで汚水中の溶存有機物を分解している(特許文献1、特許文献2)。   Conventionally, water treatment for waste water or the like includes anaerobic treatment in which dissolved organic matter is decomposed by the action of anaerobic microorganisms. In anaerobic treatment, anaerobic microorganisms attached to the microbial carrier by introducing or filling a fluid microbial carrier into the reaction tank (anaerobic filter bed layer) in the sewage septic tank and passing the sewage (organic wastewater) through The dissolved organic matter in the sewage is decomposed by the action of (Patent Document 1, Patent Document 2).

嫌気性処理では、嫌気性雰囲気で微生物が働くため、反応槽等内に投入された流動性の微生物担体は速やかに水中に沈降して水面に長く浮き上がっていない事が、水処理能力向上に必要となる。特に有機性排水を上向流通水して高速処理を行う場合、水沈降性が高いことが求められる。
水沈降性の向上を図った嫌気性処理用の微生物担体として、オレフィン系樹脂とセルロース系粉末を含むオレフィン系樹脂発泡体からなり、あるいはさらに無機粉末を含むオレフィン系樹脂発泡体からなり、発泡体の表面にメルトフラクチャー状態を有するものがある(特許文献2、特許文献3)。
In anaerobic treatment, since microorganisms work in an anaerobic atmosphere, it is necessary to improve the water treatment capacity that the fluid microbial carrier introduced into the reaction tank etc. quickly settles in the water and does not float on the surface for a long time. It becomes. In particular, when organic wastewater is circulated upward and high-speed treatment is performed, water sedimentation is required to be high.
As a microbial carrier for anaerobic treatment with improved water sedimentation, it is made of an olefin resin foam containing an olefin resin and a cellulose powder, or further comprising an olefin resin foam containing an inorganic powder. Some have a melt fractured state on the surface (Patent Document 2, Patent Document 3).

しかしながら、オレフィン系樹脂とセルロース系粉末を含むオレフィン系樹脂発泡体、あるいはさらに無機粉末を含むオレフィン系樹脂発泡体で構成されて、発泡体の表面にメルトフラクチャー状態を有する微生物担体は、発泡剤を使用することで表面の凹凸状態を発現させているものの、発泡体で中空状態からなるため、依然として水沈降性が良好ではなく、水処理能力も充分ではなく、さらに含有されている木粉等のセルロース系粉末が微生物担体自体を脆くさせるため、水中で長時間使用されると微生物担体の破片が水中に流れ出し、水中汚染を生じる問題がある。さらに、微生物担体の発泡体のセル内部に、微生物から発生するガスが溜まることによって浮力が増加して水沈降性が低下する問題がある。   However, a microbial carrier comprising an olefin resin foam containing an olefin resin and a cellulose powder, or an olefin resin foam further containing an inorganic powder, and having a melt fractured state on the surface of the foam, Although the surface unevenness is expressed by using it, since it is a hollow state with a foam, the water sedimentation property is still not good, the water treatment capacity is not sufficient, and further contained wood flour, etc. Since the cellulosic powder makes the microbial carrier itself brittle, there is a problem in that if it is used in water for a long time, fragments of the microbial carrier will flow out into the water and cause contamination in the water. Furthermore, there is a problem that buoyancy increases due to accumulation of gas generated from microorganisms inside the cell of the foam of the microbial carrier, and water sedimentation properties decrease.

また、ポリオレフィン系樹脂と無機粉末を含む非多孔質体からなる筒状の外周面を、大径部と小径部が交互に存在する波形状の凹凸にして、凹部に微生物が付着保持されるようにした微生物担体がある(特許文献4)。
しかしながら、大径部と小径部が交互に存在する波形状の凹凸とした円柱状の微生物担体は、排水等の処理時に微生物担体同士が衝突した際に、微生物担体の表面に付着している微生物が脱落するおそれがあり、その場合に排水処理性能を十分に発揮できなくなる。
In addition, the cylindrical outer peripheral surface made of a non-porous material containing a polyolefin resin and inorganic powder is formed into a corrugated irregularity in which a large diameter portion and a small diameter portion are alternately present so that microorganisms adhere to and hold in the concave portion. There is a microorganism carrier (Patent Document 4).
However, the corrugated cylindrical microbial carrier in which large-diameter portions and small-diameter portions are alternately present is a microorganism that adheres to the surface of the microbial carrier when the microbial carriers collide with each other during the treatment of drainage or the like. May fall off, and in that case, the wastewater treatment performance cannot be fully exhibited.

特開2001−211881号公報JP 2001-211881 A 特開2012−110843号公報JP 2012-110443 A 特開2009−66592号公報JP 2009-66592 A 特開2014−73476号公報JP 2014-73476 A

本発明は前記の点に鑑みなされたものであって、水沈降性及び付着した嫌気性微生物による水処理能力に優れ、かつ微生物が脱落し難い嫌気性処理用の微生物担体の提供を目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a microorganism carrier for anaerobic treatment that is excellent in water treatment ability due to water sedimentation and attached anaerobic microorganisms and in which microorganisms are difficult to fall off. .

請求項1の発明は、嫌気性微生物を表面に保持する微生物担体において、前記微生物担体は、ポリオレフィン系樹脂と無機粉末を含み、真比重(JIS Z 8807準拠)が1より大の非多孔質体の樹脂からなり、断面形状が断面周方向において3個以上の突起が形成された形状であることを特徴とする。   The invention of claim 1 is a microbial carrier that retains anaerobic microorganisms on its surface, wherein the microbial carrier includes a polyolefin resin and an inorganic powder, and has a true specific gravity (according to JIS Z 8807) of more than 1. The cross-sectional shape is a shape in which three or more protrusions are formed in the circumferential direction of the cross-section.

請求項2の発明は、請求項1において、前記微生物担体の表面に凹凸形状を有することを特徴とする。   The invention of claim 2 is characterized in that, in claim 1, the surface of the microorganism carrier has an uneven shape.

請求項3の発明は、請求項1または2において、前記断面形状が十字形であることを特徴とする。   A third aspect of the present invention is characterized in that, in the first or second aspect, the cross-sectional shape is a cross shape.

本発明の微生物担体は、ポリオレフィン系樹脂と無機粉末を含み、真比重(JIS Z 8807準拠)が1より大の非多孔質体の樹脂からなるため、排水等に投入された際に、速やかに沈降することができ、微生物担体に付着した嫌気性微生物による汚水処理を効率良く行うことができる。   The microbial carrier of the present invention comprises a polyolefin resin and an inorganic powder and is made of a non-porous resin having a true specific gravity (according to JIS Z 8807) of more than 1, so that when it is put into waste water, etc. Sedimentation can be performed efficiently by anaerobic microorganisms that can settle and adhere to the microorganism carrier.

また、本発明の微生物担体は、断面形状が、断面周方向において3個以上の突起が形成された形状であり、断面周方向において隣接する突起間の基部を中心とする隣接する各突起の表面(斜面)との間に、いわゆる谷部を形成する。このため、表面積が増え、付着する嫌気性微生物の量を増大させ、嫌気性微生物による処理能力を高めることができる。さらに本発明の微生物担体は、汚水処理中に微生物担体同士が衝突する際、奥まった位置となる断面周方向において隣接する突起間の基部については、いわゆる各突起間の谷部が存在するので、他の微生物担体と接触し難いため、突起の基部に付着した嫌気性微生物が脱落し難くなり、嫌気性微生物による良好な汚水処理性能を維持することが可能となる。   The microorganism carrier of the present invention has a cross-sectional shape in which three or more protrusions are formed in the circumferential direction of the cross section, and the surface of each adjacent protrusion centering on the base between adjacent protrusions in the circumferential direction of the cross section. A so-called valley is formed between the (slope). For this reason, a surface area increases, the quantity of the anaerobic microorganisms which adhere can be increased, and the processing capability by an anaerobic microorganism can be improved. Furthermore, since the microbial carrier of the present invention collides with each other during sewage treatment, there is a so-called trough between the protrusions for the base between adjacent protrusions in the circumferential direction of the cross section, which is a deep position, Since it is difficult to come into contact with other microbial carriers, anaerobic microorganisms attached to the base of the protrusion are difficult to drop off, and it is possible to maintain good sewage treatment performance by the anaerobic microorganisms.

さらに、本発明の微生物担体において、微生物担体の表面に凹凸形状を設けることにより、表面の凹部に付着した嫌気性微生物をより確実に保持することができ、嫌気性微生物による良好な処理性能を維持することが可能となる。   Furthermore, in the microbial carrier of the present invention, by providing a concavo-convex shape on the surface of the microbial carrier, it is possible to more reliably retain anaerobic microorganisms attached to the concave portions on the surface, and maintain good treatment performance by the anaerobic microorganisms. It becomes possible to do.

本発明の第1実施形態に係る微生物担体の斜視図である。1 is a perspective view of a microbial carrier according to a first embodiment of the present invention. 突起形状が三角の場合を示す本発明の第2実施形態に係る微生物担体の斜視図である。It is a perspective view of the microorganism carrier which concerns on 2nd Embodiment of this invention which shows the case where protrusion shape is a triangle. 表面に凹凸形状を有する本発明の第3実施形態に係る微生物担体の斜視図である。It is a perspective view of the microorganism carrier which concerns on 3rd Embodiment of this invention which has uneven | corrugated shape on the surface. 本発明の微生物担体を製造する装置の概略図である。It is the schematic of the apparatus which manufactures the microorganisms carrier of this invention. 実施例1の押出成形体と実施例2の押出成形体の側部外面を撮影した写真である。It is the photograph which image | photographed the side part outer surface of the extrusion molding body of Example 1, and the extrusion molding body of Example 2. FIG.

以下、本発明の実施形態に係る微生物担体について説明する。図1に示す第1実施形態の微生物担体10は、排水等に対する嫌気性処理に使用されるものであり、ポリオレフィン系樹脂と無機粉末を含み、真比重(JIS Z 8807準拠)が1より大の非多孔質体(非発泡体)からなり、長さ方向に垂直な断面形状が、断面周方向において3個以上の突起が形成された形状(断面複数突起形状)のものである。前記微生物担体10は長さ方向に垂直な断面形状が、断面周方向において3個以上の突起が形成された形状の押出成形体を所定長に切断して得られる。なお、前記微生物担体10の長さ方向は、微生物担体の製造時に押出機から押し出す押出方向と一致する。   Hereinafter, the microbial carrier according to the embodiment of the present invention will be described. The microbial carrier 10 of the first embodiment shown in FIG. 1 is used for anaerobic treatment of waste water and the like, includes a polyolefin resin and an inorganic powder, and has a true specific gravity (according to JIS Z 8807) of more than 1. A cross-sectional shape made of a non-porous body (non-foamed body) and having a cross-sectional shape perpendicular to the length direction is a shape in which three or more protrusions are formed in the cross-sectional circumferential direction (a cross-sectional multiple protrusion shape). The microbial carrier 10 is obtained by cutting an extruded product having a cross-sectional shape perpendicular to the length direction and a shape in which three or more protrusions are formed in the circumferential direction of the cross-section into a predetermined length. The length direction of the microbial carrier 10 coincides with the extrusion direction extruded from the extruder during the production of the microbial carrier.

第1実施形態の微生物担体10では、中央部11とその長さ方向に垂直な断面周方向に形成された3個以上の突起(図示の例では十字形を構成する4個の突起)12とよりなる。前記突起12は、第1実施形態では断面が正方形あるいは長方形などの四角形からなる。前記微生物担体10の外寸法(突起12の先端間寸法)a及び奥行き長さbは、それぞれ1mm〜20mmの範囲であり、より好ましくは4〜8mm程度である。また、前記微生物担体10の突起12は、突起12の長さcが0.1mm〜8.5mmの範囲であり、より好ましくは2〜4mmであり、突起12の基部における幅dが0.1mm〜19mmの範囲であり、より好ましくは1〜3mm程度である。   In the microorganism carrier 10 of the first embodiment, the central portion 11 and three or more projections (four projections constituting a cross shape in the illustrated example) 12 formed in the circumferential direction of the cross section perpendicular to the length direction thereof, It becomes more. In the first embodiment, the protrusion 12 has a square shape such as a square or a rectangle. The outer dimension (the dimension between the tips of the protrusions 12) a and the depth length b of the microbial carrier 10 are each in the range of 1 mm to 20 mm, more preferably about 4 to 8 mm. Further, the protrusion 12 of the microorganism carrier 10 has a length c of the protrusion 12 in the range of 0.1 mm to 8.5 mm, more preferably 2 to 4 mm, and the width d at the base of the protrusion 12 is 0.1 mm. It is the range of -19mm, More preferably, it is about 1-3mm.

また、断面周方向における突起12の数は、3個以上(図示の例では十字形を構成する4個)であり、より好ましくは3〜8個であり、更により好ましくは4〜6個である。後述する実施例の測定結果に示す通り、断面周方向における突起12の数を3〜8個とすることで、初期付着汚泥重量を9.5g以上に増やすことができ、撹拌後付着汚泥重量を7.3g以上とすることができ、また、汚泥付着減少率を34.5%以下とすることができる。
更に断面周方向における突起12の数を4〜6個とすることで、撹拌後付着汚泥重量の評価試験後の汚泥重量の脱落量(差:脱落汚泥重量)を1.3〜2.2gに減らすことができ、汚泥付着減少率を7.8〜23.2%と小さくすることができる。
断面周方向における突起12の数が3個より少ないと、表面積は増えるものの有効な谷間を形成することができず、基部に付着した汚泥付着減少率が大きくなる。8個より多くなると、谷間の空間がかえって狭くなって、基部に付着した初期付着汚泥重量が少なくなる。
Further, the number of the protrusions 12 in the circumferential direction of the cross section is 3 or more (in the illustrated example, 4 pieces forming a cross shape), more preferably 3 to 8, and even more preferably 4 to 6 pieces. is there. As shown in the measurement results of Examples described later, by setting the number of protrusions 12 in the circumferential direction of the cross section to 3 to 8, the initial attached sludge weight can be increased to 9.5 g or more, and the attached sludge weight after stirring is increased. It can be set to 7.3 g or more, and the sludge adhesion reduction rate can be set to 34.5% or less.
Further, by setting the number of protrusions 12 in the circumferential direction of the cross section to 4 to 6, the amount of sludge falling after the evaluation test of the attached sludge weight after stirring (difference: falling sludge weight) is 1.3 to 2.2 g. The sludge adhesion reduction rate can be reduced to 7.8 to 23.2%.
When the number of protrusions 12 in the circumferential direction of the cross section is less than 3, the surface area increases, but an effective valley cannot be formed, and the sludge adhesion reduction rate attached to the base portion increases. When the number is more than 8, the space between the valleys becomes narrower and the weight of the initially attached sludge attached to the base portion is reduced.

前記突起12の断面形状は四角形に限られず、三角形であってもよい。図2に、突起12Aが三角形からなる第2実施形態の微生物担体10Aを示す。三角形の突起12aの寸法は、前記四角形の突起12の寸法と同様である。なお、第2実施形態の微生物担体10Aにおいて、符号11aは前記微生物担体10Aの断面の中央部である。また、前記微生物担体10Aの長さ方向に垂直な断面周方向における突起12の数は、3個以上であり、より好ましくは図示の例のように十字形を構成する4個である。   The cross-sectional shape of the protrusion 12 is not limited to a quadrangle, and may be a triangle. FIG. 2 shows a microorganism carrier 10A according to a second embodiment in which the protrusions 12A are triangular. The dimension of the triangular protrusion 12a is the same as the dimension of the square protrusion 12. In the microbial carrier 10A of the second embodiment, the reference numeral 11a is the central portion of the cross section of the microbial carrier 10A. Further, the number of the protrusions 12 in the circumferential direction of the cross section perpendicular to the length direction of the microorganism carrier 10A is three or more, more preferably four forming a cross shape as in the illustrated example.

前記微生物担体10及び10Aは、表面に凹凸を有するものがより好ましい。
図3に、表面に凹凸を有する一例として、第3実施形態の微生物担体10Bを示す。第3実施形態の微生物担体10Bは、突起12bの形状が四角形の場合であり、前記微生物担体10Bの表面に凹凸13bを有する。符号11bは中央部である。前記凹凸13bは、前記微生物担体10B用の押出成形体を押出成形する際に、押出成形体の表面に形成される凹凸であり、メルトフラクチャーとも称される。
More preferably, the microbial carriers 10 and 10A have irregularities on the surface.
FIG. 3 shows a microbial carrier 10B of the third embodiment as an example having irregularities on the surface. The microbial carrier 10B of the third embodiment is a case where the shape of the protrusion 12b is a quadrangle, and has an uneven surface 13b on the surface of the microbial carrier 10B. Reference numeral 11b denotes a central portion. The unevenness 13b is unevenness formed on the surface of the extruded product when the extruded product for the microbial carrier 10B is extruded, and is also referred to as melt fracture.

前記ポリオレフィン系樹脂としては、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、エチレン−酢酸ビニル共重合体(EVA)樹脂、ポリスチレン(PS)樹脂等を挙げることができ、それらが単独で又は二種類以上組み合わせて使用される。特にポリエチレン樹脂は、本発明において好適なポリオレフィン系樹脂の一つである。ポリオレフィン系樹脂の量は、非多孔質体100質量%中、30〜90質量%が好ましく、特に30〜70質量%が好ましい。30質量%未満の場合には非多孔質体の結合力が弱くなる。   Examples of the polyolefin resin include polyethylene (PE) resin, polypropylene (PP) resin, ethylene-vinyl acetate copolymer (EVA) resin, polystyrene (PS) resin, and the like. Used in combination. In particular, polyethylene resin is one of the preferred polyolefin resins in the present invention. The amount of the polyolefin-based resin is preferably 30 to 90% by mass, particularly preferably 30 to 70% by mass in 100% by mass of the non-porous body. When the amount is less than 30% by mass, the bonding strength of the non-porous body becomes weak.

前記無機粉末としては、炭酸カルシウム、硫酸バリウム、ゼオライト、タルク、酸化チタン、チタン酸カリウム、水酸化アルミニウム等を挙げることができ、それらの一種あるいは複数種類を組み合わせて使用することができる。特に炭酸カルシウムは好適である。無機粉末は、前記微生物担体10、10A、10Bを構成する非多孔質体の比重を増大させる作用を有する。無機粉末の量は、非多孔質体100質量部中、10〜70質量部が好ましく、特に30〜50質量部が好ましい。無機粉末の量を非多孔質体100質量部中10〜70質量部とすれば、微生物担体10の真比重を1より大で1.6までの非多孔質体(非発泡体)とすることができ、嫌気性処理に適したものとなる。70質量部を超える場合には、結合力が弱くなって水中で微生物担体10が分離し易くなる。   Examples of the inorganic powder include calcium carbonate, barium sulfate, zeolite, talc, titanium oxide, potassium titanate, aluminum hydroxide, and the like, and one or more of them can be used in combination. Calcium carbonate is particularly preferred. Inorganic powder has the effect | action which increases the specific gravity of the non-porous body which comprises the said microorganisms carrier 10, 10A, 10B. The amount of the inorganic powder is preferably 10 to 70 parts by mass, particularly preferably 30 to 50 parts by mass in 100 parts by mass of the non-porous body. When the amount of the inorganic powder is 10 to 70 parts by mass in 100 parts by mass of the nonporous body, the microbial carrier 10 has a non-porous body (non-foamed body) having a true specific gravity of more than 1 and up to 1.6. It is suitable for anaerobic treatment. When it exceeds 70 parts by mass, the binding force becomes weak and the microbial carrier 10 is easily separated in water.

前記ポリエチレン系樹脂及び無機粉末と共に非相溶性樹脂が添加されるのが好ましい。前記非相溶性樹脂は、前記ポリオレフィン系樹脂とは異なる樹脂であって、前記ポリオレフィン系樹脂よりも溶解度パラメータδ(SP値)が1〜5(MJ/m1/2大きいものが好ましい。SP値の差が1(MJ/m1/2未満では、ポリエチレン(PE)樹脂およびポリプロピレン(PP)樹脂中において相溶化しやすく、表面に凹凸を発生させる作用を生じにくく、逆に、SP値の差が5(MJ/m1/2より大きい場合、押し出し成形時にストランドが切断されやすく、微生物担体として長期使用中に分離しやすくなる。 It is preferable that an incompatible resin is added together with the polyethylene resin and the inorganic powder. The incompatible resin is a resin different from the polyolefin resin and preferably has a solubility parameter δ (SP value) of 1 to 5 (MJ / m 3 ) 1/2 larger than that of the polyolefin resin. When the difference in SP value is less than 1 (MJ / m 3 ) 1/2, it is easy to be compatible in polyethylene (PE) resin and polypropylene (PP) resin, and it is difficult to generate an unevenness on the surface. When the difference in SP value is larger than 5 (MJ / m 3 ) 1/2 , the strands are easily cut during extrusion molding, and are easily separated during long-term use as a microorganism carrier.

前記非相溶性樹脂としては、アクリル樹脂(ポリメタクリル酸メチル:PMMA)、ポリカーボネート樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリエチレンテレフタレート樹脂、ポリウレタン樹脂等を挙げることができ、それらの一種類あるいは複数種類を組み合わせて使用することができる。特にアクリル樹脂、ポリカーボネート樹脂およびABS樹脂は、ポリエチレン(PE)樹脂およびポリプロピレン(PP)樹脂よりもSP値が大きく、その差は1〜5(MJ/m1/2であるため、ポリエチレン(PE)樹脂やポリプロピレン(PP)樹脂と混合されると、押し出し成形時にダイ内壁面で臨界せん断応力を超え、表面に凹凸を発生させやすく、好ましいものである。前記非相溶性樹脂は、前記非多孔質体に適宜含まれる添加剤であり、非多孔質体に含まれることによって表面の凹凸を形成し易くできる。前記アクリル樹脂は、前記非多孔質体に含有させる場合、前記非多孔質体100質量%中1〜20質量%が好ましい。1質量%未満の場合、アクリル樹脂による効果が得られず、一方、20質量%を超える場合には、ポリオレフィン系樹脂の含有量が少なくなって成形しにくくなる。 Examples of the incompatible resin include acrylic resin (polymethyl methacrylate: PMMA), polycarbonate resin, ABS resin, polyvinyl chloride resin, polyethylene terephthalate resin, polyurethane resin, and the like. Can be used in combination. In particular, acrylic resin, polycarbonate resin, and ABS resin have a larger SP value than polyethylene (PE) resin and polypropylene (PP) resin, and the difference is 1 to 5 (MJ / m 3 ) 1/2. When it is mixed with PE) resin or polypropylene (PP) resin, it is preferable because it exceeds the critical shear stress on the inner wall surface of the die at the time of extrusion molding and tends to generate irregularities on the surface. The incompatible resin is an additive appropriately contained in the non-porous body, and can easily form surface irregularities by being contained in the non-porous body. When the acrylic resin is contained in the non-porous body, it is preferably 1 to 20% by mass in 100% by mass of the non-porous body. When the amount is less than 1% by mass, the effect of the acrylic resin cannot be obtained.

なお、溶解度パラメータδ(SP値)は、フェダーズ(Fedors)の方法により決定される25℃におけるポリマーの繰り返し単位の値を指す。当該方法は、R.F.Fedors,Polym.Eng.Sci.,14(2),147(1974)に記載されている。即ち、求める化合物の構造式において、原子および原子団の蒸発エネルギーとモル体積のデータより次式により決定される。
δ=(ΣΔei/ΣΔvi)1/2
ただし、式中、ΔeiおよびΔviは、それぞれ原子または原子団の蒸発エネルギーおよびモル体積を表す。求める化合物の構造式はIR、NMR、マススペクトルなどの通常の構造分析手法を用いて決定する。
The solubility parameter δ (SP value) refers to the value of the repeating unit of the polymer at 25 ° C. determined by the method of Fedors. The method is described in RFFedors, Polym. Eng. Sci., 14 (2), 147 (1974). That is, in the structural formula of the desired compound, it is determined by the following formula from the evaporation energy and molar volume data of atoms and atomic groups.
δ = (ΣΔei / ΣΔvi) 1/2
However, in formula, (DELTA) ei and (DELTA) vi represent the evaporation energy and molar volume of an atom or an atomic group, respectively. The structural formula of the compound to be determined is determined using a general structural analysis technique such as IR, NMR, and mass spectrum.

図4は前記微生物担体10、10A、10Bの製造装置の概略図である。前記製造装置30は、押出機(単軸又は多軸押出機)31、水中冷却槽33、ストランドカッター(引き取り装置及び切断装置)35からなる。前記製造装置30を用いる微生物担体10、10A、10Bの製造は、次のようにして行われる。   FIG. 4 is a schematic view of a production apparatus for the microorganism carriers 10, 10A, 10B. The manufacturing apparatus 30 includes an extruder (single-screw or multi-screw extruder) 31, an underwater cooling tank 33, and a strand cutter (take-off device and cutting device) 35. Production of the microbial carriers 10, 10A, 10B using the production apparatus 30 is performed as follows.

まず、前記ポリオレフィン系樹脂、無機粉末、及び適宜添加する非相溶性樹脂を前記の割合で押出機31に投入し、前記押出機31内で溶融混練して押出機31から気相中に非多孔質状態で断面形状が長さ方向に垂直な断面周方向において3個以上の突起が形成されたストランド状に押し出し、水中冷却槽33中を通して冷却硬化させ、前記ストランドをストランドカッター35の引き取り装置で引き取って、所定長に切断装置で切断することにより、前記微生物担体10、10A、10Bを得る。なお、押出機のダイ形状は、前記微生物担体10、10Bに対しては、先端が四角形をした十字形であり、一方、前記微生物担体10Aについては、先端が三角形をした十字形である。前記微生物担体10Bの表面の凹凸(メルトフラクチャー)13bは、押出機31のバレル設定温度を通常温度よりも低めに設定することによって形成することができる。   First, the polyolefin resin, the inorganic powder, and the incompatible resin to be added as appropriate are charged into the extruder 31 at the above ratio, and melted and kneaded in the extruder 31 to be nonporous from the extruder 31 into the gas phase. The strand is extruded into a strand having three or more protrusions in the circumferential direction perpendicular to the longitudinal direction in the quality state, cooled and cured through the underwater cooling tank 33, and the strand is taken up by the strand cutter 35. The microorganism carrier 10, 10A, 10B is obtained by taking it out and cutting it into a predetermined length with a cutting device. The die shape of the extruder is a cross having a square tip with respect to the microorganism carriers 10 and 10B, while the microorganism carrier 10A is a cross having a triangle tip. The unevenness (melt fracture) 13b on the surface of the microorganism carrier 10B can be formed by setting the barrel set temperature of the extruder 31 to be lower than the normal temperature.

以下の原料と図4に示した製造装置30を用いて表1に示す実施例1、実施例2、実施例3及び実施例4を製造した。実施例1は、前記第1実施形態の微生物担体10と同様、複数の突起として十字形を構成する4個の突起12の形状が四角形からなって、表面に凹凸(メルトフラクチャー)を有しない例である。実施例2は、前記第3実施形態の微生物担体10Bと同様、複数の突起として十字形を構成する4個の突起12bの形状が四角形からなって、表面に凹凸(メルトフラクチャー)13bを有する例である。実施例3は、複数の突起として3個の突起を有し、かつ突起の形状が四角形からなって、表面に凹凸(メルトフラクチャー)を有する例である。実施例4は、複数の突起として5個の突起を有し、かつ突起の形状が四角形からなって、表面に凹凸(メルトフラクチャー)を有する例である。なお、実施例1、実施例2、実施例3及び実施例4の微生物担体の長さ(ストランドの切断長さ)は何れも3mmである。   Example 1, Example 2, Example 3, and Example 4 shown in Table 1 were manufactured using the following raw materials and the manufacturing apparatus 30 shown in FIG. In Example 1, like the microorganism carrier 10 of the first embodiment, the four protrusions 12 forming a cross shape as a plurality of protrusions have a quadrangular shape and have no irregularities (melt fracture) on the surface. It is. In Example 2, like the microbial carrier 10B of the third embodiment, the four protrusions 12b forming a cross shape as a plurality of protrusions have a quadrangular shape and have unevenness (melt fracture) 13b on the surface. It is. Example 3 is an example which has three protrusions as a plurality of protrusions, the protrusions have a quadrangular shape, and have irregularities (melt fracture) on the surface. Example 4 is an example having five protrusions as a plurality of protrusions, the protrusions having a quadrangular shape, and unevenness (melt fracture) on the surface. In addition, the length (cutting length of the strand) of the microbial carriers of Example 1, Example 2, Example 3, and Example 4 is 3 mm.

・ポリオレフィン系樹脂:ポリエチレン樹脂、品名;ニポロンハード5700、MFR1.0(g/10min)、東ソー社製
・無機粉末:炭酸カルシウム、品名;BF300、備北粉化工業社製
・アクリル樹脂:品名;アクリペットVH−001、三菱レイヨン社製
ポリオレフィン系樹脂/無機粉末/アクリル樹脂=45質量部/50質量部/5質量部
・ Polyolefin resin: Polyethylene resin, product name: Nipolon Hard 5700, MFR1.0 (g / 10 min), manufactured by Tosoh Corporation ・ Inorganic powder: calcium carbonate, product name: BF300, manufactured by Bihoku Powder Chemical Co., Ltd. ・ Acrylic resin: Product name: Acrypet VH-001, manufactured by Mitsubishi Rayon Co., Ltd. Polyolefin resin / inorganic powder / acrylic resin = 45 parts by mass / 50 parts by mass / 5 parts by mass

前記押出機31は、品名;二軸押出機KTX30、神戸製鋼社製である。押出機の条件は、ダイが実施例1〜4の何れもストランド押出用の穴×4つ、バレル設定温度が実施例1では220℃、実施例2〜4では180℃、吐出量が実施例1〜4の何れも60kg/時、押し出し速度が実施例1〜4の何れも10m/分、スクリュー回転数が実施例1〜4の何れも400rpm、引き取り速度が実施例1〜4の何れも11m/分である。なお、ダイのストランド押出用の穴の寸法は、突起を十字形に4個設ける実施例1と実施例2用のダイについては、図1のaに対応する寸法が6mm、cに対応する寸法が2mm、dに対応する寸法が2mmである。また、突起の数が3個の実施例3用のダイ及び突起の数が4個の実施例4用のダイについては、図1とは突起の数が相違するが、aに相当する部分の寸法が6mm、cに相当する部分の寸法が2mm、dに相当する部分の寸法が2mmである。   The extruder 31 is a product name; twin screw extruder KTX30, manufactured by Kobe Steel. Extruder conditions are as follows: the die is any one of Examples 1 to 4 with holes for strand extrusion, the barrel set temperature is 220 ° C. in Example 1, 180 ° C. in Examples 2 to 4, and the discharge amount is Example 1-4 is 60 kg / hour, the extrusion speed is 10 m / min for any of Examples 1 to 4, the screw speed is 400 rpm for any of Examples 1 to 4, and the take-up speed is any of Examples 1 to 4. 11 m / min. In addition, the dimension of the hole for strand extrusion of the die is the dimension corresponding to a in FIG. 1 for the dies for Example 1 and Example 2 in which four protrusions are provided in a cross shape, and the dimension corresponding to c. Is 2 mm, and the dimension corresponding to d is 2 mm. In addition, the die for Example 3 having three protrusions and the die for Example 4 having four protrusions are different from those in FIG. The dimension is 6 mm, the dimension corresponding to c is 2 mm, and the dimension corresponding to d is 2 mm.

図5は、前記ストランドカッターで切断する前の実施例1の押出成形体100と実施例2の押出成形体100Aについて側部を、スケール110と共に撮影した写真である。スケール110の目盛りの値「1」は1cm(10mm)であり、「2」は2cm(20mm)である。実施例1の押出成形体100は、表面に凹凸(メルトフラクチャー)が無く、一方、実施例2の押出成形体100Aは、表面に凹凸を有する。押出成形体100及び110は、その後に前記ストランドカッターで長さ3mmに切断されて実施例1の微生物担体と実施例2の微生物担体となる。   FIG. 5 is a photograph of the side part of the extruded body 100 of Example 1 and the extruded body 100A of Example 2 taken together with the scale 110 before being cut by the strand cutter. The scale value “1” of the scale 110 is 1 cm (10 mm), and “2” is 2 cm (20 mm). The extruded body 100 of Example 1 has no irregularities (melt fracture) on the surface, while the extruded body 100A of Example 2 has irregularities on the surface. Extruded bodies 100 and 110 are then cut to a length of 3 mm by the strand cutter to form the microbial carrier of Example 1 and the microbial carrier of Example 2.

また、比較例1として、外径10mm、内径8mmのポリエチレン製中空パイプを長さ10mmに切断して微生物担体を形成した。
比較例2、3として、実施例1〜4と同一の配合からなる原料及び同一の製造装置を用い、以下に示す押出機の条件で微生物担体を製造した。比較例2は、表面に凹凸(メルトフラクチャー)が無い円柱状のものであり、比較例3は、表面に凹凸(メルトフラクチャー)を有する円柱状のものである。
As Comparative Example 1, a microorganism carrier was formed by cutting a polyethylene hollow pipe having an outer diameter of 10 mm and an inner diameter of 8 mm into a length of 10 mm.
As Comparative Examples 2 and 3, microbial carriers were produced under the conditions of the extruder shown below using the same raw materials and the same production apparatus as in Examples 1 to 4. The comparative example 2 is a cylindrical thing without an unevenness | corrugation (melt fracture) on the surface, and the comparative example 3 is a cylindrical thing which has an unevenness | corrugation (melt fracture) on the surface.

比較例2、3に対する押出機の条件は、ダイが比較例2、3の何れも直径3mm×4つ、バレル設定温度が比較例2では220℃、比較例3では180℃、吐出量が比較例2、3の何れも60kg/時、押し出し速度が比較例2、3の何れも9m/分、スクリュー回転数が比較例2、3の何れも400rpm、引き取り速度が比較例2、3の何れも9m/分である。また、比較例2及び比較例3の微生物担体の長さ(ストランドカッターによる切断長さ)は、何れも3mmである。   The conditions of the extruder for Comparative Examples 2 and 3 are as follows: the die is 3 mm × 4 in diameter in both Comparative Examples 2 and 3, the barrel set temperature is 220 ° C. in Comparative Example 2, 180 ° C. in Comparative Example 3, and the discharge amount is compared. Each of Examples 2 and 3 was 60 kg / hour, the extrusion speed was 9 m / min for both Comparative Examples 2 and 3, the screw rotation speed was 400 rpm for both Comparative Examples 2 and 3, and the take-up speed was any of Comparative Examples 2 and 3. Is also 9 m / min. Moreover, the length (cutting length by a strand cutter) of the microorganism carrier of Comparative Example 2 and Comparative Example 3 is 3 mm.

Figure 2017104829
Figure 2017104829

実施例1〜4と比較例1〜3の微生物担体に対して、真比重(JIS Z 8807準拠)、かさ比重(JIS K 7365準拠)、体積充填率(%)、沈降性(mm/s)、汚泥付着減少率(%)を測定した。なお、比較例1は、沈降しなかったため、沈降性については測定できなかった。測定結果を表1に示す。   True specific gravity (based on JIS Z 8807), bulk specific gravity (based on JIS K 7365), volume filling rate (%), sedimentation (mm / s) for the microbial carriers of Examples 1 to 4 and Comparative Examples 1 to 3. The sludge adhesion reduction rate (%) was measured. Since Comparative Example 1 did not settle, sedimentation properties could not be measured. The measurement results are shown in Table 1.

体積充填率は、[体積充填率=かさ比重/真比重]の式で計算した。体積充填率が高い(大きい)ほど、排水(処理用液体)と担体との接触面積が大きくなり、微生物担体に付着した微生物による処理能力を高くできる。   The volume filling rate was calculated by the formula [volume filling rate = bulk specific gravity / true specific gravity]. The higher (larger) the volume filling rate, the larger the contact area between the waste water (treatment liquid) and the carrier, and the treatment capacity by the microorganisms attached to the microorganism carrier can be increased.

沈降性は、200mm×200mm×350mmの水槽を用い、その水槽内に底から300mmの位置まで水を投入し、微生物担体を水槽表面で水に漬けて微生物担体の表面に水を付着させた後、水面の位置(水槽の底から300mmの位置)で微生物担体を静かに放して水槽の底に到達するまでの時間をストップウオッチで測定し、[(底までの距離(300mm))/(底に到達するまでの時間(秒))]の式で沈降速度(mm/秒)を計算した。沈降速度が大であるほど沈降性が高く、嫌気性微生物による処理に好適であると。なお、沈降速度は、n=5で測定して平均値を算出した。   For sedimentation, a 200mm x 200mm x 350mm water tank is used, water is poured into the water tank to a position 300mm from the bottom, and the microbial carrier is immersed in water on the surface of the water tank so that the water adheres to the surface of the microbial carrier. The time until the microbial carrier is gently released at the position of the water surface (300 mm from the bottom of the aquarium) and reaches the bottom of the aquarium is measured with a stopwatch, [(distance to the bottom (300 mm)) / (bottom The sedimentation speed (mm / second) was calculated by the following equation: Time to reach (second))]. The larger the sedimentation rate, the higher the sedimentation property, which is suitable for treatment with anaerobic microorganisms. The sedimentation rate was measured at n = 5 and the average value was calculated.

汚泥付着減少率は、次のようにして測定した。
・初期付着汚泥重量の測定
園芸用土壌2kgに水1リットルを加え、よく混ぜて粘りのある汚泥を作成した。次に重量測定済みの容器にサンプル(微生物担体)を所定量収容して、[容器+サンプル]の重量を測定し、得られた[容器+サンプル]の重量から容器の重量を差し引いてサンプル重量(初期サンプル重量)を算出する。次に、前記初期サンプル重量のサンプル(微生物担体)が収容されている容器に、サンプル(微生物担体)が埋まるように過剰の汚泥を投入し、汚泥とサンプル(微生物担体)を撹拌してサンプル(微生物担体)表面に汚泥を絡ませる。容器から汚泥とサンプル(微生物担体)をふるい(JIS Z8801 規格;平織金網 目開き2mm)上に落とし、1分間ふるいにかけてサンプル(微生物担体)に絡まって(付着して)いない汚泥をふるい落とす。ふるい上に残ったサンプル(微生物担体)を熱風オーブン式乾燥機(品名;DKM600、YAMATO製)で80℃×10時間乾燥させた後、乾燥後のサンプル重量(乾燥後サンプル重量)を測定する。乾燥後サンプル重量から初期サンプル重量を減算して初期付着汚泥重量を算出する。初期付着汚泥重量は、多いほうが良く、9g以上であれば良い。
・撹拌後付着汚泥重量の測定
容積1リットルの容器に、初期付着汚泥重量の測定で得られた乾燥後サンプル(微生物担体)を投入し、スターラー(条件;300rpm)で1分間撹拌させた後、容器内の収容物(汚泥とサンプル(微生物担体))を、ふるい(JIS Z8801 規格;平織金網 目開き2mm)上に落とし、1分間ふるいにかけてサンプル(微生物担体)から脱落した汚泥をふるい落とす。ふるい上に残ったサンプル(微生物担体)を熱風オーブン式乾燥機(品名;DKM600、YAMATO製)で80℃×10時間乾燥させた後、乾燥後のサンプル重量(撹拌後サンプル重量)を測定する。撹拌後サンプル重量から初期サンプル重量を減算して撹拌後付着汚泥重量を算出する。撹拌後付着汚泥重量は、多いほうが良く、7g以上であれば良い。
また、初期付着汚泥重量から撹拌後付着汚泥重量を減算して脱落汚泥重量を算出し、さらに[脱落汚泥重量/初期付着汚泥重量×100]の式によって汚泥付着減少率を算出する。汚泥付着減少率は、少ないほうが良いが、36%以下であれば良い。
The sludge adhesion reduction rate was measured as follows.
-Measurement of initial attached sludge weight 1 liter of water was added to 2 kg of horticultural soil and mixed well to create a sticky sludge. Next, a predetermined amount of sample (microorganism carrier) is placed in a weight-measured container, the weight of [container + sample] is measured, and the weight of the sample is obtained by subtracting the weight of the container from the obtained weight of [container + sample]. (Initial sample weight) is calculated. Next, an excessive amount of sludge is poured into a container in which the sample (microorganism carrier) of the initial sample weight is contained so that the sample (microorganism carrier) is buried, and the sludge and the sample (microorganism carrier) are stirred to obtain a sample ( Microbial carrier) The sludge is entangled on the surface. The sludge and the sample (microorganism carrier) are dropped from the container onto a sieve (JIS Z8801 standard; plain weave wire mesh opening 2 mm) and sieved for 1 minute to remove the sludge not entangled (attached) to the sample (microorganism carrier). The sample (microbe carrier) remaining on the sieve is dried at 80 ° C. for 10 hours with a hot air oven dryer (product name: DKM600, manufactured by YAMATO), and then the weight of the sample after drying (sample weight after drying) is measured. Subtract the initial sample weight from the sample weight after drying to calculate the initial attached sludge weight. The initial attached sludge weight should be large, and it should be 9 g or more.
・ Measurement of adhering sludge weight after agitation After a dried sample (microorganism carrier) obtained by measuring the initial adhering sludge weight was put into a 1 liter container and stirred for 1 minute with a stirrer (condition: 300 rpm), The contents in the container (sludge and sample (microorganism carrier)) are dropped on a sieve (JIS Z8801 standard; plain weave wire mesh opening 2 mm) and sieved for 1 minute to remove the sludge removed from the sample (microorganism carrier). The sample (microbe carrier) remaining on the sieve is dried at 80 ° C. for 10 hours with a hot air oven dryer (product name: DKM600, manufactured by YAMATO), and then the weight of the dried sample (sample weight after stirring) is measured. The initial sample weight is subtracted from the sample weight after stirring to calculate the adhering sludge weight after stirring. The adhering sludge weight after stirring should be large, and it should be 7 g or more.
Also, the sludge weight after dropping is calculated by subtracting the sludge weight after stirring from the initial attached sludge weight, and the sludge adhesion reduction rate is further calculated by the formula of [dropped sludge weight / initially attached sludge weight × 100]. The sludge adhesion reduction rate is preferably as small as possible, but may be 36% or less.

表1の実施例1〜4及び比較例1〜3の測定結果について以下に示す。
実施例1は、微生物担体の断面形状が4個の複数突起(=十字形)を有するため、円柱の比較例2と比べて初期付着汚泥重量が大であり、嫌気性微生物による処理性能が良好となる。
It shows below about the measurement result of Examples 1-4 of Table 1, and Comparative Examples 1-3.
In Example 1, since the cross-sectional shape of the microbial carrier has four projections (= cross shape), the initial attached sludge weight is large compared to the comparative example 2 of the cylinder, and the treatment performance by anaerobic microorganisms is good. It becomes.

実施例2は、実施例1と同様に微生物担体の断面形状が4個の複数突起(十字形)を有するため、円柱の比較例2と比べて初期付着汚泥重量が大であり、さらに、実施例2では表面に凹凸(メルトフラクチャー)を有するため、凹凸(メルトフラクチャー)の無い実施例1よりも、初期付着汚泥重量が大であって、かつ撹拌による汚泥付着減少率が小さく、嫌気性微生物による処理性能がより良好なものである。また、実施例2と比較例3を比較すると、両者は何れも表面に凹凸(メルトフラクチャー)を有するが、4個の複数突起(十字形)を有する実施例2は、円柱形の比較例3よりも、初期付着汚泥重量が大であって、かつ撹拌による汚泥付着減少率が小さく、嫌気性微生物による処理性能がより良好なものである。   In Example 2, since the cross-sectional shape of the microorganism carrier has a plurality of four protrusions (cross shape) as in Example 1, the initial attached sludge weight is larger than that of the comparative example 2 of the cylinder. In Example 2, since the surface has irregularities (melt fracture), the initial attached sludge weight is larger than that in Example 1 without irregularities (melt fracture), and the sludge adhesion reduction rate by stirring is small, and anaerobic microorganisms. The processing performance by is better. Further, when Example 2 and Comparative Example 3 are compared, both have irregularities (melt fracture) on the surface, but Example 2 having four multiple projections (cross shape) is a cylindrical comparative example 3. In contrast, the weight of the initially attached sludge is large, the sludge adhesion reduction rate by stirring is small, and the treatment performance by anaerobic microorganisms is better.

実施例3は、微生物担体の断面形状が3個の複数突起を有するものであり、実施例2と比べて初期付着汚泥重量が大であるが、撹拌による汚泥付着減少率が大きく、実施例2と比べて嫌気性微生物による処理性能が劣るものである。しかし、実施例3は、比較例3よりは嫌気性微生物による処理性能が良好なものである。   In Example 3, the cross-sectional shape of the microorganism carrier has three protrusions, and the initial attached sludge weight is larger than that in Example 2, but the sludge adhesion reduction rate by stirring is large, and Example 2 Compared with, the treatment performance by anaerobic microorganisms is inferior. However, Example 3 has better treatment performance with anaerobic microorganisms than Comparative Example 3.

実施例4は、微生物担体の断面形状が5個の複数突起を有するものであり、実施例2と比べて初期付着汚泥重量が小であって、撹拌による汚泥付着減少率が若干大きく、実施例2と比べて嫌気性微生物による処理性能が劣るものである。しかし、比較例3よりは嫌気性微生物による処理性能が良好なものである。   In Example 4, the cross-sectional shape of the microbial carrier has a plurality of protrusions, and the initial attached sludge weight is smaller than that in Example 2, and the sludge adhesion reduction rate by stirring is slightly larger. Compared with 2, the treatment performance by anaerobic microorganisms is inferior. However, the treatment performance with anaerobic microorganisms is better than Comparative Example 3.

比較例1は、中空円柱形状のため、体積充填率が小さく、しかも真比重が1より小で沈降性が低く、浮上するため、嫌気性微生物による処理には不適である。
比較例2は、体積充填率は大であるが、円柱形のため、初期付着汚泥量が少なくなっている。
比較例3は、表面の凹凸(メルトフラクチャー)により初期付着汚泥量は多いが、外形が円柱形のため、撹拌による汚泥付着減少率が大きく、嫌気性微生物による処理性能に劣ることになる。
Since Comparative Example 1 has a hollow cylindrical shape, the volume filling rate is small, the true specific gravity is less than 1, the sedimentation property is low, and the surface floats, so that it is unsuitable for treatment with anaerobic microorganisms.
In Comparative Example 2, the volume filling rate is large, but the amount of initial attached sludge is small because of the cylindrical shape.
In Comparative Example 3, the amount of initially attached sludge is large due to surface irregularities (melt fracture), but since the outer shape is cylindrical, the sludge adhesion reduction rate by stirring is large and the treatment performance by anaerobic microorganisms is inferior.

このように、本発明の微生物担体は、円柱形状の微生物担体に比べて嫌気性微生物による良好な汚水処理性能を得ることが可能となる。   As described above, the microbial carrier of the present invention can obtain better sewage treatment performance by anaerobic microorganisms than the cylindrical microbial carrier.

10、10A、10B 微生物担体
12、12a、12b 突起
13b 表面の凹凸(メルトフラクチャー)
10, 10A, 10B Microbial carrier 12, 12a, 12b Protrusion 13b Surface irregularities (melt fracture)

Claims (3)

嫌気性微生物を表面に保持する微生物担体において、
前記微生物担体は、ポリオレフィン系樹脂と無機粉末を含み、真比重(JIS Z 8807準拠)が1より大の非多孔質体の樹脂からなり、断面形状が断面周方向において3個以上の突起が形成された形状であることを特徴とする微生物担体。
In a microbial carrier for holding anaerobic microorganisms on the surface,
The microbial carrier comprises a polyolefin resin and inorganic powder, is made of a non-porous resin having a true specific gravity (conforms to JIS Z 8807) of more than 1, and has three or more protrusions in the cross-sectional circumferential direction. A microorganism carrier characterized by having a shaped shape.
前記微生物担体の表面に凹凸形状を有することを特徴とする請求項1に記載の微生物担体。   The microbial carrier according to claim 1, wherein the surface of the microbial carrier has an uneven shape. 前記断面形状が十字形であることを特徴とする請求項1または2に記載の微生物担体。
The microbial carrier according to claim 1 or 2, wherein the cross-sectional shape is a cross shape.
JP2015242176A 2015-12-11 2015-12-11 Microbial carrier Active JP6685588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015242176A JP6685588B2 (en) 2015-12-11 2015-12-11 Microbial carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015242176A JP6685588B2 (en) 2015-12-11 2015-12-11 Microbial carrier

Publications (2)

Publication Number Publication Date
JP2017104829A true JP2017104829A (en) 2017-06-15
JP6685588B2 JP6685588B2 (en) 2020-04-22

Family

ID=59058263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242176A Active JP6685588B2 (en) 2015-12-11 2015-12-11 Microbial carrier

Country Status (1)

Country Link
JP (1) JP6685588B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773545A (en) * 2019-09-19 2020-02-11 百沃星联(上海)环保科技有限公司 Microorganism medium for food decomposition, and apparatus and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314780A (en) * 1997-05-16 1998-12-02 Showa Eng Kk Carrier for attachment of bacteria
JP2001239293A (en) * 2000-03-02 2001-09-04 Hitachi Chem Co Ltd Cylindrical microorganism carrier having fin heading toward core part
JP2004174491A (en) * 2002-11-12 2004-06-24 Dainippon Plastics Co Ltd Microorganism carrier for treating sewage, method for preparing the same, and method for treating sewage using the same
JP2014073476A (en) * 2012-10-05 2014-04-24 Inoac Gijutsu Kenkyusho:Kk Microorganism carrier
JP2015124306A (en) * 2013-12-26 2015-07-06 東ソー株式会社 Resin composition, microorganism immobilization support and purification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314780A (en) * 1997-05-16 1998-12-02 Showa Eng Kk Carrier for attachment of bacteria
JP2001239293A (en) * 2000-03-02 2001-09-04 Hitachi Chem Co Ltd Cylindrical microorganism carrier having fin heading toward core part
JP2004174491A (en) * 2002-11-12 2004-06-24 Dainippon Plastics Co Ltd Microorganism carrier for treating sewage, method for preparing the same, and method for treating sewage using the same
JP2014073476A (en) * 2012-10-05 2014-04-24 Inoac Gijutsu Kenkyusho:Kk Microorganism carrier
JP2015124306A (en) * 2013-12-26 2015-07-06 東ソー株式会社 Resin composition, microorganism immobilization support and purification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773545A (en) * 2019-09-19 2020-02-11 百沃星联(上海)环保科技有限公司 Microorganism medium for food decomposition, and apparatus and method for producing the same

Also Published As

Publication number Publication date
JP6685588B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
TWI507367B (en) Anaerobic treatment
BR112016027241B1 (en) CONTAMINATED WATER TREATMENT SYSTEM AND METHODS
JP6869307B2 (en) Microbial carrier
CN102811800A (en) Aeration system with antimicrobial properties
BR112016012389B1 (en) carrier element for biofilm growth
JP2017104829A (en) Microorganism carrier
KR20150137061A (en) Anaerobic treatment method
CN215439827U (en) Water treatment demolding equipment
JP2022087164A (en) Microbial immobilization carrier
JP5964195B2 (en) Microbial carrier
JP6052849B2 (en) Water treatment equipment
JP2004358328A (en) Microorganism carrier
JP2974565B2 (en) Contact material for biological filter beds
JP2004174491A (en) Microorganism carrier for treating sewage, method for preparing the same, and method for treating sewage using the same
KR100918587B1 (en) Method for manufacturing porous biological film microbic carrier containing yellow ocher, and carrier produced thereby
JP5691439B2 (en) Anaerobic treatment method and apparatus
JP2003055562A (en) Extruded molding and method for producing the same
JP6812493B2 (en) Eco-friendly tableware
CN113371824B (en) Elastic filler demolding treatment method and water treatment demolding equipment
JP4979946B2 (en) Method for producing biofilm-forming carrier and biofilm-forming carrier
JP6571471B2 (en) Resin composition, foam, microbial carrier and method for producing foam
JP2007283222A (en) Biological treatment carrier
RU2605714C1 (en) Method of biological filter charge material producing with immobilization properties
CN104418431A (en) system for processing sewage containing animal and vegetable oil
GB2160856A (en) Component (and method of manufacture thereof) for use in treatment of domestic, industrial and other effluents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250