JP6685260B2 - Method for refining molten iron and method for analyzing composition of slag - Google Patents

Method for refining molten iron and method for analyzing composition of slag Download PDF

Info

Publication number
JP6685260B2
JP6685260B2 JP2017139579A JP2017139579A JP6685260B2 JP 6685260 B2 JP6685260 B2 JP 6685260B2 JP 2017139579 A JP2017139579 A JP 2017139579A JP 2017139579 A JP2017139579 A JP 2017139579A JP 6685260 B2 JP6685260 B2 JP 6685260B2
Authority
JP
Japan
Prior art keywords
slag
refining
molten iron
converter
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017139579A
Other languages
Japanese (ja)
Other versions
JP2017193784A (en
Inventor
泰志 小笠原
泰志 小笠原
智治 石田
智治 石田
奥山 悟郎
悟郎 奥山
内田 祐一
祐一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017193784A publication Critical patent/JP2017193784A/en
Application granted granted Critical
Publication of JP6685260B2 publication Critical patent/JP6685260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、溶銑を原料として溶銑または溶鋼を製造する溶鉄の精錬方法、並びに、その際に使用する高温物質の組成分析方法及び組成分析装置に関し、詳しくは、溶鉄の精錬で生じたスラグの組成を定量分析し、組成が明らかとなったスラグの一部を転炉型精錬炉に残留させた状態のままで、溶鉄の次工程の精錬または次に行うチャージの溶鉄の精錬を、スラグを残留させた転炉型精錬炉で実施する精錬方法、並びに、その際に使用するスラグなどの高温物質の組成を精度良く定量分析することのできる組成分析方法及び組成分析装置に関する。ここで、溶鉄とは、溶銑または溶鋼を意味する。   The present invention relates to a method for refining molten iron for producing hot metal or molten steel from hot metal as a raw material, and a composition analysis method and composition analysis apparatus for high-temperature substances used at that time, and more specifically, a composition of slag produced in refining molten iron. Quantitative analysis of the slag, leaving a portion of the slag whose composition has been clarified in the converter-type smelting furnace in the state where the slag remains in the next step of refining molten iron or refining molten iron for the next charge. The present invention relates to a refining method performed in a converter-type refining furnace, and a composition analysis method and a composition analysis apparatus capable of accurately quantitatively analyzing the composition of a high temperature substance such as slag used at that time. Here, the molten iron means molten pig iron or molten steel.

近年、二酸化炭素ガスの排出規制などの環境への配慮と高い生産性とを両立させる必要性から、様々な溶銑予備処理技術及び溶銑の脱炭処理技術が開発されている。こうしたなか、新規な溶銑予備処理技術の一つとして、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続的に行う溶銑予備処理技術が提案されている。   In recent years, various hot metal pretreatment techniques and hot metal decarburization treatment techniques have been developed due to the need to balance environmental considerations such as carbon dioxide gas emission regulations and high productivity. Under these circumstances, one of the novel hot metal pretreatment technologies is to continuously perform hot metal desiliconization treatment and dephosphorization treatment using a single converter-type refining furnace with an intermediate slag process interposed therebetween. Processing techniques have been proposed.

例えば、特許文献1には、先ず、スラグの塩基度((質量%CaO)/(質量%SiO2))が0.3〜1.3の範囲内に入るようにCaO系媒溶剤の添加量を調節して転炉型精錬炉で脱珪処理を行った後、転炉型精錬炉を傾動して炉内で生成されたスラグを炉口から排滓し、次いで、CaO系媒溶剤を添加して炉内に残留させた溶銑の脱燐処理を行う溶銑予備処理技術が提案されている。 For example, in Patent Document 1, first, the basic amount of slag ((mass% CaO) / (mass% SiO 2 )) is added in an amount of CaO-based solvent such that it falls within the range of 0.3 to 1.3. After performing the desiliconization treatment in the converter-type refining furnace, tilt the converter-type refining furnace to discharge the slag generated in the furnace from the furnace mouth, and then add the CaO-based solvent medium. There has been proposed a hot metal pretreatment technique for dephosphorizing the hot metal left in the furnace.

但し、一般的に、脱珪処理時のスラグの塩基度は、脱珪処理によって生成されるSiO2によって変化することから、特許文献1では、スラグの塩基度が上記範囲を外れ、途中の排滓時にスラグの排出が困難になる場合が起こり得る。また、特許文献1では、脱燐処理後にスラグを排滓しており、少ないとはいえども炉内には溶銑が残留し、この溶銑もスラグとともに排出し、鉄歩留まりの低下を招く。 However, in general, since the basicity of slag during desiliconization varies depending on the SiO 2 generated by the desiliconization, in Patent Document 1, the basicity of slag deviates from the above range and the intermediate discharge It may happen that it becomes difficult to discharge the slag at the slag. Further, in Patent Document 1, the slag is discharged after the dephosphorization treatment, and although the amount is small, the hot metal remains in the furnace, and this hot metal is also discharged together with the slag, resulting in a decrease in iron yield.

また、溶銑から溶鋼を溶製する脱炭処理に関しても、1つの転炉型精錬炉を用いて溶銑の脱燐処理と脱炭処理とを、途中の排滓工程を挟んで連続的に行う処理技術が提案されている。   Further, also regarding decarburization treatment for producing molten steel from molten pig iron, a treatment for continuously performing dephosphorization treatment and decarburization treatment of molten pig iron by using one converter-type refining furnace with an intermediate slag step interposed therebetween. Technology is proposed.

例えば、特許文献2には、1つの転炉型精錬炉を用い、先ず、溶銑の脱燐処理を行い、次いで炉体を傾動させて生成したスラグを排滓し、その後、炉内に残留させた溶銑の脱炭処理を行い、溶製した溶鋼の転炉型精錬炉からの出鋼後、脱炭処理で生成したスラグを残留させたまま、次のチャージの溶銑を転炉型精錬炉に装入し、次のチャージの溶銑の脱燐処理及び脱炭処理を、上記の順に行う精錬技術が提案されている。特許文献2によれば、脱炭処理後のスラグを意図的に残留させることにより、CaO系媒溶剤の削減、鉄歩留まりの向上及び脱燐処理での低温化及びスラグの低塩基度化が実現できるとしている。   For example, in Patent Document 2, using one converter-type refining furnace, first, dephosphorization treatment of hot metal is performed, then the slag generated by tilting the furnace body is discharged, and then left in the furnace. After decarburizing the molten hot metal and tapping the molten steel from the converter-type refining furnace, the molten iron of the next charge is transferred to the converter-type refining furnace while leaving the slag generated by the decarburizing treatment. A refining technique has been proposed in which the molten iron is charged and then subjected to the dephosphorization treatment and the decarburization treatment of the next charge in the above order. According to Patent Document 2, by intentionally leaving the slag after the decarburization treatment, reduction of CaO-based medium solvent, improvement of iron yield, lowering of temperature in dephosphorization treatment and low basicity of slag are realized. I am going to do it.

しかしながら、特許文献1及び特許文献2では、排滓工程において、転炉型精錬炉を傾動させることによって炉内のスラグを排出しているが、転炉型精錬炉を傾動させるだけでは、スラグを十分に排出することはできない。このため、特許文献1及び特許文献2では、転炉型精錬炉内に残留したスラグの影響により、復燐などの好ましくない現象が生じる可能性がある。尚、「復燐」とは、スラグに含有されていた燐酸化物(P25)が分解して溶銑や溶鋼に移行し、溶銑や溶鋼の燐濃度が上昇する現象である。また、特許文献1及び特許文献2に開示されるような、1つの転炉型精錬における2つの精錬の間で行われる排滓は、「中間排滓」、「中間排滓工程」とも呼ばれる。 However, in Patent Documents 1 and 2, the slag in the furnace is discharged by tilting the converter-type refining furnace in the slag removal process. However, if the converter-type refining furnace is tilted, the slag is removed. It cannot be fully discharged. Therefore, in Patent Literature 1 and Patent Literature 2, an undesirable phenomenon such as phosphorus reversion may occur due to the influence of the slag remaining in the converter-type refining furnace. The "Fukurin" decomposes phosphorus oxides that had been present (P 2 O 5) is in the slag moves to hot metal and molten steel, a phenomenon in which the phosphorus concentration of the molten iron and molten steel rises. Further, the slag that is performed between two refining processes in one converter-type smelting process as disclosed in Patent Document 1 and Patent Document 2 is also called “intermediate slag” or “intermediate slag process”.

このような背景のなか、特許文献3には、1つの転炉型精錬炉を用い、脱燐処理、排滓工程、脱炭処理を行う際に、途中の排滓工程における排滓を十分に行うことを目的として、排滓工程において、転炉型精錬炉の炉腹に設置した羽口から不活性ガスを吹き込み、不活性ガスによって、スラグを炉口側へ移動させながら排出する技術が提案されている。   Against such a background, in Patent Document 3, one converter-type refining furnace is used, and when performing the dephosphorization process, the slag process, and the decarburization process, the slag in the slag process in the middle is sufficiently For the purpose of carrying out, in the slag process, a technology is proposed in which inert gas is blown from the tuyere installed in the furnace side of the converter-type refining furnace and the slag is discharged while being moved to the furnace mouth side by the inert gas. Has been done.

特許文献4には、1つの転炉型精錬炉を用い、脱燐処理で生成したスラグの一部を残留させて次のチャージの溶銑の脱燐処理を行う際に、脱燐処理で生成したスラグの所定量を炉内に残留させることを目的として、転炉型精錬炉の傾動角度とスラグの残留量との関係を予め測定しておき、この測定結果に基づいて炉体を傾動して所定量のスラグを残留させる技術が提案されている。   In Patent Document 4, when one converter-type refining furnace is used and a part of the slag produced by the dephosphorization treatment is left to perform the dephosphorization treatment of the hot metal of the next charge, it is produced by the dephosphorization treatment. For the purpose of leaving a predetermined amount of slag in the furnace, the relationship between the tilt angle of the converter-type refining furnace and the residual amount of slag was measured in advance, and the furnace body was tilted based on this measurement result. Techniques for leaving a predetermined amount of slag have been proposed.

また、特許文献5には、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続して行う際に、脱珪処理時の復燐を防止するために、脱珪処理時のスラグの組成がSiO2の飽和領域とならないように制御する技術が提案されている。 Further, in Patent Document 5, when performing desiliconization treatment and dephosphorization treatment of hot metal using one converter-type refining furnace continuously with an intermediate slag process interposed, a desiliconization treatment is performed. In order to prevent re-phosphorization, a technique has been proposed in which the composition of slag during desiliconization treatment is controlled so as not to be in the SiO 2 saturation region.

特開平10−152714号公報JP, 10-152714, A 特開平4−72007号公報JP-A-4-72007 特開平5−140627号公報JP-A-5-140627 特開平6−200311号公報JP-A-6-200311 特開2013−227664号公報JP, 2013-227664, A

本発明者らは、スラグの一部を残留させた転炉型精錬炉を用いて、溶鉄の次工程の精錬または次のチャージの溶鉄の精錬を実施する場合、次工程の精錬または次のチャージの精錬では、スラグの塩基度((質量%CaO)/(質量%SiO2))の調整が容易でないこと、つまり、適正量のCaO系媒溶剤を添加することは容易でないことを確認している。一般的に、スラグの塩基度を1.20程度に制御することにより、溶銑に対して適正な脱燐処理を行うことが可能であるが、必要量以上のCaO系媒溶剤を添加することはコスト増加に繋がる。 When the present inventors perform refining of the next step of molten iron or refining of molten iron of the next charge by using a converter type refining furnace in which a part of the slag remains, the refining of the next step or the next charge In refining, confirm that it is not easy to adjust the basicity of slag ((mass% CaO) / (mass% SiO 2 )), that is, it is not easy to add an appropriate amount of CaO-based solvent. There is. Generally, by controlling the basicity of the slag to about 1.20, it is possible to perform an appropriate dephosphorization treatment on the hot metal, but it is not possible to add more than the necessary amount of CaO-based solvent. It leads to cost increase.

即ち、これまでに提案されている溶鉄の精錬方法において、更なるコスト低減のためには、CaO系媒溶剤などの造滓剤の添加量を必要最低限な量に抑えることが必要である。そして、これを実現するためには、造滓剤を添加する前の炉内のスラグの組成及び残留量を正確に把握することが必要となる。   That is, in the methods for refining molten iron that have been proposed so far, it is necessary to suppress the addition amount of the slag forming agent such as CaO-based solvent to the necessary minimum amount in order to further reduce the cost. In order to realize this, it is necessary to accurately grasp the composition and residual amount of slag in the furnace before adding the slag-forming agent.

例えば、特許文献1において、脱珪処理後の排滓後にCaO系媒溶剤を添加する場合、適正なCaO系媒溶剤の添加量を計算するためには、炉内に残留するスラグの塩基度とスラグの残留量とを把握する必要があるが、両者を正確に測定することは困難である。   For example, in Patent Document 1, when a CaO-based solvent is added after the slag after desiliconization, in order to calculate an appropriate CaO-based solvent addition amount, the basicity of the slag remaining in the furnace and It is necessary to know the residual amount of slag, but it is difficult to measure both accurately.

特許文献4は、炉内に所定量のスラグを残留させているが、炉内に溶銑が存在しないときの傾動角度とスラグ残留量との関係からスラグ残留量を求めており、特許文献1や特許文献2の途中の排滓工程のように、炉内に溶銑が存在する場合には、炉内の溶銑量自体が変化することから、特許文献4の技術を用いても、炉内のスラグ残留量を正確に把握することはできない。   In Patent Document 4, a predetermined amount of slag is left in the furnace, but the slag residual amount is obtained from the relationship between the tilt angle and the slag residual amount when there is no molten pig iron in the furnace. When hot metal is present in the furnace, as in the slag process in the middle of Patent Document 2, the amount of hot metal in the furnace itself changes, so even if the technique of Patent Document 4 is used, the slag in the furnace is It is not possible to accurately grasp the residual amount.

また、炉内残留スラグの組成を正確に評価する方法については、特許文献1〜5を含めて過去の特許文献には、詳細な記載は見当たらない。スラグ組成を知ろうとした場合、実際にスラグの一部を採取し、機側で分析する、または分析室へ搬送後に分析する方法が考えられるが、いずれの方法でも、添加するCaO系媒溶剤の量を見積り、投入するのに間に合うだけの迅速性を有しているとは考えにくい。   Further, regarding the method for accurately evaluating the composition of the residual slag in the furnace, no detailed description is found in the past patent documents including Patent Documents 1 to 5. When trying to know the slag composition, a method of actually collecting a part of the slag and analyzing it on the machine side or after transporting it to the analysis room is conceivable, but in either method, the CaO-based solvent added It is unlikely that they will be quick enough to estimate and put in quantities.

そこで、スラグ組成を計算によって見積もる方法が一般的に行われている。しかし、計算による方法の場合には、生成したスラグの一部または全部を炉内に残留させたまま次工程の精錬または次のチャージの溶鉄の精錬を繰り返して行うことにより、見積られるスラグ組成やスラグ量の精度が次第に低下する。このため、実際のスラグ組成と計算値との乖離が大きくなって、状況によっては溶銑予備処理を連続的に行うことが困難な状況に陥る可能性がある。   Therefore, a method of estimating the slag composition by calculation is generally used. However, in the case of the method by calculation, the estimated slag composition and the estimated slag composition can be obtained by repeatedly performing the refining of the next step or refining the molten iron of the next charge while leaving a part or all of the generated slag in the furnace. The accuracy of slag amount gradually decreases. For this reason, the difference between the actual slag composition and the calculated value becomes large, and depending on the situation, it may be difficult to continuously perform the hot metal pretreatment.

また、塩基度以外でもスラグ組成を迅速に知るニーズは多岐にわたる。例えばスラグ中のMgO濃度は炉体の耐火物寿命と密接に関係する。これは、スラグ中のMgO濃度が低すぎると、炉壁耐火物の損傷が顕著となるためであるが、一方でスラグ中のMgO濃度が高すぎると、廃棄スラグを路盤材などに利用する場合に膨張などの懸念が生じることから、好ましくない。   In addition to the basicity, there is a wide variety of needs to quickly know the slag composition. For example, the MgO concentration in slag is closely related to the refractory life of the furnace body. This is because if the MgO concentration in the slag is too low, the damage to the furnace wall refractory becomes significant, but if the MgO concentration in the slag is too high, when the waste slag is used as a roadbed material, etc. It is not preferable because it may cause swelling.

したがって、スラグ中のMgO濃度にも適正な範囲があり、迅速なスラグ組成の分析が望まれている。精錬工程において迅速にスラグ中MgO濃度の評価ができれば、適切なMgO濃度の制御を通じて炉体寿命の延長が図れるだけでなく、仮に高濃度側に振れてしまった場合に、利材化可能なスラグとの仕分けを通じて生産性の向上に繋げることが可能となる。   Therefore, the MgO concentration in the slag has an appropriate range, and rapid analysis of the slag composition is desired. If the MgO concentration in the slag can be quickly evaluated in the refining process, not only can the life of the furnace be extended by appropriately controlling the MgO concentration, but also if it swings to the high concentration side, slag that can be used as a material It is possible to improve productivity through sorting with and.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶鉄の精錬で生じたスラグの一部を転炉型精錬炉に残留させた状態のまま、この転炉型精錬炉を用いて、溶鉄の次工程の精錬または次のチャージの溶鉄の精錬を行う際に、炉内に残留させたスラグの成分を迅速且つ高精度に測定し、この測定結果に基づいて適切な造滓剤の添加量を決定する、溶鉄の精錬方法を提供することであり、また、スラグなどの高温物質の組成を、高温物質から分析試料を採取することなく、精度良く定量分析することのできる高温物質の組成分析方法及び組成分析装置を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a converter-type refining furnace in which a part of the slag generated in the refining of molten iron remains in the converter-type refining furnace. When performing refining of molten iron in the next step of molten iron or refining of molten iron for the next charge, the slag components remaining in the furnace are measured quickly and with high accuracy, and appropriate production is performed based on this measurement result. It is to provide a method for refining molten iron, which determines the addition amount of a slag agent, and can quantitatively analyze the composition of a high temperature substance such as slag with high accuracy without collecting an analysis sample from the high temperature substance. It is an object of the present invention to provide a composition analysis method and composition analysis apparatus for a high-temperature substance.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]転炉型精錬炉における溶鉄の精錬で生じたスラグを、該スラグの一部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に残留させた溶鉄または前記転炉型精錬炉に新たに装入した溶銑を精錬するに際し、溶鉄の精錬で生じた前記スラグの成分を、該スラグから分析試料を採取することなく定量分析し、その成分分析結果に基づいて、スラグを残留させた前記転炉型精錬炉で行う、炉内に残留させた溶鉄の次工程の精錬または炉内に新たに装入した溶銑を用いた次のチャージの溶鉄の精錬における精錬前及び/または精錬中に添加する造滓剤の量を決定することを特徴とする、溶鉄の精錬方法。
[2]前記スラグの成分の分析は、前記スラグの表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の少なくともカルシウム(Ca)及び珪素(Si)を含む2種類以上の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記スラグの塩基度を評価することを含むことを特徴とする、上記[1]に記載の溶鉄の精錬方法。
[3]前記スラグの成分の分析は、前記スラグの表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の少なくともカルシウム(Ca)及び珪素(Si)を含む2種類以上の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記スラグの組成を評価することを含むことを特徴とする、上記[1]または上記[2]に記載の溶鉄の精錬方法。
[4]前記転炉型精錬炉内のスラグ、前記転炉型精錬炉から排出中のスラグまたは排出後のスラグ収容容器内のスラグの表面にレーザ光を集光させて、前記プラズマをスラグ表面に発生させることを特徴とする、上記[2]または上記[3]に記載の溶鉄の精錬方法。
[5]前記溶鉄の精錬が1つの転炉型精錬炉を用いて複数の精錬工程を行う溶銑の予備処理であり、前記複数の精錬工程の間で、溶銑及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出して、溶銑に予備処理を施すにあたり、前記スラグの残部を排出する際に、前記スラグの成分を分析し、その成分分析結果に基づいて、次工程の精錬工程において添加する造滓剤の量を決定することを特徴とする、上記[1]ないし上記[4]のいずれか1項に記載の溶鉄の精錬方法。
[6]前記溶銑の予備処理が脱珪処理工程と脱燐処理工程とを含み、脱珪処理工程と脱燐処理工程との間で、溶銑及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出する際に、前記スラグの成分を分析し、その成分分析結果に基づいて、前記脱燐処理工程において添加する造滓剤の量を決定することを特徴とする、上記[5]に記載の溶鉄の精錬方法。
[7]前記溶鉄の精錬が溶銑の予備処理であり、前記転炉型精錬炉における前チャージの溶銑の脱燐処理で生じたスラグの一部または全部を前記転炉型精錬炉に残留させたまま、次のチャージの溶銑を前記転炉型精錬炉に装入し、次のチャージの溶銑の予備処理を行うことを特徴とする、上記[1]ないし上記[6]の何れか1項に記載の溶銑の精錬方法。
[8]1つの転炉型精錬炉を用い、転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して前記転炉型精錬炉内の溶銑を脱燐処理する脱燐処理工程と、前記転炉型精錬炉を傾動して、脱燐処理工程後の溶銑及び脱燐処理工程で生成したスラグの一部を前記転炉型精錬炉に残留させたまま、前記スラグの残部を排出する中間排滓工程と、前記転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して前記転炉型精錬炉に残留させた溶銑を脱炭処理して溶鋼にする溶鉄の脱炭処理工程と、脱炭処理工程後の溶鋼を前記転炉型精錬炉から出鋼する出鋼工程とを、この順に行って溶銑から溶鋼を溶製するにあたり、前記中間排滓工程での前記スラグの残部を排出する際に、前記スラグの成分を分析し、その成分分析結果に基づいて、前記脱炭精錬工程において添加する造滓剤の量を決定することを特徴とする、上記[1]ないし上記[4]のいずれか1項に記載の溶鉄の精錬方法。
[9]前記転炉型精錬炉における前チャージの溶鉄の脱炭処理工程で生じたスラグの一部または全部を前記転炉型精錬炉に残留させたまま、次のチャージの溶銑を前記転炉型精錬炉に装入し、次のチャージの溶銑の脱燐処理工程を行うことを特徴とする、上記[8]に記載の溶鉄の精錬方法。
[10]転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して前記転炉型精錬炉内の溶銑を脱炭処理して溶鋼にする脱炭処理工程で生成したスラグの一部または全部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に次のチャージの溶銑を装入して精錬するにあたり、脱炭処理工程で生成した前記スラグの成分を分析し、その成分分析結果に基づいて、次のチャージの溶鉄の精錬において添加する造滓剤の量を決定することを特徴とする、上記[1]ないし上記[4]のいずれか1項に記載の溶鉄の精錬方法。
[11]転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して前記転炉型精錬炉内の溶銑を脱燐処理する脱燐処理工程で生成したスラグの一部または全部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に次のチャージの溶銑を装入して溶銑に脱燐処理を施すにあたり、脱燐処理工程で生成した前記スラグの成分を分析し、その成分分析結果に基づいて、次のチャージの溶鉄の精錬において添加する造滓剤の量を決定することを特徴とする、上記[1]ないし上記[6]のいずれか1項に記載の溶鉄の精錬方法。
[12]前記スラグの成分分析結果に基づいて添加量を決定する前記造滓剤がCaO系媒溶剤であることを特徴とする、上記[1]ないし上記[11]のいずれか1項に記載の溶鉄の精錬方法。
[13]前記スラグの成分分析結果がスラグ中のMgO含有量を含み、前記スラグの成分分析結果に基づいて添加量を決定する前記造滓剤がMgO系媒溶剤を含むことを特徴とする、上記[1]ないし上記[12]のいずれか1項に記載の溶鉄の精錬方法。
[14]前記スラグの成分分析結果がスラグ中の酸化鉄含有量を含み、前記スラグの成分分析結果に基づいて添加量を決定する前記造滓剤が酸化鉄系媒溶剤を含むことを特徴とする、上記[1]ないし上記[13]のいずれか1項に記載の溶鉄の精錬方法。
[15]転炉型精錬炉における溶鉄の精錬で生じたスラグを、該スラグの一部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に残留させた溶鉄または前記転炉型精錬炉に新たに装入した溶銑を精錬するに際し、溶鉄の精錬で生じた前記スラグの表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の少なくとも鉄(Fe)を含む元素の発光強度を測定し、測定された発光強度に基づいて前記スラグの酸化鉄含有量を定量分析し、その分析結果に基づいて、スラグを残留させた前記転炉型精錬炉で行う、炉内に残留させた溶鉄の次工程の精錬または炉内に新たに装入した溶銑を用いた次のチャージの溶鉄の精錬におけるスラグの酸化鉄含有量を制御することを特徴とする、溶鉄の精錬方法。
[16]前記溶鉄の精錬が1つの転炉型精錬炉を用いて一次吹錬工程と二次吹錬工程とを行う溶鉄の精錬であり、前記一次吹錬工程と前記二次吹錬工程との間で、溶鉄及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出し、前記転炉型精錬炉に残留させた溶鉄に精錬を施すにあたり、前記スラグの残部を排出する際に、前記一次吹錬工程にて発生したスラグの表面にレーザ光を集光させて酸化鉄含有量を定量分析し、その酸化鉄含有量の定量分析結果に基づいて、二次吹錬工程におけるスラグの酸化鉄含有量を制御することを特徴とする、上記[15]に記載の溶鉄の精錬方法。
[17]前記溶鉄の精錬が1つの転炉型精錬炉を用いて一次吹錬工程と二次吹錬工程とを行う溶鉄の精錬であり、前記一次吹錬工程と前記二次吹錬工程との間で、溶鉄及びスラグの一部を前記転炉型精錬炉に残留させたままスラグの残部を排出し、前記転炉型精錬炉に残留させた溶鉄に精錬を施す精錬方法を、連続する2チャージ以上の溶銑に施すにあたり、前記転炉型精錬炉における前チャージの溶銑の二次吹錬工程で生じたスラグの一部または全部を前記転炉型精錬炉に残留させたまま、次のチャージの溶銑を前記転炉型精錬炉に装入し、次のチャージの溶銑の一次吹錬工程を行う際に、前チャージの溶銑の前記二次吹錬工程で生じたスラグの表面にレーザ光を集光させて酸化鉄含有量を定量分析し、酸化鉄含有量の定量分析結果に基づいて、次のチャージの溶銑の前記一次吹錬工程におけるスラグの酸化鉄含有量を制御することを特徴とする、上記[15]または上記[16]に記載の溶鉄の精錬方法。
[18]前記一次吹錬工程または前記二次吹錬工程でスラグの酸化鉄含有量を制御する際に、気体酸素の供給速度、気体酸素を供給するための上吹きランスのランス高さ、底吹きガス流量のうちのいずれか1種以上の条件を調整して酸化鉄含有量を制御することを特徴とする、上記[16]または上記[17]に記載の溶鉄の精錬方法。
[19]前記一次吹錬工程が溶銑の脱珪処理であり、且つ、前記二次吹錬工程が溶銑の脱燐処理であることを特徴とする、上記[16]ないし上記[18]のいずれか1項に記載の溶鉄の精錬方法。
[20]前記一次吹錬工程が溶銑の脱燐処理であり、且つ、前記二次吹錬工程が溶銑を脱炭して溶鋼とする脱炭処理であることを特徴とする、上記[16]ないし上記[18]のいずれか1項に記載の溶鉄の精錬方法。
[21]前記溶鉄の精錬が1つの転炉型精錬炉を用いて一次吹錬工程と二次吹錬工程とを行う溶鉄の精錬であり、前記一次吹錬工程と前記二次吹錬工程との間で、溶鉄及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出し、前記転炉型精錬炉に残留させた溶鉄に精錬を施す精錬方法を、連続する2チャージ以上の溶銑に施すにあたり、前記転炉型精錬炉における前チャージの溶銑の二次吹錬工程で生じたスラグを、炉外に排出することなく前記転炉型精錬炉に残留させたまま、次のチャージの溶銑を前記転炉型精錬炉に装入し、次のチャージの溶銑の一次吹錬工程を行う際に、前チャージの溶銑の前記二次吹錬工程の前後においてスラグの成分を定量分析し、前記二次吹錬工程の前後におけるスラグの成分の定量分析結果と前記二次吹錬工程における造滓剤の使用量とに基づいて前記二次吹錬工程後のスラグ量を求め、得られたスラグ量を次チャージの溶銑の一次吹錬工程におけるスラグの制御に利用することを特徴とする、上記[1]ないし上記[20]のいずれか1項に記載の溶鉄の精錬方法。
[22]前記スラグの成分の定量分析方法が、スラグの表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記スラグの成分を定量分析する方法を含み、前記レーザ光をスラグの表面に集光させるための集光レンズとレーザ光を集光させるスラグ表面との距離を測定し、前記集光レンズと前記スラグ表面との距離を所定の値とするように前記集光レンズの位置を調整することを特徴とする、上記[1]ないし上記[21]のいずれか1項に記載の溶鉄の精錬方法。
[23]800℃以上の高温の分析対象物の表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記分析対象物の組成を評価する高温物質の組成分析方法であって、前記レーザ光を集光させる集光レンズの光軸から所定距離離れ、且つ、前記集光レンズに対して相対的な位置が固定された撮像装置により、前記分析対象物の表面の前記レーザ光の集光位置の発光を撮像し、前記撮像装置により採取された前記レーザ光の集光位置の発光の位置情報に基づいて、前記集光レンズと前記スラグ表面との距離を所定の値とするように前記集光レンズの位置を調整することを特徴とする、高温物質の組成分析方法。
[24]800℃以上の高温の分析対象物の表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記分析対象物の組成を評価する高温物質の組成分析装置であって、前記分析対象物に対して前記集光レンズの光軸の方向に移動可能な、前記レーザ光を集光させるための集光レンズと、前記集光レンズの光軸から所定距離だけ離れ、且つ、前記集光レンズに対して相対的に固定された位置に配置される、前記分析対象物の表面の前記レーザ光の集光位置の発光を撮像するための撮像装置と、前記撮像装置により採取された前記レーザ光の集光位置の発光の位置情報に基づいて、前記集光レンズと前記スラグ表面との距離を所定の値とするように前記集光レンズの位置を調整する機構と、を有することを特徴とする、高温物質の組成分析装置。
The gist of the present invention for solving the above problems is as follows.
[1] Molten iron left in the converter-type refining furnace or the above-mentioned converter with slag generated in refining of molten iron in the converter-type refining furnace, with a part of the slag remaining in the converter-type refining furnace When refining the hot metal newly charged into the furnace-type refining furnace, the components of the slag generated in the refining of molten iron, quantitative analysis without collecting an analytical sample from the slag, based on the component analysis results, Performed in the converter type refining furnace with slag remaining, before refining in the next step refining of molten iron left in the furnace or refining of molten iron of the next charge using hot metal newly charged in the furnace and And / or a method of refining molten iron, characterized in that the amount of a slag forming agent added during refining is determined.
[2] The analysis of the components of the slag is performed by converging laser light on the surface of the slag, and at least two kinds containing at least calcium (Ca) and silicon (Si) in plasma generated by condensing the laser light. Refining the molten iron according to the above [1], which comprises measuring the luminescence intensity of the element and evaluating the basicity of the slag based on the measured luminescence intensity and / or the luminescence intensity ratio. Method.
[3] The analysis of the components of the slag is performed by converging a laser beam on the surface of the slag, and at least two kinds containing at least calcium (Ca) and silicon (Si) in plasma generated by condensing the laser beam. [1] or [2] above, which comprises: measuring the luminescence intensity of the element, and evaluating the composition of the slag based on the measured luminescence intensity and / or the luminescence intensity ratio. Method for refining molten iron.
[4] A laser beam is focused on the surface of the slag in the converter-type refining furnace, the slag being discharged from the converter-type refining furnace, or the slag in the slag storage container after discharge, and the plasma is slag surface. The method for refining molten iron according to the above [2] or [3], characterized in that
[5] The refining of the molten iron is a pretreatment of the hot metal in which a plurality of refining steps are performed by using one converter-type refining furnace, and a part of the hot metal and slag is transferred to the converter during the plurality of refining steps. While remaining in the mold smelting furnace, discharging the rest of the slag, in performing the pretreatment on the hot metal, when discharging the remaining portion of the slag, analyze the components of the slag, based on the component analysis results The method for refining molten iron according to any one of the above [1] to [4], characterized in that the amount of the slag forming agent added in the subsequent refining step is determined.
[6] The pretreatment of the molten pig iron includes a desiliconization treatment step and a dephosphorization treatment step, and between the desiliconization treatment step and the dephosphorization treatment step, a part of the molten pig iron and slag is transferred to the converter-type refining furnace. Characteristically, when discharging the rest of the slag, the components of the slag are analyzed while remaining, and the amount of the slag-forming agent to be added in the dephosphorization treatment step is determined based on the component analysis result. The method for refining molten iron according to the above [5].
[7] The refining of the molten iron is a pretreatment of the hot metal, and a part or all of the slag generated by the dephosphorization treatment of the hot metal of the precharge in the converter type refining furnace is left in the converter type refining furnace. As it is, the hot metal of the next charge is charged into the converter-type refining furnace, and the pretreatment of the hot metal of the next charge is carried out. Any one of the above-mentioned [1] to [6] Method for refining hot metal described.
[8] A dephosphorization treatment step in which one converter-type refining furnace is used, and a CaO-based solvent medium and an oxygen source are supplied into the converter-type refining furnace to dephosphorize the hot metal in the converter-type refining furnace. , Tilting the converter-type refining furnace, and discharging the rest of the slag while leaving a part of the hot metal after the dephosphorization treatment step and the slag generated in the dephosphorization treatment step in the converter-type refining furnace And an intermediate slag step for performing decarburization of molten iron by supplying a CaO-based medium solvent and an oxygen source into the converter-type refining furnace to decarburize the hot metal remaining in the converter-type refining furnace to form molten steel. A slag in the intermediate slag process in treating the molten steel after the decarburization treatment step is performed in this order in the steelmaking step of tapping the molten steel from the converter-type refining furnace to produce molten steel from the hot metal. When discharging the rest of the, the components of the slag are analyzed, and based on the results of the component analysis, the decarburizing and refining process is performed. Concrete and determines the amount of slag agent, the above-mentioned [1] to molten iron method refining according to any one of the above [4] to be added to have.
[9] A part or all of the slag generated in the decarburizing treatment step of the molten iron of the previous charge in the converter-type refining furnace is left in the converter-type refining furnace while the molten iron of the next charge is added to the converter. The method for refining molten iron according to the above [8], characterized in that the molten iron is charged into a mold-type refining furnace, and the subsequent hot metal dephosphorization treatment step is performed.
[10] Part of the slag generated in the decarburization treatment step in which a CaO-based solvent medium and an oxygen source are supplied into the converter-type refining furnace to decarburize the hot metal in the converter-type refining furnace to produce molten steel Or, while leaving the whole in the converter-type refining furnace, when charging the next charge of hot metal into the converter-type refining furnace for refining, the components of the slag generated in the decarburization treatment step are analyzed. The amount of the slag forming agent to be added in refining the molten iron of the next charge is determined based on the result of the component analysis, according to any one of the above [1] to [4]. Method of refining molten iron.
[11] A part or all of the slag generated in the dephosphorization treatment step in which a CaO-based solvent and an oxygen source are supplied into the converter-type refining furnace to dephosphorize the hot metal in the converter-type refining furnace. While remaining in the converter-type refining furnace, injecting the next charge of hot metal into the converter-type refining furnace to perform dephosphorization treatment on the hot metal, analyze the components of the slag generated in the dephosphorization treatment step The amount of the slag forming agent to be added in refining molten iron of the next charge is determined based on the component analysis result. [1] to [6] above. Method for refining molten iron.
[12] The above-mentioned [1] to any one of the above-mentioned [11], wherein the slag-forming agent whose addition amount is determined based on the result of the component analysis of the slag is a CaO-based solvent medium. Method for refining molten iron.
[13] The slag component analysis result includes the MgO content in the slag, and the slag-forming agent that determines the addition amount based on the slag component analysis result contains an MgO-based solvent. The method for refining molten iron according to any one of [1] to [12] above.
[14] The slag component analysis result includes the iron oxide content in the slag, and the slag-forming agent that determines the addition amount based on the slag component analysis result includes an iron oxide-based solvent medium. The method for refining molten iron according to any one of [1] to [13] above.
[15] Molten iron left in the converter-type smelting furnace or the slag generated by refining molten iron in the converter-type smelting furnace, with some of the slag remaining in the converter-type smelting furnace At the time of refining the hot metal newly charged in the furnace-type refining furnace, a laser beam is focused on the surface of the slag generated by the refining of molten iron, and at least iron (Fe ) Is measured, the iron oxide content of the slag is quantitatively analyzed based on the measured emission intensity, based on the analysis result, in the converter-type refining furnace with slag remaining. Performing, characterized by controlling the iron oxide content of the slag in the refining of the next step of the molten iron left in the furnace or the refining of the molten iron of the next charge using the hot metal newly charged in the furnace, Method of refining molten iron.
[16] The molten iron refining is molten iron refining in which a primary blowing process and a secondary blowing process are performed using one converter-type refining furnace, and the primary blowing process and the secondary blowing process are performed. In between, while leaving a part of the molten iron and slag in the converter-type refining furnace, discharging the rest of the slag, in refining the molten iron left in the converter-type refining furnace, in the slag When discharging the rest, quantitatively analyze the iron oxide content by focusing the laser light on the surface of the slag generated in the primary blowing step, based on the quantitative analysis result of the iron oxide content, two. The method for refining molten iron according to the above [15], characterized in that the iron oxide content of the slag in the next blowing step is controlled.
[17] The molten iron refining is molten iron refining in which a primary blowing process and a secondary blowing process are performed using one converter-type refining furnace, and the primary blowing process and the secondary blowing process are performed. In between, a part of the molten iron and slag is discharged to the converter type refining furnace while the remaining part of the slag is discharged, and a refining method for refining the molten iron left in the converter type refining furnace is continued. When applying the hot metal having two or more charges, the slag produced in the secondary blowing step of the pre-charged hot metal in the converter type refining furnace is partially or wholly left in the converter type refining furnace as follows. Charge hot metal into the converter-type refining furnace, when performing the primary blowing step of the next charge hot metal, laser light on the surface of the slag generated in the secondary blowing step of the hot metal of the previous charge To analyze the iron oxide content quantitatively, and based on the results of the quantitative analysis of the iron oxide content. Te, and controlling the iron oxide content of the slag in the primary blowing process of the next charge molten iron, molten iron method refining according to the above [15] or the [16].
[18] When controlling the iron oxide content of slag in the primary blowing step or the secondary blowing step, the supply rate of gaseous oxygen, the lance height of the upper blowing lance for supplying gaseous oxygen, the bottom The molten iron refining method according to the above [16] or [17], characterized in that the iron oxide content is controlled by adjusting one or more conditions of the flow rate of the blowing gas.
[19] Any of the above [16] to [18], wherein the primary blowing step is hot metal desiliconization treatment and the secondary blowing step is hot metal dephosphorization treatment. 2. The method for refining molten iron according to item 1.
[20] The above-mentioned [16], wherein the primary blowing step is a dephosphorization treatment of the hot metal, and the secondary blowing step is a decarburization treatment of decarburizing the hot metal to obtain molten steel. To the molten iron refining method according to any one of [18] above.
[21] The molten iron refining is molten iron refining in which a primary blowing process and a secondary blowing process are performed by using one converter-type refining furnace, and the primary blowing process and the secondary blowing process are performed. In between, while leaving a part of the molten iron and slag in the converter type refining furnace, discharging the rest of the slag, a refining method for refining the molten iron left in the converter type refining furnace, continuous, In applying the molten iron of 2 charges or more, the slag generated in the secondary blowing step of the previously charged molten iron in the converter-type refining furnace was left in the converter-type refining furnace without being discharged to the outside of the furnace. As it is, the hot metal of the next charge is charged into the converter-type refining furnace, and when performing the primary blowing process of the hot metal of the next charge, before and after the secondary blowing process of the hot metal of the previous charge, Quantitative analysis of the components, quantitative analysis of the components of the slag before and after the secondary blowing process Based on the result and the amount of the slag forming agent in the secondary blowing step to obtain the amount of slag after the secondary blowing step, the obtained slag amount of slag in the primary blowing step of the hot metal of the next charge The method for refining molten iron according to any one of the above [1] to [20], which is used for control.
[22] A method for quantitatively analyzing the components of the slag collects laser light on the surface of the slag, measures the emission intensity of an element in plasma generated as the laser beam is collected, and measures the measured emission intensity and And / or a method for quantitatively analyzing the components of the slag based on the emission intensity ratio, and measuring a distance between a condenser lens for condensing the laser light on the surface of the slag and a slag surface for condensing the laser light. However, the position of the condenser lens is adjusted so that the distance between the condenser lens and the surface of the slag is a predetermined value, any one of the above [1] to [21]. Refining method of molten iron described in.
[23] A laser beam is focused on the surface of an object to be analyzed at a high temperature of 800 ° C. or higher, and the emission intensity of an element in plasma generated by the concentration of the laser beam is measured, and the measured emission intensity and / or A composition analysis method of a high temperature substance for evaluating a composition of an analysis object based on a light emission intensity ratio, wherein a predetermined distance is provided from an optical axis of a condenser lens for condensing the laser light, and An image pickup device whose relative position is fixed with respect to the object picks up an image of the emission of the laser beam on the surface of the object to be analyzed, and the emission of the laser beam collected by the imager at the point of collection. The composition analysis method for a high-temperature substance, characterized in that the position of the condenser lens is adjusted so that the distance between the condenser lens and the surface of the slag has a predetermined value, based on the position information.
[24] A laser beam is focused on the surface of an object to be analyzed at a high temperature of 800 ° C. or higher, and the emission intensity of an element in plasma generated with the concentration of the laser beam is measured, and the measured emission intensity and / or A composition analyzer for a high-temperature substance that evaluates the composition of the analyte based on the emission intensity ratio, wherein the laser light is movable in the direction of the optical axis of the condenser lens with respect to the analyte. A condensing lens for condensing, and a surface of the analysis object, which is arranged at a position separated from the optical axis of the condensing lens by a predetermined distance and fixed relative to the condensing lens. An image pickup device for picking up the light emission of the laser beam at the focus position, and the focusing lens and the slag surface based on the position information of the light emission of the focus position of the laser light sampled by the image pickup device. The distance to and is set to a predetermined value It characterized by having a a mechanism for adjusting the position of the focusing lens, the composition analyzer hot material.

本発明に係る溶鉄の精錬方法によれば、溶鉄の精錬で生じたスラグの一部を転炉型精錬炉に残留させた状態のまま、この転炉型精錬炉を用いて、溶鉄の次工程の精錬または次のチャージの溶鉄の精錬を行う際に、スラグから分析試料を採取することなく、炉内に残留させたスラグの成分を迅速且つ高精度に定量分析するので、この分析結果に基づいて造滓剤の適切な添加量、或いは、酸化鉄の生成量を適切に制御するための吹錬条件を決定することが可能となる。   According to the method for refining molten iron according to the present invention, while leaving a part of the slag generated in the refining of molten iron in the converter-type refining furnace, using this converter-type refining furnace, the next step of the molten iron When refining or refining the molten iron of the next charge, the components of the slag remaining in the furnace are quantitatively analyzed quickly and with high accuracy without collecting an analytical sample from the slag. Therefore, it is possible to determine an appropriate addition amount of the slag forming agent or a blowing condition for appropriately controlling the production amount of iron oxide.

また、本発明に係る高温物質の組成分析方法及び組成分析装置によれば、スラグなどの高温物質の組成を、高温物質から分析試料を採取することなく、精度良く定量分析することが実現される。   Further, according to the composition analysis method and composition analysis apparatus for a high-temperature substance according to the present invention, it is possible to accurately quantitatively analyze the composition of a high-temperature substance such as slag without collecting an analysis sample from the high-temperature substance. .

塩基度の低いスラグAと塩基度の高いスラグBとを、波長が271nmの鉄、288nmの珪素及び318nmのカルシウムのそれぞれの発光線で評価した場合のスペクトルのピーク強度を示す図である。It is a figure which shows the peak intensity of the spectrum when the slag A with low basicity and the slag B with high basicity are evaluated by each emission line of the iron of wavelength 271nm, the silicon of 288nm, and the calcium of 318nm. LIBS法に基づくスラグ成分分析システムの構成例を示す概略図である。It is a schematic diagram showing an example of composition of a slag ingredient analysis system based on a LIBS method. LIBS法によって求められたスラグ塩基度と蛍光X線分析法によって求められたスラグ塩基度との関係を示す図である。It is a figure which shows the relationship between the slag basicity calculated | required by the LIBS method, and the slag basicity calculated | required by the fluorescent X-ray analysis method.

本発明者らは、上記課題を解決するべく、溶鉄の精錬によって生成したスラグを意図的に残留させ、残留させたスラグを次工程の精錬または次のチャージの溶鉄の精錬に活用する工程を含む溶銑の精錬工程について、その特徴や環境を精査した。その結果、本発明者らは、上記課題を解決する手段として、炉中または排滓時のスラグを採取することなく、スラグ組成を非接触の分光計測で迅速に定量分析する方法を考えついた。ここで、「スラグを意図的に残留させる」とは、炉口を真下に向けて炉体を倒立させる排滓操作を行わずに、炉体の傾動角度を調整してスラグを炉内に残留させることであるが、スラグを固化させて炉体の内壁にスラグを付着・残留させ、次チャージの精錬に造滓剤として利用する場合も含む。但し、炉体の内壁を保護する目的でスラグを付着させ、少なくとも一部を2チャージ以上にわたって付着したまま残留させる場合は含まない。   In order to solve the above problems, the inventors include a step of intentionally leaving the slag generated by the refining of molten iron, and utilizing the remaining slag in the refining of the next step or the refining of the molten iron of the next charge. The characteristics and environment of the hot metal refining process were scrutinized. As a result, the inventors of the present invention have conceived as a means for solving the above problems, a method of rapidly quantitatively analyzing the slag composition by non-contact spectroscopic measurement without collecting the slag in the furnace or at the time of slag. Here, "to intentionally leave the slag" means that the slag is left inside the furnace by adjusting the tilt angle of the furnace body without performing the slag operation that inverts the furnace body with the furnace mouth facing downward. However, this also includes the case where the slag is solidified to adhere and remain on the inner wall of the furnace body and is used as a slag agent for refining the next charge. However, this does not include the case where slag is attached for the purpose of protecting the inner wall of the furnace body and at least a part of the slag remains attached for two or more charges.

即ち、例えば、特許文献1に開示されるように、溶銑予備処理における脱珪処理終了後には、転炉型精錬炉を傾動させることによってスラグを炉口から排出する排滓工程が存在し、この排滓工程中であればスラグを比較的容易に観察できることを知見した。精錬中は、一酸化炭素ガスの燃焼による火炎や大量のダストなどによる妨害のために、測定対象物であるスラグを非接触の分光計測で分析することは難しいが、排滓処理工程の前後においては、火炎やダストの発生がなく、非接触の分光計測を好適に適用することができる。   That is, for example, as disclosed in Patent Document 1, after the desiliconization treatment in the hot metal pretreatment, there is a slag process of tilting the converter-type refining furnace to discharge the slag from the furnace opening. We found that slag can be observed relatively easily during the slag process. During refining, it is difficult to analyze the slag, which is the object of measurement, by non-contact spectroscopic measurement because of the interference of flames due to the combustion of carbon monoxide gas and large amounts of dust, but before and after the slag treatment process. Is suitable for non-contact spectroscopic measurement without generation of flame or dust.

スラグ組成の中でも、スラグの塩基度((質量%CaO)/(質量%SiO2))は精錬中のスラグ粘性や脱燐効率などに大きな影響を与えるので、分析ニーズが大きい。スラグから試料を採取することなく、その場で迅速にスラグの塩基度を定量的に評価することが可能になることで、添加する造滓剤を必要最低限とした上で効率的な脱燐処理などが行えることから、工業的な意義が大きい。 Among the slag compositions, the basicity of the slag ((mass% CaO) / (mass% SiO 2 )) has a great influence on the slag viscosity and dephosphorization efficiency during refining, so there is a great need for analysis. The basicity of slag can be quickly and quantitatively evaluated on-site without taking a sample from the slag. Since it can be processed, it has great industrial significance.

スラグの塩基度を定量的に評価するためには、スラグのCaO含有量及びSiO2含有量を定量分析する必要がある。通常、排滓時のスラグ中では、カルシウム(Ca)及び珪素(Si)は酸化物の形態で存在し、排滓時のスラグ中にはカルシウム及び珪素の酸化物以外の別形態は存在しない。このため、発光法を用いて分析する場合、カルシウム及び珪素の元素組成を定量化すれば、スラグのCaO含有量及びSiO2含有量を定量分析することができる。 In order to quantitatively evaluate the basicity of the slag, it is necessary to quantitatively analyze the CaO content and the SiO 2 content of the slag. Usually, calcium (Ca) and silicon (Si) exist in the form of oxides in the slag during slag, and no other form other than oxides of calcium and silicon exists in the slag during slag. Therefore, in the case of analysis using a light emission method, the CaO content and the SiO 2 content of the slag can be quantitatively analyzed by quantifying the elemental compositions of calcium and silicon.

例えば、遠隔位置からの分析に適したレーザ発光分光法(Laser Induced Breakdown Spectroscopy;「LIBS法」という)を利用することで、スラグ中のカルシウム及び珪素を容易に励起・発光させ、スラグの塩基度の定量評価が可能となる。つまり、LIBS法を用い、スラグの表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中のカルシウム及び珪素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいてスラグのCaO含有量及びSiO2含有量を定量分析することで、スラグの塩基度を把握することが可能となる。 For example, by using Laser Induced Breakdown Spectroscopy (“LIBS method”) suitable for analysis from a remote location, calcium and silicon in slag can be easily excited and emitted, and the basicity of the slag can be increased. It becomes possible to quantitatively evaluate. That is, using the LIBS method, the laser light is focused on the surface of the slag, the emission intensity of calcium and silicon in the plasma generated with the concentration of the laser beam is measured, and the measured emission intensity and / or emission intensity is measured. It becomes possible to grasp the basicity of the slag by quantitatively analyzing the CaO content and the SiO 2 content of the slag based on the ratio.

炉内から採取したスラグを室温まで冷却した後にLIBS法で分析を行ったところ、小型の分光器でも検出が容易な可視領域に、カルシウム及び珪素の明瞭なスペクトルが確認できた。また、化学量論比が既知の試料を分析した結果、試料中のカルシウム及び珪素の含有量に応じてスペクトルのピーク強度が変化する状況が確認できた。実際のスラグでは、カルシウム、珪素以外にも様々な共存元素が存在するので、状況によっては予め共存元素補正を考慮した検量線を作成し、スラグ塩基度を算出することが必要な場合もある。   When the slag sampled from the inside of the furnace was cooled to room temperature and analyzed by the LIBS method, clear spectra of calcium and silicon could be confirmed in the visible region that could be easily detected by a small spectroscope. Further, as a result of analyzing a sample having a known stoichiometric ratio, it was confirmed that the peak intensity of the spectrum changes depending on the contents of calcium and silicon in the sample. In actual slag, various coexisting elements exist in addition to calcium and silicon. Therefore, depending on the situation, it may be necessary to prepare a calibration curve in consideration of coexisting element correction in advance and calculate the slag basicity.

図1に、塩基度の低いスラグA(塩基度=0.80)と塩基度の高いスラグB(塩基度=4.00)とを、波長が271nmの鉄(Fe)、288nmの珪素(Si)、及び、318nmのカルシウム(Ca)のそれぞれの発光線で評価した場合のスペクトルのピーク強度を示す。図1に示すように、スラグA及びスラグBにおいて、十分なピーク強度のスペクトルが検出できることがわかる。   In FIG. 1, a slag A having a low basicity (basicity = 0.80) and a slag B having a high basicity (basicity = 4.00) are used as iron (Fe) having a wavelength of 271 nm and silicon (Si) having a wavelength of 288 nm. ), And the peak intensity of the spectrum when evaluated by each emission line of calcium (Ca) of 318 nm. As shown in FIG. 1, it can be seen that in slag A and slag B, spectra with sufficient peak intensities can be detected.

一方、スラグ中のMgO及びFeOxも、その含有率の制御ができれば生産性の向上に繋がることから、分析要求が高い。スラグ中のMgO含有量及びFeOx含有量も、LIBS法を用いれば、CaO及びSiO2と同様に定量化可能である。また、スラグ中のP25もLIBS法を用いることで、CaO及びSiO2と同様に定量分析が可能である。尚、FeOxとは、FeOやFe23などの鉄酸化物の全てを指す。 On the other hand, MgO and FeO x in the slag are also required to be analyzed because the productivity can be improved if the content rates can be controlled. The MgO content and the FeO x content in the slag can be quantified as well as CaO and SiO 2 by using the LIBS method. In addition, P 2 O 5 in the slag can be quantitatively analyzed by using the LIBS method similarly to CaO and SiO 2 . Note that FeO x refers to all iron oxides such as FeO and Fe 2 O 3 .

ここで、LIBS法のスラグ分析への応用については、過去にも幾つかの言及が認められるが、製鋼プロセスに適用するに際しては、適切な手段を用いてスラグ組成を定量化する必要がある。本発明者らは過去の検討結果も踏まえ、実用に耐えうる方法とするためには、大きく分けて2つの課題があることを認識している。   Regarding the application of the LIBS method to slag analysis, some references have been recognized in the past, but when applied to the steelmaking process, it is necessary to quantify the slag composition using an appropriate means. The inventors of the present invention recognize that there are roughly two problems in order to obtain a method that can be put to practical use, based on the results of past studies.

具体的には、(A)スラグと溶鉄との識別、及び、(B)スラグ組成(絶対値)の評価の2つである。課題(A)はレーザ光を集光する分析点において、実際の製造プロセスでは常にスラグのみが存在するとは限らないために、分析点が溶鉄となった場合の識別が必要となる。課題(B)については、LIBS分析で得られる一次情報は発光強度であり、これを濃度に換算するには信頼できる検量線を用いる必要がある。しかし、実際の製造現場での測定において、検量線作成時と同じ測定条件を保証できない場合には、検量線を利用して正確な濃度に換算することが困難となる。   Specifically, they are (A) discrimination between molten iron and slag, and (B) evaluation of slag composition (absolute value). Problem (A) is an analysis point at which laser light is focused, and in the actual manufacturing process, only slag does not always exist, and therefore, it is necessary to identify when the analysis point is molten iron. Regarding the problem (B), the primary information obtained by the LIBS analysis is the emission intensity, and it is necessary to use a reliable calibration curve in order to convert this into the concentration. However, in the actual measurement at the manufacturing site, if the same measurement conditions as when the calibration curve was created cannot be guaranteed, it will be difficult to convert the concentration to an accurate concentration using the calibration curve.

上記(A)、(B)の課題を解消し、実際の製造現場に適用できる一案として、本発明者らは以下の方法に想到した。尚、説明の簡略化のために、以下では、CaO、SiO2、FeOxの3元系のスラグ分析の場合について説明する。 The present inventors have come up with the following method as a proposal that can solve the problems (A) and (B) and can be applied to an actual manufacturing site. In order to simplify the description, the case of slag analysis of a ternary system of CaO, SiO 2 , and FeO x will be described below.

初めに、分析対象とするスラグの組成範囲に近い、分析対象とする酸化物濃度を変更した、含有量既知の標準試料として利用する数種のスラグを準備し、実際に現場で分析する条件に極力近い状態で標準試料として準備したスラグのLIBS分析を行なう。次に、各元素の発光強度と予め分析した含有量とから、仮の検量線を作成し、各酸化物の単位濃度あたりの発光強度I(X)0を求める。ここで、Xは各金属酸化物中の金属元素を表す。 First, prepare several kinds of slag to be used as standard samples with known contents, which have close to the composition range of the slag to be analyzed, the concentration of oxide to be analyzed is changed, and the conditions for actual on-site analysis are set. Perform LIBS analysis of the slag prepared as a standard sample in a state as close as possible. Next, a tentative calibration curve is created from the emission intensity of each element and the previously analyzed contents, and the emission intensity I (X) 0 per unit concentration of each oxide is determined. Here, X represents the metal element in each metal oxide.

例えば40質量%のCaOを含有したスラグについて、LIBS分析で得られる発光強度が5000cpsだった場合には、CaOの単位濃度あたりの発光強度I(Ca)0は125cps/質量%と計算される。同様に、SiO2の単位濃度あたりの発光強度I(Si)0及びFeOxの単位濃度あたりの発光強度I(Fe)0も求めておく。実際に現場でスラグ分析を行なった際に得られた各元素の発光強度I(Ca)、I(Si)、I(Fe)を、それぞれI(Ca)0、I(Si)0、I(Fe)0で除算することにより、各酸化物の仮の濃度(%CaO)’、(%SiO2)’、(%FeOx)’をそれぞれ計算して求める。得られた各酸化物の仮の濃度の合計は、検量線作成時と実際のスラグ分析時の計測条件との差異などから、一般的には100質量%とはならないが、合計が100質量%となるものとして換算すれば、実際の含有量を求めることができる。つまり、CaOであれば、「(%CaO)’×100/{(%CaO)’+(%SiO2)’+(%FeOx)’}」を実際のスラグ中のCaO濃度(質量%)として求めることができる。 For example, when the emission intensity obtained by LIBS analysis is 5000 cps for the slag containing 40% by mass of CaO, the emission intensity I (Ca) 0 per unit concentration of CaO is calculated as 125 cps /% by mass. Similarly, the emission intensity I (Si) 0 per unit concentration of SiO 2 and the emission intensity I (Fe) 0 per unit concentration of FeO x are also obtained. The emission intensities I (Ca), I (Si), and I (Fe) of the respective elements obtained when the slag analysis was actually carried out on-site were taken as I (Ca) 0 , I (Si) 0 , and I ( By dividing by Fe) 0 , the temporary concentrations (% CaO) ′, (% SiO 2 ) ′, and (% FeO x ) ′ of each oxide are calculated and obtained. The total of the temporary concentrations of the obtained oxides is generally not 100% by mass due to the difference between the measurement conditions at the time of creating the calibration curve and the actual slag analysis, but the total is 100% by mass. The actual content can be calculated by converting it into That is, in the case of CaO, "(% CaO) '× 100 / {(% CaO)' + (% SiO 2 ) '+ (% FeO x )'}" is the actual CaO concentration in the slag (mass%) Can be asked as

スラグ中に含有される酸化物としては、その他にもAl23、TiO2、MgO、MnO、P25などが考えられることから、含有される可能性のある、これらの酸化物を網羅するようにして上記と同様の方法を行えば、上記の3成分系以外の多成分系のスラグに拡張して定量分析を行うことが可能となる。また、標準試料としても現場で想定される元素を含有しているものを準備することが望ましく、実スラグに近い組成のものを準備する方が高精度の分析が可能となる。尚、元素によっては、共存する成分の濃度が大きく変化すると単位濃度あたりの発光強度が変化する可能性があるので、濃度範囲ごとに分割して標準試料を準備し定量分析を行なうことも有効な手段である。また、実際の分析現場において溶鉄上のスラグの温度は1000℃以上であると考えられ、各元素のLIBSの発光強度を室温で分析する場合とは異なることも考えられる。したがって、標準試料を予め分析し、単位濃度あたりの発光強度を算出する場合にも、加熱炉などを用意し、実際に分析を行なうスラグ温度に近い状態で分析しておくことが望ましい。 As oxides contained in the slag, other oxides such as Al 2 O 3 , TiO 2 , MgO, MnO, and P 2 O 5 are considered. If the same method as the above is carried out so as to cover all, it becomes possible to perform quantitative analysis by expanding to a multi-component slag other than the above-mentioned three-component system. Moreover, it is desirable to prepare a standard sample containing an element expected in the field, and it is possible to perform a highly accurate analysis by preparing a sample having a composition close to the actual slag. Depending on the element, the emission intensity per unit concentration may change if the concentrations of coexisting components change greatly, so it is also effective to divide the concentration range and prepare standard samples for quantitative analysis. It is a means. Further, it is considered that the temperature of the slag on the molten iron is 1000 ° C. or higher at the actual analysis site, which may be different from the case where the LIBS emission intensity of each element is analyzed at room temperature. Therefore, even when the standard sample is analyzed in advance and the emission intensity per unit concentration is calculated, it is desirable to prepare a heating furnace or the like and perform the analysis in a state close to the slag temperature at which the analysis is actually performed.

ここで、スラグ塩基度のように特定の元素の組成比を知ることが重要な場合には余り問題とならないが、MgOやFeOxの分析では、組成比ではなく含有量そのものを知ることが重要であるケースが多く、更に、FeOxを分析する場合には、スラグと溶鉄との識別(課題(A))も行なうことが必要である。 Here, when it is important to know the composition ratio of a specific element like slag basicity, it does not matter so much, but in the analysis of MgO and FeO x , it is important to know the content itself, not the composition ratio. In many cases, it is necessary to distinguish between slag and molten iron (problem (A)) when FeO x is analyzed.

これを行なう手段として幾つかの方法が考えられるが、例えば、溶鉄とスラグでは輻射光の強度が大きくことなる点を利用し、分析ポイントの輻射光強度を別途測定し、判別する方法が考えられる。より簡便な方法としては、スラグ中に多く含まれ、溶鉄中にはほとんど含まれない成分の発光強度を利用して、スラグに対応する発光か、溶鉄に対応する発光かを識別することができる。この方法は、例えば、スラグ塩基度を分析する際のCa発光強度で好適に利用できる。予めCaの発光強度で閾値を設定し、閾値以上の発光強度が得られた場合を、スラグに対応する発光強度として識別が可能である。LIBS分析の場合、レーザ集光領域は数十μmオーダーであり、分析領域に溶鉄とスラグとが混在する可能性は低い。しかし、仮に両者が混在しても、Ca及びFeの発光強度の両者を閾値に基いて判定することにより、異常値として判別することができる。   Several methods can be considered as means for doing this. For example, a method in which the intensity of radiant light is different between molten iron and slag is used, and the radiant light intensity at the analysis point is separately measured and discriminated. . As a simpler method, it is possible to distinguish between the light emission corresponding to the slag and the light emission corresponding to the molten iron by using the emission intensity of the component contained in the slag in a large amount and hardly contained in the molten iron. . This method can be preferably used, for example, for the Ca emission intensity when analyzing the slag basicity. The threshold value is set in advance by the emission intensity of Ca, and the case where the emission intensity equal to or higher than the threshold value is obtained can be identified as the emission intensity corresponding to the slag. In the case of LIBS analysis, the laser focusing region is on the order of several tens of μm, and it is unlikely that molten iron and slag are mixed in the analysis region. However, even if both are mixed, it can be determined as an abnormal value by determining both the emission intensities of Ca and Fe based on the threshold value.

FeはFeOとしてスラグ中にも存在するが、溶鉄との発光強度の差が大きいため、Caの発光強度との組み合わせにより、高い確度で溶鉄とスラグとの混在を判別でき、スラグ分析から除外することが可能である。通常、LIBS分析で用いられるパルスレーザは数十Hzの周波数であり、低頻度で生じる非スラグ成分の分析による発光を除去しても、数秒から数十秒の短時間で統計精度を有する情報を得ることができる。   Fe is also present in the slag as FeO, but since the difference in the emission intensity from the molten iron is large, it is possible to discriminate the mixture of the molten iron and the slag with high accuracy by combining with the emission intensity of Ca, and exclude from the slag analysis. It is possible. Usually, the pulse laser used in the LIBS analysis has a frequency of several tens Hz, and even if the light emission due to the analysis of the non-slag component that occurs at low frequency is removed, information having statistical accuracy can be obtained in a short time of several seconds to several tens seconds. Obtainable.

また、スラグ中に濃化し、溶鉄中にはほとんど存在しないCa(CaO)やMg(MgO)の分析時には、スラグと溶鉄との識別は問題にならないが、Si、Mn、Pなどのスラグと溶鉄との両方に含有され得る元素の場合には、発光源がスラグであるのか、溶鉄であるのかを判別することが必要となる。これに対しては、上記のスラグに対応する発光と溶鉄に対応する発光とを識別する方法の他、同じ温度におけるスラグと溶鉄との輝度の違いを利用することでも実現し得る。その他、カメラなどを設置してレーザ照射位置を直接観察し、レーザ照射位置がスラグなのか溶銑または溶鋼なのか、判別する方法なども利用することができる。   Further, when analyzing Ca (CaO) or Mg (MgO) that is concentrated in slag and hardly exists in molten iron, the distinction between slag and molten iron does not matter, but slags such as Si, Mn, and P and molten iron In the case of elements that can be contained in both of the above, it is necessary to determine whether the light emission source is slag or molten iron. This can be realized by a method of distinguishing the light emission corresponding to the slag and the light emission corresponding to the molten iron, or by utilizing the difference in luminance between the slag and the molten iron at the same temperature. In addition, it is possible to use a method of directly observing the laser irradiation position by installing a camera or the like and determining whether the laser irradiation position is slag, hot metal, or molten steel.

スラグの塩基度((質量%CaO)/(質量%SiO2))の代替として、({(質量%CaO)+(質量%MgO)}/(質量%SiO2))を利用することで、炉体耐火物の管理やスラグの膨張性の管理を行うことができる。また、スラグの塩基度の代替として、((質量%CaO)/{(質量%SiO2)+(質量%P25)})を利用することで、スラグの脱燐能余力を知ることができる。 As an alternative to the basicity of slag ((mass% CaO) / (mass% SiO 2 )), by using ({(mass% CaO) + (mass% MgO)} / (mass% SiO 2 )), It is possible to manage furnace refractories and expandability of slag. Also, as an alternative to the basicity of slag, by using ((mass% CaO) / {(mass% SiO 2 ) + (mass% P 2 O 5 )}), it is possible to know the dephosphorization capacity of the slag. You can

以下、上記技術思想から想到される、中間排滓を挟んで溶銑の予備処理を行う精錬工程を含む本発明の一実施形態、及び、中間排滓を挟んで溶銑から溶鋼を溶製する精錬工程を含む本発明の一実施形態について説明する。   Hereinafter, one embodiment of the present invention, which is conceived from the above technical idea, including a refining step of performing a pretreatment of molten pig iron with an intermediate slag sandwich, and a refining step of producing molten steel from molten pig iron with an intermediate slag pile An embodiment of the present invention including the above will be described.

中間排滓を挟んで脱珪処理及び脱燐処理を行う溶銑予備処理では、過不足のない適切なCaO系媒溶剤の添加量を決定するためには、脱燐処理前の時点で炉内に残留するスラグの組成及び量を把握しておくことが必要である。尚、スラグ中のCaO含有量を制御するためのCaO系媒溶剤としては、生石灰、石灰石、消石灰、ドロマイト、溶銑の脱炭処理時に生成する脱炭スラグ(「転炉滓」、「脱炭炉滓」ともいう)などが挙げられる。   In the hot metal pretreatment that performs desiliconization treatment and dephosphorization treatment with an intermediate slag sandwiched between them, in order to determine the proper addition amount of CaO-based medium solvent without excess or deficiency, in the furnace before the dephosphorization treatment It is necessary to know the composition and amount of residual slag. As the CaO-based solvent for controlling the CaO content in the slag, decarburizing slag (“converter slag”, “decarburizing furnace”, “decarburizing furnace”) produced during decarburizing treatment of quicklime, limestone, slaked lime, dolomite, and hot metal is used. Also referred to as "slag").

スラグの組成を分析する方法として、従来、例えば脱珪処理終了後にスラグを採取し、採取したスラグを分析室に送付して蛍光X線分析法などの分析装置を利用してスラグ組成を分析する方法が考えられている。しかしながら、この方法では、スラグは試料調整された後に分析に供されるので、スラグの組成が決定されるまでに多くの時間を要し、脱燐処理でのCaO系媒溶剤の添加量決定には間に合わない。その結果、必要以上にCaO系媒溶剤を添加してしまった場合や、逆に、CaO系媒溶剤の添加量が不足して、スラグ塩基度が低くなり、脱燐能が低下して、充分な脱燐が行えなかったり、所定の燐(P)濃度に到達するのに時間を要したりする場合が多発した。   Conventionally, as a method for analyzing the composition of slag, for example, slag is collected after the completion of desiliconization, the collected slag is sent to an analysis room, and the slag composition is analyzed using an analyzer such as a fluorescent X-ray analysis method. A method is being considered. However, in this method, since the slag is subjected to the analysis after the sample preparation, it takes a lot of time until the composition of the slag is determined, and the addition amount of the CaO-based solvent in the dephosphorization treatment is determined. Is not in time. As a result, when the CaO-based solvent is added more than necessary, or conversely, the amount of CaO-based solvent added is insufficient, the slag basicity is lowered, and the dephosphorization ability is lowered, resulting in a sufficient Dephosphorization could not be performed frequently, or it took time to reach a predetermined phosphorus (P) concentration.

中間排滓を挟んで溶銑の予備処理を行う精錬工程を含む本発明の一実施形態では、スラグ組成を迅速に分析するために、スラグを採取しないでスラグ組成を定量分析する。具体的には、1つの転炉型精錬炉を用いて、高炉から出銑された溶銑を脱珪処理する脱珪処理工程と、脱珪処理した溶銑を前記転炉型精錬炉内に残留させた状態で、前記脱珪処理工程で生成された脱珪スラグを前記転炉型精錬炉から排滓する中間排滓工程と、前記転炉型精錬炉に残留させた溶銑を脱燐処理する脱燐処理工程と、脱燐処理された溶銑を前記転炉型精錬炉から出湯する出湯工程と、をこの順に行う溶銑の予備処理方法において、中間排滓時のスラグ表面にレーザ光を集光させるようにレーザ光を照射し、レーザ光の照射によって生成されたプラズマ中の各元素に応じた光強度を測光することで、スラグ組成及びスラグ塩基度を定量評価する。   In one embodiment of the present invention, which includes a refining process in which hot metal is pretreated with an intermediate slag sandwiched between the slag compositions, the slag composition is quantitatively analyzed without collecting the slag in order to quickly analyze the slag composition. Specifically, using one converter-type refining furnace, a desiliconizing step of desiliconizing the hot metal tapped from the blast furnace, and leaving the desiliconized hot metal in the converter-type refining furnace In this state, an intermediate slag process for discharging the desiliconization slag generated in the desiliconization process from the converter-type refining furnace, and a dephosphorization process for dephosphorizing the hot metal remaining in the converter-type refining furnace. In the method of pretreatment of molten pig iron, in which a phosphorus treatment step and a tapping step of tapping the dephosphorized molten pig iron from the converter-type refining furnace are performed in this order, laser light is focused on the slag surface during intermediate slag Thus, the slag composition and the slag basicity are quantitatively evaluated by irradiating the laser light and measuring the light intensity according to each element in the plasma generated by the irradiation of the laser light.

つまり、転炉型精錬炉内の溶銑に、CaO系媒溶剤、及び、気体酸素(「気酸」ともいう)や酸化鉄を酸素源として供給して行う、従来行っている脱珪処理を行った後、炉を出湯時とは反対側に、つまり出湯口が設置されている側の反対側に傾動させて、炉口を介してスラグを排出(中間排滓)する。この中間排滓工程において、LIBS法によってスラグ組成を直接定量分析する。例えば、転炉型精錬炉からスラグ収容容器にスラグを排出する直前、排滓中、または排滓後に、スラグに対してレーザを照射することで、スラグの組成分析を行うことが可能である。以下、LIBS法を用いて好適にスラグ組成の分析を行うための方法の例について説明する。   That is, the conventional desiliconization treatment is performed by supplying CaO-based medium solvent, and gaseous oxygen (also called "gaseous acid") or iron oxide as an oxygen source to the hot metal in the converter-type refining furnace. After that, the furnace is tilted to the side opposite to that at the time of tapping, that is, the side opposite to the side where the tap hole is installed, and slag is discharged (intermediate sludge) through the furnace port. In this intermediate sludge process, the slag composition is directly quantitatively analyzed by the LIBS method. For example, it is possible to analyze the composition of the slag by irradiating the slag with a laser immediately before, during, or after the slag is discharged from the converter-type refining furnace to the slag container. Hereinafter, an example of a method for suitably analyzing the slag composition using the LIBS method will be described.

図2は、LIBS法に基づくスラグ成分分析システムの構成例を示す概略図である。図2において、符号1は転炉型精錬炉、2は炉口、3は底吹き羽口、4は溶銑、5はスラグ、6はレーザ光発生器、7は集光レンズ、8はレーザ光、9は受光部、10は光ファイバ、11は分光・測光器、12は演算用計算機、13は撮像装置、14はスラグ収容容器である。   FIG. 2 is a schematic diagram showing a configuration example of a slag component analysis system based on the LIBS method. In FIG. 2, reference numeral 1 is a converter-type refining furnace, 2 is a furnace mouth, 3 is a bottom blowing tuyere, 4 is hot metal, 5 is slag, 6 is a laser light generator, 7 is a condenser lens, and 8 is laser light. , 9 is a light receiving part, 10 is an optical fiber, 11 is a spectrophotometer, 12 is a computing computer, 13 is an image pickup device, and 14 is a slag container.

例えば、脱珪処理後の中間排滓時に、転炉型精錬炉1を傾動させ、溶銑4の上に存在するスラグ5を炉口2から、転炉型精錬炉1の直下に配置されたスラグ収容容器14に排出する。その際に、レーザ光発生器6で発生させたレーザ光8を、集光レンズ7を介して排出中のスラグ5の表面で集光させ、スラグ5の表面にプラズマを発生させる。このプラズマの光を受光部9で観測し、受光部9は光ファイバ10を介して、観測したプラズマの光を分光・測光器11に導光する。分光・測光器11は、受光したプラズマの光のなかから、少なくともカルシウム及び珪素を含む2種類以上の元素の発光強度を測定し、測定した発光強度及び/または発光強度比に基づいてスラグのCaO含有量及びSiO2含有量を定量分析する。定量分析結果は、演算用計算機12に送信され、記憶される。 For example, at the time of intermediate slag after desiliconization, the converter-type smelting furnace 1 is tilted so that the slag 5 existing on the hot metal 4 is placed directly below the converter-type smelting furnace 1 from the furnace port 2. It is discharged into the container 14. At that time, the laser light 8 generated by the laser light generator 6 is condensed on the surface of the slag 5 being discharged through the condenser lens 7, and plasma is generated on the surface of the slag 5. The light of the plasma is observed by the light receiving unit 9, and the light receiving unit 9 guides the observed light of the plasma to the spectroscope / photometer 11 via the optical fiber 10. The spectroscope / photometer 11 measures the emission intensity of two or more kinds of elements containing at least calcium and silicon from the received plasma light, and based on the measured emission intensity and / or the emission intensity ratio, CaO of slag. Quantitatively analyze the content and the SiO 2 content. The quantitative analysis result is transmitted to and stored in the computing computer 12.

尚、図2では、転炉型精錬炉1から中間排出中のスラグ5の表面にレーザ光8を集光させて、スラグ5の成分を分析しているが、中間排滓中である限り、転炉型精錬炉内のスラグ5または排出後のスラグ収容容器14内のスラグ5の表面にレーザ光8を集光させて、スラグ5の成分を分析するようにしても構わない。   In FIG. 2, the laser light 8 is focused on the surface of the slag 5 being discharged from the converter-type refining furnace 1 to analyze the components of the slag 5, but as long as it is in the intermediate discharge, The laser beam 8 may be focused on the surface of the slag 5 in the converter-type refining furnace or the surface of the slag 5 in the discharged slag container 14 to analyze the components of the slag 5.

レーザ光発生器6や受光部9などを輻射熱及びスプラッシュなどから保護する観点からは、分析対象であるスラグ5からの距離を大きくするほど有利となるが、反対に長距離になると、集光や測定感度の面で不利となる。したがって、排滓中のスラグから1〜10m離れた距離からのレーザ照射・集光によって、スラグ表面にプラズマを生成させることが望ましい。   From the viewpoint of protecting the laser light generator 6 and the light receiving portion 9 from radiant heat and splash, the greater the distance from the slag 5 to be analyzed, the more advantageous it is. It is disadvantageous in terms of measurement sensitivity. Therefore, it is desirable to generate plasma on the slag surface by laser irradiation / focusing from a distance of 1 to 10 m away from the slag in the slag.

プラズマの光は、レーザ光発生器6の直近に配置した受光部9で受光した後、10〜15m離れた位置に設定した分光・測光器11に導光される。レーザ光発生器6及び受光部9については、耐熱保護を行った上で適切な場所に配置し、近傍から不活性ガスを吹き付けたりすることで防塵することが好ましい。   The light of the plasma is received by the light receiving unit 9 arranged in the immediate vicinity of the laser light generator 6, and then guided to the spectroscope / photometer 11 set at a position 10 to 15 m away. It is preferable that the laser light generator 6 and the light receiving portion 9 are provided with heat resistance protection and then are arranged at appropriate places, and dust is prevented by spraying an inert gas from the vicinity.

ここで、レーザ光の照射については、転炉型精錬炉から離れた場所にレーザ光発生器を配置して光ファイバを通じて測定部近傍までレーザ光を導き、光学部品を用いてレーザ光を集光・照射しても構わない。また、分光・測光システムについても適切な感度を得られるシステムであれば、転炉型精錬炉近傍における熱影響を回避するために十分に離れた場所に配置しても構わない。   Here, regarding the irradiation of laser light, a laser light generator is placed at a location away from the converter-type refining furnace, the laser light is guided to the vicinity of the measurement part through an optical fiber, and the laser light is condensed using optical parts.・ You can irradiate. Further, as far as the spectroscopic / photometric system is a system that can obtain appropriate sensitivity, the spectroscopic / photometric system may be arranged at a sufficiently distant place in order to avoid thermal influence in the vicinity of the converter-type refining furnace.

実際のスラグ表面の位置は常に一定とは限らないので、集光ポイントを逐次的に検知・修正可能な光学装置を備えることが望ましい。即ち、装置としては、レーザ光を集光させる集光レンズ7を、プラズマの発光を測定するための受光部9(受光レンズ)及びプラズマの発光位置を計測するための撮像装置13とともに結合させて、測定装置の先端部として一体に構成したうえで、少なくともこの先端部をスラグ表面に対して集光レンズ7の光軸の方向に移動可能な機構(図示せず)を備えるようにする。この場合、先端部だけでなく、装置全体を支持架台(図示せず)の上で移動させるようにしても構わない。   Since the actual position of the slag surface is not always constant, it is desirable to provide an optical device capable of sequentially detecting and correcting the condensing point. That is, as the device, the condensing lens 7 for condensing the laser light is combined with the light receiving portion 9 (light receiving lens) for measuring the emission of plasma and the imaging device 13 for measuring the emission position of plasma. The measuring device is integrally configured as a tip portion, and at least the tip portion is provided with a mechanism (not shown) that is movable in the direction of the optical axis of the condenser lens 7 with respect to the slag surface. In this case, not only the tip portion, but the entire device may be moved on a support frame (not shown).

ここで、プラズマの発光位置を計測するための撮像装置13は、集光レンズ7の光軸から所定距離だけ離れ、且つ、前記集光レンズ7に対して相対的に固定された位置とすることにより、三角測量の原理によって、撮像装置13により採取されたプラズマの発光の位置情報に基づいて、集光レンズ7などの測定装置の先端部とスラグ表面との距離を、演算用計算機12などを用いて算出できる。算出された、集光レンズとスラグ表面との距離を所定の値とするように、演算用計算機12などを用いて測定装置の先端部の駆動装置(図示せず)を制御して集光レンズの位置を調整する。   Here, the image pickup device 13 for measuring the light emission position of the plasma is separated from the optical axis of the condenser lens 7 by a predetermined distance, and is set at a position fixed relative to the condenser lens 7. According to the principle of triangulation, the distance between the tip of the measuring device such as the condenser lens 7 and the slag surface can be calculated based on the position information of the plasma emission collected by the imaging device 13, and the calculation computer 12 or the like can be used. It can be calculated using The driving device (not shown) at the tip of the measuring device is controlled by using the computing computer 12 or the like so that the calculated distance between the condensing lens and the slag surface becomes a predetermined value. Adjust the position of.

このようにすることで、スラグ表面の位置が変動する場合においても、測定装置の先端部をこれに追随させて移動させることで、プラズマの生成効率やプラズマの発光の検出感度などの変動を抑制して、比較的一定した条件での測定が可能となり、分析精度が向上するとともに、測定の自動化による省力も可能となる。   By doing this, even if the position of the slag surface changes, by moving the tip of the measuring device to follow it, fluctuations in plasma generation efficiency and plasma emission detection sensitivity are suppressed. Then, the measurement can be performed under a relatively constant condition, the analysis accuracy is improved, and the labor can be saved by automating the measurement.

尚、上記では、中間排滓時に排出される溶融スラグを分析対象とした場合について説明したが、上記の測定装置及び測定方法は、この場合に限らず、分析対象とする高温物質の位置が変動したり、容易に特定できなかったりする場合に有用である。この際、分析対象とする物質の温度が低ければ、集光レンズ7と分析対象物との距離を測定するのに市販のレーザ距離計などを用いることもできるが、800℃以上の高温では上記のようなプラズマ生成用の高エネルギー密度のレーザ光を用いないと発光位置を精度良く検出することが困難となる。また、長期間にわたり分析を続ける場合には、定期的に装置の状態をチェックできる構成とすることが好ましい。   In addition, in the above, the case where the molten slag discharged at the time of intermediate slag was analyzed was described, but the above-described measuring device and measuring method are not limited to this case, and the position of the high-temperature substance to be analyzed varies. It is useful in cases where the At this time, if the temperature of the substance to be analyzed is low, a commercially available laser rangefinder or the like can be used to measure the distance between the condenser lens 7 and the substance to be analyzed, but at a high temperature of 800 ° C. or higher, It is difficult to detect the light emitting position with high accuracy unless such a high energy density laser beam for plasma generation is used. Further, when the analysis is continued for a long period of time, it is preferable that the state of the apparatus can be regularly checked.

分光・測光器11は、測定された各元素の光強度をもとに、予め準備した検量線に基づいてスラグの各成分を分析する。   The spectroscope / photometer 11 analyzes each component of the slag based on the measured light intensity of each element based on a calibration curve prepared in advance.

図3は、LIBS法によって求められたスラグ塩基度と蛍光X線分析法によって求められたスラグ塩基度との関係を示す図である。図3に示すように、両者の間には良好な直線関係があることが確認された。即ち、LIBS法を適用することにより、蛍光X線分析法などの工程分析で実施している方法とほぼ等しい精度・正確さでスラグの塩基度を評価することが可能であることがわかる。   FIG. 3 is a diagram showing the relationship between the slag basicity obtained by the LIBS method and the slag basicity obtained by the fluorescent X-ray analysis method. As shown in FIG. 3, it was confirmed that there was a good linear relationship between the two. That is, it is understood that by applying the LIBS method, the basicity of the slag can be evaluated with substantially the same accuracy and precision as the method performed in the step analysis such as the fluorescent X-ray analysis method.

その後、次工程の脱燐処理におけるCaO系媒溶剤の添加量を、LIBS法を利用して求められたスラグ塩基度と炉内の残留スラグ量とから、炉内に残留させた溶銑の脱燐処理に必要なスラグ塩基度となるように決定し、決定した添加量のCaO系媒溶剤を炉内に添加して脱燐処理工程を実施する。炉内の残留スラグ量は、中間排滓によって排出されたスラグを収納したスラグ収容容器の質量測定値から推定されるスラグ排出量と、中間排滓前の推定される炉内スラグ質量との差分として算出する。   After that, the amount of CaO-based solvent added in the dephosphorization process in the next step was determined based on the slag basicity determined by the LIBS method and the residual slag amount in the furnace to dephosphorize the hot metal remaining in the furnace. The slag basicity required for the treatment is determined, and the determined addition amount of the CaO-based medium solvent is added to the furnace to carry out the dephosphorization treatment step. The residual slag amount in the furnace is the difference between the slag discharge amount estimated from the mass measurement value of the slag storage container storing the slag discharged by the intermediate slag and the estimated slag mass in the furnace before the intermediate slag. Calculate as

脱燐処理工程については、気体酸素や酸化鉄を酸素源として炉内に供給して行う、従来行っている脱燐処理方法と変える必要はなく、脱燐処理前の溶銑の燐濃度や溶鉄温度、脱燐処理後の溶銑の燐濃度の目標値などから予め決定されたパターンで脱燐処理を行えばよい。各チャージで脱燐処理前のスラグを採取しておき、後に、蛍光X線分析法などの分析方法で組成を確認すれば、実際に脱燐処理前のスラグの塩基度がどの程度であったのかを確認することができる。   Regarding the dephosphorization treatment step, there is no need to change from the conventional dephosphorization treatment method in which gaseous oxygen or iron oxide is supplied into the furnace as an oxygen source, and the phosphorus concentration of the hot metal and the molten iron temperature before the dephosphorization treatment The dephosphorization treatment may be performed in a pattern that is predetermined based on the target value of the phosphorus concentration of the hot metal after the dephosphorization treatment. By collecting the slag before dephosphorization treatment at each charge and confirming the composition later by an analysis method such as X-ray fluorescence analysis, it was found that the basicity of the slag before the dephosphorization treatment was actual. You can check if.

脱燐処理後の溶銑は、転炉型精錬炉を傾動させて、転炉型精錬炉に設置された出湯口から溶銑収容容器に出湯し、一方、脱燐処理後のスラグ(脱燐処理工程で生成するスラグを「脱燐スラグ」という)の一部または全部を転炉型精錬炉に残留させる。その後、新たな溶銑(次のチャージで使用する溶銑)を転炉型精錬炉に装入し、次のチャージの溶銑の脱珪処理を開始する。次のチャージ以降では、転炉型精錬炉内に前チャージのスラグが残留しているので、CaO系媒溶剤を添加しなくても、脱珪処理を行うことができるが、スラグ塩基度が低くなる場合には、CaO系媒溶剤を添加する。   After the dephosphorization treatment, the hot metal is tilted in the converter-type refining furnace and tapped into the hot-metal container through the tap hole installed in the converter-type refining furnace. A part or all of the slag generated in step (referred to as "dephosphorization slag") is left in the converter-type refining furnace. After that, new hot metal (hot metal used in the next charge) is charged into the converter-type refining furnace, and desiliconization of the hot metal of the next charge is started. After the next charge, since the slag from the previous charge remains in the converter-type refining furnace, it is possible to perform desiliconization without adding CaO-based solvent, but the slag basicity is low. In that case, a CaO-based solvent is added.

上記説明から明らかなように、中間排滓を挟んで溶銑の予備処理を行う精錬工程を含む本発明の一実施形態によれば、中間排滓におけるスラグ塩基度を精度良く把握することができ、これにより、脱燐処理に適したCaO系媒溶剤の添加量を決定することができ、CaO系媒溶剤の添加量を最小限にすることが可能となる。その結果、生産性を低下させることなく、低コストで溶銑予備処理を行うことが実現される。   As is clear from the above description, according to an embodiment of the present invention including a refining step of preliminarily treating the hot metal with the intermediate slag sandwiched, it is possible to accurately grasp the slag basicity in the intermediate slag, This makes it possible to determine the addition amount of the CaO-based medium solvent that is suitable for the dephosphorization treatment, and to minimize the addition amount of the CaO-based medium solvent. As a result, it is possible to perform hot metal pretreatment at low cost without lowering productivity.

上記説明では、中間排滓を挟んで脱珪処理及び脱燐処理を行う溶銑予備処理の場合について説明したが、更に脱硫処理を組み合わせて実施する溶銑の予備処理についても、同様に本発明の精錬方法を適用することで、スラグ組成制御の精度向上が可能である。   In the above description, the case of the hot metal pretreatment for performing the desiliconization treatment and the dephosphorization treatment with the intermediate slag sandwiched between them is explained. The accuracy of slag composition control can be improved by applying the method.

また、溶銑から溶鋼を溶製する場合にも、上記の溶銑予備処理と類似した以下の手順により、本発明を適用可能である。   Further, even when molten steel is produced from molten pig iron, the present invention can be applied by the following procedure similar to the above-mentioned molten pig iron pretreatment.

即ち、転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して転炉型精錬炉内の溶銑に対して脱燐処理(脱珪処理も行われる)を行った後、転炉型精錬炉を傾動させて中間排滓を行う。この中間排滓工程において、LIBS法によりスラグ組成を直接測定する。次工程の脱炭処理工程については、炉内にCaO系媒溶剤及び酸素源を供給して行う、従来行っている脱炭処理方法と変える必要はなく、処理後の溶鋼温度及び溶鋼の燐濃度の目標値などからスラグ塩基度の目標値を設定し、LIBS法にて測定したスラグの成分分析結果と、中間排滓で排出されたスラグを収容するスラグ収容容器の質量測定値から推定される残留スラグ量とから、物質収支に基づいてCaO系媒溶剤の添加量を決定する。   That is, a CaO-based solvent and an oxygen source are supplied into the converter-type refining furnace to perform dephosphorization treatment (also desiliconization treatment) on the hot metal in the converter-type refining furnace, and then the converter-type refining furnace. Tilt the smelting furnace and perform intermediate slag. In this intermediate sludge process, the slag composition is directly measured by the LIBS method. Regarding the decarburization process in the next step, there is no need to change from the conventional decarburization process performed by supplying CaO-based medium solvent and oxygen source into the furnace, the molten steel temperature after treatment and the phosphorus concentration of the molten steel. The target value of slag basicity is set from the target value of slag, and it is estimated from the component analysis result of the slag measured by the LIBS method and the mass measurement value of the slag storage container that stores the slag discharged in the intermediate slag. From the amount of residual slag, the amount of CaO-based solvent added is determined based on the mass balance.

脱炭処理後、生成した溶鋼を、転炉型精錬炉を傾動させて、転炉型精錬炉に設置された出湯口から溶鋼収容容器に出鋼し、脱炭処理後のスラグ(脱炭スラグ)の一部または全部を転炉型精錬炉に残留させる。その後、新たな溶銑(次のチャージで使用する溶銑)を転炉型精錬炉に装入し、次のチャージの溶銑の脱燐処理を開始する。   After the decarburization treatment, the produced molten steel is tilted in the converter-type refining furnace and tapped into the molten-steel container from the tap hole installed in the converter-type refining furnace, and the slag after decarburization treatment (decarburization slag ) Is partially or entirely left in the converter type refining furnace. After that, new hot metal (hot metal used in the next charge) is charged into the converter-type refining furnace, and the dephosphorization process of the hot metal of the next charge is started.

尚、同様の手順によってスラグ中のその他の成分も分析できることは明らかであり、例えば、スラグ中のMgO含有率を測定し、且つ、制御することにより、炉体寿命の延命及び路盤材として膨張の少ない適正な組成のスラグに調製することができる。炉体寿命がスラグ中のMgO含有率に影響する理由は、転炉型精錬炉の内張耐火物はMgO系耐火物で形成されており、スラグ中のMgO含有量が低下すると、内張耐火物であるMgO系耐火物からMgOの溶出が起こり、MgO系耐火物の寿命が低下するからである。スラグ中のMgO含有率を制御するためのMgO系媒溶剤としては、ドロマイト(MgCO3−CaCO3)、MgO系煉瓦の破砕品、マグネシアクリンカなどが挙げられる。 In addition, it is clear that other components in the slag can be analyzed by the same procedure. For example, by measuring and controlling the MgO content in the slag, the life of the furnace body can be extended and the expansion as a roadbed material can be achieved. It can be prepared into a slag with a small amount and a proper composition. The reason that the life of the furnace affects the MgO content in the slag is that the refractory lining refractory furnace is made of MgO-based refractory, and if the MgO content in the slag decreases, This is because MgO is eluted from the MgO-based refractory, which is a substance, and the life of the MgO-based refractory is shortened. Examples of the MgO-based solvent for controlling the MgO content in the slag include dolomite (MgCO 3 —CaCO 3 ), crushed products of MgO-based bricks, and magnesia clinker.

また、スラグ中のFeOx含有量を測定し、且つ、制御することにより、効率的な脱燐処理を行うことができる。脱燐処理において、スラグ中のFeOxは溶銑中の燐の酸化及びスラグの滓化に寄与しており、効率的な脱燐処理のためには、スラグ中に5〜15質量%のFeOxが存在することが望まれている。スラグ中のFeOx含有量を制御するための酸化鉄系媒溶剤としては、鉄鉱石粉、鉄鉱石と生石灰との混合体である焼結鉱粉、製鉄工程における集塵ダストなどが挙げられる。 Further, by measuring and controlling the FeO x content in the slag, an efficient dephosphorization treatment can be performed. In the dephosphorization treatment, FeO x in the slag contributes to the oxidation of phosphorus in the hot metal and the slag slag formation. For efficient dephosphorization treatment, 5 to 15% by mass of FeO x in the slag is used. Is desired to exist. Examples of the iron oxide-based solvent for controlling the FeO x content in the slag include iron ore powder, sintered ore powder that is a mixture of iron ore and quick lime, and dust collection dust in the iron making process.

また、スラグ中の酸化鉄含有量の制御は、気体酸素の供給速度(「送酸速度」ともいう)、気体酸素を供給するための上吹きランスのランス高さ(ランス高さとは、静止状態の炉内溶鉄浴面とランス先端との距離)、攪拌用底吹きガス流量のうちのいずれか1種または2種以上を調整することも有効である。例えば、脱珪スラグ中の酸化鉄の含有量が5質量%未満と低位であった場合は、次の脱燐工程にて、通常の脱燐工程の条件と比較して、ランス高さを増加させ、且つ底吹きガス流量を低下させることなどにより酸化鉄含有量を増大させることが望まれる。また、脱珪スラグ中の酸化鉄含有量が25質量%超えと高位であった場合は、次の脱燐工程にて、通常の脱燐工程の条件と比較して、ランス高さを低下させ、且つ底吹きガス流量を増加させることなどにより酸化鉄含有量を減少させることが望まれる。   Further, the iron oxide content in the slag is controlled by the supply rate of gaseous oxygen (also referred to as “acid transport rate”) and the lance height of the upper blowing lance for supplying gaseous oxygen (the lance height is a stationary state. It is also effective to adjust any one kind or two or more kinds of the distance between the molten iron bath surface in the furnace and the tip of the lance) and the flow rate of the gas for bottom blowing for stirring. For example, when the content of iron oxide in the desiliconization slag is as low as less than 5% by mass, the lance height is increased in the next dephosphorization process as compared with the conditions of the normal dephosphorization process. It is desired to increase the iron oxide content by reducing the flow rate of bottom-blown gas. Further, when the iron oxide content in the desiliconization slag is as high as more than 25% by mass, the lance height is decreased in the next dephosphorization step as compared with the conditions of the normal dephosphorization step. In addition, it is desirable to reduce the iron oxide content by increasing the bottom blown gas flow rate.

脱珪スラグ中の酸化鉄含有量は、脱燐を促進させるには高位であることが望ましいが、耐火物の溶損を防止するには低位であることが望ましい。上記を考慮すると、脱珪スラグ中の酸化鉄含有量は5質量%以上25質量%以下に制御することが望ましい。前チャージの脱燐スラグを炉内に残留させたまま次チャージの溶銑の脱珪処理を行う精錬方法において、脱珪スラグ中の酸化鉄含有量を制御するには、前チャージの脱燐処理で生じる脱燐スラグ中の酸化鉄含有量を測定する必要がある。LIBS法による脱燐スラグ中の酸化鉄含有量の測定値を用いれば、脱珪処理における気体酸素の供給量及び酸化鉄系媒溶剤の使用量を調整し、脱珪スラグ中の酸化鉄含有量を制御することが可能となる。   The content of iron oxide in the desiliconized slag is desirably high to promote dephosphorization, but is desirably low to prevent melting loss of the refractory. Considering the above, it is desirable to control the iron oxide content in the desiliconized slag to be 5% by mass or more and 25% by mass or less. In the refining method in which the dephosphorization slag of the previous charge is left in the furnace and the hot metal of the next charge is desiliconized, the iron oxide content in the desiliconized slag can be controlled by the dephosphorization process of the previous charge. It is necessary to measure the iron oxide content in the resulting dephosphorized slag. By using the measured value of the iron oxide content in the dephosphorization slag by the LIBS method, the supply amount of gaseous oxygen and the amount of the iron oxide-based solvent used in the desiliconization treatment can be adjusted to determine the iron oxide content in the desiliconization slag. Can be controlled.

また、前チャージの脱燐スラグ中の酸化鉄含有量が、気体酸素の供給量及び酸化鉄系媒溶剤の使用量の和に対して高位であった場合は、当該チャージの脱珪処理のランス高さを低下させ、且つ底吹きガス流量を増加させることで酸化鉄生成を抑制し、脱珪スラグ中の酸化鉄含有量を低下させることができる。逆に、前チャージの脱燐スラグ中の酸化鉄含有量が、気体酸素の供給量及び酸化鉄系媒溶剤の使用量の和に対して低位であった場合は、当該チャージの脱珪処理のランス高さを増加させ、且つ底吹き流量を低下させることで酸化鉄の生成を促進し、脱珪スラグ中の酸化鉄含有量を増加させることができる。   If the iron oxide content in the dephosphorization slag of the previous charge was higher than the sum of the supply amount of gaseous oxygen and the amount of the iron oxide-based medium solvent used, the desiliconization treatment lance of the charge was By lowering the height and increasing the bottom blown gas flow rate, iron oxide production can be suppressed and the iron oxide content in the desiliconized slag can be reduced. On the contrary, if the iron oxide content in the dephosphorization slag of the previous charge was lower than the sum of the supply amount of gaseous oxygen and the amount of the iron oxide medium solvent used, the desiliconization treatment of the charge was performed. By increasing the lance height and decreasing the bottom blowing flow rate, the generation of iron oxide can be promoted and the iron oxide content in the desiliconized slag can be increased.

上記の方法により、脱珪スラグ中の酸化鉄含有量を制御することができる。上記のスラグ中の酸化鉄含有量を制御する方法においては、精錬処理前のスラグ中の酸化鉄含有量は迅速に測定する必要があり、上記のLIBS法によるスラグの分析を適用する。   The iron oxide content in the desiliconized slag can be controlled by the above method. In the method of controlling the iron oxide content in the slag described above, the iron oxide content in the slag before the refining treatment needs to be quickly measured, and the slag analysis by the LIBS method described above is applied.

更に、酸化鉄含有量を炉内の酸素収支から推定する場合においても、精錬処理前のスラグ中の酸化鉄含有量をLIBS法によって分析することにより、作業能率を犠牲にすることなく、処理中のスラグ中酸化鉄含有量の推定精度の向上が図られる。炉内の酸素収支から酸化鉄含有量を算出する方法は、例えば刊行物1(刊行物1;特開2013−136831号公報)に記載されている。   Further, even when the iron oxide content is estimated from the oxygen balance in the furnace, by analyzing the iron oxide content in the slag before refining treatment by the LIBS method, the work efficiency can be improved without sacrificing the work efficiency. The estimation accuracy of the iron oxide content in the slag is improved. A method for calculating the iron oxide content from the oxygen balance in the furnace is described in, for example, Publication 1 (Publication 1; JP2013-136831A).

刊行物1では、炉内に供給した酸素源の合計量からスラグ中及び炉外に排出した酸素量を減ずることにより炉内の不明酸素量を求める。スラグ中に排出される酸素量はSi、Mn、P濃度の成分変化を仮定して計算する。また、炉外に排出される酸素量は排ガス流量及び排ガス中のCO、CO2濃度より算出される。このようにして得られた炉内の不明酸素量が全て溶鉄の燃焼に消費されたとして、酸化鉄生成量を算出する。酸化鉄生成量を、投入した副原料及び生成する酸化物の量の和として算出されるスラグ量で除すれば、スラグ中の酸化鉄含有濃度が求まる。 In Publication 1, the amount of unknown oxygen in the furnace is obtained by subtracting the amount of oxygen discharged into the slag and the amount outside the furnace from the total amount of oxygen sources supplied to the furnace. The amount of oxygen discharged into the slag is calculated assuming changes in the Si, Mn, and P concentrations. The amount of oxygen discharged outside the furnace is calculated from the exhaust gas flow rate and the CO and CO 2 concentrations in the exhaust gas. Assuming that the unknown oxygen amount in the furnace thus obtained is consumed for the combustion of molten iron, the iron oxide production amount is calculated. The iron oxide content concentration in the slag can be obtained by dividing the iron oxide production amount by the slag amount calculated as the sum of the amounts of the input auxiliary material and the produced oxide.

但し、刊行物1に記載の方法では、前工程の炉内残留スラグの量及び酸化鉄含有濃度が考慮されていないので、LIBS法にて測定したスラグ組成から、前工程の炉内残留スラグの量及び酸化鉄含有濃度を算出し、これを起点として酸化鉄含有濃度を算出する必要がある。   However, in the method described in Publication 1, since the amount of the residual slag in the furnace in the previous step and the iron oxide content concentration are not taken into consideration, the slag composition measured by the LIBS method indicates that It is necessary to calculate the amount and the iron oxide content concentration, and use this as a starting point to calculate the iron oxide content concentration.

このようにして算出すれば、前工程で発生したスラグの一部或いは全量を炉内に残留させた場合においても、スラグ中のFeOx含有量を逐次算出することが可能となる。そして、このようにして算出されるスラグ中のFeOx含有量を、気体酸素の供給速度、上吹きランスのランス高さ、底吹きガス流量のうちの少なくとも1種類以上を調整することで制御する。脱珪吹錬中は、スラグ中のFeOx含有量を5〜25質量%の間に制御するのが望ましく、また、脱燐吹錬中は、スラグ中のFeOx含有量を5〜15質量%の間に制御するのが望ましい。 With this calculation, even if a part or the whole amount of the slag generated in the previous step is left in the furnace, the FeO x content in the slag can be sequentially calculated. Then, the FeO x content in the slag calculated in this way is controlled by adjusting at least one of the supply rate of gaseous oxygen, the lance height of the top blowing lance, and the bottom blowing gas flow rate. . During the desiliconization blowing, it is desirable to control the FeO x content in the slag to be 5 to 25% by mass, and during the dephosphorization blowing, the FeO x content in the slag is 5 to 15% by mass. It is desirable to control it during the period.

上記説明では、脱珪処理を行う一次吹錬工程と、脱燐処理を行う二次吹錬工程とを、間に中間排滓工程を挟んで続けて行う溶銑の予備処理方法、或いは、この溶銑の予備処理方法において、前チャージの脱燐処理を行った二次吹錬工程後のスラグの少なくとも一部を排出することなく炉内に残留させたまま、次のチャージの溶銑の処理を行う溶銑の予備処理方法において、LIBS法によるスラグ中酸化鉄含有量の測定を利用して、吹錬中のスラグ中酸化鉄含有量を精度良く制御する方法について説明した。   In the above description, a hot metal pretreatment method in which a primary blowing step for performing desiliconization processing and a secondary blowing step for performing dephosphorization processing are continuously performed with an intermediate slag step interposed therebetween, or this hot metal In the pretreatment method, the hot metal for the next charge is treated while leaving at least a part of the slag after the secondary blowing step in which the pre-charge dephosphorization process is carried out without being discharged in the furnace. In the above pretreatment method, the method of accurately controlling the iron oxide content in the slag during blowing by using the measurement of the iron oxide content in the slag by the LIBS method has been described.

しかし、本発明の実施形態はこれに留まらず、例えば、一次吹錬工程が溶銑の脱燐処理(この場合は脱珪処理も同じ一次吹錬工程に含まれる)であり、二次吹錬工程が溶銑を脱炭して溶鋼とする脱炭処理である場合にも同様に適用することが可能である。その場合には、各吹錬工程におけるスラグ中酸化鉄含有量が精度良く制御され、精錬剤の効率向上、吹錬制御の精度向上、鉄歩留りや合金鉄歩留りの向上などの効果を得ることが可能となる。   However, the embodiment of the present invention is not limited to this. For example, the primary blowing step is a dephosphorization treatment of hot metal (in this case, desiliconization treatment is also included in the same primary blowing step), and the secondary blowing step The same can be applied to the case where is a decarburization treatment for decarburizing hot metal to obtain molten steel. In that case, the iron oxide content in the slag in each blowing step can be accurately controlled, and the effect of improving the efficiency of the refining agent, improving the accuracy of blowing control, and improving the iron yield or the ferroalloy yield can be obtained. It will be possible.

本発明は、スラグを意図的に残留させ、残留させたスラグを次のチャージの溶銑の処理に活用する精錬工程においても、適用可能である。   INDUSTRIAL APPLICABILITY The present invention is also applicable to a refining process in which slag is intentionally left and the remaining slag is utilized for the next hot metal treatment of the charge.

例えば、1つの転炉型精錬炉を用いて溶銑の脱燐処理(脱珪・脱燐処理を含む)を繰り返して行う場合、或いは、1つの転炉型精錬炉を用いて溶銑を脱炭して溶鋼とする脱炭処理を繰り返して行う場合、処理後のスラグが残有する脱燐能を次のチャージの溶銑の脱燐処理及び脱炭処理に活用するために、出湯(出鋼)後、スラグの少なくとも一部を炉内に残留させたまま、転炉型精錬炉に新たに溶銑を装入して次のチャージの溶鉄の精錬を行うことがある。この場合に、LIBS法を用いて処理後のスラグ成分を分析して評価することで、スラグの脱燐能などを評価して、スラグの残留量を調整したり、次のチャージの精錬用の造滓剤添加量を調整したりすることが可能となる。   For example, when performing dephosphorization treatment (including desiliconization and dephosphorization treatment) of hot metal using one converter-type refining furnace, or decarburizing the hot metal using one converter-type refining furnace. When repeatedly performing decarburization treatment to make molten steel, in order to utilize the dephosphorization ability remaining in the slag after the treatment for the dephosphorization treatment and decarburization treatment of the hot metal of the next charge, after tapping (steel tapping), While leaving at least a part of the slag in the furnace, the molten iron of the next charge may be smelted by newly charging the molten iron into the converter-type smelting furnace. In this case, the slag component after the treatment is analyzed and evaluated by using the LIBS method to evaluate the dephosphorization ability of the slag and adjust the residual amount of the slag, or for refining the next charge. It is possible to adjust the addition amount of the slag forming agent.

この場合には、出湯時に傾動させた転炉型精錬炉の炉内のスラグの表面にレーザ光を集光させて、スラグの成分を分析するようにしても構わないし、このスラグの一部を排出する場合には、排出中のスラグの表面または排出後のスラグ収容容器内のスラグの表面にレーザ光を集光させるようにしても構わない。   In this case, the laser light may be focused on the surface of the slag in the furnace of the converter-type refining furnace tilted during tapping, and the components of the slag may be analyzed. When discharging, the laser light may be focused on the surface of the slag being discharged or the surface of the slag in the slag container after discharging.

また、1つの転炉型精錬炉を用いて一次吹錬工程と二次吹錬工程とを行う溶鉄の精錬において、一次吹錬工程と二次吹錬工程との間で、溶鉄及びスラグの一部を転炉型精錬炉内に残留させたままスラグの残部を排出し、転炉型精錬炉に残留させた溶鉄に精錬を施す精錬方法を、連続する2チャージ以上の溶銑に施すにあたり、転炉型精錬炉における前チャージの溶銑の二次吹錬工程で生じたスラグを炉外に排出することなく全量転炉型精錬炉内に残留させたまま、次のチャージの溶銑を転炉型精錬炉に装入し、次のチャージの溶銑の一次吹錬工程を行う方法を続けて行う場合に、各一次吹錬及び各二次吹錬を効率良く実施するためには、各吹錬前に炉内に残留するスラグ量を精度良く推定することが望ましい。この際、装入した溶銑の成分や炉内に投入した精錬剤に基づくスラグ量の増減やスラグ成分の変化は或る程度正確に評価することができるが、中間排滓におけるスラグ排出量の評価については比較的大きな誤差を含みやすい。   Further, in the refining of molten iron in which the primary blowing process and the secondary blowing process are performed using one converter-type refining furnace, one of molten iron and slag is removed between the primary blowing process and the secondary blowing process. Part is left in the converter-type refining furnace, the rest of the slag is discharged, and the refining method of refining the molten iron remaining in the converter-type refining furnace is applied to the continuous hot metal of 2 charges or more. In the furnace-type refining furnace, the slag generated in the secondary blowing process of the pre-charged hot metal remains in the converter-type refining furnace without being discharged to the outside of the furnace, and the next-charged hot metal is converted into the converter-type refining. In order to efficiently carry out each primary blowing and each secondary blowing when charging the furnace and carrying out the method of performing the primary blowing step of the hot metal of the next charge, in order to efficiently carry out each primary blowing and each secondary blowing, It is desirable to accurately estimate the amount of slag remaining in the furnace. At this time, the increase / decrease in the amount of slag and the change in the slag component based on the components of the hot metal charged and the refining agent charged into the furnace can be evaluated to some extent accurately, but the evaluation of the amount of slag discharged in the intermediate slag Is likely to include a relatively large error.

これは、中間排滓で炉内からスラグ収容容器14に排出したスラグ質量を炉下に配した台車上に設置した秤量装置で秤量する際に、スラグ中に混入することが避けられない相当量の溶銑の量が不明であることとともに、多量の粉塵が堆積するなどして秤量装置を正常な状態に維持できない場合もあることに起因する。この中間排滓におけるスラグ排出量推定値の誤差は、その後の二次吹錬工程におけるスラグ量及びスラグ組成の推定、更には次チャージ以後の一次吹錬工程及び二次吹錬工程におけるスラグ量及びスラグ組成の推定の誤差の原因となり得るとともに、上記のような精錬方法を繰り返すことにより、次第に誤差の蓄積を招くおそれがある。   This is a considerable amount that is unavoidable to be mixed into the slag when the slag mass discharged from the furnace to the slag storage container 14 by the intermediate slag is weighed by the weighing device installed on the truck arranged under the furnace. This is due to the fact that the amount of molten pig iron is unknown and that the weighing device may not be maintained in a normal state due to the accumulation of a large amount of dust. The error in the estimated value of slag discharge in this intermediate slag is due to the estimation of the slag amount and slag composition in the subsequent secondary blowing process, and the slag amount in the primary and secondary blowing processes after the next charge and This may cause an error in the estimation of the slag composition, and the error may gradually be accumulated by repeating the refining method as described above.

本発明のように、スラグ組成の迅速分析を利用する場合には、下記に示すように、スラグ排出量の秤量値に拠らずに炉内に残留するスラグ量を推定することが可能であり、上記のスラグ量及びスラグ組成の推定の誤差の要因を軽減して、精錬効率の向上を図ることが可能となる。   When the rapid analysis of the slag composition is used as in the present invention, it is possible to estimate the amount of slag remaining in the furnace without depending on the measured value of the amount of slag, as shown below. It is possible to improve the refining efficiency by reducing the factors of the error in the estimation of the slag amount and the slag composition described above.

これは、前チャージの溶銑の二次吹錬工程の前後においてスラグの成分を定量分析し、二次吹錬工程の前後におけるスラグの成分の定量分析結果と二次吹錬工程における造滓剤の使用量とに基づいて二次吹錬工程後のスラグ量を求め、得られたスラグ量を次チャージの溶銑の一次吹錬工程におけるスラグの制御に利用することにより実現される。この際、二次吹錬工程の前及び後におけるスラグ成分の定量分析方法としては、必ずしもLIBS法に限定されるものではないが、特に二次吹錬工程後のスラグの分析方法には迅速性が要求されることから、LIBS法を適用することが望ましい。   This is a quantitative analysis of the components of the slag before and after the secondary blowing process of the hot metal of the pre-charge, the quantitative analysis results of the components of the slag before and after the secondary blowing process and of the slag forming agent in the secondary blowing process. It is realized by obtaining the slag amount after the secondary blowing process based on the amount used and using the obtained slag amount for controlling the slag in the primary blowing process of the hot metal of the next charge. At this time, the quantitative analysis method of the slag component before and after the secondary blowing step is not necessarily limited to the LIBS method, but the method for analyzing the slag after the secondary blowing step is particularly rapid. Therefore, it is desirable to apply the LIBS method.

即ち、二次吹錬工程前後のスラグ量をそれぞれWS,2i、WS,2fとすると、下記の(1)式及び(2)式に示す次の2つの方程式が成り立ち、これらを連立させて解くことにより、二次吹錬工程後のスラグ量WS,2fを求めることができる。 That is, assuming that the amounts of slag before and after the secondary blowing process are W S, 2i and W S, 2f , respectively, the following two equations shown in the following equations (1) and (2) are established, and these equations are combined. The slag amount W S, 2f after the secondary blowing process can be obtained by solving the above.

WS,2i×(%CaO)m,2i/100+WCaO,2=WS,2f×(%CaO)m,2f/100…(1)
WS,2i×(%SiO2)m,2i/100+WSiO2,2+WHM×(XSi,2i-XSi,2f)×(60/28)/100=WS,2f×(%SiO2)m,2f/100…(2)
但し、(1)式、(2)式において、各記号は以下のとおりである。
W S, 2i × (% CaO) m, 2i / 100 + W CaO, 2 = W S, 2f × (% CaO) m, 2f / 100… (1)
W S, 2i × (% SiO 2 ) m, 2i / 100 + W SiO2,2 + W HM × (X Si, 2i -X Si, 2f ) × (60/28) / 100 = W S, 2f × ( % SiO 2 ) m, 2f / 100… (2)
However, in the formulas (1) and (2), each symbol is as follows.

WS,2i:二次吹錬工程前のスラグ質量(t)
WS,2f:二次吹錬工程後のスラグ質量(t)
WCaO,2:二次吹錬工程において添加した造滓剤中のCaO質量(t)
WSiO2,2:二次吹錬工程において添加した造滓剤中のSiO2質量(t)
WHM:二次吹錬工程前の溶銑質量(t)
(%CaO)m,2i:二次吹錬工程前のスラグのCaO濃度測定値(質量%)
(%CaO)m,2f:二次吹錬工程後のスラグのCaO濃度測定値(質量%)
(%SiO2)m,2i:二次吹錬工程前のスラグのSiO2濃度測定値(質量%)
(%SiO2)m,2f:二次吹錬工程後のスラグのSiO2濃度測定値(質量%)
XSi,2i:二次吹錬工程前の溶銑の珪素濃度(質量%)
XSi,2f:二次吹錬工程後の溶銑の珪素濃度(質量%)
上記により求めた二次吹錬工程後のスラグ量WS,2fに基づいて、次チャージの溶銑の一次吹錬工程におけるスラグ量及びスラグ組成を推定し、これに基づいて一次吹錬工程における造滓剤の添加量を調整すること、或いは、酸化鉄の生成量を適切に制御するための吹錬条件を調整することにより、効率良く目標とするスラグ組成に調整することができる。
W S, 2i : Mass of slag before the secondary blowing process (t)
W S, 2f : Mass of slag after secondary blowing process (t)
W CaO, 2 : Mass of CaO (t) in the slag forming agent added in the secondary blowing process
W SiO2,2 : SiO 2 mass (t) in the slag forming agent added in the secondary blowing step
W HM : Hot metal mass (t) before the secondary blowing process
(% CaO) m, 2i : Measured CaO concentration of slag before the secondary blowing process (% by mass)
(% CaO) m, 2f : Measured CaO concentration of slag after the secondary blowing process (mass%)
(% SiO 2 ) m, 2i : Measured SiO 2 concentration in the slag before the secondary blowing process (mass%)
(% SiO 2 ) m, 2f : Measured SiO 2 concentration of slag after the secondary blowing process (mass%)
X Si, 2i : Silicon concentration in the hot metal before the secondary blowing process (mass%)
X Si, 2f : Silicon concentration (mass%) of the hot metal after the secondary blowing process
Based on the slag amount W S, 2f after the secondary blowing process obtained above, the slag amount and the slag composition in the primary blowing process of the hot metal of the next charge are estimated, and based on this, the production in the primary blowing process is performed. The target slag composition can be efficiently adjusted by adjusting the addition amount of the slag agent or by adjusting the blowing conditions for appropriately controlling the production amount of iron oxide.

[試験1]
容量330トンの1基の転炉型精錬炉を用い、脱珪処理(一次吹錬)、中間排滓、脱燐処理(二次吹錬)を、この順に行って溶銑に予備処理を施す際に、図2に示した構成の装置により、LIBS法を用いて中間排滓時にスラグ組成を測定した。この際、集光レンズと測定するスラグ表面との距離がほぼ集光レンズの焦点距離となるように、集光レンズ7、受光部9及び撮像装置13を一体に構成した測定装置の先端部の位置を、撮像装置13による集光位置の計測画像に基づいて、集光レンズの光軸の方向に自動調節するよう構成した。スラグ成分分析結果に基づいて、その後の脱燐処理におけるCaO系媒溶剤の添加量を算出し、算出された量のCaO系媒溶剤を添加して行う溶銑予備処理(本発明例)と、脱珪処理後にスラグ組成を測定しない従来法による溶銑予備処理(比較例)とを、それぞれ10チャージずつ連続して実施した。
[Test 1]
When performing pretreatment on the hot metal by using one converter-type refining furnace with a capacity of 330 tons, desiliconization treatment (primary smelting), intermediate slag and dephosphorization treatment (secondary smelting) in this order Further, the slag composition was measured at the time of intermediate slag using the LIBS method with the apparatus having the configuration shown in FIG. At this time, the tip of the measuring device in which the condensing lens 7, the light receiving unit 9 and the imaging device 13 are integrally configured so that the distance between the condensing lens and the slag surface to be measured is almost the focal length of the condensing lens. The position is configured to be automatically adjusted in the direction of the optical axis of the condensing lens based on the measurement image of the condensing position by the imaging device 13. Based on the slag component analysis result, the amount of CaO-based solvent added in the subsequent dephosphorization treatment was calculated, and hot metal pretreatment (invention example) performed by adding the calculated amount of CaO-based solvent and The hot metal pretreatment (comparative example) according to the conventional method in which the slag composition was not measured after the silicidation was continuously carried out by 10 charges each.

脱燐処理終了時の溶銑中燐濃度の目標値は、いずれも0.030質量%とした。本発明例及び比較例とも、前チャージの脱燐処理後のスラグを排滓せずに炉内に残留させたまま、次のチャージの溶銑を装入し、中間排滓を挟んで溶銑の脱珪処理と脱燐処理とを行う溶銑の予備処理を繰り返して実施した。また、脱珪処理時に鉄源として鉄屑を配合した。   The target value of the phosphorus concentration in the hot metal at the end of the dephosphorization treatment was 0.030% by mass. In each of the present invention example and the comparative example, the slag after the dephosphorization treatment of the previous charge was left in the furnace without being discharged, and the molten iron of the next charge was charged, and the molten iron was removed with the intermediate slag sandwiched. The pretreatment of the hot metal, which was subjected to silicidation and dephosphorization, was repeated. In addition, iron scrap was added as an iron source during the desiliconization treatment.

脱珪処理工程では、CaO系媒溶剤として脱炭スラグを使用し、脱珪処理後のスラグの塩基度((質量%CaO)/(質量%SiO2))の計算値(計算塩基度)が目標値の1.20となるように、脱炭スラグの使用量を調整した。脱炭スラグを使用しなくても計算塩基度が目標値の1.20を確保できる場合には、脱炭スラグを使用せずに脱珪処理を行った。酸素源は溶銑中の珪素濃度に応じて供給した。 In the desiliconization process, decarburized slag is used as the CaO-based solvent, and the calculated value (calculated basicity) of the basicity ((mass% CaO) / (mass% SiO 2 )) of the slag after the desiliconization treatment is The amount of decarburized slag used was adjusted so that the target value was 1.20. When the calculated basicity of 1.20, which is the target value, can be secured without using decarburizing slag, desiliconization treatment was performed without using decarburizing slag. The oxygen source was supplied according to the silicon concentration in the hot metal.

脱珪処理後のスラグ(脱珪スラグ)の塩基度は、比較例においては(3)式によって計算し、本発明例においては(4)式によって計算した。   The basicity of the slag after desiliconization (desiliconized slag) was calculated by the formula (3) in the comparative example and by the formula (4) in the example of the present invention.

Bc,Si1(n)=[WS,P1(n-1)×α1×Bc,P1(n-1)/{Bc,P1(n-1)+1}+WSL,Si1(n)×β1]/
[WS,P1(n-1)×α1/{Bc,P1(n-1)+1}+WSL,Si1(n)×γ1
+(XSi1(n)/100)×WHM1(n)×60/28]…(3)
Bm,Si1(n)=(%CaO)m,Si1(n)/(%SiO2)m,Si1(n)…(4)
但し、(3)式、(4)式において、各記号は以下のとおりである。
B c, Si1 (n) = [W S, P1 (n-1) × α 1 × B c, P1 (n-1) / {B c, P1 (n-1) +1} + W SL, Si1 (n) × β 1 ] /
[W S, P1 (n-1) × α 1 / {B c, P1 (n-1) +1} + W SL, Si1 (n) × γ 1
+ (X Si1 (n) / 100) × W HM1 (n) × 60/28 ]… (3)
B m, Si1 (n) = (% CaO) m, Si1 (n) / (% SiO 2 ) m, Si1 (n)… (4)
However, in the expressions (3) and (4), each symbol is as follows.

Bc,Si1(n):nチャージ目の予備処理の脱珪処理終了時のスラグの計算塩基度
Bc,P1(n-1):n−1チャージ目の予備処理の脱燐処理終了時のスラグの計算塩基度
WS,P1(n-1):n−1チャージ目の予備処理の脱燐処理終了時の計算スラグ質量(t)
WSL,Si1(n):nチャージ目の予備処理の脱珪処理工程における脱炭スラグの添加量(t)
XSi1(n):nチャージ目の予備処理の脱珪処理前の溶銑中の珪素濃度(質量%)
WHM1(n):nチャージ目の予備処理の脱珪処理前の溶銑質量(t)
Bm,Si1(n):nチャージ目の予備処理の脱珪処理終了後のスラグのLIBS法によるスラグ塩基度の測定値
(%CaO)m,Si1(n):nチャージ目の予備処理の脱珪処理終了後のスラグのLIBS法で測定されたCaO濃度(質量%)
(%SiO2)m,Si1(n):nチャージ目の予備処理の脱珪処理終了後のスラグのLIBS法で測定されたSiO2濃度(質量%)
α1:脱燐処理後のスラグ中のCaO及びSiO2の質量比率の平均値の和
β1:脱珪処理及び脱燐処理中に添加する脱炭スラグ中のCaOの質量比率の平均値
γ1:脱珪処理及び脱燐処理中に添加する脱炭スラグ中のSiO2の質量比率の平均値
尚、本実施例ではα1=0.6、β1=0.4、γ1=0.1とした。また、Bc,P1(n-1)及びWS,P1(n-1)の算出方法については後述するが、1チャージ目の予備処理においては、Bc,P1(0)は0(ゼロ)でない定数とし、WS,P1(0)=0とした。
B c, Si1 (n): Calculated basicity of slag at the end of desiliconization in the pretreatment of the nth charge
B c, P1 (n-1): Calculated basicity of the slag at the end of the dephosphorization treatment of the n-1th charge pretreatment
W S, P1 (n-1): Calculated slag mass (t) at the end of dephosphorization in the pretreatment of the n-1th charge
W SL, Si1 (n): Addition amount of decarburizing slag in the desiliconization process of the pretreatment of the nth charge (t)
X Si1 (n): Silicon concentration (% by mass) in the hot metal before desiliconization in the pretreatment of the nth charge
W HM1 (n): Hot metal mass (t) before desiliconization in the pretreatment of the nth charge
B m, Si1 (n): Measured value of slag basicity by LIBS method of slag after completion of desiliconization of pretreatment of nth charge
(% CaO) m, Si1 (n): CaO concentration (mass%) measured by the LIBS method of the slag after the completion of the desiliconization treatment in the pretreatment of the nth charge
(% SiO 2 ) m, Si1 (n): SiO 2 concentration (mass%) measured by the LIBS method of the slag after the completion of the siliconization treatment of the pretreatment of the nth charge
α 1 : Sum of average values of mass ratio of CaO and SiO 2 in slag after dephosphorization treatment β 1 : Average value of mass ratio of CaO in decarburized slag added during desiliconization treatment and dephosphorization treatment γ 1 : Average value of mass ratio of SiO 2 in decarburization slag added during desiliconization treatment and dephosphorization treatment. In this example, α 1 = 0.6, β 1 = 0.4, γ 1 = 0 It was set to 1. Further, the calculation method of B c, P1 (n-1) and W S, P1 (n-1) will be described later, but in the first charge pretreatment, B c, P1 (0) is 0 (zero). ) Is not a constant and W S, P1 (0) = 0.

脱珪処理終了時のスラグ量は、比較例においては(5)式を用いて計算し、本発明例においては(6)式を用いて計算した。   The slag amount at the end of the desiliconization treatment was calculated using the equation (5) in the comparative example, and was calculated using the equation (6) in the example of the present invention.

WS,Si1(n)={WS,P1(n-1)×α1+WSL,Si1(n)×(β11)+XSi1(n)/
100×WHM1(n)×60/28}/δ1…(5)
WS,Si1(n)={WS,P1(n-1)×α1+WSL,Si1(n)×(β11)+XSi1(n)/100×WHM1(n)×60/28}/
{((%CaO)m,Si1(n)+(%SiO2)m,Si1(n))/100}…(6)
但し、(5)式、(6)式において、各記号は以下のとおりである。
W S, Si1 (n) = (W S, P1 (n-1) × α 1 + W SL, Si1 (n) × (β 1 + γ 1 ) + X Si1 (n) /
100 × W HM1 (n) × 60/28 } / δ 1 … (5)
W S, Si1 (n) = (W S, P1 (n-1) × α 1 + W SL, Si1 (n) × (β 1 + γ 1 ) + X Si1 (n) / 100 × W HM1 (n ) × 60/28} /
{((% CaO) m, Si1 (n) + (% SiO 2 ) m, Si1 (n)) / 100}… (6)
However, in the expressions (5) and (6), each symbol is as follows.

WS,Si1(n):nチャージ目の予備処理の脱珪処理終了時の計算スラグ質量(t)
δ1:脱珪処理後のスラグ中のCaO及びSiO2の質量比率の平均値の和
上記以外の(3)式及び(4)式で説明した記号は、上記説明のとおりである。尚、本実施例では、δ1=0.5とした。
W S, Si1 (n): Calculated slag mass (t) at the end of desiliconization in the pretreatment of the nth charge
δ 1 : Sum of average values of mass ratio of CaO and SiO 2 in slag after desiliconization The symbols explained in the equations (3) and (4) other than the above are as described above. In this example, δ 1 = 0.5.

上記(3)式〜(6)式の計算式は、脱珪処理後の溶銑中の珪素含有量がほぼ0(ゼロ)であるような操業条件を前提とするものであるが、所定の溶銑中の珪素含有量を残留させるような操業においては、各式中のXSi1(n)として、脱珪処理前の溶銑中の珪素濃度の代わりに、脱珪処理前後での溶銑中の珪素濃度変化の測定値或いは推定値を用いればよい。 The above formulas (3) to (6) are premised on operating conditions such that the silicon content in the hot metal after desiliconization is almost 0 (zero). In the operation that leaves the silicon content in the hot metal as X Si1 (n) in each formula, instead of the silicon concentration in the hot metal before desiliconization, the silicon concentration in the hot metal before and after desiliconization is used. The measured value or estimated value of the change may be used.

中間排滓工程では、脱珪処理後の計算スラグ質量に対する排滓量が目標値の50質量%以上となるように、排滓されるスラグを収容するスラグ収容容器を積載するための移動台車に設置したスラグ収容容器の秤量器による秤量値を確認しつつ行った。   In the intermediate slag process, the moving trolley for loading the slag storage container that stores the slag to be discharged is used so that the amount of slag to the calculated slag mass after desiliconization is 50% by mass or more of the target value. The measurement was performed while confirming the weighed value of the installed slag container by the scale.

ここで、中間排滓では、大きな排滓速度を得ようとしたり、脱珪スラグのフォーミングが低位な場合に炉内のスラグ残留量を低減しようとしたりして、転炉型精錬炉の傾動角度を大きくすると、脱珪スラグとともにスラグ中に混入する溶銑が炉口から或る程度排出される。この場合、溶銑の排出量は必ずしも一定ではない。しかし、多くの場合に、脱珪スラグ中に混入する溶銑の質量比率は、脱燐処理後のスラグ(脱燐スラグ)に混入する場合に比べて比較的低位で且つ安定したレベルである。したがって、排出された脱珪スラグの試料から求めた銑鉄の質量比率などを代表値として用い、排出物の秤量値に基づいて、排出した脱珪スラグの質量を算出しても、多くの場合には問題がない。そこで、本実施例では、中間排滓における排出物の秤量値の0.9倍を脱珪処理後に排滓されたスラグ質量(=WO,Si1(n))として算出した。 Here, in the middle slag, the tilting angle of the converter-type smelting furnace is increased by trying to obtain a large slag speed or by reducing the residual amount of slag in the furnace when the formation of desiliconization slag is low. When the value is increased, the hot metal mixed in the slag together with the desiliconized slag is discharged to some extent from the furnace port. In this case, the amount of hot metal discharged is not always constant. However, in many cases, the mass ratio of the hot metal mixed in the desiliconization slag is relatively low and at a stable level as compared with the case of mixing in the slag after dephosphorization treatment (dephosphorization slag). Therefore, using the mass ratio of pig iron obtained from the discharged desiliconized slag sample as a representative value and calculating the mass of the discharged desiliconized slag based on the measured value of the discharged materials, in many cases Is no problem. Therefore, in this example, 0.9 times the weighed value of the discharged matter in the intermediate discharged matter was calculated as the slag mass (= W O, Si1 (n)) discharged after the desiliconization treatment.

脱燐処理工程では、CaO系媒溶剤として生石灰と脱炭スラグとを使用し、そのうち、生石灰の添加量をいずれのチャージでも所定量(=2トン)とし、脱燐処理後のスラグの計算塩基度が目標値の2.00以上となるように、脱炭スラグの使用量を調整した。脱炭スラグを使用しなくても計算塩基度が目標値の2.00以上となる場合には、脱炭スラグを用いずに脱燐処理を行った。気体酸素(気酸)の使用量は、いずれのチャージにおいても所定量(2600Nm3)とした。 In the dephosphorization treatment step, quicklime and decarburized slag are used as the CaO-based medium solvent, of which the addition amount of quicklime is set to a predetermined amount (= 2 ton) for any charge, and the calculated base of the slag after the dephosphorization treatment is used. The amount of decarburized slag used was adjusted so that the degree became 2.00 or more of the target value. If the calculated basicity was 2.00 or more of the target value without using decarburizing slag, dephosphorization treatment was performed without using decarburizing slag. The amount of gaseous oxygen (gaseous acid) used was set to a predetermined amount (2600 Nm 3 ) in any charge.

脱燐処理後のスラグ(脱燐スラグ)の計算塩基度は、比較例においては(7)式を用いて計算し、本発明例においては(8)式を用いて計算した。   The calculated basicity of the slag after the dephosphorization treatment (dephosphorized slag) was calculated using the formula (7) in the comparative example and the formula (8) in the example of the present invention.

Bc,P1(n)=[{WS,Si1(n)-WO,Si1(n)}×δ1×Bc,Si1(n)/{Bc,Si1(n)+1}+WSL,P1(n)×β1+
WCaO,P1(n)]/[{WS,Si1(n)-WO,Si1(n)}×δ1/{Bc,Si1(n)+1}+WSL,P1(n)×γ1]…(7)
Bc,P1(n)=[{WS,Si1(n)-WO,Si1(n)}×(%CaO)m,Si1(n)/100+WSL,P1(n)×β1+WCaO,P1(n)]/
[{WS,Si1(n)-WO,Si1(n)}×(%SiO2)m,Si1(n)/100+WSL,P1(n)×γ1]…(8)
但し、(7)式、(8)式において、各記号は以下のとおりである。
B c, P1 (n) = [{W S, Si1 (n) -W O, Si1 (n)} × δ 1 × B c, Si1 (n) / {B c, Si1 (n) +1} + W SL, P1 (n) × β 1 +
W CaO, P1 (n)] / [{W S, Si1 (n) -W O, Si1 (n)} × δ 1 / {B c, Si1 (n) +1} + W SL, P1 (n) × γ 1 ] ... (7)
B c, P1 (n) = [{W S, Si1 (n) -W O, Si1 (n)} × (% CaO) m, Si1 (n) / 100 + W SL, P1 (n) × β 1 + W CaO, P1 (n)] /
[{W S, Si1 (n) -W O, Si1 (n)} × (% SiO 2 ) m, Si1 (n) / 100 + W SL, P1 (n) × γ 1 ]… (8)
However, in the expressions (7) and (8), each symbol is as follows.

Bc,P1(n):nチャージ目の予備処理の脱燐処理後のスラグの計算塩基度
WO,Si1(n):nチャージ目の予備処理の脱珪処理後に排滓されるスラグ質量(t)
WSL,P1(n):nチャージの予備処理の脱燐処理工程における脱炭スラグの添加量(t)
WCaO,P1(n):nチャージ目の予備処理の脱燐処理工程における生石灰の添加量(t)
上記以外の(3)式〜(6)式で説明した記号は、上記説明のとおりである。
B c, P1 (n): Calculated basicity of slag after dephosphorization in the pretreatment of the nth charge
W O, Si1 (n): Mass of slag (t) discharged after desiliconization in the pretreatment of the nth charge
W SL, P1 (n): Addition amount (t) of decarburizing slag in the dephosphorization process of n-charge pretreatment
W CaO, P1 (n): Amount of quicklime added (t) in the dephosphorization process of the pretreatment of the nth charge
The symbols explained in the expressions (3) to (6) other than the above are as described above.

脱燐処理終了時の計算スラグ質量は、比較例においては(9)式を用いて計算し、本発明例においては(10)式を用いて計算した。   The calculated slag mass at the end of the dephosphorization treatment was calculated using formula (9) in the comparative example and formula (10) in the present invention example.

WS,P1(n)=[{WS,Si1(n)-WO,Si1(n)}×δ1+WSL,P1(n)×(β11)+WCaO,P1(n)]/α1…(9)
WS,P1(n)=[{WS,Si1(n)-WO,Si1(n)}×{(%CaO)m,Si1(n)+(%SiO2)m,Si1(n)}/100+
WSL,P1(n)×(β11)+WCaO,P1(n)]/α1…(10)
但し、(9)式、(10)式において、WS,P1(n)は、nチャージ目の予備処理の脱燐処理終了時の計算スラグ質量(t)である。それ以外の(3)式〜(8)式で説明した記号は、上記説明のとおりである。
W S, P1 (n) = [{W S, Si1 (n) -W O, Si1 (n)} × δ 1 + W SL, P1 (n) × (β 1 + γ 1 ) + W CaO, P1 (n)] / α 1 … (9)
W S, P1 (n) = [{W S, Si1 (n) -W O, Si1 (n)} × {(% CaO) m, Si1 (n) + (% SiO 2 ) m, Si1 (n) } / 100 +
W SL, P1 (n) × (β 1 + γ 1 ) + W CaO, P1 (n)] / α 1 … (10)
However, in the equations (9) and (10), W S, P1 (n) is the calculated slag mass (t) at the end of the dephosphorization treatment in the pretreatment of the nth charge. The other symbols described in the expressions (3) to (8) are as described above.

脱燐処理後の溶銑を出湯した後、脱燐スラグを排滓せずに、全量を炉内に残留させたまま次のチャージに持ち越した。   After tapping the hot metal after the dephosphorization treatment, the dephosphorization slag was not discharged and the entire amount was left in the furnace and carried over to the next charge.

比較例及び本発明例における精錬結果を表1に示す。尚、表1において、各スラグの塩基度のうちで、塩基度(LIBS値)として示す値はLIBS法による測定値であり、一方、塩基度(試料分析値)として示す値は、採取した少量のスラグ試料を粉砕、酸溶解して作製した水溶液試料をICP発光分光分析法によって分析して得たスラグ成分の分析値に基づくものである。塩基度(試料分析値)は、分析に長時間を要するために、この分析結果を当該チャージ或いは次のチャージの精錬条件を調整するためのデータとして用いることは困難である。   Table 1 shows the refining results in the comparative example and the present invention example. In Table 1, among the basicities of each slag, the value shown as basicity (LIBS value) is a value measured by the LIBS method, while the value shown as basicity (sample analysis value) is a small amount collected. This is based on the analysis value of the slag component obtained by crushing the slag sample of No. 1 and dissolving it with an acid to analyze an aqueous solution sample by ICP emission spectroscopy. Since the basicity (sample analysis value) requires a long time for analysis, it is difficult to use this analysis result as data for adjusting refining conditions of the charge or the next charge.

比較例においては、脱珪処理後のスラグの塩基度の推定精度が低く、スラグ塩基度が目標値の1.20から大きくばらついていた。また、脱珪スラグ量の推定誤差も大きいと考えられ、脱燐処理後のスラグの塩基度(試料分析値)が目標値の2.00から大きくばらつく結果となった。その結果、脱燐処理後の燐濃度が目標の0.030質量%より高くなるチャージが発生した。   In the comparative example, the accuracy of estimating the basicity of the slag after the desiliconization treatment was low, and the slag basicity was largely deviated from the target value of 1.20. In addition, it is considered that the estimation error of the amount of desiliconized slag is also large, and the basicity (sample analysis value) of the slag after the dephosphorization treatment greatly varies from the target value of 2.00. As a result, a charge was generated in which the phosphorus concentration after the dephosphorization treatment was higher than the target 0.030 mass%.

これに対して、本発明例では、脱珪スラグの塩基度をLIBS法で測定することで、精度良く把握することができた。具体的には、中間排滓時の脱珪スラグの塩基度の測定値(Bm,Si1(n))は、標準偏差0.03程度の誤差で、実際の塩基度である塩基度(試料分析値)と一致していた。また、脱珪スラグの塩基度(試料分析値)の目標値(1.20)からのばらつきも表1の比較例の場合よりも大幅に低減していた。これは、炉内に残留させた前チャージの脱燐スラグの組成及び量の推定精度が向上したことによると考えられる。更に、脱珪処理後のスラグの(質量%CaO)及び(質量%SiO2)の定量分析も可能あることから、脱珪スラグの残留量の推定精度も向上したと考えられる。 On the other hand, in the example of the present invention, the basicity of the desiliconized slag was accurately measured by measuring the basicity by the LIBS method. Specifically, the measured value of the basicity (B m, Si1 (n)) of desiliconized slag at the time of intermediate slag has an error of standard deviation of about 0.03, and the basicity that is the actual basicity (sample Analysis value). Further, the variation of the basicity (sample analysis value) of the desiliconized slag from the target value (1.20) was also significantly reduced as compared with the comparative example in Table 1. It is considered that this is because the accuracy of estimating the composition and amount of the precharged dephosphorization slag remaining in the furnace was improved. Furthermore, since the (mass% CaO) and (mass% SiO 2 ) of the slag after the desiliconization treatment can be quantitatively analyzed, it is considered that the estimation accuracy of the residual amount of the desiliconized slag is also improved.

これらの結果、脱燐処理後のスラグの塩基度が目標値に近い値で制御でき、これにより、脱燐処理後の溶銑の燐濃度は全チャージともに目標値の0.030質量%以下に低減することができた。   As a result, the basicity of the slag after the dephosphorization treatment can be controlled to a value close to the target value, which reduces the phosphorus concentration of the hot metal after the dephosphorization treatment to 0.030 mass% or less of the target value for all charges. We were able to.

比較例及び本発明例による予備処理後の溶銑を転炉に装入して脱炭処理し、溶鋼を溶製した。その結果、本発明を適用して予備処理を行った溶銑は、従来法を適用して予備処理を行った溶銑に比べて脱炭処理前の溶銑の燐濃度が低減したことから、転炉におけるCaO系媒溶剤の使用量の削減及びマンガン歩留りの向上が可能となり、マンガン系合金鉄の使用量を低減できたことから、製造コストの低減が可能となった。   The hot metal after the pretreatment according to the comparative example and the example of the present invention was charged into a converter and decarburized to produce molten steel. As a result, the hot metal subjected to the pretreatment by applying the present invention has a reduced phosphorus concentration in the hot metal before decarburization treatment as compared with the hot metal subjected to the pretreatment by applying the conventional method. Since the amount of CaO-based solvent used can be reduced and the manganese yield can be improved, and the amount of manganese ferroalloy used can be reduced, the manufacturing cost can be reduced.

尚、上記(3)〜(10)式は、[試験1]で用いた副原料などの操業条件に対応する計算式であるが、他の操業条件においても、物質収支を考慮してこれらの計算式を変更することによって、同様に算出することが可能である。   The above formulas (3) to (10) are calculation formulas corresponding to the operating conditions such as the auxiliary raw materials used in [Test 1]. However, even under other operating conditions, the material balance is taken into consideration. The same calculation can be performed by changing the calculation formula.

[試験2]
容量330トンの1基の転炉型精錬炉を用い、脱燐処理(一次吹錬)、中間排滓、脱炭処理(二次吹錬)をこの順に行って、溶銑から溶鋼を溶製する際に、図2に示した構成の装置により、LIBS法を用いて中間排滓時にスラグ組成を測定し、スラグ成分分析結果に基づいて、その後の脱炭処理におけるCaO系媒溶剤の添加量を算出し、算出された量のCaO系媒溶剤を添加して行う溶鉄の精錬方法(本発明例)と、脱燐処理後にスラグ組成を測定しない従来法による溶鉄の精錬方法(比較例)とを、それぞれ5チャージずつ連続して実施した。一次吹錬の脱燐処理では、脱珪処理も同時に行われる。
[Test 2]
Using one converter-type refining furnace with a capacity of 330 tons, dephosphorization treatment (primary smelting), intermediate slag, decarburization treatment (secondary smelting) are carried out in this order to produce molten steel from molten pig iron. At that time, the apparatus having the configuration shown in FIG. 2 was used to measure the slag composition at the time of intermediate slag using the LIBS method, and based on the slag component analysis results, the addition amount of the CaO-based solvent in the subsequent decarburization treatment was determined. Calculated, a refining method of molten iron performed by adding a calculated amount of CaO-based solvent (invention example), and a refining method of molten iron by a conventional method that does not measure the slag composition after dephosphorization treatment (comparative example) , 5 charges each were continuously carried out. In the dephosphorization process of primary blowing, the desiliconization process is also performed at the same time.

脱炭処理終了時の溶鋼中燐濃度の目標値は、いずれも0.020質量%とした。本発明例及び比較例とも、前チャージの脱炭処理後のスラグを排滓せずに炉内に残留させたまま、次のチャージで使用する溶銑を装入し、中間排滓を挟んで脱燐処理と脱炭処理とを行う溶鉄の精錬方法を繰り返して実施した。また、脱燐処理時に鉄源として鉄屑を配合した。   The target values of the phosphorus concentration in the molten steel at the end of the decarburization treatment were both 0.020 mass%. In each of the present invention example and the comparative example, the slag after the decarburizing treatment of the previous charge was not left in the furnace but left in the furnace, the hot metal used for the next charge was charged, and the intermediate slag was sandwiched to remove the slag. The molten iron refining method of performing phosphorus treatment and decarburization treatment was repeatedly performed. Further, iron scrap was added as an iron source during the dephosphorization treatment.

脱燐処理工程では、生石灰または珪石の添加量を調整し、スラグの塩基度((質量%CaO)/(質量%SiO2))の計算値(計算塩基度)が目標値の1.60となるように調整した。生石灰及び珪石を使用せずに計算塩基度が目標値の1.60となる場合は、生石灰及び珪石を用いずに脱燐処理を行った。気体酸素(気酸)の使用量は溶銑中の珪素濃度に応じて供給した。 In the dephosphorization treatment step, the amount of quicklime or silica stone added was adjusted so that the calculated value (calculated basicity) of the basicity of slag ((mass% CaO) / (mass% SiO 2 )) was 1.60, which is the target value. I adjusted it so that. When the calculated basicity was 1.60 which is the target value without using quicklime and silica stone, dephosphorization treatment was performed without using quicklime and silica stone. The amount of gaseous oxygen (gaseous acid) used was supplied according to the silicon concentration in the hot metal.

脱燐処理後のスラグの塩基度は、比較例においては(11)式によって計算し、本発明例においては(12)式によって計算した。   The basicity of the slag after the dephosphorization treatment was calculated by the formula (11) in the comparative example and by the formula (12) in the example of the present invention.

Bc,P2(n)=[WS,C2(n-1)×ε2×Bc,C2(n-1)/{Bc,C2(n-1)+1}+WCaO,P2(n)]/
[WS,C2(n-1)×ε2/{Bc,C2(n-1)+1}+{XSi2(n)/100}×WHM2(n)×60/28
+WSiO2,P2(n)]…(11)
Bm,P2(n)=(%CaO)m,P2(n)/(%SiO2)m,P2(n)…(12)
但し、(11)式、(12)式において、各記号は以下のとおりである。
B c, P2 (n) = [W S, C2 (n-1) × ε 2 × B c, C2 (n-1) / {B c, C2 (n-1) +1} + W CaO, P2 (n)] /
[W S, C2 (n-1) × ε 2 / {B c, C2 (n-1) +1} + {X Si2 (n) / 100} × W HM2 (n) × 60/28
+ W SiO2, P2 (n)]… (11)
B m, P2 (n) = (% CaO) m, P2 (n) / (% SiO 2 ) m, P2 (n)… (12)
However, in the expressions (11) and (12), each symbol is as follows.

Bc,P2(n):nチャージ目の精錬の脱燐処理終了時のスラグの計算塩基度
Bc,C2(n-1):n−1チャージ目の精錬の脱炭処理終了時のスラグの計算塩基度
WS,C2(n-1):n−1チャージ目の精錬の脱炭処理終了時の計算スラグ質量(t)
WCaO,P2(n):nチャージ目の精錬の脱燐処理工程における生石灰の添加量(t)
WSiO2,P2(n):nチャージ目の精錬の脱燐処理工程における珪石の添加量(t)
XSi2(n):nチャージ目の精錬の脱燐処理前の溶銑中の珪素濃度(質量%)
WHM2(n):nチャージ目の精錬の脱燐処理前の溶銑量(t)
Bm,P2(n):nチャージ目の精錬の脱燐処理終了後のスラグのLIBS法によるスラグ塩基度の測定値
(%CaO)m,P2(n):nチャージ目の精錬の脱燐処理後のスラグのLIBS法で測定されたCaO濃度(質量%)
(%SiO2)m,P2(n):nチャージ目の精錬の脱燐処理後のスラグのLIBS法で測定されたSiO2濃度(質量%)
ε2:脱炭処理後のスラグ中のCaO及びSiO2の質量比率の平均値の和
尚、本実施例ではε2=0.5とした。また、Bc,C2(n-1)及びWS,C2(n-1)の算出方法については後述するが、1チャージ目の精錬においては、Bc,C2(0)は0(ゼロ)でない定数とし、WS,C2(0)=0とした。
B c, P2 (n): Calculated basicity of slag at the end of dephosphorization treatment for refining nth charge
B c, C2 (n-1): Calculated basicity of slag at the end of decarburization in the n-1th charge refining
W S, C2 (n-1): Calculated slag mass (t) at the end of decarburization in the n-1th charge refining
W CaO, P2 (n): Addition amount of quicklime (t) in the dephosphorization process of refining of nth charge
W SiO2, P2 (n): Addition amount of silica stone (t) in the dephosphorization process of refining of nth charge
X Si2 (n): Silicon concentration (mass%) in the hot metal before dephosphorization treatment for refining the nth charge
W HM2 (n): Hot metal amount (t) before dephosphorization treatment for n-charge refining
B m, P2 (n): Measured value of slag basicity by LIBS method of slag after completion of dephosphorization treatment for refining of nth charge
(% CaO) m, P2 (n): CaO concentration (mass%) measured by the LIBS method of the slag after dephosphorization treatment for refining the nth charge
(% SiO 2 ) m, P2 (n): SiO 2 concentration (mass%) measured by the LIBS method of the slag after dephosphorization treatment for refining the nth charge
ε 2 : Sum of average values of mass ratios of CaO and SiO 2 in the slag after decarburization treatment In this example, ε 2 = 0.5. The calculation method of B c, C2 (n-1) and W S, C2 (n-1) will be described later, but in the refining of the first charge, B c, C2 (0) is 0 (zero). And W S, C2 (0) = 0.

脱燐処理終了時のスラグ質量は、従来法においては(13)式を用いて計算し、本発明例においては(14)式を用いて計算した。   The slag mass at the end of the dephosphorization treatment was calculated using the equation (13) in the conventional method, and was calculated using the equation (14) in the example of the present invention.

WS,P2(n)=[WS,C2(n-1)×ε2+{XSi2(n)/100}×WHM2(n)×60/28+WCaO,P2(n)+
WSiO2,P2(n)]/α2…(13)
WS,P2(n)=[WS,C2(n-1)×ε2+{XSi2(n)/100}×WHM2(n)×60/28+WCaO,P2(n)+WSiO2,P2(n)]/
[{(%CaO)m,P2(n)+(%SiO2)m,P2(n)}/100] …(14)
但し、(13)式、(14)式において、各記号は以下のとおりである。
W S, P2 (n) = [W S, C2 (n-1) × ε 2 + {X Si2 (n) / 100} × W HM2 (n) × 60/28 + W CaO, P2 (n) +
W SiO2, P2 (n)] / α 2 … (13)
W S, P2 (n) = [W S, C2 (n-1) × ε 2 + {X Si2 (n) / 100} × W HM2 (n) × 60/28 + W CaO, P2 (n) + W SiO2, P2 (n)] /
[{(% CaO) m, P2 (n) + (% SiO 2 ) m, P2 (n)} / 100] (14)
However, in the expressions (13) and (14), each symbol is as follows.

WS,P2(n):nチャージ目の精錬の脱燐処理終了時の計算スラグ質量(t)
α2:脱燐処理後のスラグ中のCaO及びSiO2の質量比率の平均値の和
上記以外の(11)式及び(12)式で説明した記号は、上記説明のとおりである。尚、本実施例ではα2=0.6とした。
W S, P2 (n): Calculated slag mass (t) at the end of dephosphorization treatment for n-th charge refining
α 2 : Sum of average values of mass ratio of CaO and SiO 2 in slag after dephosphorization treatment The symbols explained in the equations (11) and (12) other than the above are as described above. In this example, α 2 = 0.6.

中間排滓工程では、脱燐処理後の計算スラグ質量に対する排滓量が目標値の50質量%以上となるように、排滓されるスラグを収容するスラグ収容容器を積載するための移動台車に設置したスラグ収容容器の秤量器による秤量値を確認しつつ行った。   In the intermediate slag process, the moving trolley for loading the slag storage container that stores the slag to be discharged is used so that the amount of slag to the calculated slag mass after dephosphorization treatment is 50% by mass or more of the target value. The measurement was performed while confirming the weighed value of the installed slag container by the scale.

ここで、脱燐処理後の中間排滓では、前述した脱珪処理後の中間排滓の場合よりも、スラグ中に混入する溶銑の質量比率が高く、ばらつきも大きくなる。そこで、本実施例では、排出された脱燐スラグから採取した複数の試料における銑鉄の質量比率の平均値を、脱燐スラグ中に混入する溶銑の質量比率として定め、この値に基づいて中間排滓における排出物中の脱燐スラグの質量比率を設定した。具体的には、中間排滓における排出物の秤量値の0.8倍を排滓された脱燐スラグの質量(=WO,P2(n))として算出した。 Here, in the intermediate slag after the dephosphorization treatment, the mass ratio of the hot metal mixed in the slag is higher and the variation is larger than in the case of the intermediate slag after the desiliconization treatment described above. Therefore, in this example, the average value of the mass ratio of the pig iron in the plurality of samples collected from the discharged dephosphorization slag is determined as the mass ratio of the hot metal mixed in the dephosphorization slag, and the intermediate discharge based on this value. The mass ratio of dephosphorized slag in the slag discharge was set. Specifically, 0.8 times the weighed value of the discharged matter in the intermediate discharged matter was calculated as the mass of the discharged dephosphorized slag (= W O, P2 (n)).

脱炭処理工程では、脱炭処理後のスラグの塩基度の計算値(計算塩基度)が、脱炭処理終了時の目標溶鋼温度に応じて設定した目標値となるように生石灰の使用量を調整した。脱炭処理後のスラグについては全量炉内に残留させ、次のチャージで使用する溶銑を装入して次のチャージの精錬を行った。   In the decarburization process, the amount of quicklime used is adjusted so that the calculated value of the basicity of the slag after decarburization (calculated basicity) becomes the target value set according to the target molten steel temperature at the end of the decarburization process. It was adjusted. All the decarburized slag was left in the furnace, and the hot metal used in the next charge was charged to refine the next charge.

脱炭処理後のスラグ(脱炭スラグ)の計算塩基度は、比較例においては(15)式を用いて計算し、本発明例においては(16)式を用いて計算した。   The calculated basicity of the decarburized slag (decarburized slag) was calculated by using the equation (15) in the comparative example, and by using the equation (16) in the example of the present invention.

Bc,C2(n)=[{WS,P2(n)-WO,P2(n)}×α2×Bc,P2(n)/{Bc,P2(n)+1}+WCaO,C2(n)]/
[{WS,P2(n)-WO,P2(n)}×α2/{Bc,P2(n)+1}]…(15)
Bc,C2(n)=[{WS,P2(n)-WO,P2(n)}×{(%CaO)m,P2(n)/100}+WCaO,C2(n)]/
[{WS,P2(n)-WO,P2(n)}×(%SiO2)m,P2(n)/100]…(16)
但し、(15)式、(16)式において、各記号は以下のとおりである。
B c, C2 (n) = [{W S, P2 (n) -W O, P2 (n)} × α 2 × B c, P2 (n) / {B c, P2 (n) +1} + W CaO, C2 (n)] /
[{W S, P2 (n) -W O, P2 (n)} × α 2 / {B c, P2 (n) +1}]… (15)
B c, C2 (n) = [{W S, P2 (n) -W O, P2 (n)} × {(% CaO) m, P2 (n) / 100} + W CaO, C2 (n)] /
[{W S, P2 (n) -W O, P2 (n)} × (% SiO 2 ) m, P2 (n) / 100]… (16)
However, in the expressions (15) and (16), each symbol is as follows.

Bc,C2(n):nチャージ目の精錬の脱炭処理後のスラグの計算塩基度
WO,P2(n):nチャージ目の精錬の脱燐処理後に排滓されるスラグ質量(t)
WCaO,C2(n):nチャージ目の精錬の脱炭処理工程おける生石灰の添加量(t)
上記以外の(11)式〜(14)式で説明した記号は、上記説明のとおりである。
B c, C2 (n): Calculated basicity of slag after decarburization in refining of nth charge
W O, P2 (n): Mass of slag (t) discharged after dephosphorization treatment for refining nth charge
W CaO, C2 (n): Amount of quicklime added in decarburization process of refining of nth charge (t)
The symbols explained in the equations (11) to (14) other than the above are as described above.

脱炭処理終了時のスラグの計算質量は、比較例においては(17)式を用いて計算し、本発明例においては(18)式を用いて計算した。   The calculated mass of the slag at the end of the decarburization treatment was calculated using the formula (17) in the comparative example and the formula (18) in the example of the present invention.

WS,C2(n)=[{WS,P2(n)-WO,P2(n)}×α2+WCaO,C2(n)]/ε2…(17)
WS,C2(n)=[{WS,P2(n)-WO,P2(n)}×{(%CaO)m,P2(n)+(%SiO2)m,P2(n)}/100
+WCaO,C2(n)]/ε2…(18)
但し、(17)式、(18)式において、WS,C2(n)は、nチャージ目の精錬の脱炭処理終了時の計算スラグ質量(t)である。それ以外の(11)式〜(16)式で説明した記号は、上記説明のとおりである。
W S, C2 (n) = [{W S, P2 (n) -W O, P2 (n)} × α 2 + W CaO, C2 (n)] / ε 2 … (17)
W S, C2 (n) = [{W S, P2 (n) -W O, P2 (n)} × {(% CaO) m, P2 (n) + (% SiO 2 ) m, P2 (n) } / 100
+ W CaO, C2 (n)] / ε 2 … (18)
However, in the equations (17) and (18), W S, C2 (n) is the calculated slag mass (t) at the end of the decarburizing treatment of the nth charge refining. The other symbols explained in the equations (11) to (16) are as described above.

脱炭処理後の溶鋼を出鋼した後、脱炭スラグを排滓せずに、全量を炉内に残留させたまま次のチャージに持ち越した。   After tapping the decarburized molten steel, the decarburized slag was not discharged and the entire amount was left in the furnace and carried over to the next charge.

比較例及び本発明例における精錬結果を表2に示す。尚、表2において、各スラグの塩基度のうちで、塩基度(LIBS値)として示す値はLIBS法による測定値で、塩基度(試料分析値)として示す値は、採取した少量のスラグ試料を粉砕、酸溶解して作製した水溶液試料をICP発光分光分析法によって分析して得たスラグ成分の分析値に基づくものである。   Table 2 shows the refining results in the comparative example and the present invention example. In Table 2, among the basicities of each slag, the value shown as basicity (LIBS value) is a value measured by the LIBS method, and the value shown as basicity (sample analysis value) is a small amount of collected slag sample. Is pulverized and dissolved in acid to prepare an aqueous solution sample, which is based on the analysis value of the slag component obtained by analyzing by ICP emission spectroscopy.

比較例においては、脱燐スラグの塩基度の推定精度が低く、塩基度(試料分析値)が目標値の1.60から大きくばらついていた。また、脱燐処理後のスラグ量の推定誤差も大きいと考えられ、脱炭処理後のスラグの塩基度(試料分析値)が目標値から大きくばらつく結果となった。   In the comparative example, the estimation accuracy of the basicity of the dephosphorization slag was low, and the basicity (sample analysis value) was greatly varied from the target value of 1.60. In addition, the estimation error of the amount of slag after dephosphorization is considered to be large, and the basicity (sample analysis value) of the slag after decarburization greatly varied from the target value.

即ち、脱燐処理後のスラグの塩基度(試料分析値)が計算塩基度つまり目標値の1.60より低い場合には、脱炭処理後のスラグの塩基度(試料分析値)が、目標の塩基度を下回る結果となり、その結果、脱炭処理終了後の溶鋼の燐濃度が目標の0.020質量%より高く、燐規格上限値を超えるチャージが発生した。一方、脱燐処理後のスラグの塩基度(試料分析値)が計算塩基度つまり目標値の1.60よりも高い場合には、脱炭処理におけるスラグの塩基度(試料分析値)が目標より高くなるが、スラグの滓化が悪化して流動性が低下し、脱炭スラグの燐分配比が低下する場合がある。そのために、精錬終了後の溶鋼の燐濃度が目標値の0.020質量%より高くなるおそれがある。   That is, when the basicity (sample analysis value) of the slag after dephosphorization treatment is lower than the calculated basicity, that is, the target value of 1.60, the basicity (sample analysis value) of the slag after decarburization treatment is the target value. As a result, the phosphorus concentration of the molten steel after completion of the decarburization treatment was higher than the target of 0.020 mass%, and a charge exceeding the phosphorus specification upper limit was generated. On the other hand, when the basicity (sample analysis value) of the slag after dephosphorization treatment is higher than the calculated basicity, that is, the target value of 1.60, the basicity of the slag in decarburization treatment (sample analysis value) is higher than the target value. Although it will be higher, the slag slag will deteriorate and the fluidity will decrease, and the phosphorus distribution ratio of the decarburized slag may decrease. Therefore, the phosphorus concentration of the molten steel after the refining may be higher than the target value of 0.020 mass%.

これに対して、本発明例では、脱燐処理終了時のスラグの(質量%CaO)及び(質量%SiO2)を定量分析することで、脱燐処理終了時のスラグの塩基度を精度良く把握することができた。具体的には、脱燐処理終了時のスラグ塩基度の測定値(Bm,P2(n))は、標準偏差0.03程度の誤差で塩基度(試料分析値)と一致していた。また、脱燐処理終了時のスラグ塩基度(試料分析値)の目標値(1.60)からのばらつきも表2の比較例の場合よりも大幅に低減していた。これは、炉内に残留させた前チャージの脱炭スラグの組成及び量の推定精度が向上したことによると考えられる。更に、脱燐処理後のスラグの(質量%CaO)及び(質量%SiO2)の定量分析も可能あることから、脱燐スラグの残留量の推定精度も向上したと考えられる。 On the other hand, in the example of the present invention, by quantitatively analyzing (mass% CaO) and (mass% SiO 2 ) of the slag at the end of the dephosphorization treatment, the basicity of the slag at the end of the dephosphorization treatment can be accurately measured. I was able to figure it out. Specifically, the measured value of slag basicity (B m, P2 (n)) at the end of the dephosphorization treatment was in agreement with the basicity (sample analysis value) with an error of about 0.03 standard deviation. Further, the variation from the target value (1.60) of the slag basicity (sample analysis value) at the end of the dephosphorization treatment was also significantly reduced as compared with the comparative example in Table 2. It is considered that this is because the estimation accuracy of the composition and amount of precharged decarburized slag left in the furnace was improved. Furthermore, since the (mass% CaO) and (mass% SiO 2 ) of the slag after the dephosphorization treatment can be quantitatively analyzed, it is considered that the estimation accuracy of the residual amount of the dephosphorization slag is also improved.

これらの結果、脱炭処理においても実際のスラグの塩基度を目標値に近い値で制御可能となり、これにより、脱炭処理後の溶鋼の燐濃度は全チャージにおいて目標の0.020質量%以下に低減することができた。   As a result, it is possible to control the basicity of the actual slag at a value close to the target value even in the decarburization treatment, and as a result, the phosphorus concentration of the molten steel after the decarburization treatment is 0.020 mass% or less of the target in all charges. Could be reduced to

比較例及び本発明例によって溶製した溶鋼を、更に二次精錬設備で脱酸するなどして成分及び温度を調整した後、連続鋳造して鋳片を製造し、この鋳片を通常の方法によって熱間圧延して鋼材製品を製造した。本発明例では、比較例に比べて脱炭処理前の溶銑の燐濃度が低減したことから、転炉におけるCaO系媒溶剤の使用量の削減及びマンガン歩留りの向上が可能となり、マンガン系合金鉄の使用量も低減できたことから、製造コストの低減が可能となった。   The molten steel produced by the comparative example and the example of the present invention, after adjusting the components and temperature by further deoxidizing in a secondary refining equipment, continuously cast to produce a slab, this slab is a usual method By hot rolling to produce a steel product. In the present invention example, the phosphorus concentration of the hot metal before decarburization treatment was reduced as compared with the comparative example, so that it was possible to reduce the amount of CaO-based medium solvent used in the converter and to improve the manganese yield. Since the usage amount of was also reduced, it was possible to reduce the manufacturing cost.

尚、上記(11)〜(18)式は、[試験2]で用いた副原料などの操業条件に対応する計算式であるが、他の操業条件においても、物質収支を考慮してこれらの計算式を変更することによって、同様に算出することが可能である。   The above formulas (11) to (18) are calculation formulas corresponding to the operating conditions such as the auxiliary raw materials used in [Test 2]. However, even under other operating conditions, the mass balance is taken into consideration. The same calculation can be performed by changing the calculation formula.

1 転炉型精錬炉
2 炉口
3 底吹き羽口
4 溶銑
5 スラグ
6 レーザ光発生器
7 集光レンズ
8 レーザ光
9 受光部
10 光ファイバ
11 分光・測光器
12 演算用計算機
13 撮像装置
14 スラグ収容容器
1 Converter-type refining furnace 2 Furnace mouth 3 Bottom blowing tuyere 4 Hot metal 5 Slag 6 Laser light generator 7 Condensing lens 8 Laser light 9 Light receiving part 10 Optical fiber 11 Spectrometer / photometer 12 Calculation computer 13 Imaging device 14 Slag Container

Claims (23)

転炉型精錬炉における溶鉄の精錬で生じたスラグを、該スラグの一部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に残留させた溶鉄または前記転炉型精錬炉に新たに装入した溶銑を精錬するに際し、
溶鉄の精錬で生じた前記スラグの成分を、該スラグから分析試料を採取することなく定量分析するにあたり、前記スラグと前記溶鉄とを含む分析対象物の表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の少なくともカルシウムを含む2種類以上の元素の発光強度を測定し、カルシウムの発光強度を利用してスラグに対応する発光か、溶鉄に対応する発光かを識別し、識別されたスラグに対応する発光の各元素の発光強度に基づいて前記スラグの成分を定量分析し、その成分分析結果に基づいて、スラグを残留させた前記転炉型精錬炉で行う、炉内に残留させた溶鉄の次工程の精錬または炉内に新たに装入した溶銑を用いた次のチャージの溶鉄の精錬における精錬前及び/または精錬中に添加する造滓剤の量を決定することを特徴とする、溶鉄の精錬方法。
Molten iron left in the converter-type refining furnace or slag generated in refining molten iron in the converter-type refining furnace while leaving part of the slag in the converter-type refining furnace When refining the hot metal newly charged into the furnace,
The components of the slag generated in the refining of molten iron, in quantitative analysis without collecting an analytical sample from the slag, the laser light is focused on the surface of the analysis target containing the slag and the molten iron , laser light The luminescence intensity of two or more elements containing at least calcium in the plasma generated by condensing the light is measured, and the luminescence intensity of calcium is used to identify whether the luminescence corresponds to slag or the molten iron. , Quantitative analysis of the components of the slag based on the emission intensity of each element of the luminescence corresponding to the identified slag, based on the component analysis results, performed in the converter-type refining furnace left slag, Determine the amount of smelting agent to be added before and / or during refining in the next step of refining the molten iron remaining in the furnace or refining the molten metal of the next charge using the hot metal newly charged in the furnace And wherein the door, molten iron method of refining.
前記スラグの成分の定量分析は、前記スラグの表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の少なくともカルシウム(Ca)及び珪素(Si)を含む2種類以上の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記スラグの塩基度を評価することを含むことを特徴とする、請求項1に記載の溶鉄の精錬方法。 In the quantitative analysis of the components of the slag, two or more elements containing at least calcium (Ca) and silicon (Si) in plasma generated by converging laser light on the surface of the slag are collected. 2. The method for refining molten iron according to claim 1, further comprising: measuring the luminescence intensity of the slag and evaluating the basicity of the slag based on the measured luminescence intensity and / or the luminescence intensity ratio. 前記スラグの成分の定量分析は、前記スラグの表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の少なくともカルシウム(Ca)及び珪素(Si)を含む2種類以上の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記スラグの組成を評価することを含むことを特徴とする、請求項1または請求項2に記載の溶鉄の精錬方法。 In the quantitative analysis of the components of the slag, two or more elements containing at least calcium (Ca) and silicon (Si) in plasma generated by converging laser light on the surface of the slag are collected. The refining of molten iron according to claim 1 or 2, further comprising: measuring the luminescence intensity of the slag and evaluating the composition of the slag based on the measured luminescence intensity and / or the luminescence intensity ratio. Method. 前記転炉型精錬炉内のスラグ、前記転炉型精錬炉から排出中のスラグまたは排出後のスラグ収容容器内のスラグの表面にレーザ光を集光させて、前記プラズマをスラグ表面に発生させることを特徴とする、請求項2または請求項3に記載の溶鉄の精錬方法。   The laser light is focused on the surface of the slag in the converter-type refining furnace, the slag being discharged from the converter-type refining furnace or the slag in the slag storage container after being discharged, and the plasma is generated on the slag surface. The method for refining molten iron according to claim 2 or 3, characterized in that. 前記溶鉄の精錬が1つの転炉型精錬炉を用いて複数の精錬工程を行う溶銑の予備処理であり、前記複数の精錬工程の間で、溶銑及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出して、溶銑に予備処理を施すにあたり、前記スラグの残部を排出する際に、前記スラグの成分を定量分析し、その成分分析結果に基づいて、次工程の精錬工程において添加する造滓剤の量を決定することを特徴とする、請求項1ないし請求項4のいずれか1項に記載の溶鉄の精錬方法。 The refining of the molten iron is a pretreatment of the hot metal in which a plurality of refining steps are performed by using one converter-type refining furnace, and a part of the hot metal and slag is partially converted into the converter-type refining furnace between the plurality of refining steps. The remaining part of the slag is discharged, and when the hot metal is subjected to the pretreatment, when the remaining part of the slag is discharged, the components of the slag are quantitatively analyzed, and based on the result of the component analysis, The method for refining molten iron according to any one of claims 1 to 4, wherein the amount of the slag-forming agent added in the refining step of the step is determined. 前記溶銑の予備処理が脱珪処理工程と脱燐処理工程とを含み、脱珪処理工程と脱燐処理工程との間で、溶銑及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出する際に、前記スラグの成分を定量分析し、その成分分析結果に基づいて、前記脱燐処理工程において添加する造滓剤の量を決定することを特徴とする、請求項5に記載の溶鉄の精錬方法。 The pretreatment of the hot metal includes a desiliconization treatment step and a dephosphorization treatment step, and between the desiliconization treatment step and the dephosphorization treatment step, a part of the molten pig iron and slag was left in the converter-type refining furnace. As it is, when discharging the remainder of the slag, quantitatively analyze the components of the slag, based on the result of the component analysis, to determine the amount of the slag forming agent to be added in the dephosphorization treatment step, The method for refining molten iron according to claim 5. 前記溶鉄の精錬が溶銑の予備処理であり、前記転炉型精錬炉における前チャージの溶銑の脱燐処理で生じたスラグの一部または全部を前記転炉型精錬炉に残留させたまま、次のチャージの溶銑を前記転炉型精錬炉に装入し、次のチャージの溶銑の予備処理を行うことを特徴とする、請求項1ないし請求項6のいずれか1項に記載の溶鉄の精錬方法。   The refining of the molten iron is a pretreatment of the hot metal, and a part or all of the slag generated in the dephosphorization treatment of the hot metal in the converter-type refining furnace is left in the converter-type refining furnace as follows. 7. Molten iron refining according to any one of claims 1 to 6, characterized in that the molten iron with a charge of 1 is charged into the converter-type refining furnace to perform a pretreatment of the molten iron with the next charge. Method. 1つの転炉型精錬炉を用い、転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して前記転炉型精錬炉内の溶銑を脱燐処理する脱燐処理工程と、前記転炉型精錬炉を傾動して、脱燐処理工程後の溶銑及び脱燐処理工程で生成したスラグの一部を前記転炉型精錬炉に残留させたまま、前記スラグの残部を排出する中間排滓工程と、前記転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して前記転炉型精錬炉に残留させた溶銑を脱炭処理して溶鋼にする溶鉄の脱炭処理工程と、脱炭処理工程後の溶鋼を前記転炉型精錬炉から出鋼する出鋼工程とを、この順に行って溶銑から溶鋼を溶製するにあたり、前記中間排滓工程での前記スラグの残部を排出する際に、前記スラグの成分を定量分析し、その成分分析結果に基づいて、前記脱炭処理工程において添加する造滓剤の量を決定することを特徴とする、請求項1ないし請求項4のいずれか1項に記載の溶鉄の精錬方法。 A dephosphorization treatment step of dephosphorizing the hot metal in the converter-type refining furnace by using one converter-type refining furnace and supplying a CaO-based solvent medium and an oxygen source into the converter-type refining furnace; Tilt the furnace type refining furnace to discharge the hot metal after the dephosphorization step and part of the slag generated in the dephosphorization step while leaving the remaining part of the slag in the intermediate refining furnace. A slag process, and a decarburizing treatment process of molten iron to supply molten CaO-based solvent and an oxygen source into the converter-type refining furnace to decarburize the hot metal remaining in the converter-type refining furnace into molten steel. The molten steel after the decarburization treatment step is tapped from the converter-type refining furnace to produce a molten steel from molten pig iron in this order, and the remaining portion of the slag in the intermediate slag step is removed. when discharging, the components of the slag was quantitatively analyzed, based on the component analysis results, you the decarburization step And determining the amount of slag agent added Te, molten iron method refining according to any one of claims 1 to 4. 前記転炉型精錬炉における前チャージの溶鉄の脱炭処理工程で生じたスラグの一部または全部を前記転炉型精錬炉に残留させたまま、次のチャージの溶銑を前記転炉型精錬炉に装入し、次のチャージの溶銑の脱燐処理工程を行うことを特徴とする、請求項8に記載の溶鉄の精錬方法。   While leaving a part or all of the slag generated in the decarburization treatment step of the molten iron of the previous charge in the converter-type refining furnace, the molten iron of the next charge is left in the converter-type refining furnace and the converter-type refining furnace 9. The method for refining molten iron according to claim 8, further comprising the step of: 転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して前記転炉型精錬炉内の溶銑を脱炭処理して溶鋼にする脱炭処理工程で生成したスラグの一部または全部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に次のチャージの溶銑を装入して精錬するにあたり、脱炭処理工程で生成した前記スラグの成分を定量分析し、その成分分析結果に基づいて、次のチャージの溶鉄の精錬において添加する造滓剤の量を決定することを特徴とする、請求項1ないし請求項4、請求項8及び請求項9のいずれか1項に記載の溶鉄の精錬方法。 A part or all of the slag generated in the decarburization treatment step in which a CaO-based solvent and an oxygen source are supplied into the converter-type refining furnace to decarburize the hot metal in the converter-type refining furnace to form molten steel While being left in the converter-type refining furnace, when the converter-type refining furnace is charged with the next charge of hot metal for refining, the components of the slag generated in the decarburization treatment step are quantitatively analyzed, and The amount of the slag forming agent to be added in refining the molten iron of the next charge is determined based on the component analysis result, any one of claims 1 to 4, claim 8 and claim 9 The method for refining molten iron according to the item. 転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して前記転炉型精錬炉内の溶銑を脱燐処理する脱燐処理工程で生成したスラグの一部または全部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に次のチャージの溶銑を装入して溶銑に脱燐処理を施すにあたり、脱燐処理工程で生成した前記スラグの成分を定量分析し、その成分分析結果に基づいて、次のチャージの溶鉄の精錬において添加する造滓剤の量を決定することを特徴とする、請求項1ないし請求項6のいずれか1項に記載の溶鉄の精錬方法。 Part or all of the slag generated in the dephosphorization treatment step in which a CaO-based solvent and an oxygen source are supplied into the converter-type refining furnace to dephosphorize the hot metal in the converter-type refining furnace While remaining in the smelting furnace, when the molten iron of the next charge is charged into the converter-type smelting furnace to perform dephosphorization treatment on the hot metal, quantitatively analyze the components of the slag generated in the dephosphorization treatment step, The refining of molten iron according to any one of claims 1 to 6, wherein the amount of the slag-forming agent to be added in the refining of molten iron for the next charge is determined based on the result of the component analysis. Method. 前記スラグの成分分析結果に基づいて添加量を決定する前記造滓剤がCaO系媒溶剤であることを特徴とする、請求項1ないし請求項11のいずれか1項に記載の溶鉄の精錬方法。   The refining method for molten iron according to any one of claims 1 to 11, wherein the slag-forming agent whose addition amount is determined based on a result of component analysis of the slag is a CaO-based solvent medium. . 前記スラグの成分分析結果がスラグ中のMgO含有量を含み、前記スラグの成分分析結果に基づいて添加量を決定する前記造滓剤がMgO系媒溶剤を含むことを特徴とする、請求項1ないし請求項12のいずれか1項に記載の溶鉄の精錬方法。   The slag component analysis result includes the MgO content in the slag, and the slag-forming agent that determines the addition amount based on the slag component analysis result contains a MgO-based solvent. A method for refining molten iron according to any one of claims 1 to 12. 前記スラグの成分分析結果がスラグ中の酸化鉄含有量を含み、前記スラグの成分分析結果に基づいて添加量を決定する前記造滓剤が酸化鉄系媒溶剤を含むことを特徴とする、請求項1ないし請求項13のいずれか1項に記載の溶鉄の精錬方法。   The slag component analysis result includes the iron oxide content in the slag, the slag-forming agent for determining the addition amount based on the slag component analysis result contains an iron oxide-based solvent medium, The method for refining molten iron according to any one of claims 1 to 13. 転炉型精錬炉における溶鉄の精錬で生じたスラグを、該スラグの一部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に残留させた溶鉄または前記転炉型精錬炉に新たに装入した溶銑を精錬するに際し、
溶鉄の精錬で生じた前記スラグと前記溶鉄とを含む分析対象物の表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の少なくともカルシウム及び鉄(Fe)を含む2種類以上の元素の発光強度を測定し、少なくともカルシウムの発光強度を利用してスラグに対応する発光か、溶鉄に対応する発光かを識別し、識別されたスラグに対応する発光の各元素の発光強度の測定結果に基づいて前記スラグの酸化鉄含有量を定量分析し、
その分析結果に基づいて、スラグを残留させた前記転炉型精錬炉で行う、炉内に残留させた溶鉄の次工程の精錬または炉内に新たに装入した溶銑を用いた次のチャージの溶鉄の精錬におけるスラグの酸化鉄含有量を制御することを特徴とする、溶鉄の精錬方法。
Molten iron left in the converter-type refining furnace or slag generated in refining molten iron in the converter-type refining furnace while leaving part of the slag in the converter-type refining furnace When refining the hot metal newly charged into the furnace,
Two types containing at least calcium and iron (Fe) in plasma generated by condensing laser light on the surface of an analysis target containing the slag and the molten iron produced by refining molten iron The luminescence intensity of the above elements is measured, and at least the luminescence intensity of calcium is used to identify whether the luminescence corresponds to slag or the luminescence corresponding to molten iron, and the luminescence intensity of each element of the luminescence corresponding to the identified slag. Quantitative analysis of iron oxide content of the slag based on the measurement results of,
Based on the analysis result, performed in the converter type refining furnace in which slag is left, refining in the next step of the molten iron left in the furnace or the next charge using the hot metal newly charged in the furnace A method for refining molten iron, which comprises controlling the iron oxide content of slag in the refining of molten iron.
前記溶鉄の精錬が1つの転炉型精錬炉を用いて一次吹錬工程と二次吹錬工程とを行う溶鉄の精錬であり、前記一次吹錬工程と前記二次吹錬工程との間で、溶鉄及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出し、前記転炉型精錬炉に残留させた溶鉄に精錬を施すにあたり、前記スラグの残部を排出する際に、前記一次吹錬工程にて発生したスラグの表面にレーザ光を集光させて酸化鉄含有量を定量分析し、その酸化鉄含有量の定量分析結果に基づいて、二次吹錬工程におけるスラグの酸化鉄含有量を制御することを特徴とする、請求項15に記載の溶鉄の精錬方法。   The molten iron refining is molten iron refining in which the primary blowing step and the secondary blowing step are performed using one converter-type refining furnace, and between the primary blowing step and the secondary blowing step. , While leaving a part of the molten iron and slag in the converter-type refining furnace, discharging the remaining part of the slag, in refining the molten iron left in the converter-type refining furnace, discharging the remaining part of the slag When doing, quantitatively analyze the iron oxide content by focusing the laser light on the surface of the slag generated in the primary blowing step, based on the quantitative analysis result of the iron oxide content, the secondary blowing The method for refining molten iron according to claim 15, wherein the iron oxide content of the slag in the step is controlled. 前記溶鉄の精錬が1つの転炉型精錬炉を用いて一次吹錬工程と二次吹錬工程とを行う溶鉄の精錬であり、前記一次吹錬工程と前記二次吹錬工程との間で、溶鉄及びスラグの一部を前記転炉型精錬炉に残留させたままスラグの残部を排出し、前記転炉型精錬炉に残留させた溶鉄に精錬を施す精錬方法を、連続する2チャージ以上の溶銑に施すにあたり、前記転炉型精錬炉における前チャージの溶銑の二次吹錬工程で生じたスラグの一部または全部を前記転炉型精錬炉に残留させたまま、次のチャージの溶銑を前記転炉型精錬炉に装入し、次のチャージの溶銑の一次吹錬工程を行う際に、前チャージの溶銑の前記二次吹錬工程で生じたスラグの表面にレーザ光を集光させて酸化鉄含有量を定量分析し、酸化鉄含有量の定量分析結果に基づいて、次のチャージの溶銑の前記一次吹錬工程におけるスラグの酸化鉄含有量を制御することを特徴とする、請求項15または請求項16に記載の溶鉄の精錬方法。   The molten iron refining is molten iron refining in which the primary blowing step and the secondary blowing step are performed using one converter-type refining furnace, and between the primary blowing step and the secondary blowing step. A refining method in which a part of the molten iron and a part of the slag are left in the converter-type refining furnace and the remaining part of the slag is discharged, and the molten iron left in the converter-type refining furnace is refined by a continuous charge of 2 or more charges. When applying to the hot metal of the above, while leaving a part or all of the slag generated in the secondary blowing step of the pre-charged hot metal in the converter-type refining furnace in the converter-type refining furnace, Is charged into the converter-type refining furnace, and when performing the primary blowing step of the hot metal of the next charge, the laser light is focused on the surface of the slag generated in the secondary blowing step of the hot metal of the previous charge. And quantitatively analyze the iron oxide content, and based on the quantitative analysis result of the iron oxide content, And controlling the iron oxide content of the slag in the primary blowing process of the charge of molten iron, molten iron method refining of claim 15 or claim 16. 前記一次吹錬工程または前記二次吹錬工程でスラグの酸化鉄含有量を制御する際に、気体酸素の供給速度、気体酸素を供給するための上吹きランスのランス高さ、底吹きガス流量のうちのいずれか1種以上の条件を調整して酸化鉄含有量を制御することを特徴とする、請求項16または請求項17に記載の溶鉄の精錬方法。   When controlling the iron oxide content of the slag in the primary blowing step or the secondary blowing step, the supply rate of gaseous oxygen, the lance height of the top blowing lance for supplying gaseous oxygen, the bottom blowing gas flow rate The method for refining molten iron according to claim 16 or 17, characterized in that the iron oxide content is controlled by adjusting the conditions of one or more of the above. 前記一次吹錬工程が溶銑の脱珪処理であり、且つ、前記二次吹錬工程が溶銑の脱燐処理であることを特徴とする、請求項16ないし請求項18のいずれか1項に記載の溶鉄の精錬方法。   19. The hot metal desiliconization process in the primary blowing process, and the hot metal dephosphorization process in the secondary blowing process, according to any one of claims 16 to 18. Method for refining molten iron. 前記一次吹錬工程が溶銑の脱燐処理であり、且つ、前記二次吹錬工程が溶銑を脱炭して溶鋼とする脱炭処理であることを特徴とする、請求項16ないし請求項18のいずれか1項に記載の溶鉄の精錬方法。   19. The method according to claim 16, wherein the primary blowing step is a dephosphorization treatment of molten pig iron, and the secondary blowing step is a decarburization treatment of decarburizing the molten pig iron to obtain molten steel. The method for refining molten iron according to any one of 1. 前記溶鉄の精錬が1つの転炉型精錬炉を用いて一次吹錬工程と二次吹錬工程とを行う溶鉄の精錬であり、前記一次吹錬工程と前記二次吹錬工程との間で、溶鉄及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出し、前記転炉型精錬炉に残留させた溶鉄に精錬を施す精錬方法を、連続する2チャージ以上の溶銑に施すにあたり、前記転炉型精錬炉における前チャージの溶銑の二次吹錬工程で生じたスラグを、炉外に排出することなく前記転炉型精錬炉に残留させたまま、次のチャージの溶銑を前記転炉型精錬炉に装入し、次のチャージの溶銑の一次吹錬工程を行う際に、前チャージの溶銑の前記二次吹錬工程の前後においてスラグの成分を定量分析し、前記二次吹錬工程の前後におけるスラグの成分の定量分析結果と前記二次吹錬工程における造滓剤の使用量とに基づいて前記二次吹錬工程後のスラグ量を求め、得られたスラグ量を次チャージの溶銑の一次吹錬工程におけるスラグの制御に利用することを特徴とする、請求項1ないし請求項4、及び請求項15ないし請求項20のいずれか1項に記載の溶鉄の精錬方法。 The molten iron refining is molten iron refining in which the primary blowing step and the secondary blowing step are performed using one converter-type refining furnace, and between the primary blowing step and the secondary blowing step. , A part of molten iron and slag are left in the converter-type refining furnace, the remaining part of the slag is discharged, and the refining method of refining the molten iron left in the converter-type refining furnace is continuously charged by 2 charges. In applying the above hot metal, the slag generated in the secondary blowing step of the pre-charged hot metal in the converter-type refining furnace, while being left in the converter-type refining furnace without being discharged to the outside, When charging the molten iron of the above charge into the converter-type refining furnace and performing the primary blowing process of the molten iron of the next charge, the components of the slag are quantified before and after the secondary blowing process of the molten iron of the previous charge. Analyze, and the quantitative analysis results of the components of the slag before and after the secondary blowing process The amount of slag after the secondary blowing step is calculated based on the amount of the slag forming agent used in the secondary blowing step, and the obtained slag amount is used for controlling the slag in the primary blowing step of the hot metal of the next charge. The method for refining molten iron according to any one of claims 1 to 4 and claims 15 to 20, characterized in that it is utilized. 前記スラグの成分の定量分析方法が、スラグの表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記スラグの成分を定量分析する方法を含み、前記レーザ光をスラグの表面に集光させるための集光レンズとレーザ光を集光させるスラグ表面との距離を測定し、前記集光レンズと前記スラグ表面との距離を所定の値とするように前記集光レンズの位置を調整することを特徴とする、請求項1ないし請求項21のいずれか1項に記載の溶鉄の精錬方法。   A method for quantitatively analyzing the components of the slag, in which a laser beam is focused on the surface of the slag, the emission intensity of an element in plasma generated by the concentration of the laser beam is measured, and the measured emission intensity and / or emission is measured. Including a method for quantitatively analyzing the components of the slag based on the intensity ratio, measuring the distance between the condensing lens for condensing the laser light on the surface of the slag and the slag surface for condensing the laser light, The molten iron according to any one of claims 1 to 21, wherein the position of the condenser lens is adjusted so that the distance between the condenser lens and the slag surface has a predetermined value. Refining method. 800℃以上の高温のスラグと溶鉄とを含む分析対象物の表面にレーザ光を集光させ、レーザ光の集光に伴い発生するプラズマ中の元素の発光強度を測定し、測定された発光強度及び/または発光強度比に基づいて前記スラグの組成を分析するスラグの組成分析方法であって、
前記プラズマ中の少なくともカルシウムを含む2種類以上の元素の発光強度を測定し、カルシウムの発光強度を利用してスラグに対応する発光か、溶鉄に対応する発光かを識別し、識別されたスラグに対応する発光の各元素の発光強度に基づいて前記スラグの組成を定量分析することを特徴とする、スラグの組成分析方法。
Laser light is focused on the surface of the analysis target containing slag and molten iron at a temperature of 800 ° C. or higher, and the emission intensity of the element in the plasma generated by the concentration of the laser light is measured, and the measured emission intensity is measured. And / or a slag composition analysis method for analyzing the composition of the slag based on the emission intensity ratio,
The luminescence intensity of two or more elements containing at least calcium in the plasma is measured, and the luminescence intensity of calcium is used to identify whether the luminescence corresponds to slag or the luminescence corresponding to molten iron. A slag composition analysis method, which comprises quantitatively analyzing the composition of the slag based on the emission intensity of each element of the corresponding luminescence.
JP2017139579A 2015-01-29 2017-07-19 Method for refining molten iron and method for analyzing composition of slag Active JP6685260B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015129 2015-01-29
JP2015015129 2015-01-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015145549A Division JP6292187B2 (en) 2015-01-29 2015-07-23 Method for refining molten iron, composition analysis method for high-temperature substance, and composition analysis apparatus for high-temperature substance

Publications (2)

Publication Number Publication Date
JP2017193784A JP2017193784A (en) 2017-10-26
JP6685260B2 true JP6685260B2 (en) 2020-04-22

Family

ID=56685253

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015145549A Active JP6292187B2 (en) 2015-01-29 2015-07-23 Method for refining molten iron, composition analysis method for high-temperature substance, and composition analysis apparatus for high-temperature substance
JP2017139579A Active JP6685260B2 (en) 2015-01-29 2017-07-19 Method for refining molten iron and method for analyzing composition of slag

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015145549A Active JP6292187B2 (en) 2015-01-29 2015-07-23 Method for refining molten iron, composition analysis method for high-temperature substance, and composition analysis apparatus for high-temperature substance

Country Status (1)

Country Link
JP (2) JP6292187B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699802B2 (en) * 2018-03-02 2020-05-27 Jfeスチール株式会社 Furnace control method
KR102139632B1 (en) * 2018-09-27 2020-07-30 주식회사 포스코 Method for processing hot metal
WO2022195951A1 (en) * 2021-03-17 2022-09-22 Jfeスチール株式会社 Method for operating converter furnace, and method for producing molten steel
CN117396750A (en) * 2021-05-17 2024-01-12 杰富意钢铁株式会社 Method for analyzing composition of slag, method for analyzing basicity of slag, and method for refining molten iron
WO2022244408A1 (en) * 2021-05-17 2022-11-24 Jfeスチール株式会社 Slag component analysis method, slag basicity analysis method, and molten iron refining method
CN114609359B (en) * 2022-02-17 2023-10-13 奥朗博佳羽冶金技术有限公司 High-precision integrated module type detection device for converter
CN115466821B (en) * 2022-08-25 2023-09-08 福建三宝钢铁有限公司 Free-cutting steel 20MnV6S electric furnace smelting process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544512A (en) * 1978-09-22 1980-03-28 Aikoo Kk Desulfurizing agent for hot metal
JPS56983A (en) * 1979-06-15 1981-01-08 Kawasaki Steel Co Method of detecting slag in molten metal flow
JPH0815153A (en) * 1994-06-24 1996-01-19 Kawasaki Steel Corp Method and apparatus for laser emission spectroscopic analysis
JP3345677B2 (en) * 1995-01-23 2002-11-18 新日本製鐵株式会社 Hot metal dephosphorization method
JP5396834B2 (en) * 2008-11-28 2014-01-22 新日鐵住金株式会社 Converter refining method
JP5413043B2 (en) * 2009-08-10 2014-02-12 Jfeスチール株式会社 Converter steelmaking method using a large amount of iron scrap

Also Published As

Publication number Publication date
JP2017193784A (en) 2017-10-26
JP2016145405A (en) 2016-08-12
JP6292187B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6685260B2 (en) Method for refining molten iron and method for analyzing composition of slag
KR102214879B1 (en) Slag analysis method and molten iron refining method
WO2022124050A1 (en) Converter operation method and converter blowing control system
US11035014B2 (en) Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP6011248B2 (en) Pretreatment method of hot metal in converter
Vidhyasagar et al. A Static Model for Energy‐Optimizing Furnace
JP3858150B2 (en) Estimation method of Mn concentration at the end of blowing in converter
JP7111282B1 (en) Slag component analysis method, slag basicity analysis method and molten iron refining method
WO2022244408A1 (en) Slag component analysis method, slag basicity analysis method, and molten iron refining method
JP2020105611A (en) Method for operating converter
JP6210185B1 (en) Slag analysis method and molten iron refining method
WO2022195951A1 (en) Method for operating converter furnace, and method for producing molten steel
JPH07118723A (en) Converter refining method
KR100325265B1 (en) A method for manufacturing a high carbon fluid metal in a convertor
JP2023127474A (en) Operation method for refining furnace
JP2020105610A (en) Method for operating converter
JP2002363631A (en) Method for discriminating slag at firing point, and method for dephosphorizing molten iron based on the method
JPH0741813A (en) Refining method in converter
JP2006257468A (en) Method for setting blowing-finishing temperature in converter
Visuri OULU 2014 University of Oulu Faculty of Technology Process Metallurgy Group
Willms et al. On-line slag composition analysis for electric arc furnaces
JP2001279318A (en) Method for dephosphorizing molten iron
JPS628481B2 (en)
Falsetti et al. ASSESSING THE EFFECTS OF USING ALTERNATIVE SLAG FLUIDIZERS IN SECONDARY STEELMAKING
JP2002167614A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250