JPH0741813A - Refining method in converter - Google Patents

Refining method in converter

Info

Publication number
JPH0741813A
JPH0741813A JP18471493A JP18471493A JPH0741813A JP H0741813 A JPH0741813 A JP H0741813A JP 18471493 A JP18471493 A JP 18471493A JP 18471493 A JP18471493 A JP 18471493A JP H0741813 A JPH0741813 A JP H0741813A
Authority
JP
Japan
Prior art keywords
refining
slag
amount
converter
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18471493A
Other languages
Japanese (ja)
Other versions
JP2958844B2 (en
Inventor
Noriyuki Masumitsu
法行 升光
Hideaki Sasaki
英彰 佐々木
Masayuki Arai
雅之 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18471493A priority Critical patent/JP2958844B2/en
Publication of JPH0741813A publication Critical patent/JPH0741813A/en
Application granted granted Critical
Publication of JP2958844B2 publication Critical patent/JP2958844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To provide a method, in which a desiliconizing and dephosphorizing pretreatment refining and a decarburizing refining or a decarburizing and Mn ore reduction refining of molten iron are efficiently and stably executed with a same converter. CONSTITUTION:In the refining method for producing molten steel from the molten iron with the same converter, slag discharging quantity is weighed after executing the desiliconizing and dephosphorizing refining. The remaining slag quantity in the furnace obtd. from the difference between the produced slag quantity by the desiliconizing and dephosphorizing refining obtd. by calculating and the actual slag discharged quantity is used to the calculation obtaining flux quantity and coolant quantity to be added at the time of successively executing the decarburizing refining or the decarburizing and Mn ore reduction refining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、転炉を用いて脱珪、脱
燐予備処理精錬と脱炭、Mn鉱石還元精錬を同一転炉に
て実施し、溶銑から溶鋼を製造する精錬方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refining method for producing molten steel from hot metal by carrying out desiliconization, dephosphorization pretreatment refining and decarburization and Mn ore reduction refining using a converter in the same converter. It is a thing.

【0002】[0002]

【従来の技術】転炉の脱炭精錬反応および転炉精錬終点
での吹止温度、〔%C〕、〔%Mn〕を的中させるため
には、従来下記に示す方法が知られている。 (A)一般的に従来から公知となっている方法であり、
吹錬前にスタティック計算として吹錬条件に基づき計算
された、生石灰、ホタル石等の媒溶剤と鉄鉱石、Mn鉱
石、スクラップ等の冷却材が添加され、ある一定時間の
精錬時間内で、サブランスにより精錬途中での溶鋼温
度、〔%C〕を測定し、予測式に基づき目標溶鋼温度、
溶鋼炭素量に修正するダイナミック制御法(例えば、下
記(B)文献にも記載あり)。
2. Description of the Related Art In order to hit the decarburization refining reaction of a converter and blow-off temperatures [% C] and [% Mn] at the end of converter refining, the following methods are conventionally known. . (A) It is a method generally known from the past,
Before the smelting, a solvent such as quick lime and fluorite and a coolant such as iron ore, Mn ore and scrap, which was calculated based on the smelting conditions as static calculation, were added, and the sublance was applied within a certain fixed time. Measure the molten steel temperature [% C] during refining by
A dynamic control method for correcting the molten steel carbon amount (for example, also described in the following (B) document).

【0003】(B)鉄と鋼 Vol.76(1990)
第11号 P192に示されているように、転炉精錬中
の排ガス情報から制御する方法(転炉OG設備に質量分
析計を設置し、排ガス中のCO、CO2 、O2 分析結果
を用い、炉内での炭素バランスと酸素バランスをとり、
溶鋼およびスラグ中に含まれる酸素量を推定し、吹錬末
期に上記情報から、スラグ中の(T.Fe)と溶鋼温度
の連続推定を行い、脱燐平衡式、スラグバランス式、燐
バランス式から溶鋼の終点温度、燐、炭素量を推定する
方式)。
(B) Iron and Steel Vol. 76 (1990)
As shown in No. 11 P192, a method of controlling from the exhaust gas information during converter refining (a mass spectrometer is installed in the converter OG equipment, and CO, CO 2 , O 2 analysis results in the exhaust gas are used. , Balance carbon and oxygen in the furnace,
The amount of oxygen contained in the molten steel and slag is estimated, and (T.Fe) in the slag and the molten steel temperature are continuously estimated from the above information at the end of blowing and the dephosphorization equilibrium formula, slag balance formula, phosphorus balance formula Method to estimate the end temperature of molten steel, phosphorus, carbon content from.

【0004】(C)鉄と鋼 Vol.76(1990)
第11号 P200に示されているように、転炉操業に
おける酸素吹錬時に形成される火点を溶鋼の直接発光分
析用の光原として、火点からの発光スペクトルを測定す
ることにより転炉内のMn濃度を直接分析する方法。
(C) Iron and Steel Vol. 76 (1990)
No. 11, p. 200, the converter is operated by measuring the emission spectrum from the fire point using the fire point formed during oxygen blowing in the converter operation as a light source for direct emission analysis of molten steel. Method for directly analyzing the Mn concentration in water.

【0005】[0005]

【発明が解決しようとする課題】従来の転炉精錬制御技
術(A)、(B)、(C)は転炉にて脱炭精錬あるいは
脱炭精錬とMn鉱石還元精錬を実施するプロセスを前提
として開発された技術であり、本発明のように同一転炉
にて、溶銑予備脱珪、脱燐処理と脱炭精錬あるいは溶銑
予備脱珪、脱燐処理と脱炭精錬およびMn鉱石還元精錬
を実施するプロセスではない。従って精錬制御技術ニー
ズからも転炉内残留スラグを正確に把握する必要はなか
った。
The conventional converter refining control techniques (A), (B), and (C) are based on a process for carrying out decarburization refining or decarburization refining and Mn ore reduction refining in a converter. It is a technology developed as, in the same converter as the present invention, hot metal preliminary desiliconization, dephosphorization treatment and decarburization refining or hot metal preliminary desiliconization, dephosphorization treatment and decarburization refining and Mn ore reduction refining Not a process to implement. Therefore, it was not necessary to accurately grasp the residual slag in the converter from the needs of refining control technology.

【0006】上記(A)技術では炉内のスラグ組成情報
が全く考慮されていないことにより、特に近年Mn鉱石
を転炉で多量使用する精錬では、吹止Mnのバラツキが
大きく精錬後に添加するMn合金鉄秤量時間の延長ある
いはMn成分外れ等の問題が発生している。上記(B)
技術では精錬制御にスラグ組成および量を考慮した概念
が導入されているが、スラグは推定計算に基づき、終点
Mnについての推定もできない。
[0006] In the above technique (A), since the information on the slag composition in the furnace is not taken into consideration at all, especially in the refining in which a large amount of Mn ore is used in the converter in recent years, the variation of blown Mn is large and the Mn added after refining is increased. Problems such as prolongation of iron alloy weighing time and removal of Mn component have occurred. Above (B)
In the technology, a concept considering slag composition and amount is introduced in refining control, but slag cannot be estimated about the end point Mn based on estimation calculation.

【0007】また、上記(C)の技術では、溶鋼中のM
n濃度が判明するだけであり、Mn鉱石の還元精錬を制
御することはできず、当該精錬の精錬方法をオンライン
で改善する目的は達成し得ない。以上の状況を鑑み、本
発明は、同一転炉にて、溶銑予備脱珪、脱燐処理と脱炭
精錬あるいは溶銑予備脱珪、脱燐処理と脱炭精錬および
Mn鉱石還元精錬を実施するプロセスにおいて、転炉内
残留スラグを正確に把握する方法を提供することを目的
とするものである。
Further, in the technique of (C) above, M in molten steel is
Only the n concentration is known, the reduction smelting of Mn ore cannot be controlled, and the purpose of improving the smelting refining method online cannot be achieved. In view of the above situation, the present invention is a process for performing hot metal preliminary desiliconization, dephosphorization treatment and decarburization refining or hot metal preliminary desiliconization, dephosphorization treatment and decarburization refining and Mn ore reduction refining in the same converter. The purpose of the present invention is to provide a method for accurately grasping the residual slag in the converter.

【0008】[0008]

【課題を解決するための手段】本発明は、同一転炉に
て、溶銑の脱珪、脱燐精錬を行い、該精錬で発生したス
ラグを排出後、引き続き脱炭または脱炭およびMn鉱石
還元精錬を行う溶銑の転炉精錬方法において、前記スラ
グの排出の際、排出されたスラグ量を秤量し、計算によ
り求められた脱珪、脱燐精錬による発生スラグ量と前記
秤量されたスラグ量の差から炉内残存スラグ量を求め、
かくして求められた炉内残存スラグ量を引き続き行われ
る脱炭または脱炭およびMn鉱石還元精錬で添加すべき
CaOやホタル石等の媒溶剤量とMn鉱石やスクラップ
等の冷却材量を求める計算に使用することを特徴とする
転炉精錬方法を要旨とする。
According to the present invention, hot metal desiliconization and dephosphorization refining are performed in the same converter, and slag generated in the refining is discharged, followed by decarburization or decarburization and Mn ore reduction. In the molten iron converter refining method for refining, when the slag is discharged, the discharged slag amount is weighed, the calculated desiliconization, the dephosphorization refining generated slag amount and the weighed slag amount. Obtain the amount of slag remaining in the furnace from the difference,
The amount of residual solvent slag thus obtained is used to calculate the amount of solvent such as CaO and fluorite that should be added in the subsequent decarburization or decarburization and Mn ore reduction refining and the amount of coolant such as Mn ore and scrap. The gist is a converter refining method characterized by being used.

【0009】[0009]

【作用】本発明の前提になる転炉での精錬プロセスは図
1に示すフローシートのように同一転炉にて4段階に別
けて精錬が進行する。図1に示すように、工程4後のス
ラグは炭材(C源)等により脱酸処理して全量または一
部を転炉に残す。次いで、工程1にて前記スラグの存在
下で溶銑を装入し、脱珪、脱燐精錬するが、その際転炉
にCaO等の脱燐剤あるいは鉄鉱石等の冷却材を添加す
るが、特に安定した低燐溶銑を得るためには、工程1で
の塩基度(スラグ中 %CaO/%SiO2 )を1.0
〜2.0(目標1.5)の範囲に制御するために、前チ
ャージ(スラグ脱酸後)のスラグ量をできるだけ正確に
測定し、添加CaO量を決定しなければならない。また
工程2で排滓後に工程3で脱炭・Mn還元精錬する時
も、特に、安定した一定のMn還元効率を得るために、
スラグ中の塩基度を3.0〜4.0(目標3.5)の範
囲に制御することが望ましい。従って、工程2で排滓後
に転炉内に残るスラグ量は工程1と同等以上に正確に把
握する必要がある。
In the refining process in the converter, which is the premise of the present invention, refining proceeds in four steps in the same converter as the flow sheet shown in FIG. As shown in FIG. 1, the slag after the step 4 is deoxidized with carbonaceous material (C source) or the like, and the whole amount or a part thereof is left in the converter. Next, in step 1, the hot metal is charged in the presence of the slag, and desiliconization and dephosphorization refining are performed. At that time, a dephosphorizing agent such as CaO or a cooling agent such as iron ore is added to the converter. In order to obtain a particularly stable low phosphorus hot metal, the basicity (% CaO /% SiO 2 in slag) in step 1 should be 1.0
In order to control in the range of ˜2.0 (target 1.5), the amount of slag in the pre-charge (after slag deoxidation) must be measured as accurately as possible to determine the amount of added CaO. Also, when decarburizing / Mn reduction refining is performed in step 3 after the slag is removed in step 2, in order to obtain a stable and constant Mn reduction efficiency,
It is desirable to control the basicity in the slag within the range of 3.0 to 4.0 (target 3.5). Therefore, it is necessary to accurately grasp the amount of slag remaining in the converter after the slag is discharged in the step 2 as accurately as in the step 1.

【0010】以上のようなプロセスにおいて、各工程で
のスラグ量は、主として添加媒溶剤(CaO、CaF2
等)量とプロセス系外への排出量にて精度良く推定する
ことができる。そこで、本発明においてはプロセス系外
へのスラグ排出量、特に工程2におけるスラグ排出量を
実秤量し、系全体のスラグバランスを1チャージ毎に把
握しながら、精錬制御する。
In the above-mentioned process, the amount of slag in each step mainly depends on the additive solvent (CaO, CaF 2
Etc.) and the amount discharged to the outside of the process system can be accurately estimated. Therefore, in the present invention, the amount of slag discharged to the outside of the process system, particularly the amount of slag discharged in step 2, is actually weighed, and the refining control is performed while grasping the slag balance of the entire system for each charge.

【0011】具体的には、図2に示すように、転炉炉下
スラグパン容器を台車で秤量器まで移動させてスラグ排
出量を測定するか、秤量器付き台車により、排滓直後に
排滓実量を実測し、下記(1)式にて炉内残留スラグを
計算する。 脱燐精錬時の炉内生成スラグ量−実排滓量−α=炉内残留スラグ量 ………(1) ここでの炉内生成スラグ量は、精錬時の主として、石
灰石、ホタル石等の添加媒溶剤と鉄鉱石のような冷却材
の量、更に転炉耐火物の溶損量および前チャージ精錬ス
ラグの残存量から決定される。のαはスラグ排出と同
時に流出する溶銑量である。この溶銑量は排滓中のIT
V監視カメラによる映像の画像処理あるいは予め経験的
に判明している一定量でもよい。またここで、目視によ
る排出スラグの秤量方法も想定されるが、この方法では
個人差があり、更に排出スラグの泡立ち現象等により排
出スラグ量を正確に測定することはできないであろう。
Specifically, as shown in FIG. 2, the slag pan container under the converter furnace is moved to a scale by a trolley to measure the slag discharge amount, or a trolley with a scale is used to discharge the slag just after the slag. The actual amount is actually measured and the residual slag in the furnace is calculated by the following formula (1). Amount of slag generated in the furnace during dephosphorization refining-Amount of actual slag-α = Amount of residual slag in the furnace ……… (1) The amount of slag generated in the furnace here is mainly for limestone and firefly stone during refining. It is determined from the amounts of additive solvent and coolant such as iron ore, as well as the amount of erosion of the converter refractory and the remaining amount of precharge refining slag. Α is the amount of hot metal that flows out at the same time as slag discharge. This amount of hot metal is IT in the slag
Image processing of video by a V surveillance camera or a predetermined amount which is empirically known in advance may be used. Although a method of visually measuring the discharged slag is also envisioned here, this method has individual differences, and the discharged slag amount cannot be accurately measured due to a foaming phenomenon of the discharged slag and the like.

【0012】本発明によれば、排出スラグ量を正確かつ
迅速に秤量できる。このことにより転炉内残留スラグ量
の推定精度が向上し、排滓後の脱炭精錬およびMnの吹
錬計算に反映され、吹止温度、〔%C〕、〔%Mn〕の
的中率が向上し、特にMn還元効率がスラグ残量によ
り、大きく影響を受ける。しかし、本発明により精度の
高いスラグ残量が得られるため、Mn還元精錬時の塩基
度(=CaO/SiO2)が一定となるように、スラグ
残量に応じて適正なCaO量の添加が可能となり、安定
したMn還元歩留りが得られる。
According to the present invention, the amount of discharged slag can be accurately and quickly weighed. This improves the estimation accuracy of the residual slag amount in the converter and is reflected in the decarburization refining after slag and the Mn blowing calculation, and the blowout temperature, [% C], [% Mn] hit rate The Mn reduction efficiency is greatly affected by the remaining amount of slag. However, since the present invention provides a highly accurate slag residual amount, it is necessary to add an appropriate amount of CaO according to the residual slag amount so that the basicity (= CaO / SiO 2 ) during Mn reduction refining becomes constant. It becomes possible and a stable Mn reduction yield is obtained.

【0013】[0013]

【実施例】高炉から出銑された、温度1510℃、C=
4.8%、Si=0.41%、Mn=0.34%、P=
0.102%、S=0.018%の270tの溶銑をト
ーピードカーに受銑し、脱硫処理精錬ステーションに
て、脱硫フラックスとして、CaO=1.65t Al
ドロス=0.14tを、浸漬管ランスにより溶鉄内に
約12分間吹き込み、脱硫精錬を実施した。その結果、
温度1360℃、C=4.6%、Si=0.40%、M
n=0.35%、P=0.100%、S=0.008%
の低硫溶銑を得た。
Example: Temperature of 1510 ° C., C =, tapped from a blast furnace
4.8%, Si = 0.41%, Mn = 0.34%, P =
270t of hot metal of 0.102% and S = 0.018% was received by a torpedo car, and CaO = 1.65t Al was used as desulfurization flux at the desulfurization refining station.
Dross = 0.14 t was blown into the molten iron for about 12 minutes by a dip tube lance to carry out desulfurization refining. as a result,
Temperature 1360 ° C., C = 4.6%, Si = 0.40%, M
n = 0.35%, P = 0.100%, S = 0.008%
The low sulfur hot metal of

【0014】得られた溶銑を転炉工場に搬送し、炉底と
炉腹部にノズルが設置された転炉に全量装入した。前記
ノズルからはN2 とCO2 ガスを吹き込むことが可能で
ある。この転炉型予備処理精錬炉に前記溶銑の全量27
0tとスクラップ16.2tを装入し、底吹きノズルか
らは、N2 =550Nm3 /Hr・本、また炉腹部ノズ
ルからも、N2 =300Nm3 /Hr・本の合計2,0
00Nm3 のガス吹き込みを実施した。転炉上部より、
計算塩基度2.0を目標に塊CaO4.8t、ホタル石
(CaF2 )0.6tを前装入し、同時にメイン酸素吹
きランスより、O2 =20,000Nm3 /Hrの条件
で吹酸し、脱燐精錬を実施した。吹錬開始から約3分で
ランス溶鉄面間距離を2.2mから3.0mに変更し、
吹錬を継続した。吹錬開始から9分後に吹止した結果、
温度=1350℃、C=3.6%、Si=0.02%、
Mn=0.06%、P=0.021%、S=0.008
%の低燐・低硫溶銑を得た。
The obtained hot metal was transported to a converter factory and the whole amount was charged into a converter having nozzles at the bottom and the belly. N 2 and CO 2 gas can be blown from the nozzle. In this converter type pretreatment refining furnace, the total amount of the hot metal 27
0t and 16.2t of scrap were charged, and N 2 = 550 Nm 3 / Hr · book from the bottom blowing nozzle, and N 2 = 300 Nm 3 / Hr · book from the furnace abdominal nozzle, total of 2.0.
Gas blowing of 00 Nm 3 was carried out. From the top of the converter,
Agglomeration CaO 4.8t and fluorspar (CaF 2 ) 0.6t were precharged with the aim of the calculated basicity of 2.0, and at the same time, from the main oxygen blowing lance, O 2 = 20,000 Nm 3 / Hr Then, dephosphorization refining was carried out. Approximately 3 minutes after the start of blowing, change the distance between lance molten iron surfaces from 2.2 m to 3.0 m,
Continued blowing. As a result of stopping blowing 9 minutes after the start of blowing,
Temperature = 1350 ° C., C = 3.6%, Si = 0.02%,
Mn = 0.06%, P = 0.021%, S = 0.008
% Low phosphorus and low sulfur hot metal was obtained.

【0015】吹止後直ちに、炉傾動を開始し、底吹きガ
スと炉腹部ガスはCO2 ガスとし、ガス流量は底吹きノ
ズル=600Nm3 /Hr・本、炉腹部ノズル=300
Nm 3 /Hr・本の条件で吹き込み、排滓を開始した。
傾動開始から4.5分後にて排滓処理を完了した。排滓
処理完了後直ちに秤量した結果、排滓量14.5t(溶
銑量α:0.2t除く)であり、計算生成スラグ量1
6.5t(前チャージの残留スラグ4.5t、今回チャ
ージのCaOバランスとSiO2 バランスの平均から求
めた生成スラグ量12.0t)から排滓率88%であ
り、転炉内残スラグ量は2tと試算された。
Immediately after stopping the blowing, the tilting of the furnace was started and the bottom blowing
CO and gas in the furnace2Gas, and the gas flow rate is bottom blown
Cheat = 600Nm3/ Hr · book, furnace belly nozzle = 300
Nm 3/ Hr ・ Blow-in was started under the condition of book, and the waste was started.
The waste treatment was completed 4.5 minutes after the start of tilting. Waste
As a result of weighing immediately after the completion of the treatment, the amount of slag was 14.5 t (melting
The amount of pig iron α: 0.2t is excluded), and the amount of slag generated by calculation is 1
6.5t (4.5t of residual slag from the previous charge,
CaO balance and SiO2Find from average of balance
The amount of waste slag produced is 12.0 t) and the slag ratio is 88%.
Therefore, the amount of residual slag in the converter was calculated to be 2t.

【0016】秤量結果はプロコン内のスラグ量バランス
計算式により、直ちに次工程の脱炭精錬とMn還元精錬
計算にインプットされ、Mn鉱石還元歩留り60%以上
を得るために、塩基度3.5を確保する目的でCaO=
900kg、Mn鉱石=3.1tを添加し、メイン酸素
吹きランスより、O2 =50,000Nm3 /Hrで2
ブロー目の吹錬を開始した。底吹きガスと炉腹部ガスは
CO2 ガスとし、ガス流量は底吹きノズル=600Nm
3 /Hr・本、炉腹部ノズル=300Nm3 /Hrで約
14分精錬した。その結果、2ブロー目の吹止で、温度
=1653℃、C=0.16%、Si=tr.Mn=
0.40%、P=0.010%、S=0.007%の中
炭低燐鋼を溶製することができ、2ブロー目のMn鉱石
還元効率は62%と推定された。
The weighing result is immediately input to the decarburization refining and Mn reduction refining calculation in the next step by the slag amount balance calculation formula in the process container, and the basicity 3.5 is set to obtain the Mn ore reduction yield of 60% or more. CaO = for the purpose of securing
900 kg, Mn ore = 3.1t was added, and 2 from O 2 = 50,000 Nm 3 / Hr from the main oxygen blowing lance.
Blow-eye blowing has started. The bottom blown gas and the furnace abdominal part gas are CO 2 gas, and the gas flow rate is the bottom blown nozzle = 600 Nm.
Refining was performed for about 14 minutes at 3 / Hr · book, furnace abdominal nozzle = 300 Nm 3 / Hr. As a result, at the second blow stop, temperature = 1653 ° C., C = 0.16%, Si = tr. Mn =
It was possible to smelt 0.40%, P = 0.010%, S = 0.007% medium carbon low phosphorus steel, and the Mn ore reduction efficiency of the second blow was estimated to be 62%.

【0017】2ブロー目終了後の炉内スラグ量は4.8
tと試算され、出鋼中に溶鋼鍋に1t流出し、その残量
3.8tのスラグを炉内に残し、次チャージの溶銑を受
け、脱燐精錬を実施した。次チャージにおいても脱珪、
脱燐精錬後に排滓作業を実施し、その際にスラグ秤量を
行い、脱炭、Mn鉱石還元精錬に添加するCaO量の正
確な計算を行い、安定した60%以上のMn鉱石還元歩
留りを得ることができた。
The amount of slag in the furnace after the second blow is 4.8.
It was calculated as t, and 1t was discharged to the molten steel pot during tapping, and 3.8t of the remaining slag was left in the furnace, and the hot metal of the next charge was received to perform dephosphorization refining. Desiliconization on the next charge,
After dephosphorization and refining, slag work is performed, slag is weighed at that time, decarburization and accurate calculation of CaO amount added to Mn ore reduction and refining are performed, and stable Mn ore reduction yield of 60% or more is obtained. I was able to.

【0018】[0018]

【発明の効果】以上のように、同一転炉にて脱珪、脱燐
および排滓後に脱炭とMn鉱石還元精錬する転炉精錬方
法において、本発明に従い脱珪、脱燐後の排滓量を実秤
量し、得られた値を次工程での脱炭とMn鉱石還元精錬
時の媒溶剤と冷却材の配合計算に直接チャージ毎に反映
させることにより、安定したMn鉱石還元歩留り、溶鋼
温度、炭素的中率を得ることが可能となる。
INDUSTRIAL APPLICABILITY As described above, in the converter refining method in which decarburization, dephosphorization and slag removal are performed in the same converter, decarburization and Mn ore reduction refining are carried out in accordance with the present invention. Stable Mn ore reduction yield, molten steel by directly weighing each amount and reflecting the obtained value directly to each compound charge in the blending calculation of the solvent and coolant during decarburization and Mn ore reduction refining in the next process It is possible to obtain the temperature and the carbon content.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の前提になる転炉での精錬プロセスのフ
ローシートである。
1 is a flow sheet of a refining process in a converter which is a premise of the present invention.

【図2】本発明の一実施例を示す概略図である。FIG. 2 is a schematic view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 転炉 2 溶鋼 3 スラグ 4 スラグパン 5 搬送台車 6 秤量器 1 Converter 2 Molten Steel 3 Slag 4 Slag Pan 5 Conveyor Cart 6 Weigher

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一転炉にて、溶銑の脱珪、脱燐精錬を
行い、該精錬で発生したスラグを排出後、引き続き脱炭
または脱炭およびMn鉱石還元精錬を行う溶銑の転炉精
錬方法において、前記スラグの排出の際、排出されたス
ラグ量を秤量し、計算により求められた脱珪、脱燐精錬
による発生スラグ量と前記秤量されたスラグ量の差から
炉内残存スラグ量を求め、かくして求められた炉内残存
スラグ量を引き続き行われる脱炭または脱炭およびMn
鉱石還元精錬で添加すべきCaOやホタル石等の媒溶剤
量とMn鉱石やスクラップ等の冷却材量を求める計算に
使用することを特徴とする転炉精錬方法。
1. A converter for refining molten pig iron, in which the hot metal is subjected to desiliconization and dephosphorization refining in the same converter, and slag generated in the refining is discharged, followed by decarburization or decarburization and Mn ore reduction refining. In the method, at the time of discharging the slag, the discharged slag amount is weighed, the calculated desiliconization, the residual slag amount in the furnace from the difference between the generated slag amount by dephosphorization refining and the weighed slag amount. Then, the amount of residual slag in the furnace thus obtained is used for decarburization or decarburization and Mn
A converter refining method, which is used for calculation of an amount of a solvent such as CaO and fluorite to be added in ore reduction refining and an amount of a coolant such as Mn ore and scrap.
JP18471493A 1993-07-27 1993-07-27 Converter refining method Expired - Lifetime JP2958844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18471493A JP2958844B2 (en) 1993-07-27 1993-07-27 Converter refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18471493A JP2958844B2 (en) 1993-07-27 1993-07-27 Converter refining method

Publications (2)

Publication Number Publication Date
JPH0741813A true JPH0741813A (en) 1995-02-10
JP2958844B2 JP2958844B2 (en) 1999-10-06

Family

ID=16158084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18471493A Expired - Lifetime JP2958844B2 (en) 1993-07-27 1993-07-27 Converter refining method

Country Status (1)

Country Link
JP (1) JP2958844B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154024A1 (en) * 2021-01-15 2022-07-21 日本製鉄株式会社 Converter refining method
WO2022154023A1 (en) * 2021-01-15 2022-07-21 日本製鉄株式会社 Converter-refining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154024A1 (en) * 2021-01-15 2022-07-21 日本製鉄株式会社 Converter refining method
WO2022154023A1 (en) * 2021-01-15 2022-07-21 日本製鉄株式会社 Converter-refining method

Also Published As

Publication number Publication date
JP2958844B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
AU2009279363B2 (en) Low cost making of a low carbon, low sulfur, and low nitrogen steel using conventional steelmaking equipment
JP5396834B2 (en) Converter refining method
UA104595C2 (en) method for making a steel with low carbon low sulphur low nitrogen using conventional steelmaking Equipment
JP2958844B2 (en) Converter refining method
JP2005015889A (en) Method for preventing effluence of slag in converter
JP3575304B2 (en) Converter steelmaking method
TWI685569B (en) Refining method of molten iron
CN113186368B (en) Process for efficiently smelting high-carbon steel by one-step high-carbon-drawing method of 60-ton converter
JP7211553B1 (en) Method for operating converter and method for producing molten steel
JP4353817B2 (en) Converter operation method
WO2023017674A1 (en) Cold iron source melting rate estimation device, converter-type refining furnace control device, cold iron source melting rate estimation method, and molten iron refining method
JP3858150B2 (en) Estimation method of Mn concentration at the end of blowing in converter
JPH08104911A (en) Method for melting phosphorus-containing steel
JP7469716B2 (en) Converter refining method
JP7477797B2 (en) Converter refining method
TWI840756B (en) Converter operating method and molten steel manufacturing method
JPH07118723A (en) Converter refining method
JP2002285223A (en) Method for dephosphorizing molten iron
JP5760982B2 (en) Method for refining molten steel
JPH0310012A (en) Steelmaking method in converter
US4451288A (en) Method for producing low hydrogen content in steels produced by subsurface pneumatic refining
JPH11217618A (en) Method for refining stainless steel in converter
JP2001279317A (en) Method for dephosphorizing molten iron
JPS6155565B2 (en)
JP2002167614A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608