JP6685043B2 - Thermoelectric hydrogen sensor - Google Patents

Thermoelectric hydrogen sensor Download PDF

Info

Publication number
JP6685043B2
JP6685043B2 JP2016084400A JP2016084400A JP6685043B2 JP 6685043 B2 JP6685043 B2 JP 6685043B2 JP 2016084400 A JP2016084400 A JP 2016084400A JP 2016084400 A JP2016084400 A JP 2016084400A JP 6685043 B2 JP6685043 B2 JP 6685043B2
Authority
JP
Japan
Prior art keywords
hydrogen
metal
thermoelectric
metal body
hydrogen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016084400A
Other languages
Japanese (ja)
Other versions
JP2017194339A (en
Inventor
徹 勝亦
徹 勝亦
宏明 相沢
宏明 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo University
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Priority to JP2016084400A priority Critical patent/JP6685043B2/en
Publication of JP2017194339A publication Critical patent/JP2017194339A/en
Application granted granted Critical
Publication of JP6685043B2 publication Critical patent/JP6685043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水素ガスを利用した内燃機関や燃料電池などにおいて、水素ガスの漏洩を検知するための熱電式水素センサに関する。   The present invention relates to a thermoelectric hydrogen sensor for detecting leakage of hydrogen gas in an internal combustion engine, a fuel cell or the like using hydrogen gas.

近年、環境保護問題や化石燃料の枯渇問題に対する観点から、クリーンで再生可能なエネルギー源として水素ガスが注目されている。一方で水素ガスは爆発性が高いため、安全に利用するための技術の確立が不可欠であり、漏洩した水素を高い精度で検知する水素センサの開発が望まれている。   In recent years, hydrogen gas has attracted attention as a clean and renewable energy source from the viewpoint of environmental protection problems and fossil fuel depletion problems. On the other hand, since hydrogen gas is highly explosive, establishment of technology for safe use is essential, and development of a hydrogen sensor that detects leaked hydrogen with high accuracy is desired.

従来の水素センサとして白金(Pt)触媒を使って水素を選択的に燃焼させる際の温度を検出する接触燃焼式の熱電式水素センサがある。   As a conventional hydrogen sensor, there is a catalytic combustion thermoelectric hydrogen sensor that detects the temperature when hydrogen is selectively burned using a platinum (Pt) catalyst.

燃焼型の熱電式水素センサは、水素ガスを燃焼させるためのPt触媒と燃焼反応が起きるための温度に加熱するためのヒーター、燃焼による温度上昇を検出するための温度センサで構成されている。温度センサとしては、Pt線の電気抵抗の温度変化を利用する白金温度計や、SiGeなどの半導体薄膜を用いた熱電素子が使用されている。当該水素センサは、水素ガスに接触するとあらかじめヒーターによって加熱されたPt触媒で大気中の酸素と水素ガスの間で燃焼が起こり、温度センサの温度が上昇するため、触媒付近に設置した温度センサの温度上昇によって水素の存在が検出される。   The combustion-type thermoelectric hydrogen sensor includes a Pt catalyst for burning hydrogen gas, a heater for heating to a temperature at which a combustion reaction occurs, and a temperature sensor for detecting a temperature rise due to combustion. As the temperature sensor, a platinum thermometer that utilizes the temperature change of the electric resistance of the Pt wire or a thermoelectric element that uses a semiconductor thin film such as SiGe is used. When the hydrogen sensor comes into contact with hydrogen gas, the Pt catalyst heated in advance by the heater causes combustion between oxygen and hydrogen gas in the atmosphere, and the temperature of the temperature sensor rises. The presence of hydrogen is detected by the temperature increase.

この燃焼型の熱電式水素センサは、原理が単純で小型化も可能である。しかし、酸素共存化でしか応答せず、また、安定な燃焼反応を実現するために100℃〜200℃以上の触媒温度が必要で、このために水素センサ全体を加熱する必要があるなどの問題点があった。また、水素の存在をセンサの温度上昇として検出するため、周囲の温度変化の影響を受けやすいなどの欠点もあった。   This combustion-type thermoelectric hydrogen sensor has a simple principle and can be miniaturized. However, it responds only in the coexistence of oxygen, and a catalyst temperature of 100 ° C. to 200 ° C. or higher is required to realize a stable combustion reaction, which requires heating of the entire hydrogen sensor. There was a point. Further, since the presence of hydrogen is detected as the temperature rise of the sensor, there is a drawback that it is easily affected by ambient temperature changes.

特開2009−42047号公報JP, 2009-42047, A

上述した従来のPt触媒を使った燃焼型の熱電式水素センサには、ヒーターを使って触媒を加熱し、水素ガスの燃焼のために必要な温度に保持する必要があるという問題があった。さらに、外部環境の温度により電圧測定値が変動して水素検知精度が低下してしまう、つまり外部温度変化の影響を受けやすいという欠点があった。   The above-mentioned combustion-type thermoelectric hydrogen sensor using the conventional Pt catalyst has a problem that it is necessary to heat the catalyst using a heater and maintain the temperature at a temperature required for combustion of hydrogen gas. Further, there is a drawback that the measured voltage value fluctuates depending on the temperature of the external environment and the hydrogen detection accuracy decreases, that is, it is easily affected by the change in the external temperature.

本発明は上記事情を鑑みてなされたものであり、簡易な構成で、外乱による影響が小さく、効率よく安定して水素検知動作を行う熱電式水素センサを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermoelectric hydrogen sensor that has a simple structure, is less affected by disturbance, and performs hydrogen detection operation efficiently and stably.

上記の課題を解決するための本発明の熱電式水素センサは、第1の金属で形成された第1金属体の一端と、前記第1の金属と異なる第2の金属で形成された第2金属体の一端とが、水素を吸蔵して発熱する水素吸蔵物質で形成された第1吸蔵体を挟んで接続されるとともに、前記第1金属体の他端と、前記第2金属体の他端とが、前記水素吸蔵物質で形成された第2吸蔵体を挟んで接続された熱電対と、前記第1吸蔵体が水素ガスと接触しないように前記第1吸蔵体の表面を覆う水素防護部材とを設け、前記第1吸蔵体と前記第2吸蔵体との温度差により熱電対で発生する熱起電力を検出することを特徴とする。   The thermoelectric hydrogen sensor of the present invention for solving the above-mentioned problems includes one end of a first metal body made of a first metal and a second metal body made of a second metal different from the first metal. One end of the metal body is connected with the first storage body formed of a hydrogen storage material that stores hydrogen and generates heat, and the other end of the first metal body is connected to the other end of the second metal body. A thermocouple having ends connected to each other with a second storage body formed of the hydrogen storage material interposed therebetween, and hydrogen protection covering the surface of the first storage body so that the first storage body does not come into contact with hydrogen gas. A member is provided, and the thermoelectromotive force generated in the thermocouple is detected based on the temperature difference between the first occlusion body and the second occlusion body.

また、本発明の他の形態の熱電式水素センサは、第1の金属で形成された第1金属体の一端と、前記第1の金属と異なる第2の金属で形成された第2金属体の一端とが接続されるとともに、前記第1金属体の他端と前記第2金属体の他端とが接続された熱電対の、それぞれの接続部分に、水素を吸蔵して発熱する水素吸蔵物質で形成された吸蔵体を設置し、いずれか一方の吸蔵体に水素ガスと接触しないように吸蔵体の表面を覆う水素防護部材を設けた、前記吸蔵体間の温度差により熱電対で発生する熱起電力を検出することを特徴とする。   A thermoelectric hydrogen sensor according to another aspect of the present invention is one end of a first metal body made of a first metal and a second metal body made of a second metal different from the first metal. Of the thermocouple in which one end of the thermocouple is connected to the other end of the first metal body and the other end of the second metal body is connected to Installed an occlusion body made of a substance, and provided either one of the occlusion bodies with a hydrogen protection member that covers the surface of the occlusion body so that it does not come into contact with hydrogen gas. A thermocouple is generated due to the temperature difference between the occlusion bodies. It is characterized by detecting the thermoelectromotive force that occurs.

また、本発明の他の形態の熱電式水素センサは、第1の金属で形成された第1金属体の一端と、前記第1の金属と異なる第2の金属で形成された第2金属体の一端とが接続されるとともに、前記第1金属体の他端と前記第2金属体の他端とが接続された熱電対の、いずれか一方の接続部分に、水素を吸蔵して発熱する水素吸蔵物質で形成された吸蔵体を設置し、前記接続部分間の温度差により熱電対で発生する熱起電力を検出することを特徴とする。   A thermoelectric hydrogen sensor according to another aspect of the present invention is one end of a first metal body made of a first metal and a second metal body made of a second metal different from the first metal. Is connected to one end of the first metal body, and the other end of the first metal body is connected to the other end of the second metal body, one of the connection portions of the thermocouple stores hydrogen to generate heat. It is characterized in that an occlusion body made of a hydrogen occlusion substance is installed, and a thermoelectromotive force generated by a thermocouple is detected by a temperature difference between the connecting portions.

本発明の熱電式水素センサによれば、簡易な構成で、外乱に影響されず、効率よく安定して水素検知動作を行うことが可能になる。   According to the thermoelectric hydrogen sensor of the present invention, it is possible to efficiently and stably perform the hydrogen detection operation with a simple configuration without being affected by disturbance.

本発明の熱電式水素センサ1の回路構成図である。It is a circuit block diagram of the thermoelectric hydrogen sensor 1 of this invention. 本発明の熱電式水素センサ2の回路構成図である。It is a circuit block diagram of the thermoelectric hydrogen sensor 2 of this invention. 本発明の熱電式水素センサ3の回路構成図である。It is a circuit block diagram of the thermoelectric hydrogen sensor 3 of this invention. 本発明の熱電式水素センサ4の回路構成図である。It is a circuit block diagram of the thermoelectric hydrogen sensor 4 of this invention. 本発明の一実施形態による熱電式水素センサ5の構成を示す全体図である。1 is an overall view showing a configuration of a thermoelectric hydrogen sensor 5 according to an embodiment of the present invention. (a)は、図5のA−A断面図であり、(b)は図5のB−B断面図である。5A is a sectional view taken along line AA of FIG. 5, and FIG. 6B is a sectional view taken along line BB of FIG. 本発明の一実施形態による熱電式水素センサに、所定時間間隔で水素ガスおよび窒素ガスを接触させたときの熱電対の電圧値を示すグラフである。3 is a graph showing a voltage value of a thermocouple when hydrogen gas and nitrogen gas are brought into contact with a thermoelectric hydrogen sensor according to an embodiment of the present invention at predetermined time intervals. 他の形態による熱電式水素センサ6の構成を示す全体図である。It is a whole figure which shows the structure of the thermoelectric hydrogen sensor 6 by another form. 他の形態による熱電式水素センサ7の構成を示す全体図である。It is the whole figure which shows the constitution of the thermoelectric hydrogen sensor 7 by other form. (a)は、図9のC−C断面図であり、(b)は図9のD−D断面図である。(A) is CC sectional drawing of FIG. 9, (b) is DD sectional drawing of FIG. 他の形態による熱電式水素センサ8の構成を示す全体図である。It is the whole figure which shows the constitution of thermoelectric hydrogen sensor 8 by other form. (a)は、図11のE−E断面図であり、(b)は図11のF−F断面図である。11A is a sectional view taken along line EE of FIG. 11, and FIG. 11B is a sectional view taken along line FF of FIG. 11. 他の形態による熱電式水素センサ9の構成を示す全体図である。It is the whole figure which shows the constitution of the thermoelectric hydrogen sensor 9 by other form.

本発明の一実施形態として、2種類の金属(または合金)の端部同士を、それぞれ水素吸蔵物質であるパラジウム(Pd)またはPd合金を挟んで接続して構成する熱電対を用いた熱電式水素センサについて説明する。当該熱電式水素センサに用いる2種類の金属(または合金)は、その組み合わせごとに固有の値を有する相対ゼーベック係数(熱電対の熱起電力)が大きい程、感度の高い水素センサを構成することができる。高感度の水素センサを構成するための熱電対の金属(または合金)の組み合わせとしては例えば、白金―白金ロジウム、鉄−コンスタンタン、銅−コンスタンタン、クロメルーコンスタンタン、クロメル−アルメル等があり、本実施形態においては化学的耐久性および温度安定性が高い白金(Pt)−金(Au)を用いた。熱電対として使用する金属体としては、他にも、Rh、Fe、Ni、Cu、Pb、Pdの単体または、合金を使用することが可能である。また、水素吸蔵物質であるパラジウム(Pd)またはPd合金としては、線状、棒状、板状あるいは、ペースト状のパラジウム(Pd)またはPd合金が使用可能である。   As an embodiment of the present invention, a thermoelectric type using a thermocouple configured by connecting ends of two kinds of metals (or alloys) with each other sandwiching palladium (Pd) or Pd alloy, which is a hydrogen storage material, between them. The hydrogen sensor will be described. The two types of metals (or alloys) used for the thermoelectric hydrogen sensor should have a higher sensitivity as the relative Seebeck coefficient (thermoelectromotive force of the thermocouple) having a unique value for each combination increases. You can Examples of thermocouple metal (or alloy) combinations for forming a high-sensitivity hydrogen sensor include platinum-platinum rhodium, iron-constantan, copper-constantan, chromel-constantan, and chromel-alumel. In the form, platinum (Pt) -gold (Au) having high chemical durability and temperature stability was used. In addition, as the metal body used as the thermocouple, it is possible to use a simple substance of Rh, Fe, Ni, Cu, Pb, or Pd or an alloy thereof. As the palladium (Pd) or Pd alloy, which is a hydrogen storage material, linear, rod-shaped, plate-shaped, or paste-shaped palladium (Pd) or Pd alloy can be used.

本実施形態による熱電式水素センサ1は、図1のように、第1金属体11の一端と、第1金属体11と異なる金属で形成された第2金属体の一端12−1とを、水素を吸蔵して発熱する水素吸蔵物質であるPdまたはPd合金で形成された第1吸蔵体13−1を挟んで接点15−1および接点15−2で接続するとともに、第1金属体11の他端と、第2金属体の他端12−2とを、Pdで形成された第2吸蔵体13−2を挟んで接点15−3および接点15−4で接続して熱電対として構成した回路10−1と、第1吸蔵体13−1に水素ガスが接触しないように第1吸蔵体13−1の表面を覆う水素防護フィルム20と、回路10−1内の第2金属体12−1内の接点15−5および第2金属体12−2内の接点15−6に導線14−1および14−2で接続し、回路10−1内の電圧を計測する電圧計30を備える。   As shown in FIG. 1, the thermoelectric hydrogen sensor 1 according to the present embodiment has one end of the first metal body 11 and one end 12-1 of the second metal body formed of a metal different from the first metal body 11, The first storage body 13-1 formed of Pd or a Pd alloy, which is a hydrogen storage material that stores hydrogen and generates heat, is connected with the contact 15-1 and the contact 15-2 with the first storage body 13-1 interposed therebetween, and The other end and the other end 12-2 of the second metal body are connected as a thermocouple by a contact 15-3 and a contact 15-4 with a second storage 13-2 made of Pd interposed therebetween. The circuit 10-1, the hydrogen protective film 20 covering the surface of the first storage 13-1 so that the hydrogen gas does not contact the first storage 13-1, and the second metal body 12-in the circuit 10-1. The lead wire 14-1 is connected to the contact point 15-5 in the first metal body 1 and the contact point 15-6 in the second metal body 12-2. Connect the pre 14-2 comprises a voltmeter 30 for measuring the voltage in the circuit 10-1.

この回路の構成は、PdまたはPd合金の水素吸蔵による発熱を検出できれば良いため、第1吸蔵体13−1および13−2を、図1のように異種金属と電気的な接点を形成して回路10−1中に設置する他、図2の熱電式水素センサ2および図3の熱電式水素センサ3のように回路10−2、10−3中に組み込まずに構成してもよい。   Since the circuit configuration only needs to be able to detect heat generation due to hydrogen storage of Pd or Pd alloy, the first storage bodies 13-1 and 13-2 are formed by forming electrical contacts with dissimilar metals as shown in FIG. Besides being installed in the circuit 10-1, the thermoelectric hydrogen sensor 2 of FIG. 2 and the thermoelectric hydrogen sensor 3 of FIG. 3 may be configured without being incorporated in the circuits 10-2 and 10-3.

図2の熱電式水素センサ2は、第1金属体11の一端と第2金属体の一端12−1とを接点15−7で接続するとともに第1金属体11の他端と第2金属体の他端12−2とを接点15−8で接続した回路10−2と、接点15−7の近傍に設置した第1吸蔵体13−1と、接点15−8の近傍に設置した第2吸蔵体13−2と、第1吸蔵体13−1に設けた水素防護フィルム20と、回路10−2内に回路10−1と同様に接続した電圧計30とを備える。   In the thermoelectric hydrogen sensor 2 of FIG. 2, one end of the first metal body 11 and one end 12-1 of the second metal body are connected by a contact point 15-7, and the other end of the first metal body 11 and the second metal body are connected. Circuit 10-2 in which the other end 12-2 of the contact is connected by a contact point 15-8, a first occlusion body 13-1 installed in the vicinity of the contact point 15-7, and a second storage object installed in the vicinity of the contact point 15-8. An occlusion body 13-2, a hydrogen protection film 20 provided on the first occlusion body 13-1, and a voltmeter 30 connected in the circuit 10-2 in the same manner as the circuit 10-1 are provided.

また図3の熱電式水素センサ3は、第1金属体11の一端と第2金属体の一端12−1とを接点15−7で接続するとともに第1金属体11の他端と第2金属体の他端12−2とを接点15−8で接続した回路10−3と、接点15−8の近傍にのみ設置した吸蔵体13−3と、回路10−3に回路10−1と同様に接続した電圧計30とを備える。   Further, in the thermoelectric hydrogen sensor 3 of FIG. 3, one end of the first metal body 11 and one end 12-1 of the second metal body are connected by a contact 15-7, and the other end of the first metal body 11 and the second metal body are connected. The circuit 10-3 in which the other end 12-2 of the body is connected to the contact point 15-8, the occlusion body 13-3 installed only in the vicinity of the contact point 15-8, and the circuit 10-3 is similar to the circuit 10-1. And a voltmeter 30 connected to.

本発明の熱電式水素センサは、図1、2、3のように、お互いに熱起電力を打ち消すように、電流方向に対して逆向きに2種類の金属11、12(12−1、12−2)を直列に接続して熱電対が構成される回路10−1、10−2、または10−3と、水素を吸蔵して発熱するPdまたはPd合金で形成された吸蔵体13(13−1、13−2、または13−3)とからなる。回路10−1、10−2、10−3の中の同数の接点に、異種金属が電流方向に対して逆向きに接続されているため、センサ周辺の温度が変動しても、それぞれの接点の熱起電力が打ち消しあうことになる。従って、この回路構成を使えば、水素吸蔵による温度変化以外の原因による熱起電力が相殺されるため、水素吸蔵による温度変化による熱起電力差のみを高感度に検出することができる。簡単な回路で水素吸蔵に伴う温度変化のみを外乱の影響無しに高感度に検出可能である。   The thermoelectric hydrogen sensor of the present invention, as shown in FIGS. 1, 2, and 3, has two kinds of metals 11, 12 (12-1, 12) opposite to the current direction so as to cancel out thermoelectromotive force. -2) is connected in series to form a thermocouple, and a storage element 13 (13) formed of Pd or a Pd alloy that occludes hydrogen to generate heat is stored. -1, 13-2, or 13-3). Since different kinds of metals are connected to the same number of contacts in the circuits 10-1, 10-2, and 10-3 in the opposite direction to the current direction, even if the temperature around the sensor fluctuates The thermoelectromotive force of will cancel each other out. Therefore, if this circuit configuration is used, the thermoelectromotive forces due to causes other than the temperature change due to hydrogen storage are canceled out, so that only the thermoelectromotive force difference due to temperature change due to hydrogen storage can be detected with high sensitivity. With a simple circuit, it is possible to detect only the temperature change due to hydrogen absorption with high sensitivity without the influence of disturbance.

また、図4の熱電式水素センサ4は、図3の熱電式水素センサ3と同様に第1金属体11−1の一端と第2金属体の一端12−1とを接点15−7で接続するとともに第1金属体11−1の他端と第2金属体12−3の一端とを接点15−8で接続し、さらに第2金属体12−3の他端を第1金属体11−2の一端と接点15−9で接続させてこの接点15−9を接点15−7の近傍に配置し、第1金属体11−2の他端を第2金属体12−4の一端と接点15−10で接続させてこの接点15−10を接点15−8の近傍に配置し、第2金属体12−4の他端を第1金属体11−3の一端と接点15−11で接続させてこの接点15−11を接点15−7および15−9の近傍に配置し、第1金属体11−3の他端を第2金属体12−5の一端と接点15−12で接続させてこの接点15−12を接点15−8および15−10の近傍に配置し、第2金属体12−5の他端に接点15−6で接続した導線14−2と、第2金属体12−1の他端に接点15−5で接続した導線14−1とに電圧計30を接続させることで、複数個の熱電対が直列に接続された構成の回路10−4と、接点15−8、15−10、および15−12の近傍に設置した吸蔵体13−3とを備える。つまり、複数の第1金属体11−1、11−2、11−3と、複数の第2金属体12−1、12−3、12−4、12−5とを交互に接続し、先頭の金属体と末端の金属体とを接続して閉回路とし、電流方向に対して第2金属体が上流にあり第1金属体が下流にある複数の接点15−7、15−9、および15−11を互いに近接させて第1の接点群17−1として配置し、第1金属体が上流にあり第2金属体が下流にある複数の接点15−8、15−10、および15−12を互いに近接させて第2の接点群17−2として配置し、いずれか一方の接点群(図4では接点群17−2)の近傍に吸蔵体13−3を設置している。   Further, the thermoelectric hydrogen sensor 4 of FIG. 4 connects one end of the first metal body 11-1 and one end 12-1 of the second metal body with a contact point 15-7 like the thermoelectric hydrogen sensor 3 of FIG. In addition, the other end of the first metal body 11-1 and one end of the second metal body 12-3 are connected by a contact point 15-8, and the other end of the second metal body 12-3 is connected to the first metal body 11-. 2 is connected with one end of the contact 15-9 and the contact 15-9 is arranged in the vicinity of the contact 15-7, and the other end of the first metal body 11-2 contacts with one end of the second metal body 12-4. The contact point 15-10 is arranged near the contact point 15-8 by connecting with the contact point 15-10, and the other end of the second metal body 12-4 is connected to one end of the first metal body 11-3 by the contact point 15-11. Then, the contact 15-11 is arranged in the vicinity of the contacts 15-7 and 15-9, and the other end of the first metal body 11-3 is connected to the second metal body 12-5. A conductor 14 which is connected to an end by a contact 15-12, is arranged in the vicinity of the contacts 15-8 and 15-10, and is connected to the other end of the second metal body 12-5 by a contact 15-6. -2 and the conducting wire 14-1 connected to the other end of the second metal body 12-1 by the contact point 15-5, the voltmeter 30 is connected, so that a plurality of thermocouples are connected in series. The circuit 10-4 and the occlusion body 13-3 installed near the contacts 15-8, 15-10, and 15-12 are provided. That is, the plurality of first metal bodies 11-1, 11-2, 11-3 and the plurality of second metal bodies 12-1, 12-3, 12-4, 12-5 are alternately connected, and A plurality of contacts 15-7, 15-9, in which the second metal body is upstream and the first metal body is downstream with respect to the current direction, by connecting the metal body of FIG. 15-11 are arranged close to each other as a first contact group 17-1, and a plurality of contacts 15-8, 15-10, and 15- in which the first metal body is upstream and the second metal body is downstream 12 are arranged close to each other as a second contact group 17-2, and an occlusion body 13-3 is installed in the vicinity of either one of the contact groups (contact group 17-2 in FIG. 4).

このように構成することで、水素吸蔵による温度変化以外の原因による熱起電力が相殺されるとともに、水素吸蔵による温度変化による熱起電力差が加算され、熱起電力差が増幅されるため高感度に検出することができる。   With this configuration, the thermoelectromotive forces due to causes other than the temperature change due to hydrogen storage are canceled out, and the thermoelectromotive force difference due to the temperature change due to hydrogen storage is added, and the thermoelectromotive force difference is amplified, so Can be detected with sensitivity.

〈一実施形態による熱電式水素センサ〉
本発明の一実施形態による熱電式水素センサとして、図1の熱電式水素センサの具体例である熱電式水素センサ5の構成について、図5および図6を参照して説明する。図5は、熱電式水素センサ5の構成を示す全体図であり、図6(a)は、図5のA−A断面図であり、図6(b)は、図5のB−B断面図である。
<Thermoelectric hydrogen sensor according to one embodiment>
As a thermoelectric hydrogen sensor according to an embodiment of the present invention, a configuration of a thermoelectric hydrogen sensor 5 which is a specific example of the thermoelectric hydrogen sensor of FIG. 1 will be described with reference to FIGS. 5 and 6. 5 is an overall view showing the configuration of the thermoelectric hydrogen sensor 5, FIG. 6 (a) is a sectional view taken along line AA of FIG. 5, and FIG. 6 (b) is a sectional view taken along line BB of FIG. It is a figure.

熱電式水素センサ5は、コの字型の形状を有する第1金属体としてのPt箔111の一端と、第2金属体の一端を構成する第1Au箔121−1とが、Pdで形成された第1吸蔵体としての第1Pd体13−1を挟んで接続されるとともに、Pt箔111の他端と、第2金属体の他端を構成する第2Au箔121−2とが、Pdで形成された第2吸蔵体としての第2Pd体13−2を挟んで接続されている。そして、第1Au箔121−1と第2Au箔121−2とが、導線14−1および14−2で電圧計30に接続されることで、閉回路10−5が構成されている。熱電式水素センサ5では、第1金属体としてコの字型の形状を有する白金箔111を用いたが、第1金属体の一端と他端とが第2金属体と電気的に接続されていれば、どのような形状でもかまわない。また、熱電式水素センサ5では、第1Pd体および第2Pd体として、板状のPd体を使用した。   In the thermoelectric hydrogen sensor 5, one end of a Pt foil 111 as a first metal body having a U-shape and a first Au foil 121-1 constituting one end of a second metal body are formed of Pd. Also, the other end of the Pt foil 111 and the second Au foil 121-2 forming the other end of the second metal body are connected with the first Pd body 13-1 as the first occlusion body sandwiched therebetween by Pd. The formed second Pd body 13-2 as the second occlusion body is sandwiched and connected. And the 1st Au foil 121-1 and the 2nd Au foil 121-2 are connected to the voltmeter 30 by the conductors 14-1 and 14-2, and the closed circuit 10-5 is comprised. In the thermoelectric hydrogen sensor 5, the platinum foil 111 having a U-shape is used as the first metal body, but one end and the other end of the first metal body are electrically connected to the second metal body. So long as it has any shape. In the thermoelectric hydrogen sensor 5, plate-shaped Pd bodies were used as the first Pd body and the second Pd body.

上述した第1Pd体13−1と第2Pd体13−2とは、互いに乖離した状態で基板16上に固定して設置されており、第1Pd体13−1は、水素ガスが接触しないようにその表面が水素防護フィルム20で覆われている。また、電圧計30には、警報器40が接続されている。   The first Pd body 13-1 and the second Pd body 13-2 described above are fixedly installed on the substrate 16 in a state of being separated from each other, and the first Pd body 13-1 is arranged so that hydrogen gas does not come into contact therewith. The surface is covered with a hydrogen protection film 20. An alarm device 40 is connected to the voltmeter 30.

本実施形態による熱電式水素センサ1の第1Pd体13−1および第2Pd体13−2は、水素を選択的に吸蔵して発熱するPdまたはPd合金を用いて形成される。また本実施形態において、導線14−1、14−2は銅(Cu)で形成されるが、使用する熱電対に対応した補償導線を使用することもできる。導線14−1と第1Au箔121−1との接点と、導線14−2と第2Au箔121−2との接点とは同一温度であり、これらの接点には、回路内で2種の金属が電流方向に対して逆向きに接続されている(第1Au箔121−1は導線14−1の上流側に接続され、第2Au箔121−2は導線14−2の下流側に接続されている)ため、発生した熱起電力が相殺され、水素センシングへの影響が少なく好適に用いることができる。   The first Pd body 13-1 and the second Pd body 13-2 of the thermoelectric hydrogen sensor 1 according to the present embodiment are formed by using Pd or a Pd alloy that selectively absorbs hydrogen to generate heat. In addition, in the present embodiment, the lead wires 14-1 and 14-2 are formed of copper (Cu), but a compensating lead wire corresponding to the thermocouple used can also be used. The contact point between the conductor wire 14-1 and the first Au foil 121-1 and the contact point between the conductor wire 14-2 and the second Au foil 121-2 have the same temperature, and these contact points have two kinds of metal in the circuit. Are connected in the opposite direction to the current direction (the first Au foil 121-1 is connected to the upstream side of the conductive wire 14-1, and the second Au foil 121-2 is connected to the downstream side of the conductive wire 14-2. Therefore, the generated thermoelectromotive force is canceled out, and there is little influence on hydrogen sensing, and it can be suitably used.

また本実施形態による熱電式水素センサ5内の回路10−5では、第1Pd体13−1と第2Pd体13−2とが、それぞれの両端部にPt箔とAu箔とが電流方向に対して逆向きに設けられた状態で直列に接続されて、閉回路が形成されている。このように回路が形成されることで、Pt箔111と第1Pd体13−1との接点、第1Pd体13−1と第1Au箔121−1との接点、および第1Au箔121−1と導線14−1との接点で発生する起電力は、逆相に接続された、Pt箔111と第2Pd体13−2との接点、第2Pd体13−2と第2Au箔121−2との接点、および第2Au箔121−2と導線14−2との接点で発生する起電力により相殺される。そのため、水素ガスが接触していないときには回路10−5に起電力が発生せず、電圧計30による計測値は0Vになる。   Further, in the circuit 10-5 in the thermoelectric hydrogen sensor 5 according to the present embodiment, the first Pd body 13-1 and the second Pd body 13-2 have Pt foil and Au foil at both ends thereof in the current direction. And are connected in series in a state where they are provided in the opposite direction to form a closed circuit. By forming the circuit in this manner, the contact point between the Pt foil 111 and the first Pd body 13-1, the contact point between the first Pd body 13-1 and the first Au foil 121-1 and the first Au foil 121-1. The electromotive force generated at the contact point with the conducting wire 14-1 is the contact point between the Pt foil 111 and the second Pd body 13-2 and the second Pd body 13-2 and the second Au foil 121-2 connected in reverse phase. It is offset by the electromotive force generated at the contact point and the contact point between the second Au foil 121-2 and the conducting wire 14-2. Therefore, when the hydrogen gas is not in contact, no electromotive force is generated in the circuit 10-5, and the value measured by the voltmeter 30 is 0V.

このように、回路10−5内の接点で発生する起電力は相殺されることから、回路10−5に用いる金属体にPd体を挟んだ回路構成として接点の数が増えても、接点の起電力は水素センシングに影響しない。そのため、回路を構築する際にPd体の絶縁状態を意識する必要がなく、また、起電力の大小よりも化学的安定性を重視して回路10−5に用いる金属材料を選択することができる。   As described above, since the electromotive forces generated at the contacts in the circuit 10-5 cancel each other out, even if the number of contacts increases even if the number of contacts increases in the circuit configuration in which the Pd body is sandwiched between the metal bodies used in the circuit 10-5. The electromotive force does not affect hydrogen sensing. Therefore, it is not necessary to be aware of the insulation state of the Pd body when constructing the circuit, and the metal material used for the circuit 10-5 can be selected by placing importance on the chemical stability rather than the magnitude of the electromotive force. .

上述したように構成された熱電式水素センサ5に水素ガスが接触すると、水素防護フィルム20で覆われた第1Pd体13−1では水素が吸蔵されないため温度が変化せず、第2Pd体13−2では水素ガスが吸蔵されて温度が上昇し、第1Pd体13−1と第2Pd体13−2との間で温度差が生じて回路10−5に起電力が発生する。回路10−5に起電力が発生すると電圧計30による計測値が上昇し、所定値を超えると水素ガスを検知したことを報知するための警報情報が警報器40から出力される。   When hydrogen gas comes into contact with the thermoelectric hydrogen sensor 5 configured as described above, the temperature does not change because the first Pd body 13-1 covered with the hydrogen protection film 20 does not store hydrogen, and the second Pd body 13- In 2, the hydrogen gas is occluded and the temperature rises, causing a temperature difference between the first Pd body 13-1 and the second Pd body 13-2 and generating an electromotive force in the circuit 10-5. When an electromotive force is generated in the circuit 10-5, the value measured by the voltmeter 30 increases, and when it exceeds a predetermined value, alarm information for notifying that hydrogen gas has been detected is output from the alarm device 40.

このように動作することにより、本実施形態による熱電式水素センサ5は、接点補償を必要とせず、また接点の絶縁状態を意識する必要のない簡易な構成で、外乱による影響が小さく、効率よく安定して、感度のよい水素検知動作を行うことができる。   By operating in this manner, the thermoelectric hydrogen sensor 5 according to the present embodiment has a simple structure that does not require contact compensation and does not need to be aware of the insulation state of the contact, and is less affected by disturbance and efficiently. Stable and sensitive hydrogen detection operation can be performed.

上述した熱電式水素センサ5に、所定濃度の水素ガスと窒素ガスとを交互に5分間隔で接触させたときの回路10の電圧値の変化について調べたところ、図7に示す特性が得られた。図7のグラフの縦軸は経過時間(min)を示し、横軸は計測された起電力(mV)を示す。図7に示すように、水素ガスを接触させた時刻(t=5, 15, 25)の直後には第2Pd体13−2の水素吸蔵による発熱で起電力が生じて電圧計30で計測される電圧値が上昇した。また、窒素ガスを接触させた時刻(t=10, 20, 30)の直後には第2Pd体13−2の水素放出による吸熱により電圧値が下降した。水素ガスを最初に接触させたとき(t=5)に吸蔵された水素は窒素ガスの接触によっても完全に放出しきれないため、水素を2回目以降に接触させたとき(t=15, 25)には、最初に接触させたときよりも電圧値の上昇は小さくなったが、水素ガスの検知は可能であることが分かった。   When the thermoelectric hydrogen sensor 5 was contacted with a predetermined concentration of hydrogen gas and nitrogen gas alternately at intervals of 5 minutes, the change in the voltage value of the circuit 10 was examined, and the characteristics shown in FIG. 7 were obtained. It was The vertical axis of the graph in FIG. 7 shows the elapsed time (min), and the horizontal axis shows the measured electromotive force (mV). As shown in FIG. 7, immediately after the time (t = 5, 15, 25) when the hydrogen gas was brought into contact, electromotive force was generated due to heat generation due to hydrogen absorption of the second Pd body 13-2, and the voltage was measured by the voltmeter 30. Voltage value has risen. Immediately after the time (t = 10, 20, 30) at which the nitrogen gas was brought into contact, the voltage value decreased due to the heat absorption due to the hydrogen release of the second Pd body 13-2. When hydrogen gas is contacted for the first time (t = 5), hydrogen absorbed cannot be completely released even by contact with nitrogen gas, so when hydrogen is contacted for the second time or later (t = 15, 25 It was found that hydrogen gas could be detected although the increase in the voltage value was smaller than that at the first contact.

〈他の実施形態による熱電式水素センサ〉
また、他の実施形態として図8に示す熱電式水素センサ6のように、第1Pd体13−1の両端に設けられたPt箔111と第1Au箔121−1とを接続して構成された閉回路の電圧を計測する電圧計31と、第2Pd体13−2の両端に設けられたPt箔111と第2Au箔121−2とを接続して構成された閉回路の電圧を計測する電圧計32とをさらに設置し、それぞれの計測値を監視することで、回路10−6内のいずれかの箇所での断線等が起こったときに、エラー検出が可能になるように構成してもよい。
<Thermoelectric hydrogen sensor according to another embodiment>
In addition, as another embodiment, like the thermoelectric hydrogen sensor 6 shown in FIG. 8, the Pt foil 111 and the first Au foil 121-1 provided at both ends of the first Pd body 13-1 are connected to each other. A voltmeter 31 for measuring the voltage of the closed circuit, and a voltage for measuring the voltage of the closed circuit configured by connecting the Pt foil 111 and the second Au foil 121-2 provided at both ends of the second Pd body 13-2. By further installing a total of 32 and monitoring respective measured values, it is possible to detect an error when a disconnection or the like occurs at any place in the circuit 10-6. Good.

また、上述した熱電式水素センサ2の具体例である熱電式水素センサ6について、図9および10を参照して説明する。図9は、熱電式水素センサ7の構成を示す全体図であり、図10(a)は、図9のC−C断面図であり、図10(b)は、図9のD−D断面図である。図9に示す熱電式水素センサ7のように、コの字型に形成した第1金属体112の両端に、第2金属体122−1および122−2を直接接続して熱電対を構成した回路10−7中の接続部それぞれに、表面が水素防護フィルムで覆われている第1Pd体13−1および表面が水素防護フィルムで覆われていない第2Pd体13−2を接続するようにしてもよい。   A thermoelectric hydrogen sensor 6, which is a specific example of the thermoelectric hydrogen sensor 2 described above, will be described with reference to FIGS. 9 and 10. 9 is an overall view showing the configuration of the thermoelectric hydrogen sensor 7, FIG. 10 (a) is a CC sectional view of FIG. 9, and FIG. 10 (b) is a DD sectional view of FIG. It is a figure. As in the thermoelectric hydrogen sensor 7 shown in FIG. 9, the second metal bodies 122-1 and 122-2 are directly connected to both ends of the first metal body 112 formed in a U-shape to form a thermocouple. The first Pd body 13-1 whose surface is covered with a hydrogen protective film and the second Pd body 13-2 whose surface is not covered with a hydrogen protective film are connected to each of the connection parts in the circuit 10-7. Good.

また図11に示すように、第1金属体112および第2金属体122−1、122−2の形状を変形させて熱電式水素センサ8を構成することも可能である。熱電式水素センサ8は、第1金属体112をコの字型ではなく、基板16の一側に寄せた形状とし、第2金属体122−1、122−2をこれに直接接続させている。図12は、図11のE−E断面図であり、図12(b)は、図11のF−F断面図である。
図9〜12では、第1金属体112としてコンスタンタンを使用し、第2金属体122−1および122−2として、銅(Cu)を使用した回路を示した。このように構成することにより、回路内における異なる金属間の接点数が少なくなり、各接点で発生する起電力の影響が減少して全体としての熱電力水素センサの検出精度がさらに向上する。
Further, as shown in FIG. 11, the thermoelectric hydrogen sensor 8 can be configured by deforming the shapes of the first metal body 112 and the second metal bodies 122-1 and 122-2. The thermoelectric hydrogen sensor 8 has a shape in which the first metal body 112 is not U-shaped but is closer to one side of the substrate 16, and the second metal bodies 122-1 and 122-2 are directly connected thereto. . 12 is a sectional view taken along line EE of FIG. 11, and FIG. 12B is a sectional view taken along line FF of FIG.
9 to 12 show circuits in which constantan is used as the first metal body 112 and copper (Cu) is used as the second metal bodies 122-1 and 122-2. With this configuration, the number of contacts between different metals in the circuit is reduced, the influence of electromotive force generated at each contact is reduced, and the detection accuracy of the thermoelectric hydrogen sensor as a whole is further improved.

また、図9および図11に示す熱電式水素センサにおいて、表面が水素防護フィルム20で覆われているPd体13−1を設置せずに、図13に示すように、表面が水素防護フィルムで覆われていないPd体13−3のみを設置するようにしてもよい。このように構成することにより、熱電式水素センサの部品点数がさらに少なくなり、センサの小型化が可能になる。   In addition, in the thermoelectric hydrogen sensor shown in FIGS. 9 and 11, the Pd body 13-1 whose surface is covered with the hydrogen protection film 20 is not installed, but as shown in FIG. You may make it install only the Pd body 13-3 which is not covered. With this configuration, the number of components of the thermoelectric hydrogen sensor can be further reduced, and the sensor can be downsized.

1〜9 熱電式水素センサ
10 回路
11、11−1〜11−3 第1金属体
12−1〜12−5 第2金属体
13−1 第1Pd体(第1吸蔵体)
13−2 第2Pd体(第2吸蔵体)
14−1、14−2 導線
15−1〜15−12 接点
16 基板
20 水素防護フィルム
30、31、32 電圧計
40 警報器
111 Pt箔(第1金属体)
121−1 第1Au箔(第2金属体)
121−2 第2Au箔(第2金属体)
1-9 Thermoelectric hydrogen sensor 10 Circuit 11, 11-1 to 11-3 1st metal body 12-1 to 12-5 2nd metal body 13-1 1st Pd body (1st storage body)
13-2 Second Pd body (second storage body)
14-1, 14-2 Conductive wires 15-1 to 15-12 Contact point 16 Substrate 20 Hydrogen protective film 30, 31, 32 Voltmeter 40 Alarm device 111 Pt foil (first metal body)
121-1 First Au foil (second metal body)
121-2 Second Au foil (second metal body)

Claims (5)

第1の金属で形成された第1金属体の一端と、前記第1の金属と異なる第2の金属で形成された第2金属体の一端とが、水素を吸蔵して発熱する水素吸蔵物質で形成された第1吸蔵体を挟んで接続されるとともに、前記第1金属体の他端と、前記第2金属体の他端とが、前記水素吸蔵物質で形成された第2吸蔵体を挟んで接続された熱電対と、前記第1吸蔵体が水素ガスと接触しないように前記第1吸蔵体の表面を覆う水素防護部材とを設け、前記第1吸蔵体と前記第2吸蔵体との温度差により前記熱電対で発生する熱起電力を検出することを特徴とする熱電式水素センサ。   A hydrogen storage material in which one end of a first metal body formed of a first metal and one end of a second metal body formed of a second metal different from the first metal store hydrogen and generate heat. And the other end of the first metal body and the other end of the second metal body form a second storage body formed of the hydrogen storage material. A thermocouple that is sandwiched and connected, and a hydrogen protection member that covers the surface of the first storage body so that the first storage body does not come into contact with hydrogen gas are provided, and the first storage body and the second storage body are provided. A thermoelectric hydrogen sensor, wherein the thermoelectromotive force generated in the thermocouple is detected by the temperature difference between the two. 第1の金属で形成された第1金属体の一端と、前記第1の金属と異なる第2の金属で形成された第2金属体の一端とが接続されるとともに、前記第1金属体の他端と前記第2金属体の他端とが接続された熱電対のそれぞれの接続部分に、水素を吸蔵して発熱する水素吸蔵物質で形成された吸蔵体を設置し、いずれか一方の吸蔵体に水素ガスと接触しないように吸蔵体の表面を覆う水素防護部材を設け、前記吸蔵体間の温度差により前記熱電対で発生する熱起電力を検出することを特徴とする熱電式水素センサ。   One end of the first metal body formed of the first metal and one end of the second metal body formed of the second metal different from the first metal are connected, and An occlusion body made of a hydrogen occlusion substance that absorbs hydrogen to generate heat is installed at each connection portion of the thermocouples to which the other end and the other end of the second metal body are connected, and either one of the occlusions is stored. A thermoelectric hydrogen sensor characterized in that a hydrogen protective member is provided on the body so as to cover the surface of the occlusion body so as not to come into contact with hydrogen gas, and the thermoelectromotive force generated in the thermocouple is detected by the temperature difference between the occlusion bodies. . 前記熱起電力を検出するために、前記熱電対内の電圧を計測する電圧計を設置し、
前記電圧計で計測された計測値が所定値を超えたときに、水素が検出されたことを検知することを特徴とする請求項1または2に記載の熱電式水素センサ。
In order to detect the thermoelectromotive force, a voltmeter that measures the voltage in the thermocouple is installed,
The thermoelectric hydrogen sensor according to claim 1 or 2, wherein the detection of hydrogen is detected when the measured value measured by the voltmeter exceeds a predetermined value.
前記吸蔵体は、パラジウムまたはパラジウム合金で形成されていることを特徴とする請求項1〜3いずれか1項に記載の熱電式水素センサ。   The thermoelectric hydrogen sensor according to claim 1, wherein the storage body is formed of palladium or a palladium alloy. 前記第1金属体および前記第2金属体は、Pt、Rh、Fe、Ni、Cu、Au、Pb、Pdの単体または、合金で形成されていることを特徴とする請求項1〜4いずれか1項に記載の熱電式水素センサ。   The first metal body and the second metal body are formed of Pt, Rh, Fe, Ni, Cu, Au, Pb, or Pd alone or in an alloy. The thermoelectric hydrogen sensor according to item 1.
JP2016084400A 2016-04-20 2016-04-20 Thermoelectric hydrogen sensor Active JP6685043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084400A JP6685043B2 (en) 2016-04-20 2016-04-20 Thermoelectric hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084400A JP6685043B2 (en) 2016-04-20 2016-04-20 Thermoelectric hydrogen sensor

Publications (2)

Publication Number Publication Date
JP2017194339A JP2017194339A (en) 2017-10-26
JP6685043B2 true JP6685043B2 (en) 2020-04-22

Family

ID=60154772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084400A Active JP6685043B2 (en) 2016-04-20 2016-04-20 Thermoelectric hydrogen sensor

Country Status (1)

Country Link
JP (1) JP6685043B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022230121A1 (en) * 2021-04-28 2022-11-03
JP7129580B1 (en) * 2022-04-11 2022-09-01 東京瓦斯株式会社 Hydrogen gas concentration meter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222900A (en) * 1979-06-25 1980-09-16 The Babcock & Wilcox Company Method of activating a palladium-silver alloy
JP4332612B2 (en) * 2003-12-22 2009-09-16 英弘精機株式会社 Gas sensor with thermopile pattern
US9261472B2 (en) * 2010-09-09 2016-02-16 Tohoku Gakuin Specified gas concentration sensor

Also Published As

Publication number Publication date
JP2017194339A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6685043B2 (en) Thermoelectric hydrogen sensor
JP6146795B2 (en) Hydrogen gas sensor using hydrogen absorbing film containing oxygen
JP6910471B2 (en) Thermocouple device and temperature measurement method
CN101504384A (en) Gas sensor chip and gas sensor provided therewith
JP4571665B2 (en) Hydrogen gas sensor
JP6514875B2 (en) Method of driving hydrogen gas sensor device and hydrogen gas sensor device using the same
JP2008111822A (en) Gas sensor element and gas concentration measuring device using the same
Roslyakov et al. A thin-film platform for chemical gas sensors
US4141955A (en) Combustible concentration analyzer
El Matbouly et al. Assessment of commercial micro-machined hydrogen sensors performance metrics for safety sensing applications
JP2003156461A (en) Combustible gas sensor
JP6243040B2 (en) Sensor for detecting oxidizable gas
KR20160063092A (en) A gas sensing module and that of detection method for gases
JP7137283B2 (en) Combustible gas sensor, detector and method of detecting combustible gas
KR101553796B1 (en) Transistor typed hydrogen detecting sensor
JP4817305B2 (en) Combustible gas sensor and combustible gas detector
JP2006514278A5 (en)
JP2013160523A (en) Gas detector ans driving method thereof
US7131768B2 (en) Extended temperature range EMF device
JP6679789B1 (en) MEMS type semiconductor gas detector
JP6213382B2 (en) measuring device
JP2004165233A (en) Seebeck coefficient measuring device
JP7187139B2 (en) Catalytic combustion gas sensor
JP2006071362A (en) Combustible gas sensor
JP4332612B2 (en) Gas sensor with thermopile pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R150 Certificate of patent or registration of utility model

Ref document number: 6685043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250