JP4571665B2 - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor Download PDF

Info

Publication number
JP4571665B2
JP4571665B2 JP2007504568A JP2007504568A JP4571665B2 JP 4571665 B2 JP4571665 B2 JP 4571665B2 JP 2007504568 A JP2007504568 A JP 2007504568A JP 2007504568 A JP2007504568 A JP 2007504568A JP 4571665 B2 JP4571665 B2 JP 4571665B2
Authority
JP
Japan
Prior art keywords
heating resistor
hydrogen gas
platinum
gas sensor
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007504568A
Other languages
Japanese (ja)
Other versions
JPWO2006090433A1 (en
Inventor
弘史 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIS Inc
Original Assignee
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIS Inc filed Critical FIS Inc
Publication of JPWO2006090433A1 publication Critical patent/JPWO2006090433A1/en
Application granted granted Critical
Publication of JP4571665B2 publication Critical patent/JP4571665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、水素ガスを検出する水素ガスセンサに関する。   The present invention relates to a hydrogen gas sensor that detects hydrogen gas.

従来より、ビーズ状の多孔質燃焼体に白金やパラジウムなどの触媒を分散させ、触媒を用いて可燃性ガスを燃焼させた時に発生する反応熱を検出することで、可燃性ガスを検出するようにした接触燃焼式のガスセンサが提供されている。図12は日本国公開特許平成10年第90210号公報(以下、公報という)に開示された従来のガスセンサを示している。このガスセンサ20は、可燃性ガスを燃焼させる燃焼体21と、通電に応じて発生するジュール熱で燃焼体21を加熱する発熱抵抗体22とで構成される。   Conventionally, a combustible gas can be detected by dispersing a catalyst such as platinum or palladium in a bead-shaped porous combustor and detecting the reaction heat generated when the combustible gas is burned using the catalyst. A contact combustion type gas sensor is provided. FIG. 12 shows a conventional gas sensor disclosed in Japanese Laid-Open Patent Publication No. 90210 (hereinafter referred to as “gazette”). The gas sensor 20 includes a combustor 21 that combusts combustible gas, and a heating resistor 22 that heats the combustor 21 with Joule heat generated in response to energization.

燃焼体21は、アルミナなどの絶縁体をビーズ状に形成して、パラジウムや白金などの触媒を含有させてある。また発熱抵抗体22は主に高温度抵抗係数を有する白金線からなり、この発熱抵抗体22をコイル状に巻回し、コイル状に巻かれた部分を燃焼体21内に埋設してある。   The combustor 21 is formed of an insulator such as alumina in a bead shape and contains a catalyst such as palladium or platinum. The heating resistor 22 is mainly made of a platinum wire having a high temperature resistance coefficient. The heating resistor 22 is wound in a coil shape, and a portion wound in the coil shape is embedded in the combustion body 21.

このタイプのガスセンサ20では、発熱抵抗体22に略一定の電流を流して、発熱抵抗体22に発生するジュール熱で燃焼体21を一定温度に加熱している。燃焼体21の表面で可燃性ガスが燃焼すると、この燃焼熱によって発熱抵抗体22の温度が上昇して、発熱抵抗体22の抵抗値が変化するので、この抵抗値変化から可燃性ガスを検出することができる。すなわち、図13に示すようにガスセンサ20と補償素子23と固定抵抗24,25とでブリッジ回路を形成し、ブリッジ回路の出力端子c,d間の電圧Vcを測定することによって発熱抵抗体22の抵抗値変化を求め、この抵抗値変化から可燃性ガスを検出している。   In this type of gas sensor 20, a substantially constant current is passed through the heating resistor 22, and the combustor 21 is heated to a constant temperature by Joule heat generated in the heating resistor 22. When the combustible gas burns on the surface of the combustor 21, the temperature of the heating resistor 22 rises due to the combustion heat, and the resistance value of the heating resistor 22 changes. Therefore, the combustible gas is detected from this resistance value change. can do. That is, as shown in FIG. 13, the gas sensor 20, the compensation element 23, and the fixed resistors 24 and 25 form a bridge circuit, and the voltage Vc between the output terminals c and d of the bridge circuit is measured. A change in resistance value is obtained, and combustible gas is detected from the change in resistance value.

補償素子23は、ガスセンサ20と同様に発熱抵抗体とビーズ状の絶縁体とで構成され、温度特性および湿度特性はガスセンサ20と略同じであるが、絶縁体に可燃性ガスを燃焼させる触媒を含有させていないため可燃性ガスには反応しない。図13に示すブリッジ回路では、端子a,b間にガスセンサ20および補償素子23の直列回路と、固定抵抗24,25の直列回路とをそれぞれ接続してある。また端子a,b間に平衡調整用の可変抵抗26を接続し、この可変抵抗26の中間タップを固定抵抗24,25の中間点に接続している。また端子a,b間には可変抵抗27とスイッチSWとを介して直流電源E1を接続してあり、可変抵抗27の抵抗値を調整することで、端子a,b間に印加する電圧を調整している。   The compensation element 23 is composed of a heating resistor and a bead-like insulator as in the gas sensor 20, and the temperature characteristics and humidity characteristics are substantially the same as those of the gas sensor 20, but a catalyst for burning a combustible gas in the insulator is used. Since it is not contained, it does not react with combustible gas. In the bridge circuit shown in FIG. 13, a series circuit of the gas sensor 20 and the compensation element 23 and a series circuit of the fixed resistors 24 and 25 are connected between the terminals a and b, respectively. A variable resistor 26 for balance adjustment is connected between the terminals a and b, and an intermediate tap of the variable resistor 26 is connected to an intermediate point between the fixed resistors 24 and 25. A DC power source E1 is connected between the terminals a and b via the variable resistor 27 and the switch SW, and the voltage applied between the terminals a and b is adjusted by adjusting the resistance value of the variable resistor 27. is doing.

而して、この測定回路では可変抵抗27の抵抗値を調整することによって、発熱抵抗体22に流れる電流が変化してその発熱量が調整されるから、雰囲気中に可燃性ガスが存在しない状態で可変抵抗27の抵抗値を調整して燃焼体21を300℃〜500℃程度に加熱し、この状態で可変抵抗26を調整して、ブリッジ回路の平衡状態を維持させる。その後、燃焼体21の表面に可燃性ガスが接触すると、燃焼体21に含有させた触媒の作用によって可燃性ガスが燃焼し、この燃焼熱によって発熱抵抗体22の電気抵抗が増加する。一方、補償素子23には触媒を含有させていないため、補償素子23の表面では可燃性ガスが燃焼せず、発熱抵抗体の電気抵抗は変化しない。したがって、ガスセンサ20と補償素子23との間で金属線の電気抵抗に抵抗差が発生し、出力端子c,d間にブリッジ電圧が発生する。このブリッジ電圧は可燃性ガスのガス濃度に比例して出力されるので、このブリッジ電圧を検出することによって可燃性ガスのガス濃度を検出することができる。尚、図14は各種の可燃性ガスに対する出力特性の例を示しており、図中のaはメタン(CH)、図中のbは一酸化炭素(CO)、図中のcは水素(H)、図中のdはイソブタン(i−C10)に対する出力特性をそれぞれ示している。Thus, in this measurement circuit, by adjusting the resistance value of the variable resistor 27, the current flowing through the heating resistor 22 is changed and the amount of generated heat is adjusted, so that no flammable gas exists in the atmosphere. Then, the resistance value of the variable resistor 27 is adjusted to heat the combustor 21 to about 300 ° C. to 500 ° C., and the variable resistor 26 is adjusted in this state to maintain the equilibrium state of the bridge circuit. Thereafter, when the combustible gas comes into contact with the surface of the combustor 21, the combustible gas is combusted by the action of the catalyst contained in the combustor 21, and the electric resistance of the heating resistor 22 is increased by the combustion heat. On the other hand, since the compensation element 23 does not contain a catalyst, the combustible gas does not burn on the surface of the compensation element 23 and the electrical resistance of the heating resistor does not change. Therefore, a resistance difference occurs in the electric resistance of the metal wire between the gas sensor 20 and the compensation element 23, and a bridge voltage is generated between the output terminals c and d. Since the bridge voltage is output in proportion to the gas concentration of the combustible gas, the gas concentration of the combustible gas can be detected by detecting the bridge voltage. FIG. 14 shows examples of output characteristics for various combustible gases. In the figure, a is methane (CH 4 ), b is carbon monoxide (CO), and c is hydrogen ( H 2 ) and d in the figure indicate output characteristics for isobutane (i-C 4 H 10 ), respectively.

このタイプのガスセンサ20の一般的な製造方法は、先ず、線径が20〜50μm程度の白金線をコイル状に巻回して発熱抵抗体22を形成する。次にアルミナ等の無機絶縁物が主成分であるセラミック担体をゾル又はペースト状にして、発熱抵抗体22のコイル部分に楕円形状を為すように塗布し、熱処理を施すことによってビーズ状の燃焼体21と形成する。次いで燃焼体21に白金又はパラジウム等の触媒を含浸させ、熱処理を施すことによって、アルミナ担体に触媒を高分散に担持させたガスセンサ20を形成する。   In a general manufacturing method of this type of gas sensor 20, first, a heating wire 22 is formed by winding a platinum wire having a wire diameter of about 20 to 50 μm in a coil shape. Next, a ceramic carrier mainly composed of an inorganic insulator such as alumina is made into a sol or paste form, applied to the coil portion of the heating resistor 22 so as to have an elliptical shape, and subjected to a heat treatment to thereby form a bead-shaped combustion body. 21. Next, the gas sensor 20 in which the catalyst is supported on the alumina carrier in a highly dispersed manner is formed by impregnating the combustion body 21 with a catalyst such as platinum or palladium and performing heat treatment.

ところで、近年、石油に代わるエネルギー源として水素が注目されており、燃料電池を搭載した自動車の開発が進められているが、このような燃料電池車では、燃料電池や水素タンクからの水素漏洩を検出するために1乃至複数個の水素ガスセンサを設置する必要があり、この水素ガスセンサとして接触燃焼式のガスセンサを用いることが検討されている。   By the way, in recent years, hydrogen has been attracting attention as an energy source to replace petroleum, and the development of automobiles equipped with fuel cells has been promoted. However, in such fuel cell vehicles, hydrogen leakage from fuel cells and hydrogen tanks has occurred. In order to detect, it is necessary to install one or a plurality of hydrogen gas sensors, and it has been studied to use a catalytic combustion type gas sensor as the hydrogen gas sensor.

しかしながら、ガスセンサを自動車に搭載して使用する場合、振動などの物理的な条件に対する耐久性が要求されるとともに、高温高湿の条件下や雑ガスなどが存在する過酷な雰囲気中でも検知特性が影響を受けにくく、またこのような雰囲気中でも長期間にわたって特性が劣化しない耐久性が求められる。上述した従来のガスセンサ20では、発熱抵抗体22のコイル部分を覆うように設けた燃焼体21がビーズ状に形成されているので、燃焼体21の慣性が比較的大きく、自動車に搭載した場合振動や衝撃によって発熱抵抗体22が変形したり、断線する可能性がある。また低濃度の水素ガスを検出するために、燃焼体21を高温に加熱すると、発生した熱が空気中に輻射されることによって生じる損失の割合(所謂気体熱伝導の割合)が増加するため、雰囲気中の湿度依存性が増したり、被毒物質との反応性が増して長期信頼性が損なわれるという問題があった。また高湿雰囲気中で触媒活性が劣化したり、燃焼体21に高分散に担持されている触媒成分の凝集現象が起こるため、感度劣化が起こりやすいという問題もあった。また燃焼体21に担持させた触媒により可燃性ガスを燃焼させ、その燃焼熱で熱容量の大きな燃焼体21の温度を上昇させ、その温度上昇が発熱抵抗体22に伝導して初めて発熱抵抗体22の電気抵抗が変化するので、可燃性ガスの感度や応答速度を向上させるのには限界があった。   However, when a gas sensor is used in an automobile, durability against physical conditions such as vibration is required, and detection characteristics are affected even in harsh atmospheres such as high temperature and high humidity conditions and miscellaneous gases. It is difficult to be affected, and durability that does not deteriorate the characteristics over a long period of time in such an atmosphere is required. In the conventional gas sensor 20 described above, the combustion body 21 provided so as to cover the coil portion of the heating resistor 22 is formed in a bead shape. Therefore, the inertia of the combustion body 21 is relatively large, and vibration occurs when mounted on an automobile. There is a possibility that the heating resistor 22 may be deformed or disconnected by an impact. Further, when the combustor 21 is heated to a high temperature in order to detect low-concentration hydrogen gas, the rate of loss caused by radiating the generated heat into the air (so-called gas heat conduction rate) increases. There has been a problem that the humidity dependency in the atmosphere is increased and the reactivity with poisoning substances is increased to deteriorate long-term reliability. In addition, the catalytic activity deteriorates in a high-humidity atmosphere, and the agglomeration phenomenon of the catalyst component supported on the combustor 21 in a highly dispersed state occurs. Further, the combustible gas is combusted by the catalyst carried on the combustor 21, the temperature of the combustor 21 having a large heat capacity is increased by the combustion heat, and the temperature rise is not transmitted to the heat generating resistor 22 until the heat generating resistor 22 is heated. As the electrical resistance of the gas changes, there is a limit to improving the sensitivity and response speed of the combustible gas.

さらに、上述したガスセンサ20の製造方法は、燃焼体21を形成するために製造されたアルミナ等のゾル又はペーストを発熱抵抗体22のコイル部分に取り付けて乾燥させた後、焼成しているが、その形成は手作業や手作業に近い作業で行われるため、燃焼体21の外形寸法を微細に制御するのは難しく、また組み合わせる補償素子23には熱的に同等のものを選定する必要があるので、複雑な作業が必要になって作業工数が増加し、コストアップを招くという問題もあった。   Furthermore, in the method for manufacturing the gas sensor 20 described above, the sol or paste such as alumina manufactured to form the combustor 21 is attached to the coil portion of the heating resistor 22 and dried, and then fired. Since the formation is performed by hand work or work close to hand work, it is difficult to finely control the outer dimensions of the combustor 21, and it is necessary to select a thermally equivalent compensation element 23 to be combined. Therefore, there is a problem that complicated work is required and the number of work steps increases, resulting in an increase in cost.

また上述の公報には、コイル状に巻回された発熱抵抗体22の表面に多孔質絶縁体の薄膜を形成し、この薄膜の表面に白金やパラジウムなどの触媒を分散させた接触燃焼式のガスセンサも提案されているが、触媒を分散担持させた多孔質絶縁体の薄膜とコイル状発熱体との結合が弱い為に、自動車に搭載した場合は振動や衝撃によって触媒を分散担持させた多孔質絶縁体がコイル状発熱体から剥がれ、感度が劣化してしまう可能性があった。   Further, in the above-mentioned publication, a catalytic combustion type in which a porous insulator thin film is formed on the surface of the heating resistor 22 wound in a coil shape, and a catalyst such as platinum or palladium is dispersed on the surface of the thin film. Gas sensors have also been proposed, but the porous insulating thin film with the catalyst dispersed and supported by the coiled heating element is weak, so when mounted on an automobile, the catalyst is dispersed and supported by vibration or impact. There is a possibility that the insulating material is peeled off from the coiled heating element and the sensitivity is deteriorated.

本発明は、上記問題点を解決するために為されたものであって、耐振動性や耐衝撃性に優れ、検知性能が長期的に安定した水素ガスセンサを提供することにある。 The present invention was made to solve the above problems and is excellent in vibration resistance and impact resistance, the detection performance is to provide a long-term stable hydrogen gas sensor.

本発明に係る水素ガスセンサは水素ガスを検出する。この水素ガスセンサは発熱抵抗体を備える。この発熱抵抗体の表面組成はパラジウム、ルテニウム、ロジウム、ニッケル、又はコバルトの内の少なくとも1種と白金との合金である。発熱抵抗体は通電によるジュール熱で水素ガスを燃焼可能な温度まで加熱され、発熱抵抗体の合金化された表面で水素ガスが燃焼し、その燃焼熱による温度上昇に応じて電気抵抗が変化し、電気抵抗の変化を水素ガスの濃度検知信号として出力する。 The hydrogen gas sensor according to the present invention detects hydrogen gas. This hydrogen gas sensor includes a heating resistor. The surface composition of this heating resistor is an alloy of platinum and at least one of palladium, ruthenium, rhodium, nickel, or cobalt. The heating resistor is heated to a temperature at which hydrogen gas can be combusted by Joule heat by energization, hydrogen gas burns on the alloyed surface of the heating resistor, and the electrical resistance changes as the temperature rises due to the combustion heat. The change in electrical resistance is output as a hydrogen gas concentration detection signal.

この発明によれば、発熱抵抗体の表面で水素ガスを燃焼させ、その燃焼熱による温度上昇に応じて発熱抵抗体の電気抵抗が変化し、電気抵抗の変化を水素ガスの濃度検知信号として出力しており、発熱抵抗体に、触媒を加熱させる機能と、水素ガスを燃焼させる機能と、燃焼熱による電気抵抗の変化を発生する機能とを持たせることができる。したがって、従来のガスセンサのように発熱抵抗体にビーズ状の燃焼体を形成する必要が無く、振動や衝撃などによって発熱抵抗体が変形する可能性を低減でき、また発熱抵抗体自体が触媒作用を有する金属材料で形成されているので、触媒の凝集減少や剥がれが発生することはなく、検知性能が長期的に安定するという効果が得られる。さらに発熱抵抗体の表面組成が、パラジウム、ルテニウム、ロジウム、ニッケル、又はコバルトの内の少なくとも1種と白金との合金により形成され、触媒と白金とを合金化しているので、従来のガスセンサのように燃焼体に担持させた触媒が剥がれることがなく、白金触媒の安定性が増して感度の劣化が低減し、検知性能を長期的に安定させることができる。   According to this invention, hydrogen gas is burned on the surface of the heating resistor, and the electrical resistance of the heating resistor changes according to the temperature rise due to the heat of combustion, and the change in electrical resistance is output as a hydrogen gas concentration detection signal. Thus, the heating resistor can have a function of heating the catalyst, a function of burning hydrogen gas, and a function of generating a change in electrical resistance due to combustion heat. Therefore, unlike the conventional gas sensor, it is not necessary to form a bead-shaped combustion body on the heating resistor, and the possibility that the heating resistor is deformed by vibration or impact can be reduced, and the heating resistor itself has a catalytic action. Since it is formed of the metal material having, there is no reduction in the aggregation or peeling of the catalyst, and the effect that the detection performance is stable over the long term is obtained. Furthermore, the surface composition of the heating resistor is formed of an alloy of platinum and at least one of palladium, ruthenium, rhodium, nickel, or cobalt, and the catalyst and platinum are alloyed. Thus, the catalyst supported on the combustor is not peeled off, the stability of the platinum catalyst is increased, the sensitivity deterioration is reduced, and the detection performance can be stabilized for a long time.

また発熱抵抗体と同一の材料から形成され、水素ガスに対する燃焼活性を無くした補償抵抗を備えることも好ましく、補償抵抗の表面では水素ガスが燃焼せず、燃焼熱による抵抗値変化が発生しないので、補償抵抗の出力値を用いて発熱抵抗体の出力信号を補償することができる。   It is also preferable to provide a compensation resistor that is made of the same material as the heating resistor and eliminates the combustion activity against hydrogen gas, because hydrogen gas does not burn on the surface of the compensation resistor, and resistance value change due to combustion heat does not occur. The output signal of the heating resistor can be compensated using the output value of the compensation resistor.

さらに発熱抵抗体と補償抵抗とを収納するケースを備え、このケースに外部と連通する通気孔を形成し、通気孔と発熱抵抗体および補償抵抗との間のガス流路に被毒物質を吸着するフィルタを設けることも好ましく、被毒物質をフィルタが吸着することで、被毒物質による感度の低下を低減することができる。   In addition, a case that houses the heating resistor and compensation resistor is formed, and a vent hole that communicates with the outside is formed in this case, and poisonous substances are adsorbed in the gas flow path between the vent hole, the heating resistor, and the compensation resistor. It is also preferable to provide a filter that absorbs the poisoning substance, so that a decrease in sensitivity due to the poisoning substance can be reduced.

実施形態1の水素ガスセンサを示す一部省略せる正面図である。FIG. 3 is a partially omitted front view illustrating the hydrogen gas sensor according to the first embodiment. 同上の水素ガスセンサの外観斜視図である。It is an external appearance perspective view of a hydrogen gas sensor same as the above. 同上の水素ガスセンサの断面図である。It is sectional drawing of a hydrogen gas sensor same as the above. 同上の水素ガスセンサの他の構成を示す一部省略せる正面図である。It is a front view which can omit a part which shows the other structure of a hydrogen gas sensor same as the above. 同上の水素ガスセンサのまた別の構成を示す一部省略せる正面図である。It is a front view which can omit a part which shows another structure of a hydrogen gas sensor same as the above. 実施形態2の水素ガスセンサを示す外観斜視図である。6 is an external perspective view showing a hydrogen gas sensor according to Embodiment 2. FIG. 実施形態3の水素ガスセンサを示す外観斜視図である。6 is an external perspective view showing a hydrogen gas sensor of Embodiment 3. FIG. 同上の水素ガスセンサの断面図である。It is sectional drawing of a hydrogen gas sensor same as the above. 同上の水素ガスセンサの出力特性図である。It is an output characteristic figure of a hydrogen gas sensor same as the above. 同上の水素ガスセンサの出力特性図である。It is an output characteristic figure of a hydrogen gas sensor same as the above. 同上の水素ガスセンサの出力特性図である。It is an output characteristic figure of a hydrogen gas sensor same as the above. 従来の接触燃焼式のガスセンサの一部破断せる外観斜視図である。It is an external appearance perspective view in which a conventional catalytic combustion type gas sensor is partially broken. 同上のガスセンサを用いた測定回路の回路図である。It is a circuit diagram of the measurement circuit using the gas sensor same as the above. 同上のガスセンサの出力特性図である。It is an output characteristic figure of a gas sensor same as the above.

本発明を詳細に説述するために、添付の図面に従ってこれを説明する。   In order to describe the present invention in detail, it will be described with reference to the accompanying drawings.

(第1の実施形態)
本発明に係る第1の実施形態について添付図面を参照して説明する。尚、以下の説明では特に断りがない限り、図1に示す向きにおいて上下左右の方向を規定する。
(First embodiment)
A first embodiment according to the present invention will be described with reference to the accompanying drawings. In the following description, the vertical and horizontal directions are defined in the direction shown in FIG. 1 unless otherwise specified.

図1は本実施形態の水素ガスセンサ1の構造を模式的に示した図、図2は外観斜視図、図3は断面図であり、この水素ガスセンサ1は発熱抵抗体2とステム3a,3bとベース4と保護キャップ5とを備える。   FIG. 1 is a diagram schematically showing the structure of a hydrogen gas sensor 1 of the present embodiment, FIG. 2 is an external perspective view, and FIG. 3 is a sectional view. The hydrogen gas sensor 1 includes a heating resistor 2, stems 3a, 3b, A base 4 and a protective cap 5 are provided.

発熱抵抗体2は、従来のガスセンサにおける燃焼体21と発熱抵抗体22の両方の機能を備えており、表面の組成をパラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくとも1種と白金との合金とした白金線をコイル状に巻回して形成されており、その両端がステム3a,3bに電気的且つ機械的に接続されている。本実施形態では発熱抵抗体2として例えば線径が約20μmのものを用い、コイル径を約210μm、線間を約20μmとして10ターン巻回しており、コイルの全長を360〜400μmとしている。なお本実施形態では発熱抵抗体2として白金線を用いているが、白金系の抵抗線であれば純白金以外の材料を用いても良く、例えばジルコニア安定化白金などでも良い。なお本実施形態では白金系の抵抗線の表面を、パラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくとも1種と合金化して発熱抵抗体2を形成しているが、最初から合金化された白金系抵抗性を使用しても良い。   The heating resistor 2 has the functions of both the combustion body 21 and the heating resistor 22 in the conventional gas sensor, and the surface composition is composed of at least one of palladium, ruthenium, rhodium, nickel, cobalt and platinum. An alloy platinum wire is wound in a coil shape, and both ends thereof are electrically and mechanically connected to the stems 3a and 3b. In the present embodiment, the heating resistor 2 having, for example, a wire diameter of about 20 μm is used, the coil diameter is about 210 μm, the space between the wires is about 20 μm, and the coil is wound for 10 turns. In the present embodiment, a platinum wire is used as the heating resistor 2, but a material other than pure platinum may be used as long as it is a platinum-based resistance wire. For example, zirconia stabilized platinum may be used. In the present embodiment, the surface of the platinum resistance wire is alloyed with at least one of palladium, ruthenium, rhodium, nickel, and cobalt to form the heating resistor 2. Platinum-based resistance may be used.

ベース4は合成樹脂により円盤状に形成され、3本のステム3a,3b,3cはベース4を上下方向に貫通するようにベース4にインサート成形されている。3本のステム3a〜3cの内、中央のステム3cは他の2本のステム3a,3bに比べて上面からの突出量が短くなっており、両端にある2本のステム3a,3bにおいてべース4の上面から突出する部位に発熱抵抗体2の両端部2a,2bが溶接などの方法で固着されている。なお中央のステム3cは、後述の実施形態2で説明するように発熱抵抗体2と補償抵抗8の両方共に取り付ける場合に使用するものであり、発熱抵抗体2だけの場合にはステム3cは使用しない。   The base 4 is formed in a disc shape from a synthetic resin, and the three stems 3a, 3b, 3c are insert-molded in the base 4 so as to penetrate the base 4 in the vertical direction. Of the three stems 3a to 3c, the central stem 3c has a shorter protruding amount from the upper surface than the other two stems 3a and 3b, and the two stems 3a and 3b at the both ends are the same. Both ends 2a and 2b of the heating resistor 2 are fixed to a portion protruding from the upper surface of the case 4 by a method such as welding. The central stem 3c is used when both the heating resistor 2 and the compensation resistor 8 are attached as will be described in the second embodiment, and the stem 3c is used when only the heating resistor 2 is used. do not do.

保護キャップ5は下面側の端部が開口した略円筒状であって、開口部から発熱抵抗体2を内部に納めるようにしてベース4が圧入固定されている。保護キャップ5の天井面には丸孔状の通気孔6が中央に貫設され、通気孔6には防爆のために100メッシュのステンレス製の金網7が装着されている。なお保護キャップ5は金属製のものでも、樹脂製のものでも良い。   The protective cap 5 has a substantially cylindrical shape with an opening on the lower surface side, and the base 4 is press-fitted and fixed so that the heating resistor 2 can be accommodated in the opening. A circular hole 6 is provided in the center of the ceiling surface of the protective cap 5, and a 100 mesh stainless steel wire mesh 7 is attached to the hole 6 for explosion protection. The protective cap 5 may be made of metal or resin.

ここで、水素ガスの測定時には図示しない測定回路によりステム3a,3b間に略一定の電圧を印加して、発熱抵抗体2を所定の温度(例えば約100℃程度)に加熱する。そして、保護キャップ5の通気孔6を通して内部に侵入した水素ガスが発熱抵抗体2に接触すると、発熱抵抗体2表面の白金の触媒作用によって発熱抵抗体2の表面で水素ガスが燃焼する。この時、水素ガスの燃焼熱によって発熱抵抗体2の温度が上昇し、温度上昇に応じて電気抵抗が増加するので、測定回路では発熱抵抗体2の電気抵抗値の変化量を測定することで、水素ガスのガス濃度を測定することが可能になる。   Here, when measuring hydrogen gas, a substantially constant voltage is applied between the stems 3a and 3b by a measurement circuit (not shown) to heat the heating resistor 2 to a predetermined temperature (for example, about 100 ° C.). When the hydrogen gas that has entered inside through the vent hole 6 of the protective cap 5 comes into contact with the heating resistor 2, the hydrogen gas burns on the surface of the heating resistor 2 by the catalytic action of platinum on the surface of the heating resistor 2. At this time, the temperature of the heating resistor 2 rises due to the combustion heat of hydrogen gas, and the electrical resistance increases as the temperature rises. Therefore, the measurement circuit measures the amount of change in the electrical resistance value of the heating resistor 2. It becomes possible to measure the gas concentration of hydrogen gas.

なお本実施形態では発熱抵抗体2をコイル状に形成し、コイルの軸方向が上下方向と略平行するようにステム3a,3bに取り付けているが、図4に示すようにコイルの軸方向が左右方向と略平行するようにステム3a,3bに取り付けても良い。また発熱抵抗体2をコイル状に形成することで表面積を大きくしているが、図5に示すように直線状に形成しても良く、コイル状に巻く作業を無くすことができる。   In the present embodiment, the heating resistor 2 is formed in a coil shape and is attached to the stems 3a and 3b so that the axial direction of the coil is substantially parallel to the vertical direction. However, as shown in FIG. You may attach to stem 3a, 3b so that it may be substantially parallel to the left-right direction. Further, although the heating resistor 2 is formed in a coil shape, the surface area is increased, but as shown in FIG. 5, it may be formed in a linear shape, and the work of winding the coil shape can be eliminated.

次に発熱抵抗体2の製造方法について以下に説明する。先ず白金系(例えば白金、ジルコニア安定化白金など)の抵抗線(母材)をコイル状に巻回し、この抵抗線の表面をパラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくとも1種と合金化するために、例えば硝酸パラジウム、硝酸ルテニウム、硝酸ロジウム、硝酸ニッケル、硝酸コバルトの内の少なくとも1種を所定濃度含んだ水溶液を上記抵抗線に塗布した後、室温で約1時間風乾して溶媒を除去する。その後抵抗線の両端間に約1.1Vの電圧を10分程度印加し、抵抗線の表面温度を約900℃に加熱することによって、抵抗線の表面をパラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくとも1種と合金化する。このように発熱抵抗体2は抵抗線を所望の形状に形成した後、所望の触媒を含む溶液を抵抗線の表面に塗布し、風乾後所定の電圧を印加することで合金化しているので、従来のガスセンサのように、コイル状の発熱抵抗体にビーズ状の燃焼体を形成する工程が不要になり、製造工程が簡素化できる。またビーズ状の燃焼体を形成する場合は燃焼体の形状や寸法のばらつきが大きいが、本実施形態では抵抗線をコイル状に巻いてその表面を合金化しているだけなので、発熱抵抗体2の形状・寸法のばらつきを小さくでき、感度のばらつきを低減できる。また発熱抵抗体2は表面に触媒と白金との合金が形成された白金系の抵抗線で構成されているので、従来のガスセンサのように燃焼体に担持させた触媒が剥がれることがなく、検知性能を長期的に安定させることができる。   Next, a method for manufacturing the heating resistor 2 will be described below. First, a resistance wire (base material) made of platinum (for example, platinum or zirconia stabilized platinum) is wound in a coil shape, and the surface of the resistance wire is alloyed with at least one of palladium, ruthenium, rhodium, nickel, and cobalt. For example, an aqueous solution containing a predetermined concentration of at least one of palladium nitrate, ruthenium nitrate, rhodium nitrate, nickel nitrate, and cobalt nitrate is applied to the resistance wire, and then air-dried at room temperature for about 1 hour. Remove. Thereafter, a voltage of about 1.1 V is applied between both ends of the resistance wire for about 10 minutes, and the surface temperature of the resistance wire is heated to about 900 ° C., so that the surface of the resistance wire is made of palladium, ruthenium, rhodium, nickel, cobalt. Alloy with at least one of them. Thus, since the heating resistor 2 is formed into an alloy by applying a predetermined voltage after applying a solution containing a desired catalyst on the surface of the resistance wire after forming the resistance wire in a desired shape, Unlike the conventional gas sensor, the process of forming the bead-shaped combustion body on the coil-shaped heating resistor becomes unnecessary, and the manufacturing process can be simplified. In the case of forming a bead-shaped combustion body, there is a large variation in the shape and dimensions of the combustion body. However, in this embodiment, since the resistance wire is wound in a coil shape and the surface thereof is alloyed, Variations in shape and dimensions can be reduced, and variations in sensitivity can be reduced. In addition, since the heating resistor 2 is composed of a platinum-based resistance wire having a catalyst-platinum alloy formed on the surface thereof, the catalyst carried on the combustor is not peeled off unlike conventional gas sensors. The performance can be stabilized in the long term.

以上のようにして形成されたガスセンサ1の出力特性について図9〜図11を参照して説明する。なお、発熱抵抗体2をコイル状に巻回した場合と直線状に形成した場合とでは特性に大差が無かったため、以下では発熱抵抗体2をコイル状に巻回した場合の測定データを参照して説明を行う。   The output characteristics of the gas sensor 1 formed as described above will be described with reference to FIGS. Note that there was no significant difference in characteristics between the case where the heating resistor 2 was wound in a coil shape and the case where the heating resistor 2 was formed in a linear shape. Therefore, in the following, reference is made to measurement data when the heating resistor 2 is wound in a coil shape. To explain.

図13に示した測定回路においてガスセンサ20の代わりに本実施形態のガスセンサ1を接続し、補償素子23の代わりに例えば10Ωの固定抵抗を用い、ガスセンサ1への印加電圧が清浄大気中で約0.2Vとなるように可変抵抗27を用いて調整を行った。ここで、ガスセンサ1に約0.2Vの電圧を印加すると、発熱抵抗体2の温度は100℃程度に加熱される。通気孔6から金網7を通過して保護キャップ6内に水素ガスが侵入すると、水素ガスが発熱抵抗体2の表面で燃焼し、その燃焼熱によって発熱抵抗体2の抵抗値が変化する。この時、ブリッジ回路の出力端c,d間の電圧が変化するので、この出力電圧の変化から水素ガス濃度を測定することができる。図9は各種の可燃性ガスに対するガス感度の測定結果であり、横軸はガス濃度(ppm)、縦軸はブリッジ回路の出力電圧(mV)である。なお、図中のaは水素、bは一酸化炭素、cはメタン、dはイソブタン、eはエタノールの測定結果をそれぞれ示している。図9の測定結果より、100℃程度の温度域では水素ガス以外の可燃性ガス(CO、CH、IB、エタノール)は燃焼せず、水素ガスのみが燃焼するため水素ガスの選択性が非常に良く、水素ガスを精度良く検出することが判明した。なお、この場合のガスセンサ1の消費電力は約10mWであり、非常に小さい消費電力で測定が行える。このような低消費電力で動作できる理由は、従来の接触燃焼式ガスセンサのように熱容量の大きな燃焼体21を持たないためであり、水素ガスの燃焼によって発生した燃焼熱を効率良く白金線に伝えることで、発熱抵抗体2を高温に加熱することなく発熱抵抗体2の抵抗値変化を検出できるからである。In the measurement circuit shown in FIG. 13, the gas sensor 1 of this embodiment is connected instead of the gas sensor 20, and a fixed resistance of 10Ω, for example, is used instead of the compensation element 23, and the applied voltage to the gas sensor 1 is about 0 in a clean atmosphere. Adjustment was performed using the variable resistor 27 so as to be 2 V. Here, when a voltage of about 0.2 V is applied to the gas sensor 1, the temperature of the heating resistor 2 is heated to about 100 ° C. When hydrogen gas passes through the metal mesh 7 from the vent hole 6 and enters the protective cap 6, the hydrogen gas burns on the surface of the heating resistor 2, and the resistance value of the heating resistor 2 changes due to the combustion heat. At this time, since the voltage between the output terminals c and d of the bridge circuit changes, the hydrogen gas concentration can be measured from the change in the output voltage. FIG. 9 shows measurement results of gas sensitivity with respect to various combustible gases. The horizontal axis represents the gas concentration (ppm), and the vertical axis represents the output voltage (mV) of the bridge circuit. In the figure, a represents hydrogen, b represents carbon monoxide, c represents methane, d represents isobutane, and e represents ethanol. From the measurement result of FIG. 9, in the temperature range of about 100 ° C., combustible gases other than hydrogen gas (CO, CH 4 , IB, ethanol) do not burn, and only hydrogen gas burns, so the selectivity of hydrogen gas is very high It was found that hydrogen gas can be detected with high accuracy. In this case, the power consumption of the gas sensor 1 is about 10 mW, and the measurement can be performed with a very small power consumption. The reason why it is possible to operate with such low power consumption is that it does not have the combustor 21 having a large heat capacity unlike the conventional catalytic combustion type gas sensor, and efficiently transfers the combustion heat generated by the combustion of hydrogen gas to the platinum wire. This is because a change in the resistance value of the heating resistor 2 can be detected without heating the heating resistor 2 to a high temperature.

ここで、発熱抵抗体2の表面の組成を純白金又はジルコニア安定化白金(つまり表面を合金化していないもの)、白金−パラジウム合金、白金−ルテニウム合金、白金−ロジウム合金、白金−ニッケル合金、白金−コバルト合金とした場合の各々について、水素ガスに対するガス感度を測定したところ、何れの場合でも使用初期時のガス感度は略同等であった。しかしながら、各々の組成の白金抵抗線に約0.2Vの電圧を印加して清浄大気中で動作させ続けると、表面の組成が純白金又はジルコニア安定化白金(つまり白金系抵抗線の表面を合金化していないもの)のものでは、十数日が経過した時点で感度が若干減少することが判明した。感度低下の原因は不明であるが、表面の白金の燃焼活性点がなんらかの理由で失活するものと考えられる。一方、表面を合金化したものは失活が60日以上起こらないことから合金化により活性点の耐久性が増していると考えられる。   Here, the composition of the surface of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, the one whose surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, platinum-nickel alloy, When the gas sensitivity to hydrogen gas was measured for each of the platinum-cobalt alloys, the gas sensitivity at the initial stage of use was almost the same in any case. However, when a voltage of about 0.2 V is applied to each resistance platinum resistance wire and the operation is continued in a clean atmosphere, the surface composition is pure platinum or zirconia stabilized platinum (that is, the surface of the platinum resistance wire is alloyed). It was found that the sensitivity was slightly reduced at the time when more than ten days had passed. The cause of the decrease in sensitivity is unknown, but it is thought that the combustion active site of platinum on the surface is deactivated for some reason. On the other hand, in the case of the alloyed surface, the deactivation does not occur for 60 days or more, so it is considered that the durability of the active sites is increased by alloying.

また本実施形態のガスセンサ1を、燃料電池車に搭載して水素ガスの漏洩を検知するために使用したいという要望があるので、自動車等の過酷な振動を発する機器にガスセンサ1を取り付ける場合を想定して落下試験を行った。落下試験は高さ1mからコンクリート上にガスセンサ1を50回落下させ、発熱抵抗体2のコイル部分の形状を試験の前後で観察するというものであり、試験の前後でコイル部分の形状は変化せず、機能上問題は無いことを確認できた。また図10は落下試験の前後で水素ガスに対する感度測定を行った結果を示しており、図中のaは試験前の測定データ、図中のbは試験後の測定データを示している。この測定結果より水素ガスに対する感度にも特に変化は見られなかった。なお実験に用いたガスセンサ1の発熱抵抗体2は、その表面に白金−パラジウム合金を形成したものであるが、表面に他の組成の白金合金を形成したものでも、同じ試験結果が得られた。   In addition, since there is a demand to use the gas sensor 1 of the present embodiment in a fuel cell vehicle to detect leakage of hydrogen gas, it is assumed that the gas sensor 1 is attached to a device that generates severe vibration such as an automobile. A drop test was conducted. In the drop test, the gas sensor 1 is dropped 50 times on the concrete from a height of 1 m and the shape of the coil portion of the heating resistor 2 is observed before and after the test. The shape of the coil portion is changed before and after the test. It was confirmed that there were no functional problems. FIG. 10 shows the result of sensitivity measurement with respect to hydrogen gas before and after the drop test. In the figure, a indicates measurement data before the test, and b in the figure indicates measurement data after the test. From this measurement result, there was no particular change in sensitivity to hydrogen gas. In addition, although the heating resistor 2 of the gas sensor 1 used in the experiment was formed with a platinum-palladium alloy on the surface, the same test results were obtained even when a platinum alloy having another composition was formed on the surface. .

なお抵抗線をコイル状に巻回し、そのコイル部分を覆うようにビーズ状のアルミナ担体(燃焼体)を形成した従来のガスセンサでは、燃焼体の重量が大きいために数回の落下で抵抗線が変形したり、断線が発生したが、本実施形態では発熱抵抗体2が発熱体と燃焼体と触媒の3つの機能を有しているので、発熱抵抗体2にアルミナ担体を形成する必要が無く、発熱抵抗体2自体の慣性が小さくなるから、衝撃に非常に強いことが判明した。また振動に対しても、発熱抵抗体2の慣性を小さくすることで、耐振動性を向上させることができた。   In a conventional gas sensor in which a resistance wire is wound in a coil shape and a bead-shaped alumina carrier (combustion body) is formed so as to cover the coil portion, the resistance wire is dropped several times because the weight of the combustion body is large. Although deformation or disconnection occurs, in the present embodiment, the heating resistor 2 has the three functions of the heating element, the combustion body, and the catalyst, so there is no need to form an alumina carrier on the heating resistor 2. Since the inertia of the heating resistor 2 itself is reduced, it has been found that it is very resistant to impact. In addition, with respect to vibration, the vibration resistance can be improved by reducing the inertia of the heating resistor 2.

次にガスセンサ1の湿度特性について図11を参照して説明する。図11は雰囲気温度を略一定(21℃又は22℃)とし、雰囲気中の湿度を約30%から約80%まで変化させた場合の水素ガス感度を測定した結果を示す。ここで、図中のaは温度が22℃、湿度が31%の場合の測定データ、図中のbは温度が21℃、湿度が52%の場合の測定データ、図中のcは温度が21℃、湿度が78%の場合の測定データである。この試験結果より、約30%から約80%までの湿度範囲ではガスセンサ1の出力特性に殆ど変化がないことを確認できた。なお実験に用いたガスセンサ1の発熱抵抗体2は、その表面に白金−パラジウム合金を形成したものであるが、表面に他の組成の白金合金を形成したものでも、同じ試験結果が得られた。本実施形態のガスセンサ1は比較的低温で動作させており、発熱抵抗体2の発熱の大部分をステム3a,3bを介して逃がしており、空気中に放熱される割合(気体熱伝導の割合)が少ないため、雰囲気中の湿度(つまり気体熱伝導率)が変化しても出力特性に与える影響が少ないものと考えられる。つまり本実施形態のガスセンサ1が、雰囲気の気体熱伝導率の変化(湿度変化)に影響されにくい性質を持っており、その結果湿度変化による出力変動を低減できたと考えられる。   Next, humidity characteristics of the gas sensor 1 will be described with reference to FIG. FIG. 11 shows the results of measuring hydrogen gas sensitivity when the atmospheric temperature is substantially constant (21 ° C. or 22 ° C.) and the humidity in the atmosphere is changed from about 30% to about 80%. Here, a in the figure is measurement data when the temperature is 22 ° C. and the humidity is 31%, b in the figure is measurement data when the temperature is 21 ° C. and the humidity is 52%, and c in the figure is the temperature. Measurement data when the temperature is 21 ° C. and the humidity is 78%. From this test result, it was confirmed that there was almost no change in the output characteristics of the gas sensor 1 in the humidity range from about 30% to about 80%. The heating resistor 2 of the gas sensor 1 used in the experiment has a platinum-palladium alloy formed on the surface thereof, but the same test results were obtained even when a platinum alloy having another composition was formed on the surface. . The gas sensor 1 according to the present embodiment is operated at a relatively low temperature, and most of the heat generated by the heating resistor 2 is released through the stems 3a and 3b, and is radiated into the air (ratio of gas heat conduction). Therefore, it is considered that the influence on the output characteristics is small even if the humidity in the atmosphere (that is, the gas thermal conductivity) changes. That is, it is considered that the gas sensor 1 of the present embodiment has a property that is not easily affected by a change (humidity change) in the gas thermal conductivity of the atmosphere, and as a result, the output fluctuation due to the humidity change can be reduced.

また本実施形態のガスセンサ1について高湿雰囲気下でガス特性を測定した結果について説明する。発熱抵抗体2の表面の組成を純白金又はジルコニア安定化白金(つまり表面を合金化していないもの)、白金−パラジウム合金、白金−ルテニウム合金、白金−ロジウム合金、白金−ニッケル合金、白金−コバルト合金とした場合の各々について、温度60℃、湿度80%Rhの雰囲気中で発熱抵抗体2に約0.2Vの電圧を印加して長時間連続動作させると、発熱抵抗体2の表面の組成が純白金又はジルコニア安定化白金(つまり白金系抵抗線の表面を合金化していないもの)のものでは24時間以内に水素ガスに対する感度が無くなった。一方、発熱抵抗体2の表面の組成が白金−パラジウム合金、白金−ルテニウム合金、白金−ロジウム合金、白金−ニッケル合金のものでは24時間以内では感度劣化は殆ど見られず、その後は数日間で徐々に感度が低下していき、約20日が経過した時点で感度は半分程度となるが、その後はこの時の感度を約1ヶ月が経過した時点でも維持していた。また発熱抵抗体2の表面の組成が白金−コバルト合金のものは、約1ヶ月にわたって、感度低下が見られなかった。以上の結果より発熱抵抗体2の表面の組成を白金合金としたものは高湿雰囲気中での耐久性が向上し、特に白金−コバルト合金を形成したものは高湿雰囲気に対する耐久性を大幅に向上させることができた。   Moreover, the result of having measured the gas characteristic in the high humidity atmosphere about the gas sensor 1 of this embodiment is demonstrated. The composition of the surface of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, the surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, platinum-nickel alloy, platinum-cobalt. For each alloy, when a voltage of about 0.2 V is applied to the heating resistor 2 in an atmosphere at a temperature of 60 ° C. and a humidity of 80% Rh for a long time, the composition of the surface of the heating resistor 2 However, in the case of pure platinum or zirconia stabilized platinum (that is, the one in which the surface of the platinum resistance wire is not alloyed), the sensitivity to hydrogen gas disappeared within 24 hours. On the other hand, when the composition of the surface of the heating resistor 2 is platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, or platinum-nickel alloy, there is almost no deterioration in sensitivity within 24 hours. The sensitivity gradually decreased, and when about 20 days passed, the sensitivity was about half, but after that, the sensitivity at this time was maintained even after about one month. Further, when the composition of the surface of the heating resistor 2 was a platinum-cobalt alloy, the sensitivity was not lowered for about one month. From the above results, a platinum alloy with the composition of the surface of the heating resistor 2 has improved durability in a high-humidity atmosphere. I was able to improve.

さらに本実施形態のガスセンサ1について高濃度ガス中での耐久性試験を行った結果について説明する。発熱抵抗体2の表面の組成を純白金又はジルコニア安定化白金(つまり表面を合金化していないもの)、白金−パラジウム合金、白金−ルテニウム合金、白金−ロジウム合金、白金−ニッケル合金、白金−コバルト合金としたものを、水素ガス、メタン、イソブタン、エタノールを各々10000ppm含む雰囲気中で、発熱抵抗体2に約0.2Vの電圧を印加して24時間連続動作させたところ、全てのガスセンサ1について感度劣化は見られなかった。メタン、イソブタン、エタノール中で感度劣化が発生しない理由としては、本実施形態のガスセンサ1が比較的低い温度で動作しているため、発熱抵抗体2の表面で水素ガス以外の可燃性ガス(メタン、イソブタン、エタノールなど)が燃えないため、燃焼熱の影響を受けにくいためと考えられる。一方、水素ガス中では水素ガスが燃焼し、その燃焼熱によって発熱抵抗体2の表面温度が上昇する。ここで、従来の接触燃焼センサでは高分散に坦持された触媒がシンタリングするために感度低下現象が見られる場合があるが、本実施形態のガスセンサ1は発熱抵抗体2を構成する白金又はジルコニア安定化白金、あるいは白金合金上に活性点が存在するため触媒の凝集現象が起こりにくく、感度の低下が見られないものと考えられる。   Furthermore, the result of having performed the durability test in high concentration gas about the gas sensor 1 of this embodiment is demonstrated. The composition of the surface of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, the surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, platinum-nickel alloy, platinum-cobalt. When the alloy was operated continuously for 24 hours by applying a voltage of about 0.2 V to the heating resistor 2 in an atmosphere containing 10000 ppm of hydrogen gas, methane, isobutane, and ethanol, all the gas sensors 1 were Sensitivity deterioration was not seen. The reason why the sensitivity does not deteriorate in methane, isobutane, and ethanol is that the gas sensor 1 of the present embodiment operates at a relatively low temperature, so that a combustible gas other than hydrogen gas (methane) is generated on the surface of the heating resistor 2. , Isobutane, ethanol, etc.) does not burn and is therefore less susceptible to the heat of combustion. On the other hand, hydrogen gas burns in the hydrogen gas, and the surface temperature of the heating resistor 2 rises due to the heat of combustion. Here, in the conventional catalytic combustion sensor, there is a case where a sensitivity reduction phenomenon is observed because the catalyst supported in a highly dispersed state is sintered. However, the gas sensor 1 of the present embodiment uses platinum or the Since active sites exist on the zirconia-stabilized platinum or platinum alloy, the aggregation phenomenon of the catalyst hardly occurs, and it is considered that the sensitivity is not lowered.

本実施形態のガスセンサ1について、触媒の被毒成分として知られる亜硫酸ガスおよびシリコンガスによる被毒の影響を調べた結果について以下に説明する。ここで、発熱抵抗体2の表面の組成を純白金又はジルコニア安定化白金(つまり表面を合金化していないもの)、白金−パラジウム合金、白金−ルテニウム合金、白金−ロジウム合金、白金−ニッケル合金、白金−コバルト合金としたものを、亜硫酸ガスが300ppm、ヘキサメチルジシロキサンが150ppmの雰囲気中で、発熱抵抗体2に約0.2Vの電圧を印加して24時間連続動作させたところ、発熱抵抗体2の表面の組成が純白金又はジルコニア安定化白金(つまり白金系抵抗線の表面を合金化していない)のものでは約10分後に水素ガスに対する感度が無くなった。一方、発熱抵抗体2の表面の組成が白金−ルテニウム合金、白金−ロジウム合金、白金−ニッケル合金のものでは5分経過後から感度低下が始まるものの、1時間後でも半分程度の感度を維持していた。また発熱抵抗体2の表面の組成が白金−パラジウム合金のものでは15分後でも感度劣化が殆ど見られず、24時間後でも半分程度の感度を維持していた。以上の結果より発熱抵抗体2の表面の組成を白金合金としたものでは被毒ガスに対する耐久性が大幅に向上したことが判明した。   The results of examining the influence of poisoning by sulfurous acid gas and silicon gas, which are known as poisoning components of the catalyst, in the gas sensor 1 of the present embodiment will be described below. Here, the composition of the surface of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, the one whose surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, platinum-nickel alloy, When the platinum-cobalt alloy was continuously operated for 24 hours by applying a voltage of about 0.2 V to the heating resistor 2 in an atmosphere of 300 ppm sulfurous acid gas and 150 ppm hexamethyldisiloxane, When the surface composition of the body 2 was pure platinum or zirconia stabilized platinum (that is, the surface of the platinum resistance wire was not alloyed), the sensitivity to hydrogen gas disappeared after about 10 minutes. On the other hand, when the composition of the surface of the heating resistor 2 is a platinum-ruthenium alloy, a platinum-rhodium alloy, or a platinum-nickel alloy, the sensitivity starts to decrease after 5 minutes. It was. Further, when the composition of the surface of the heating resistor 2 was a platinum-palladium alloy, the sensitivity was hardly deteriorated even after 15 minutes, and about half the sensitivity was maintained even after 24 hours. From the above results, it was found that the durability against poisoning gas was greatly improved when the composition of the surface of the heating resistor 2 was a platinum alloy.

(第2の実施形態)
本発明に係る第2の実施形態について図6を参照して説明する。本実施形態では、第1の実施形態で説明したガスセンサ1において、発熱抵抗体2と同一の材料から形成され、水素ガスに対する活性を無くした補償抵抗8を備えている。尚、補償抵抗8以外の構成は第1の実施形態と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
(Second Embodiment)
A second embodiment according to the present invention will be described with reference to FIG. In this embodiment, the gas sensor 1 described in the first embodiment is provided with a compensation resistor 8 that is made of the same material as the heating resistor 2 and has no activity against hydrogen gas. Since the configuration other than the compensation resistor 8 is the same as that of the first embodiment, common components are denoted by the same reference numerals, and description thereof is omitted.

補償抵抗8は、第1の実施形態で説明した発熱抵抗体2と同じく白金線をコイル状に巻回して形成されており、発熱抵抗体2と略同一の形状、寸法に形成されているが、水素ガスに対する燃焼活性を無くすための処理を行っている。なお補償抵抗8の材料は白金線に限定されるものではなく、発熱抵抗体2と同一の白金系の抵抗線で形成されていれば良い。   The compensation resistor 8 is formed by winding a platinum wire in a coil shape like the heating resistor 2 described in the first embodiment, and is formed in substantially the same shape and size as the heating resistor 2. The treatment for eliminating the combustion activity against hydrogen gas is performed. The material of the compensation resistor 8 is not limited to the platinum wire, but may be formed of the same platinum resistance wire as that of the heating resistor 2.

補償抵抗8は水素ガスに対する燃焼活性を無くしているので、補償抵抗8を発熱抵抗体2と同じ温度に加熱したとしても補償抵抗8の表面で水素ガスが燃焼することはないから、燃焼熱による温度上昇が発生しない。また補償抵抗8は発熱抵抗体2と同一の材料で形成されているので、発熱抵抗体2と同一の温度−抵抗特性を有しているから、補償抵抗8の抵抗値を用いて雰囲気温度変化等の雰囲気条件を補正することで、燃焼熱による発熱抵抗体2の抵抗値変化をより正確に測定することができ、水素ガスに対する検出精度が向上する。   Since the compensation resistor 8 has no combustion activity with respect to hydrogen gas, even if the compensation resistor 8 is heated to the same temperature as the heating resistor 2, hydrogen gas does not burn on the surface of the compensation resistor 8. No temperature rise occurs. Since the compensation resistor 8 is made of the same material as that of the heating resistor 2, it has the same temperature-resistance characteristics as the heating resistor 2. By correcting the atmospheric conditions such as the above, the resistance value change of the heating resistor 2 due to the heat of combustion can be measured more accurately, and the detection accuracy for hydrogen gas is improved.

ベース4は合成樹脂により円盤状に形成され、3本のステム3a,3b,3cがベース4を上下方向に貫通するようにインサート成形されている。3本のステム3a,3b,3cは同一平面内に一列に並ぶように設けられ、中央のステム3cは他の2本のステム3a,3bに比べて上面からの突出量が短くなっている。そして、左側の2本のステム3a,3cには、ベース4の上面から突出する部位に発熱抵抗体2の両端部が溶接などの方法で固着され、右側の2本のステム3b,3cには、ベース4の上面から突出する部位に補償抵抗8の両端部が溶接などの方法で固着されている。ここで、3本のステム3a〜3cは同一平面内に並んでいるので、ステム3a〜3cに発熱抵抗体2および補償抵抗8をレーザ溶接する場合は溶接作業を一度に行うことができ、作業性が向上するという利点がある。   The base 4 is formed in a disc shape from a synthetic resin, and is insert-molded so that the three stems 3a, 3b, 3c penetrate the base 4 in the vertical direction. The three stems 3a, 3b, 3c are provided so as to be arranged in a line in the same plane, and the central stem 3c has a shorter protruding amount from the upper surface than the other two stems 3a, 3b. Then, both ends of the heating resistor 2 are fixed to the left two stems 3a and 3c by a method such as welding to a portion protruding from the upper surface of the base 4, and the right two stems 3b and 3c are fixed to the two stems 3b and 3c on the right side. Both ends of the compensation resistor 8 are fixed to a portion protruding from the upper surface of the base 4 by a method such as welding. Here, since the three stems 3a to 3c are arranged in the same plane, when the heating resistor 2 and the compensation resistor 8 are laser welded to the stems 3a to 3c, the welding work can be performed at one time. There is an advantage that the performance is improved.

本実施形態のガスセンサを製造するにあたっては、先ず白金系(例えば白金、ジルコニア安定化白金など)の抵抗線(母材)をコイル状に巻回して、同一の形状・寸法を有するコイルを2つ形成した後、ベース4にインサート成形されたステム3a,3cに一方のコイルの両端を固着するとともに、ステム3b,3cに他方のコイルの両端をそれぞれ固着する。次に各コイルの表面をパラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくとも1種と合金化するために、例えば硝酸パラジウム、硝酸ルテニウム、硝酸ロジウム、硝酸ニッケル、硝酸コバルトの内の少なくとも1種を所定濃度含んだ水溶液を両コイルに塗布した後、室温で約1時間風乾して溶媒を除去する。その後ステム3a,3c間、ステム3b,3c間にそれぞれ約1.1Vの電圧を10分程度印加し、コイルの表面温度を約900℃に加熱することによって、コイルの表面をパラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくとも1種と合金化する。その後、補償抵抗8となるコイルを加熱するため、ステム3b,3c間に約0.8Vの電圧を印加してコイルを約700℃に加熱し、雰囲気中に約10000ppmの亜硫酸ガスあるいは約1000ppmのヘキサメチルジシロキサン蒸気を導入して約1分間保持することで触媒を被毒し、白金合金の触媒活性を失活させることにより補償抵抗8を形成する。この方法で触媒活性を失活させた補償抵抗8は発熱抵抗体2と同一の寸法・形状を有し、且つ、その表面は発熱抵抗体2の表面と外観上の差異は見られない。また補償抵抗8は、発熱抵抗体2と同一の白金系抵抗線を巻線機でコイル状に巻いて、その表面を合金化した後、さらに表面の触媒活性を失活させているから、発熱抵抗体2と同一形状、同一寸法のものを容易に製造することができ、発熱抵抗体2と温度−抵抗特性が等しい補償抵抗8を容易に組み合わせることができる。   In manufacturing the gas sensor of the present embodiment, first, a resistance wire (base material) of platinum (for example, platinum, zirconia stabilized platinum, etc.) is wound into a coil shape, and two coils having the same shape and dimensions are wound. After the formation, both ends of one coil are fixed to the stems 3a and 3c insert-molded on the base 4, and both ends of the other coil are fixed to the stems 3b and 3c, respectively. Next, in order to alloy the surface of each coil with at least one of palladium, ruthenium, rhodium, nickel and cobalt, for example, at least one of palladium nitrate, ruthenium nitrate, rhodium nitrate, nickel nitrate and cobalt nitrate. After applying an aqueous solution containing a predetermined concentration to both coils, the solvent is removed by air drying at room temperature for about 1 hour. Thereafter, a voltage of about 1.1 V is applied between the stems 3a and 3c and between the stems 3b and 3c for about 10 minutes, and the surface temperature of the coil is heated to about 900 ° C., so that the surface of the coil is palladium, ruthenium, rhodium. Alloy with at least one of nickel, cobalt. Thereafter, in order to heat the coil serving as the compensation resistor 8, a voltage of about 0.8 V is applied between the stems 3b and 3c to heat the coil to about 700 ° C., and about 10,000 ppm of sulfurous acid gas or about 1000 ppm of the atmosphere is heated. Hexamethyldisiloxane vapor is introduced and held for about 1 minute to poison the catalyst and deactivate the catalytic activity of the platinum alloy to form the compensation resistor 8. The compensation resistor 8 whose catalytic activity has been deactivated by this method has the same size and shape as the heating resistor 2, and the surface of the compensating resistor 8 is not different from the surface of the heating resistor 2 in appearance. Further, the compensation resistor 8 is formed by winding the same platinum resistance wire as that of the heating resistor 2 in a coil shape with a winding machine, alloying the surface, and further deactivating the catalytic activity of the surface. The same shape and the same size as the resistor 2 can be easily manufactured, and the heating resistor 2 and the compensation resistor 8 having the same temperature-resistance characteristics can be easily combined.

なお本実施形態では発熱抵抗体2と補償抵抗8とを同じケースの内部に収納しているので、発熱抵抗体2と補償抵抗8の雰囲気条件をほぼ同じにでき、補償抵抗8の抵抗値を用いて発熱抵抗体2の出力を正確に補正することが可能であるが、発熱抵抗体2と補償抵抗8との雰囲気条件をほぼ同じにできるのであれば、別々のケースに収納しても良い。   In this embodiment, since the heating resistor 2 and the compensation resistor 8 are housed in the same case, the atmospheric conditions of the heating resistor 2 and the compensation resistor 8 can be made substantially the same, and the resistance value of the compensation resistor 8 can be changed. It is possible to correct the output of the heating resistor 2 accurately, but if the atmospheric conditions of the heating resistor 2 and the compensation resistor 8 can be made substantially the same, they may be housed in separate cases. .

(第3の実施形態)
本発明に係る第3の実施形態について図7および図8を参照して説明する。本実施形態では、第2の実施形態で説明したガスセンサ1において、保護キャップ5の上側にフィルタ12を保持したフィルタキャップ9を被せてある。尚、フィルタキャップ9やフィルタ12以外の構成は第2の実施形態と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
(Third embodiment)
A third embodiment according to the present invention will be described with reference to FIGS. In this embodiment, in the gas sensor 1 described in the second embodiment, a filter cap 9 holding a filter 12 is put on the upper side of the protective cap 5. Since the configuration other than the filter cap 9 and the filter 12 is the same as that of the second embodiment, common components are denoted by the same reference numerals and description thereof is omitted.

フィルタキャップ9は合成樹脂製であって、上面側の端部が閉塞された略円筒状に形成されている。フィルタキャップ9の上面には丸孔状の通気孔10が貫設されており、この通気孔10には防爆のために100メッシュのステンレス製の金網11が装着されている。またフィルタキャップ9の筒内には、通気孔10を通って内部に侵入するガス中の被毒物質を吸着するフィルタ12が装着されている。このフィルタ12は、活性炭、シリカゲル、又はゼオライトのような吸着性多孔質体、或いは、有機または無機の多孔質体に化学物質捕捉性液体成分を含浸させた吸着剤からなり、ガス中の被毒物質(例えばシリコンなど)を吸着する機能を有している。なお上記の化学物質捕捉液体成分としては、例えば酸化性ガスを取り除くために担持されるKOHやアンモニア、アミン等を取り除くために担持される燐酸等があり、特定の被毒物質を吸着するために適宜の成分の液体を有機無機多孔質体に含浸させて使用すれば良い。   The filter cap 9 is made of a synthetic resin, and is formed in a substantially cylindrical shape whose end on the upper surface side is closed. A round hole-shaped air hole 10 is provided in the upper surface of the filter cap 9, and a 100-mesh stainless steel wire mesh 11 is attached to the air hole 10 for explosion prevention. Further, a filter 12 that adsorbs poisonous substances in the gas entering the inside through the vent hole 10 is mounted in the tube of the filter cap 9. The filter 12 is made of an adsorbent porous material such as activated carbon, silica gel, or zeolite, or an adsorbent obtained by impregnating an organic or inorganic porous material with a chemical substance-capturing liquid component. It has a function of adsorbing a substance (for example, silicon). Examples of the chemical substance-capturing liquid component include KOH, ammonia, and phosphoric acid, which are carried to remove oxidizing gas, to adsorb specific poisonous substances. What is necessary is just to use the liquid of an appropriate component by impregnating the organic-inorganic porous material.

ここにベース4と保護キャップ5とフィルタキャップ9とで、発熱抵抗体2および補償抵抗8を内部に収納するケースが構成され、ケース(フィルタキャップ9)に設けた通気孔10と発熱抵抗体2および補償抵抗8との間のガス流路に被毒物質を吸着するフィルタ12を設けているので、通気孔10を通って内部に侵入するガス中の被毒物質を吸着でき、被毒物質による発熱抵抗体2および補償抵抗8の被毒が抑制されて、感度の劣化を低減できる。   Here, the base 4, the protective cap 5, and the filter cap 9 constitute a case for housing the heating resistor 2 and the compensation resistor 8 therein. The vent hole 10 provided in the case (filter cap 9) and the heating resistor 2 Since the filter 12 for adsorbing the poisonous substance is provided in the gas flow path between the compensation resistor 8 and the compensation resistor 8, the poisonous substance in the gas entering the inside through the vent hole 10 can be adsorbed. The poisoning of the heating resistor 2 and the compensation resistor 8 is suppressed, and deterioration in sensitivity can be reduced.

ここで、本実施形態のガスセンサ1について、触媒の被毒成分として知られる亜硫酸ガスおよびシリコンガスによる被毒の影響を調べた結果について以下に説明する。ここで、発熱抵抗体2の表面の組成を純白金又はジルコニア安定化白金(つまり表面を合金化していないもの)、白金−パラジウム合金、白金−ルテニウム合金、白金−ロジウム合金、白金−ニッケル合金、白金−コバルト合金としたものを、亜硫酸ガスが300ppm、ヘキサメチルジシロキサンが150ppmの雰囲気中で、発熱抵抗体2に約0.2Vの電圧を印加して24時間連続動作させたところ、何れのガスセンサ1においても24時間経過後に試験前と同等のガス感度を有していた。而してフィルタ12を設けることで被毒耐久性を大幅に向上させることができ、雰囲気条件が劣悪な場合でも長期間安定した性能を維持することが可能になった。なお第1の実施形態で説明したガスセンサ1においても、本実施形態と同様に、保護キャップ5の上側にフィルタ12を保持したフィルタキャップ9を被せても良いことは言うまでもなく、発熱抵抗体2の被毒を抑制して、感度の劣化を低減することが可能である。   Here, with respect to the gas sensor 1 of the present embodiment, the results of examining the influence of poisoning by sulfurous acid gas and silicon gas known as poisoning components of the catalyst will be described below. Here, the composition of the surface of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, the one whose surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, platinum-nickel alloy, When the platinum-cobalt alloy was operated continuously for 24 hours by applying a voltage of about 0.2 V to the heating resistor 2 in an atmosphere of 300 ppm sulfurous acid gas and 150 ppm hexamethyldisiloxane, The gas sensor 1 also had the same gas sensitivity as before the test after 24 hours. Thus, the provision of the filter 12 can greatly improve the poisoning durability, and it is possible to maintain stable performance for a long time even when the atmospheric conditions are poor. In the gas sensor 1 described in the first embodiment, it goes without saying that the filter cap 9 holding the filter 12 may be placed on the upper side of the protective cap 5 as in the present embodiment. It is possible to suppress poisoning and reduce deterioration of sensitivity.

上記のように、本発明の精神と範囲に反することなしに、広範に異なる実施形態を構成することができることは明白なので、この発明は、添付クレームにおいて限定した以外は、その特定の実施形態に制約されるものではない。
Since it is apparent that a wide variety of different embodiments can be constructed without departing from the spirit and scope of the present invention as described above, the invention is not limited to the specific embodiments except as defined in the appended claims. It is not restricted.

Claims (3)

水素ガスを検出する水素ガスセンサであって、
発熱抵抗体を備え
この発熱抵抗体は、中心部に合金化していない部分を残すようにして表面のみを合金化した白金線からなり、
発熱抵抗体の表面組成はパラジウム、ルテニウム、ロジウム、ニッケル、又はコバルトの内の少なくとも1種と白金との合金であり、
発熱抵抗体は、通電によるジュール熱で水素ガスを燃焼可能な温度まで加熱され、発熱抵抗体の合金化された表面で水素ガスを燃焼させ、その燃焼熱による温度上昇に応じて電気抵抗が変化し、電気抵抗の変化を水素ガスの濃度検知信号として出力する
ことを特徴とする水素ガスセンサ
A hydrogen gas sensor for detecting hydrogen gas,
With a heating resistor ,
This heating resistor consists of a platinum wire alloyed only on the surface so as to leave a non-alloyed part in the center,
The surface composition of the heating resistor is an alloy of platinum and at least one of palladium, ruthenium, rhodium, nickel, or cobalt,
The heating resistor is heated to a temperature at which hydrogen gas can be combusted by Joule heat by energization, and hydrogen gas is burned on the alloyed surface of the heating resistor, and the electric resistance changes according to the temperature rise due to the combustion heat The change in electrical resistance is output as a hydrogen gas concentration detection signal.
A hydrogen gas sensor characterized by that .
記発熱抵抗体と同一の材料から形成され、水素ガスに対する燃焼活性を無くした補償抵抗を備えることを特徴とする請求項1に記載の水素ガスセンサIt is formed of the same material as before Symbol heating resistor, hydrogen gas sensor according to claim 1, characterized in that it comprises a compensation resistor eliminated combustion activity for hydrogen gas. 記発熱抵抗体と前記補償抵抗とを収納するケースを備え、このケースには外部と連通する通気孔が形成され、前記通気孔と前記発熱抵抗体および前記補償抵抗との間のガス流路に被毒物質を吸着するフィルタを設けることを特徴とする請求項2に記載の水素ガスセンサ E Bei a case accommodating the said compensation resistance before and Symbol heating resistor, this case is formed vent hole communicating with the outside, the gas flow between the vent hole and the heat-generating resistor and the compensating resistor The hydrogen gas sensor according to claim 2, wherein a filter for adsorbing a poisonous substance is provided on the path.
JP2007504568A 2005-02-22 2005-02-22 Hydrogen gas sensor Active JP4571665B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002796 WO2006090433A1 (en) 2005-02-22 2005-02-22 Hydrogen gas sensor and process for producing the same

Publications (2)

Publication Number Publication Date
JPWO2006090433A1 JPWO2006090433A1 (en) 2008-08-07
JP4571665B2 true JP4571665B2 (en) 2010-10-27

Family

ID=36927084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007504568A Active JP4571665B2 (en) 2005-02-22 2005-02-22 Hydrogen gas sensor

Country Status (2)

Country Link
JP (1) JP4571665B2 (en)
WO (1) WO2006090433A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573552A4 (en) * 2010-05-17 2014-04-02 Honda Motor Co Ltd Catalytic combustion type gas sensor
US8669131B1 (en) 2011-09-30 2014-03-11 Silicon Laboratories Inc. Methods and materials for forming gas sensor structures
US8691609B1 (en) 2011-09-30 2014-04-08 Silicon Laboratories Inc. Gas sensor materials and methods for preparation thereof
US9164052B1 (en) 2011-09-30 2015-10-20 Silicon Laboratories Inc. Integrated gas sensor
US8852513B1 (en) 2011-09-30 2014-10-07 Silicon Laboratories Inc. Systems and methods for packaging integrated circuit gas sensor systems
JP6438685B2 (en) * 2014-06-06 2018-12-19 新コスモス電機株式会社 Gas detector
JP6467212B2 (en) * 2014-12-12 2019-02-06 Nissha株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
JP7019330B2 (en) * 2017-07-10 2022-02-15 新コスモス電機株式会社 Contact combustion type gas sensor
JP6556288B2 (en) * 2018-04-24 2019-08-07 新コスモス電機株式会社 Gas detector

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449199A (en) * 1977-09-02 1979-04-18 Auergesellschaft Gmbh Gas detecting probe without catalytic action of gas measuring apparatus and production thereof
JPS5523379B2 (en) * 1975-11-05 1980-06-23
JPS5524060B2 (en) * 1975-11-06 1980-06-26
JPH1090210A (en) * 1996-08-31 1998-04-10 Lg Electron Inc Catalytic combustion type gas sesnor and its manufacture
JPH1183781A (en) * 1997-09-11 1999-03-26 Fuji Electric Co Ltd Manufacture of catalyst for gas sensor
JPH11160266A (en) * 1997-12-02 1999-06-18 Matsushita Seiko Co Ltd Gas sensor
JP2002052338A (en) * 2000-08-09 2002-02-19 New Cosmos Electric Corp Silicone gas adsorbent, gas filter, and gas sensor
JP2004020377A (en) * 2002-06-17 2004-01-22 Honda Motor Co Ltd Catalytic combustion type gas sensor
JP2006090823A (en) * 2004-09-24 2006-04-06 Citizen Watch Co Ltd Platinum alloy wire and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257890A (en) * 1975-11-06 1977-05-12 Matsushita Electric Ind Co Ltd Production of inflammable gas detecting element
JPS5321987A (en) * 1976-08-12 1978-02-28 Gasurotsuku Hanbai Kk Detecting element using combustible gas concentration measurements
JP2004276283A (en) * 2003-03-13 2004-10-07 Mitsubishi Pencil Co Ltd Pressurizing-type ball-point pen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523379B2 (en) * 1975-11-05 1980-06-23
JPS5524060B2 (en) * 1975-11-06 1980-06-26
JPS5449199A (en) * 1977-09-02 1979-04-18 Auergesellschaft Gmbh Gas detecting probe without catalytic action of gas measuring apparatus and production thereof
JPH1090210A (en) * 1996-08-31 1998-04-10 Lg Electron Inc Catalytic combustion type gas sesnor and its manufacture
JPH1183781A (en) * 1997-09-11 1999-03-26 Fuji Electric Co Ltd Manufacture of catalyst for gas sensor
JPH11160266A (en) * 1997-12-02 1999-06-18 Matsushita Seiko Co Ltd Gas sensor
JP2002052338A (en) * 2000-08-09 2002-02-19 New Cosmos Electric Corp Silicone gas adsorbent, gas filter, and gas sensor
JP2004020377A (en) * 2002-06-17 2004-01-22 Honda Motor Co Ltd Catalytic combustion type gas sensor
JP2006090823A (en) * 2004-09-24 2006-04-06 Citizen Watch Co Ltd Platinum alloy wire and its manufacturing method

Also Published As

Publication number Publication date
JPWO2006090433A1 (en) 2008-08-07
WO2006090433A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4571665B2 (en) Hydrogen gas sensor
JP5016599B2 (en) Gas detector
JP4833717B2 (en) Contact combustion type gas sensor and its sensing element and compensating element
JP4580405B2 (en) Hydrogen gas sensor
US7007542B2 (en) Method of warning of poisoning in poison resistant combustible gas sensors
WO2007099933A1 (en) Hydrogen gas sensor
US6550310B1 (en) Catalytic adsorption and oxidation based carbon monoxide sensor and detection method
JP2020522675A (en) Comparative diagnosis of flammable gas sensors containing catalytic structures
CN117517408A (en) Gas sensor
JP6472168B2 (en) Contact combustion type gas sensor
JP6335518B2 (en) Gas sensor filter and gas sensor
EP1820016A2 (en) Electrochemical sensor system
JP6224311B2 (en) Semiconductor gas sensor element
JP6558884B2 (en) Contact combustion type gas sensor
JP2007232406A (en) Gas detector
JP2006194851A (en) Contact combustion type hydrogen sensor
JP2004020377A (en) Catalytic combustion type gas sensor
JP4210758B2 (en) Gas alarm
JP2007057295A (en) Catalytic combustion type gas sensor
JPH10115597A (en) Gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
CN114514423A (en) Gas concentration measuring device
JPH0875691A (en) Gas sensor
JP2726886B2 (en) Contact combustion type carbon monoxide sensor
JPS6146455Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250