JP6224311B2 - Semiconductor gas sensor element - Google Patents

Semiconductor gas sensor element Download PDF

Info

Publication number
JP6224311B2
JP6224311B2 JP2012244855A JP2012244855A JP6224311B2 JP 6224311 B2 JP6224311 B2 JP 6224311B2 JP 2012244855 A JP2012244855 A JP 2012244855A JP 2012244855 A JP2012244855 A JP 2012244855A JP 6224311 B2 JP6224311 B2 JP 6224311B2
Authority
JP
Japan
Prior art keywords
gas
electrode
sensitive body
resistance value
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012244855A
Other languages
Japanese (ja)
Other versions
JP2014092524A (en
Inventor
満治 吉良
満治 吉良
森本 聡
聡 森本
真理子 杉村
真理子 杉村
弘史 香田
弘史 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Co Ltd
Original Assignee
Nissha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Co Ltd filed Critical Nissha Co Ltd
Priority to JP2012244855A priority Critical patent/JP6224311B2/en
Publication of JP2014092524A publication Critical patent/JP2014092524A/en
Application granted granted Critical
Publication of JP6224311B2 publication Critical patent/JP6224311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、金属酸化物半導体を含有する感ガス体の電気抵抗値の変化により検出対象のガスを検出するために用いられる半導体ガスセンサ素子に関する。   The present invention relates to a semiconductor gas sensor element used for detecting a gas to be detected by a change in electric resistance value of a gas sensitive body containing a metal oxide semiconductor.

半導体ガスセンサ素子は、気相中の微量のガス成分の検出に適し、種々の用途に用いられている。半導体ガスセンサ素子としては、種々の形態のものが提案されている。そのうち、金属酸化物半導体を主体とする球状の感ガス体中に、白金、白金合金等からなる電極を埋設して構成される半導体ガスセンサ素子は、強度と耐久性が高いため、種々の分野で用いられている(特許文献1参照)。このような半導体ガスセンサ素子では、感ガス体がヒータ等によって加熱された状態で検出対象であるガスに曝露されると、ガスの吸着によって感ガス体の電気的抵抗値が変化し、この電気的抵抗値の変化が電極を用いて検出され、これによって検出対象のガスが検出される。また、電気抵抗値の変化量に基づいて、気相中のガス濃度を測定することも可能である。   The semiconductor gas sensor element is suitable for detecting a small amount of gas components in the gas phase and is used for various applications. Various types of semiconductor gas sensor elements have been proposed. Among them, semiconductor gas sensor elements constructed by embedding electrodes made of platinum, platinum alloys, etc. in a spherical gas-sensitive body mainly composed of metal oxide semiconductors have high strength and durability. Used (see Patent Document 1). In such a semiconductor gas sensor element, when the gas sensitive body is exposed to a gas to be detected while being heated by a heater or the like, the electrical resistance value of the gas sensitive body changes due to the adsorption of the gas. A change in the resistance value is detected using the electrode, and thereby the gas to be detected is detected. It is also possible to measure the gas concentration in the gas phase based on the amount of change in the electrical resistance value.

特開2008−46091号公報JP 2008-46091 A

半導体ガスセンサ素子を用いてガスを正確に検出し、或いはガス濃度を正確に測定するためには、電極を用いて測定される電気抵抗値が安定していること、並びにガス濃度に応じた電気抵抗値の変化量が一定であることが、求められる。   In order to accurately detect the gas using the semiconductor gas sensor element or to accurately measure the gas concentration, the electric resistance value measured using the electrode is stable and the electric resistance according to the gas concentration. It is required that the amount of change in value is constant.

しかし、環境の変化等に応じて、電極を用いて測定される電気抵抗値及びその変化量が、変動してしまうことがある。例えば、感ガス体の加熱温度、感ガス体が曝露されている気相の温度及び湿度等が変化すると、それに応じて電気抵抗値の測定値が変化してしまうことがある。また、検出対象のガスが、高温の感ガス体中で酸化されてしまうことで、本来のガス濃度に応じた電気抵抗値の変化が生じなくなるという事態も起こり得る。   However, the electrical resistance value measured using the electrodes and the amount of change may vary depending on the environmental change or the like. For example, if the heating temperature of the gas sensitive body, the temperature and humidity of the gas phase to which the gas sensitive body is exposed, and the like change, the measured value of the electrical resistance value may change accordingly. In addition, there is a possibility that the gas to be detected is oxidized in the high temperature gas sensitive body, so that the electric resistance value does not change according to the original gas concentration.

本発明は、上記事由に鑑みてなされたものであり、その課題は、環境の変化等に起因する感度の変化が生じにくい半導体ガスセンサ素子を提供することである。   This invention is made | formed in view of the said reason, The subject is providing the semiconductor gas sensor element which a change of the sensitivity resulting from the change of an environment etc. does not arise easily.

本発明に係る半導体ガスセンサは、金属酸化物半導体を含有する感ガス体と、この感ガス体に埋め込まれている電極とを備え、前記電極が白金又は白金合金から形成され、且つその表面上に金被膜が形成されていることを特徴とする。   A semiconductor gas sensor according to the present invention includes a gas sensitive body containing a metal oxide semiconductor and an electrode embedded in the gas sensitive body, and the electrode is formed of platinum or a platinum alloy, and on the surface thereof. A gold film is formed.

本発明によれば、半導体ガスセンサ素子を用いて検出対象のガスを検出し、或いはその濃度を測定する場合の、感度が向上し、且つ環境の変化等に起因する感度の変化が生じにくくなるという効果を奏する。   According to the present invention, when detecting a gas to be detected using a semiconductor gas sensor element or measuring its concentration, the sensitivity is improved, and a change in sensitivity due to a change in environment is less likely to occur. There is an effect.

本発明の一実施形態における半導体ガスセンサ素子を示す断面図である。It is sectional drawing which shows the semiconductor gas sensor element in one Embodiment of this invention. 前記半導体ガスセンサ素子を備えるガス検出装置を示す一部破断した正面図である。It is the partially broken front view which shows the gas detection apparatus provided with the said semiconductor gas sensor element. 実施例1についての、大気中での、ヒータ兼用電極と芯線状電極との間の電気抵抗値Rairの温度依存性を調査した結果を示すグラフである。It is a graph which shows the result of having investigated the temperature dependence of the electrical resistance value Rair between the heater combined electrode and the core wire electrode in the atmosphere for Example 1. 比較例1についての、大気中での、ヒータ兼用電極と芯線状電極との間の電気抵抗値Rairの温度依存性を調査した結果を示すグラフである。It is a graph which shows the result of having investigated the temperature dependence of the electrical resistance value Rair between the heater combined electrode and the core wire electrode in the atmosphere for Comparative Example 1. 実施例1についての、検知対象のガスを含む気相中でのヒータ兼用電極と芯線状電極との間の電気抵抗値Rsと大気中でのヒータ兼用電極と芯線状電極との間の電気抵抗値Rairとの比Rair/Rsの温度依存性を調査した結果を示すグラフである。The electrical resistance value R s between the heater combined electrode and the core wire electrode in the gas phase containing the gas to be detected and the electricity between the heater combined electrode and the core wire electrode in the atmosphere for Example 1 the temperature dependence of the ratio R air / R s of the resistance value R air is a graph showing the results of the investigation. 比較例1についての、検知対象のガスを含む気相中でのヒータ兼用電極と芯線状電極との間の電気抵抗値Rsと大気中でのヒータ兼用電極と芯線状電極との間の電気抵抗値Rairとの比Rair/Rsの温度依存性を調査した結果を示すグラフである。For Comparative Example 1, electrical between the heater combined electrode and the wire-shaped electrode in an electric resistance value R s and the atmosphere between the heater combined electrode and the wire-shaped electrode in the gas phase comprises a gas detection target the temperature dependence of the ratio R air / R s of the resistance value R air is a graph showing the results of the investigation. 実施例1及び比較例1についての、検知対象のガスを含む気相中でのヒータ兼用電極と芯線状電極との間の電気抵抗値Rsと大気中でのヒータ兼用電極と芯線状電極との間の電気抵抗値Rairとの比Rair/Rsを調査した結果を示すグラフであり、図7(a)は検出対象のガスがメタンである場合、図7(b)は検出対象のガスが一酸化炭素である場合、図7(c)は検出対象のガスが水素である場合、図7(d)は検出対象のガスがエチレンである場合、図7(e)は検出対象のガスがアンモニアである場合、図7(f)は検出対象のガスがエタノールである場合、図7(g)は検出対象のガスがトルエンである場合、図7(h)は検出対象のガスが硫化水素である場合、図7(i)は検出対象のガスがトリメチルアミンである場合の結果を示す。For Example 1 and Comparative Example 1, a heater combined electrode and the wire-shaped electrode in an electric resistance value R s and the atmosphere between the heater combined electrode and the wire-shaped electrode in the gas phase comprises a gas detection target FIG. 7A is a graph showing the result of investigating the ratio R air / R s with respect to the electric resistance value R air between FIG. 7A and FIG. 7B when the detection target gas is methane. 7 (c) shows the case where the detection target gas is hydrogen, FIG. 7 (d) shows the case where the detection target gas is ethylene, and FIG. 7 (e) shows the case where the detection target gas is carbon monoxide. 7 (f) shows the case where the detection target gas is ethanol, FIG. 7 (g) shows the case where the detection target gas is toluene, and FIG. 7 (h) shows the detection target gas. FIG. 7 (i) shows the results when the detection target gas is trimethylamine. Show. 実施例2及び比較例2についての、検知対象のガスを含む気相中でのヒータ兼用電極と芯線状電極との間の電気抵抗値Rsと大気中でのヒータ兼用電極と芯線状電極との間の電気抵抗値Rairとの比Rs/Rairを調査した結果を示すグラフである。For Example 2 and Comparative Example 2, a heater combined electrode and the wire-shaped electrode in an electric resistance value R s and the atmosphere between the heater combined electrode and the wire-shaped electrode in the gas phase comprises a gas detection target it is a graph showing the results of the examination of the ratio R s / R air between the electric resistance value R air between. 実施例2及び比較例2についての、大気中での、温湿度条件が20℃60%RHである場合のヒータ兼用電極と芯線状電極との間の電気抵抗値R0と、温湿度条件を変更した場合のヒータ兼用電極と芯線状電極との間の電気抵抗値Rsとの比Rs/R0を調査した結果を示すグラフである。For Example 2 and Comparative Example 2, the electrical resistance value R 0 between the heater electrode and the core wire electrode in the atmosphere when the temperature and humidity conditions are 20 ° C. and 60% RH, and the temperature and humidity conditions are as follows: it is a graph showing the results of the examination of the ratio R s / R 0 of the electric resistance R s between the heater combined electrode and the wire-like electrode when changing. 実施例2及び比較例2についての、アンモニアを含む気相中での、温湿度条件が20℃60%RHである場合のヒータ兼用電極と芯線状電極との間の電気抵抗値R0と、温湿度条件を変更した場合のヒータ兼用電極と芯線状電極との間の電気抵抗値Rsとの比Rs/R0を調査した結果を示すグラフである。For Example 2 and Comparative Example 2, in the gas phase containing ammonia, the electrical resistance value R 0 between the heater combined electrode and the core wire electrode when the temperature and humidity condition is 20 ° C. and 60% RH, it is a graph showing the results of the examination of the ratio R s / R 0 of the electric resistance R s between the heater combined electrode and the wire-shaped electrode in the case of changing the temperature and humidity conditions. 比較例3についての、ヒータ兼用電極に0.5Vの電圧と0.9Vの電圧とを交互に印加する場合の、検知対象のガスを含む気相中での、印加電圧0.5Vでのヒータ兼用電極と芯線状電極との間の電気抵抗値Rsのガス濃度依存性を調査した結果を示すグラフである。The heater at the applied voltage of 0.5 V in the gas phase containing the gas to be detected when the voltage of 0.5 V and the voltage of 0.9 V are alternately applied to the heater combined electrode in Comparative Example 3 is a graph showing the results of the examination of the gas concentration dependence of the electrical resistance R s between the combined electrode and the wire-shaped electrode. 実施例3についての、ヒータ兼用電極に0.5Vの電圧と0.9Vの電圧とを交互に印加する場合の、検知対象のガスを含む気相中での、印加電圧0.5Vでのヒータ兼用電極と芯線状電極との間の電気抵抗値Rsのガス濃度依存性を調査した結果を示すグラフである。In Example 3, when a voltage of 0.5 V and a voltage of 0.9 V are alternately applied to the heater combined electrode, the applied voltage is 0.5 V in the gas phase containing the gas to be detected. is a graph showing the results of the examination of the gas concentration dependence of the electrical resistance R s between the heater combined electrode and the wire-shaped electrode. 比較例3についての、ヒータ兼用電極に0.5Vの電圧と0.9Vの電圧とを交互に印加する場合の、検知対象のガスを含む気相中での、印加電圧0.9Vでのヒータ兼用電極と芯線状電極との間の電気抵抗値Rsのガス濃度依存性を調査した結果を示すグラフである。In Comparative Example 3, when a voltage of 0.5 V and a voltage of 0.9 V are alternately applied to the heater combined electrode, the applied voltage is 0.9 V in the gas phase containing the gas to be detected. is a graph showing the results of the examination of the gas concentration dependence of the electrical resistance R s between the heater combined electrode and the wire-shaped electrode. 実施例3についての、ヒータ兼用電極に0.5Vの電圧と0.9Vの電圧とを交互に印加する場合の、検知対象のガスを含む気相中での、印加電圧0.9Vでのヒータ兼用電極と芯線状電極との間の電気抵抗値Rsのガス濃度依存性を調査した結果を示すグラフである。The heater at the applied voltage of 0.9 V in the gas phase containing the gas to be detected when the voltage of 0.5 V and the voltage of 0.9 V are alternately applied to the heater combined electrode in Example 3. is a graph showing the results of the examination of the gas concentration dependence of the electrical resistance R s between the combined electrode and the wire-shaped electrode.

本実施形態に係る半導体ガスセンサ素子は、金属酸化物半導体を含有する感ガス体と、この感ガス体に埋め込まれている電極とを備える。電極が、白金又は白金合金から形成され、且つその表面上に金被膜が形成されている。   The semiconductor gas sensor element according to the present embodiment includes a gas sensitive body containing a metal oxide semiconductor and an electrode embedded in the gas sensitive body. The electrode is made of platinum or a platinum alloy, and a gold film is formed on the surface thereof.

一般に、半導体ガスセンサ素子の感ガス体を、検出対象のガスに曝露すると共に、電極を用いて感ガス体の電気抵抗値を測定することで、電気的抵抗値の変化に基づいて検出対象のガスを検出し、且つ電気的抵抗値の変化量に基づいて検出対象のガスの濃度を測定することができる。本実施形態では、感ガス体を、検出対象のガスに曝露した場合に生じる電気抵抗値の変化量が大きくなり、このため、検出感度が高くなる。更に、感ガス体の周囲の気相の温度及び湿度が変動する場合、並びに感ガス体の温度が変動する場合の、電気抵抗値の変化量が低減する。このため、環境の変化等に起因する感度の変化が生じにくくなる。   In general, the gas sensitive body of the semiconductor gas sensor element is exposed to the gas to be detected, and the electrical resistance value of the gas sensitive body is measured using an electrode, so that the gas to be detected is based on the change in the electrical resistance value. And the concentration of the gas to be detected can be measured based on the amount of change in the electrical resistance value. In the present embodiment, the amount of change in the electrical resistance value that occurs when the gas sensitive body is exposed to the gas to be detected is increased, and thus the detection sensitivity is increased. Furthermore, when the temperature and humidity of the gas phase around the gas sensitive body fluctuate and when the temperature of the gas sensitive substance fluctuates, the amount of change in the electrical resistance value is reduced. For this reason, it is difficult for a change in sensitivity due to an environmental change or the like to occur.

上記作用が生じる理由は、充分に明らかとはなっていないが、白金又は白金合金から形成される電極が金被膜によって被覆されることで、電極の表面上における触媒活性が抑制され、これにより気相中の検出対象のガスが酸化されにくくなることが、一因となっていると推察される。   The reason why the above action occurs is not sufficiently clear, but the catalytic activity on the surface of the electrode is suppressed by covering the electrode formed of platinum or a platinum alloy with a gold film, thereby reducing the gas. It is inferred that this is due to the fact that the gas to be detected in the phase is less likely to be oxidized.

尚、金被覆は、白金又は白金合金から形成される電極の電気抵抗値に殆ど影響を及ぼさない。このため、電極に電圧が印加される場合の電極の温度(感ガス体の加熱温度)は、金被覆の有無に影響されにくい。このため、上記のような作用は、電極の電気抵抗値の変化に起因する感ガス体の温度変化によって生じるのではない。   Note that the gold coating hardly affects the electric resistance value of the electrode formed of platinum or a platinum alloy. For this reason, the temperature of the electrode when the voltage is applied to the electrode (heating temperature of the gas sensitive body) is hardly affected by the presence or absence of the gold coating. For this reason, the above action is not caused by the temperature change of the gas sensitive body due to the change of the electric resistance value of the electrode.

本実施形態では、検出対象のガスの種類に制限はないが、特に検出対象のガスが還元性ガスの場合に、顕著な効果が発揮される。更に、検出対象のガスが、還元性ガスのうち、酸化されやすいアンモニア、アミン等である場合に、特に顕著な効果が発揮される。すなわち、検出対象のガスが還元性ガス、特に酸化されやすいアンモニア、アミン等である場合には、本実施形態では、電極上に金被覆が形成されない場合と較べて、検出感度が大きく向上し、且つ環境の変化に対する検出感度の変化が特に小さくなる。   In the present embodiment, the type of gas to be detected is not limited, but a remarkable effect is exhibited particularly when the gas to be detected is a reducing gas. Further, when the detection target gas is ammonia, amine, or the like that is easily oxidized among the reducing gases, a particularly remarkable effect is exhibited. That is, when the gas to be detected is a reducing gas, particularly ammonia that is easily oxidized, amine, etc., in this embodiment, the detection sensitivity is greatly improved as compared with the case where no gold coating is formed on the electrode, In addition, the change in detection sensitivity with respect to environmental changes is particularly small.

以下、本実施形態について、更に詳しく説明する。図1に本実施形態に係る半導体ガスセンサ素子1を示し、図2にこの半導体ガスセンサ素子1を備えるガス検出装置15を示す。半導体ガスセンサ素子1は、感ガス体4と、感ガス体4に埋め込まれている二つの電極2,3とを備える。また、ガス検出装置15は、半導体ガスセンサ素子1、三つのリード線5,6,7、三つの端子8,9,10、及びセンサ筐体13を備えている。   Hereinafter, this embodiment will be described in more detail. FIG. 1 shows a semiconductor gas sensor element 1 according to the present embodiment, and FIG. 2 shows a gas detection device 15 including the semiconductor gas sensor element 1. The semiconductor gas sensor element 1 includes a gas sensitive body 4 and two electrodes 2 and 3 embedded in the gas sensitive body 4. The gas detection device 15 includes a semiconductor gas sensor element 1, three lead wires 5, 6, 7, three terminals 8, 9, 10, and a sensor housing 13.

電極2,3は、白金又は白金合金から形成される。更に、電極2,3の表面上には、金被膜が形成されている。   The electrodes 2 and 3 are formed from platinum or a platinum alloy. Further, a gold film is formed on the surfaces of the electrodes 2 and 3.

本実施形態において、二つの電極2,3のうちの一方は、コイル状のヒータ兼用電極2であり、他方は、直線状の芯線状電極3である。ヒータ兼用電極2は、例えばその直径が0.1〜0.5mm、長さが0.05〜0.7mm、ターン数が2〜11の範囲に形成される。尚、長さとは、コイルの径方向と直交する方向の寸法である。ヒータ兼用電極2の両端からは、二本のリード線5,6がそれぞれ突出している。すなわち、二つのリード線5,6及びヒータ兼用電極2は、白金又は白金合金からなる一本の線材から形成され、二つのリード線5,6の間にヒータ兼用電極2が形成される。芯線状電極3は、コイル状のヒータ兼用電極2の内側に設けられている。この芯線状電極3の端部からリード線7が突出している。すなわち、リード線7及び芯線状電極3は、白金又は白金合金からなる一本の線材から形成され、この線材の片側の端部が芯線状電極3、この芯線状電極3以外の部分がリード線7となっている。リード線5,6,7、並びにヒータ兼用電極2及び芯線状電極3の各々の線径は、15〜25μmの範囲であることが好ましい。   In the present embodiment, one of the two electrodes 2 and 3 is a coiled heater combined electrode 2, and the other is a linear core wire electrode 3. The heater combined electrode 2 is formed, for example, in a range of 0.1 to 0.5 mm in diameter, 0.05 to 0.7 mm in length, and 2 to 11 turns. The length is a dimension in a direction perpendicular to the radial direction of the coil. Two lead wires 5 and 6 respectively project from both ends of the heater combined electrode 2. That is, the two lead wires 5 and 6 and the heater combined electrode 2 are formed from a single wire made of platinum or a platinum alloy, and the heater combined electrode 2 is formed between the two lead wires 5 and 6. The core wire electrode 3 is provided inside the coiled heater combined electrode 2. A lead wire 7 protrudes from an end portion of the core wire electrode 3. That is, the lead wire 7 and the core wire electrode 3 are formed from a single wire made of platinum or a platinum alloy, one end of the wire rod is the core wire electrode 3, and the portions other than the core wire electrode 3 are lead wires. 7 The lead wires 5, 6 and 7, and the wire diameters of the heater combined electrode 2 and the core wire electrode 3 are preferably in the range of 15 to 25 μm.

金被膜は、適宜の手法により形成される。例えば電極2,3の表面上に塩化金酸等の金化合物の水溶液を付着させてから、これを加熱して焼成することにより、金被膜を形成することができる。また、電極2,3の表面上に金めっき(電解金めっき又は無電解金めっき)により金被膜を形成してもよい。   The gold film is formed by an appropriate method. For example, a gold film can be formed by depositing an aqueous solution of a gold compound such as chloroauric acid on the surfaces of the electrodes 2 and 3 and then heating and baking it. Further, a gold film may be formed on the surfaces of the electrodes 2 and 3 by gold plating (electrolytic gold plating or electroless gold plating).

感ガス体4は、金属酸化物半導体を含有する。金属酸化物半導体は、例えば酸化スズ、酸化タングステン、酸化インジウム、酸化亜鉛、酸化チタン、チタン酸ストロンチウム、チタン酸バリウム、及びスズ酸バリウムから選択される金属酸化物を含有する。   The gas sensitive body 4 contains a metal oxide semiconductor. The metal oxide semiconductor contains a metal oxide selected from, for example, tin oxide, tungsten oxide, indium oxide, zinc oxide, titanium oxide, strontium titanate, barium titanate, and barium stannate.

感ガス体4は、更に適宜の無機絶縁体、触媒等の添加材を含有してもよい。無機絶縁体は、例えばアルミナ及びシリカから選択される少なくとも一種を含有することができる。触媒は、例えばルテニウム、パラジウム、アンチモン、ランタン、セリウム、及びモリブデンから選択される少なくとも一種を含有することができる。   The gas sensitive body 4 may further contain an appropriate additive such as an inorganic insulator and a catalyst. The inorganic insulator can contain at least one selected from alumina and silica, for example. The catalyst can contain at least one selected from, for example, ruthenium, palladium, antimony, lanthanum, cerium, and molybdenum.

感ガス体4の形状は、特に制限されず、例えば図示の例のような楕円体状、球体状等のような、球状に形成される。感ガス体4の寸法は、適宜設定されるが、好ましくはその径が0.2〜0.7mmの範囲に形成される。例えば、感ガス体4は、長径0.5mm、短径0.3mmの長楕円体状に形成される。   The shape of the gas sensitive body 4 is not particularly limited, and is formed into a spherical shape such as an ellipsoidal shape or a spherical shape as in the illustrated example. Although the dimension of the gas sensitive body 4 is set suitably, Preferably the diameter is formed in the range of 0.2-0.7 mm. For example, the gas sensitive body 4 is formed in an ellipsoidal shape having a major axis of 0.5 mm and a minor axis of 0.3 mm.

感ガス体4は、例えば金属酸化物半導体の粉末を含有する成形材料が成形され、更に焼成されることにより、形成される。成形材料は、金属酸化物半導体の粉末に加えて、無機絶縁体の粉末、触媒等を含有してもよい。更に、成形材料は、必要に応じて適宜の有機溶剤、バインダー等を含有してもよい。バインダーは、例えばコロイダルシリカ、有機シリカ、及びアルミナゾルから選択される少なくとも一種を含有する。   The gas sensitive body 4 is formed, for example, by molding a molding material containing a metal oxide semiconductor powder and firing the molding material. In addition to the metal oxide semiconductor powder, the molding material may contain an inorganic insulator powder, a catalyst, and the like. Furthermore, the molding material may contain an appropriate organic solvent, a binder, and the like as necessary. The binder contains at least one selected from, for example, colloidal silica, organic silica, and alumina sol.

感ガス体4が形成されるにあたっては、例えばまずヒータ兼用電極2の内側に芯線状電極3が配置されている状態で、これらの電極2,3上に、これらの電極2,3を覆うように成形材料が塗布される。このようにして電極2,3に成形材料が付着した状態で、成形材料が加熱されると、成形材料が焼結する。これにより、感ガス体4が形成される。   When the gas sensitive body 4 is formed, first, for example, in a state where the core wire electrode 3 is disposed inside the heater electrode 2, the electrodes 2, 3 are covered on the electrodes 2, 3. A molding material is applied to the substrate. When the molding material is heated in a state where the molding material is attached to the electrodes 2 and 3 in this way, the molding material is sintered. Thereby, the gas sensitive body 4 is formed.

感ガス体4の形成にあたり、まず成形材料を成形し更に焼成することで、焼結体を形成し、この焼結体に適宜の添加材を、必要に応じて溶媒を加えてから塗布し、更に焼成することで、感ガス体4を形成してもよい。この場合の添加材として、例えば触媒、コロイダルシリカ、及びアルミナゾルから選択される少なくとも一種が用いられる。   In forming the gas sensitive body 4, a molding material is first molded and further fired to form a sintered body, and an appropriate additive is applied to the sintered body after adding a solvent as necessary, Further, the gas sensitive body 4 may be formed by firing. As an additive in this case, for example, at least one selected from a catalyst, colloidal silica, and alumina sol is used.

ガス検出装置15において、リード線5の端部が、端子8に固定されると共に電気的に接続され、リード線6の端部が、端子9に固定されると共に電気的に接続され、リード線7の端部が、端子10に固定されると共に電気的に接続されている。   In the gas detection device 15, the end of the lead wire 5 is fixed and electrically connected to the terminal 8, and the end of the lead wire 6 is fixed and electrically connected to the terminal 9, and the lead wire 7 is fixed to the terminal 10 and electrically connected thereto.

端子8,9,10は、センサ筐体13の底部を兼ねる樹脂製のベース11を貫通してその一端部がセンサ筐体13の内側へ、他端部がセンサ筐体13の外側へ突出するように設けられている。これにより各端子8,9,10が、センサ筐体13によって支持されている。ベース11と共にセンサ筐体13を構成するキャップ体12は、上下が開口した筒状に形成されており、上部開口には防曝用のステンレス製の金網14が設けられている。このキャップ体12の下部開口にベース11が取り付けられることで、下部開口がベース11で閉塞され、これによりセンサ筐体13が構成されている。このセンサ筐体13の内側に半導体ガスセンサ素子1が配置される。   The terminals 8, 9, and 10 pass through the resin base 11 that also serves as the bottom of the sensor housing 13, and one end thereof protrudes inside the sensor housing 13 and the other end protrudes outside the sensor housing 13. It is provided as follows. Accordingly, the terminals 8, 9 and 10 are supported by the sensor housing 13. The cap body 12 that constitutes the sensor housing 13 together with the base 11 is formed in a cylindrical shape that is open at the top and bottom, and a stainless steel wire mesh 14 for exposure protection is provided in the upper opening. By attaching the base 11 to the lower opening of the cap body 12, the lower opening is closed by the base 11, thereby configuring the sensor housing 13. The semiconductor gas sensor element 1 is disposed inside the sensor housing 13.

このガス検出装置15は、例えば測定用回路に接続された状態で使用される。測定用回路は、端子8,9及びリード線5,6を介して、半導体ガスセンサ素子1のヒータ兼用電極2に電圧を印加してこのヒータ兼用電極2を通電加熱する回路である。更にこの測定用回路は、感ガス体4に生じる電気抵抗値の変化に基づいて、検出対象のガスの濃度信号を出力する。すなわち、例えば測定用回路は、ヒータ兼用電極2への電圧の印加を間欠的に休止し、その間にヒータ兼用電極2、芯線状電極3、及び適宜の抵抗が直列に接続された回路に一定電圧を印加し、このときにヒータ兼用電極2と芯線状電極3との間に発生する電圧降下量に応じた信号を生成し、この信号をA/D変換してマイクロコンピュータなどへ伝送する。この電圧降下量は、感ガス体4の電気抵抗値の変化に応じて変動するため、この電圧降下に基づいて電気抵抗値の変化が検出され、且つ電圧降下量に基づいて電気抵抗値の変化量が測定される。この電気抵抗値の変化に基づいて検出対象のガスが検出され、電気抵抗値の変化量の基づいて検出対象のガスの濃度が測定される。   This gas detection device 15 is used in a state connected to a measurement circuit, for example. The measurement circuit is a circuit that applies a voltage to the heater combined electrode 2 of the semiconductor gas sensor element 1 through the terminals 8 and 9 and the lead wires 5 and 6 to energize and heat the heater combined electrode 2. Further, the measurement circuit outputs a concentration signal of the gas to be detected based on the change in the electric resistance value generated in the gas sensitive body 4. That is, for example, the measurement circuit intermittently stops the application of the voltage to the heater combined electrode 2, and a constant voltage is applied to the circuit in which the heater combined electrode 2, the core wire electrode 3, and an appropriate resistor are connected in series. Is generated, a signal corresponding to the amount of voltage drop generated between the heater combined electrode 2 and the core wire electrode 3 is generated, and this signal is A / D converted and transmitted to a microcomputer or the like. Since this voltage drop varies depending on the change in the electrical resistance value of the gas sensitive body 4, a change in the electrical resistance value is detected based on this voltage drop, and a change in the electrical resistance value based on the voltage drop. The quantity is measured. The detection target gas is detected based on the change in the electrical resistance value, and the concentration of the detection target gas is measured based on the amount of change in the electrical resistance value.

検出対象のガスの検出時には、まず測定用回路が端子8,9及びリード線5,6を介してヒータ兼用電極2に電圧を印加することでヒータ兼用電極2を加熱する。これにより、感ガス体4の温度が検出対象のガスの検出に適した温度まで加熱される。この状態でガス検出装置15が検出対象のガスを含有する気相に曝露され、それにより感ガス体4が気相に曝露されると、感ガス体4の電気抵抗値が、気相中の検出対象のガスの濃度に応じて変動する。このヒータ兼用電極2と芯線状電極3との間での感ガス体4の電気抵抗値に基づいて、測定用回路が検出対象のガスの濃度信号を出力する。   When detecting the detection target gas, first, the measurement circuit applies a voltage to the heater combined electrode 2 via the terminals 8 and 9 and the lead wires 5 and 6 to heat the heater combined electrode 2. Thereby, the temperature of the gas sensitive body 4 is heated to a temperature suitable for detection of the detection target gas. In this state, when the gas detection device 15 is exposed to the gas phase containing the gas to be detected, and thereby the gas sensitive body 4 is exposed to the gas phase, the electric resistance value of the gas sensitive body 4 becomes the value in the gas phase. It fluctuates according to the concentration of the gas to be detected. Based on the electric resistance value of the gas sensitive body 4 between the heater combined electrode 2 and the core wire electrode 3, the measurement circuit outputs a concentration signal of the gas to be detected.

[実施例1]
線径20μmの白金線から、ヒータ兼用電極及び芯線状電極を形成した。ヒータ兼用電極はコイル状に形成し、その長さは0.5mm、直径は0.3mm、ターン数は7とした。
[Example 1]
A heater combined electrode and a core wire electrode were formed from a platinum wire having a wire diameter of 20 μm. The heater combined electrode was formed in a coil shape, the length was 0.5 mm, the diameter was 0.3 mm, and the number of turns was 7.

塩化金酸を金原子換算で2.6質量%の割合で含有する水溶液を用意した。この水溶液にヒータ兼用電極及び芯線状電極を1秒間浸漬してから、各電極の両端間に1.0Vの電圧を60秒間印加することで、各電極を加熱した。これにより、各電極の表面上に金被覆を形成した。   An aqueous solution containing chloroauric acid in a proportion of 2.6% by mass in terms of gold atom was prepared. Each electrode was heated by immersing the electrode serving as a heater and the core wire electrode in this aqueous solution for 1 second, and then applying a voltage of 1.0 V across the electrodes for 60 seconds. As a result, a gold coating was formed on the surface of each electrode.

次に、酸化タングステン粉末とα−アルミナ粉末とを、2:1の質量比で混合し、更にこれらにテルピネオールを加えることで、ペースト状の成形用組成物を得た。   Next, the tungsten oxide powder and the α-alumina powder were mixed at a mass ratio of 2: 1, and terpineol was further added thereto to obtain a paste-like molding composition.

ヒータ兼用電極の内側に芯線状電極が配置されている状態で、これらの電極を成形用組成物で覆ってから、成形用組成物を500℃で10分間加熱した。これにより、成形用組成物を焼結させて、焼結体を得た。   In a state where the core wire electrodes are arranged inside the heater electrode, these electrodes were covered with the molding composition, and then the molding composition was heated at 500 ° C. for 10 minutes. Thereby, the molding composition was sintered to obtain a sintered body.

続いて、焼結体の表面にコロイダルシリカを塗布してから、焼結体を700℃で10分間加熱した。これにより、長径約0.5mm、短径約0.3mmの長楕円体状の感ガス体を得た。   Subsequently, colloidal silica was applied to the surface of the sintered body, and then the sintered body was heated at 700 ° C. for 10 minutes. Thus, an ellipsoidal gas sensitive body having a major axis of about 0.5 mm and a minor axis of about 0.3 mm was obtained.

これにより、感ガス体、ヒータ兼用電極、及び芯線状電極を備える半導体ガスセンサ素子を得た。尚、同じ構造の半導体ガスセンサ素子を、合計5個作製した。   Thus, a semiconductor gas sensor element including a gas sensitive body, a heater combined electrode, and a core wire electrode was obtained. A total of five semiconductor gas sensor elements having the same structure were produced.

[実施例2]
線径20μmの白金線から、ヒータ兼用電極及び芯線状電極を形成した。ヒータ兼用電極はコイル状に形成し、その長さは0.5mm、直径は0.3mm、ターン数は7とした。
[Example 2]
A heater combined electrode and a core wire electrode were formed from a platinum wire having a wire diameter of 20 μm. The heater combined electrode was formed in a coil shape, the length was 0.5 mm, the diameter was 0.3 mm, and the number of turns was 7.

塩化金酸を金原子換算で2.6質量%の割合で含有する水溶液を用意した。この水溶液にヒータ兼用電極及び芯線状電極を1秒間浸漬してから、各電極の両端間に1.0Vの電圧を60秒間印加することで、各電極を加熱した。これにより、各電極の表面上に金被覆を形成した。   An aqueous solution containing chloroauric acid in a proportion of 2.6% by mass in terms of gold atom was prepared. Each electrode was heated by immersing the electrode serving as a heater and the core wire electrode in this aqueous solution for 1 second, and then applying a voltage of 1.0 V across the electrodes for 60 seconds. As a result, a gold coating was formed on the surface of each electrode.

次に、酸化タングステン粉末とα−アルミナ粉末とを、2:1の質量比で混合し、更にこれらにテルピネオールを加えることで、ペースト状の成形用組成物を得た。   Next, the tungsten oxide powder and the α-alumina powder were mixed at a mass ratio of 2: 1, and terpineol was further added thereto to obtain a paste-like molding composition.

ヒータ兼用電極の内側に芯線状電極が配置されている状態で、これらの電極を成形用組成物で覆ってから、成形用組成物を500℃で10分間加熱した。これにより、成形用組成物を焼結させて、焼結体を得た。   In a state where the core wire electrodes are arranged inside the heater electrode, these electrodes were covered with the molding composition, and then the molding composition was heated at 500 ° C. for 10 minutes. Thereby, the molding composition was sintered to obtain a sintered body.

続いて、焼結体の表面にコロイダルシリカを塗布してから、焼結体を700℃で10分間加熱した。   Subsequently, colloidal silica was applied to the surface of the sintered body, and then the sintered body was heated at 700 ° C. for 10 minutes.

続いて、焼結体の表面に、塩化ルテニウム水溶液(金属Ru換算濃度0.15質量%)を付着させてから、焼結体を700℃で10分間加熱した。これにより、長径約0.5mm、短径約0.3mmの長楕円体状の感ガス体を得た。   Then, after attaching ruthenium chloride aqueous solution (metal Ru conversion density | concentration of 0.15 mass%) to the surface of the sintered compact, the sintered compact was heated at 700 degreeC for 10 minute (s). Thus, an ellipsoidal gas sensitive body having a major axis of about 0.5 mm and a minor axis of about 0.3 mm was obtained.

これにより、感ガス体、ヒータ兼用電極、及び芯線状電極を備える半導体ガスセンサ素子を得た。尚、同じ構造の半導体ガスセンサ素子を、合計5個作製した。   Thus, a semiconductor gas sensor element including a gas sensitive body, a heater combined electrode, and a core wire electrode was obtained. A total of five semiconductor gas sensor elements having the same structure were produced.

[実施例3]
実施例2において、焼結体の表面に、塩化ルテニウム水溶液を付着させる際、金属Ru換算濃度0.2質量%の塩化ルテニウム水溶液を用いた。それ以外は実施例2と同じ方法により、感ガス体、ヒータ兼用電極、及び芯線状電極を備える半導体ガスセンサ素子を得た。尚、同じ構造の半導体ガスセンサ素子を、合計5個作製した。
[Example 3]
In Example 2, when attaching the ruthenium chloride aqueous solution to the surface of the sintered body, a ruthenium chloride aqueous solution having a metal Ru equivalent concentration of 0.2% by mass was used. Other than that was obtained in the same manner as in Example 2 to obtain a semiconductor gas sensor element comprising a gas sensitive body, a heater combined electrode, and a core wire electrode. A total of five semiconductor gas sensor elements having the same structure were produced.

[比較例1]
実施例1において、ヒータ兼用電極及び芯線状電極の各々の表面上に、金被覆を形成しなかった。それ以外は実施例1の場合と同じ方法で、感ガス体、ヒータ兼用電極、及び芯線状電極を備える半導体ガスセンサ素子を得た。尚、同じ構造の半導体ガスセンサ素子を、合計5個作製した。
[Comparative Example 1]
In Example 1, the gold coating was not formed on the surfaces of the heater combined electrode and the core wire electrode. Otherwise, the same method as in Example 1 was used to obtain a semiconductor gas sensor element including a gas sensitive body, a heater combined electrode, and a core wire electrode. A total of five semiconductor gas sensor elements having the same structure were produced.

[比較例2]
実施例2において、ヒータ兼用電極及び芯線状電極の各々の表面上に、金被覆を形成しなかった。それ以外は実施例2の場合と同じ方法で、感ガス体、ヒータ兼用電極、及び芯線状電極を備える半導体ガスセンサ素子を得た。尚、同じ構造の半導体ガスセンサ素子を、合計5個作製した。
[Comparative Example 2]
In Example 2, the gold coating was not formed on the surfaces of the heater combined electrode and the core wire electrode. Otherwise, the same method as in Example 2 was used to obtain a semiconductor gas sensor element including a gas sensitive body, a heater combined electrode, and a core wire electrode. A total of five semiconductor gas sensor elements having the same structure were produced.

[比較例3]
実施例3において、ヒータ兼用電極及び芯線状電極の各々の表面上に、金被覆を形成しなかった。それ以外は実施例3の場合と同じ方法で、感ガス体、ヒータ兼用電極、及び芯線状電極を備える半導体ガスセンサ素子を得た。尚、同じ構造の半導体ガスセンサ素子を、合計5個作製した。
[Comparative Example 3]
In Example 3, no gold coating was formed on the surfaces of the heater combined electrode and the core wire electrode. Otherwise, the same method as in Example 3 was used to obtain a semiconductor gas sensor element including a gas sensitive body, a heater combined electrode, and a core wire electrode. A total of five semiconductor gas sensor elements having the same structure were produced.

[素子温度依存性評価]
実施例1及び比較例1の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に電圧を印加すると共に、半導体ガスセンサ素子の感ガス体を大気中に曝露した。この状態で、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rair)を測定した。
[Element temperature dependency evaluation]
For each of Example 1 and Comparative Example 1, a voltage was applied across the heater-cum-use electrode of the semiconductor gas sensor element, and the gas sensitive body of the semiconductor gas sensor element was exposed to the atmosphere. In this state, the electrical resistance value (R air ) between the heater combined electrode and the core wire electrode was measured.

ヒータ兼用電極の両端間に印加する電圧を0.7V、0.8V、及び0.9Vとした場合の、それぞれの電気抵抗値の測定結果を、図3及び図4に示す。図3は実施例1についての結果を示し、図4は比較例1についての結果を示す。尚、これらの図に示される結果は、5個の半導体ガスセンサ素子について得られた結果の平均値である。   FIGS. 3 and 4 show the measurement results of the respective electric resistance values when the voltages applied between both ends of the heater electrode are 0.7V, 0.8V, and 0.9V. FIG. 3 shows the results for Example 1, and FIG. 4 shows the results for Comparative Example 1. In addition, the result shown by these figures is an average value of the result obtained about five semiconductor gas sensor elements.

実施例1及び比較例1の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に電圧を印加すると共に、半導体ガスセンサ素子の感ガス体をエタノール濃度100体積ppmの雰囲気、エタノール濃度10体積ppmの雰囲気、アンモニア濃度100体積ppmの雰囲気、及びアンモニア濃度10体積ppmの雰囲気に、それぞれ曝露した場合の、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rs)を測定した。 For each of Example 1 and Comparative Example 1, a voltage was applied between both ends of the electrode serving as a heater of the semiconductor gas sensor element, and the gas sensitive body of the semiconductor gas sensor element was placed in an atmosphere having an ethanol concentration of 100 volume ppm and an ethanol concentration of 10 volume ppm. The electrical resistance value (R s ) between the heater combined electrode and the core wire electrode when exposed to an atmosphere, an atmosphere having an ammonia concentration of 100 vol ppm, and an atmosphere having an ammonia concentration of 10 vol ppm was measured.

ヒータ兼用電極の両端間に印加する電圧を0.7V、0.8V、及び0.9Vとした場合の、それぞれのRair/Rsの値を、図5及び図6に示す。図5は実施例1についての結果を示し、図6は比較例1についての結果を示す。尚、これらの図に示される結果は、5個の半導体ガスセンサ素子について得られた結果の平均値である。 The values of R air / R s when the voltages applied across the heater electrode are 0.7V, 0.8V, and 0.9V are shown in FIGS. FIG. 5 shows the results for Example 1, and FIG. 6 shows the results for Comparative Example 1. In addition, the result shown by these figures is an average value of the result obtained about five semiconductor gas sensor elements.

これらの結果によると、比較例1の場合と較べて、実施例1の場合では、印加電圧値の変化量(すなわち感ガス体の温度変化量)に対する電気抵抗値の変化量が少ない。このため、比較例1の場合と較べて、実施例1の場合では、感ガス体の温度が変化しても、電気抵抗値が変化しにくい、すなわち、電気抵抗値の素子温度依存性が低いと、判断される。   According to these results, compared with the case of the comparative example 1, in the case of the example 1, the change amount of the electric resistance value with respect to the change amount of the applied voltage value (that is, the temperature change amount of the gas sensitive body) is small. For this reason, compared with the case of the comparative example 1, in the case of Example 1, even if the temperature of a gas sensitive body changes, an electrical resistance value does not change easily, ie, the element temperature dependency of an electrical resistance value is low. It is judged.

[各種ガス感度評価1]
実施例1及び比較例1の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に0.9Vの電圧を印加すると共に、半導体ガスセンサ素子の感ガス体を大気中に曝露した。この状態で、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rair)を測定した。
[Various gas sensitivity evaluation 1]
For each of Example 1 and Comparative Example 1, a voltage of 0.9 V was applied between both ends of the heater electrode of the semiconductor gas sensor element, and the gas sensitive body of the semiconductor gas sensor element was exposed to the atmosphere. In this state, the electrical resistance value (R air ) between the heater combined electrode and the core wire electrode was measured.

また、実施例1及び比較例1の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に0.9Vの電圧を印加すると共に、半導体ガスセンサ素子の感ガス体を、検出対象のガスを含む雰囲気(濃度10体積ppm)に曝露した場合の、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rs)を測定した。 In addition, for each of Example 1 and Comparative Example 1, a voltage of 0.9 V is applied between both ends of the heater electrode of the semiconductor gas sensor element, and the gas sensitive body of the semiconductor gas sensor element is an atmosphere containing the gas to be detected. The electrical resistance value (R s ) between the heater combined electrode and the core wire electrode when exposed to (concentration: 10 ppm by volume) was measured.

検出対象のガスが、メタン、一酸化炭素、水素、エチレン、アンモニア、エタノール、トルエン、硫化水素、及びトリメチルアミンである場合の、それぞれのRair/Rsの値を、図7に示す。図7(a)は検出対象のガスがメタンである場合、図7(b)は検出対象のガスが一酸化炭素である場合、図7(c)は検出対象のガスが水素である場合、図7(d)は検出対象のガスがエチレンである場合、図7(e)は検出対象のガスがアンモニアである場合、図7(f)は検出対象のガスがエタノールである場合、図7(g)は検出対象のガスがトルエンである場合、図7(h)は検出対象のガスが硫化水素である場合、図7(i)は検出対象のガスがトリメチルアミンである場合の、それぞれの結果を示す。尚、これらの図に示される結果は、5個の半導体ガスセンサ素子について得られた結果の平均値である。 FIG. 7 shows the values of R air / R s when the detection target gases are methane, carbon monoxide, hydrogen, ethylene, ammonia, ethanol, toluene, hydrogen sulfide, and trimethylamine. FIG. 7A shows a case where the detection target gas is methane, FIG. 7B shows a case where the detection target gas is carbon monoxide, and FIG. 7C shows a case where the detection target gas is hydrogen. 7D shows a case where the detection target gas is ethylene, FIG. 7E shows a case where the detection target gas is ammonia, and FIG. 7F shows a case where the detection target gas is ethanol. (G) shows the case where the detection target gas is toluene, FIG. 7 (h) shows the case where the detection target gas is hydrogen sulfide, and FIG. 7 (i) shows the case where the detection target gas is trimethylamine. Results are shown. In addition, the result shown by these figures is an average value of the result obtained about five semiconductor gas sensor elements.

これらの結果によれば、検出対象のガスがいずれの場合であっても、比較例1に較べて実施例1では、Rair/Rsの値が大きくなった。このため、比較例1に較べて実施例1の方が、検出感度が高いと判断される。 According to these results, the value of R air / R s was greater in Example 1 than in Comparative Example 1 regardless of the detection target gas. For this reason, it is determined that the detection sensitivity of Example 1 is higher than that of Comparative Example 1.

[各種ガス感度評価2]
実施例2及び比較例2の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に0.9Vの電圧を印加すると共に、半導体ガスセンサ素子の感ガス体を大気中に曝露した。この状態で、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rair)を測定した。
[Various gas sensitivity evaluation 2]
For each of Example 2 and Comparative Example 2, a voltage of 0.9 V was applied across the heater-cum-use electrodes of the semiconductor gas sensor element, and the gas sensitive body of the semiconductor gas sensor element was exposed to the atmosphere. In this state, the electrical resistance value (R air ) between the heater combined electrode and the core wire electrode was measured.

また、実施例2及び比較例2の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に0.9Vの電圧を印加すると共に、半導体ガスセンサ素子の感ガス体を、検出対象のガスを含む雰囲気に曝露した場合の、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rs)を測定した。 Further, for each of Example 2 and Comparative Example 2, a voltage of 0.9 V is applied between both ends of the heater electrode of the semiconductor gas sensor element, and the gas sensitive body of the semiconductor gas sensor element is an atmosphere containing the gas to be detected. The electrical resistance value (R s ) between the heater combined electrode and the core wire electrode was measured.

検出対象のガスが、アンモニア(濃度10体積ppm)、トリメチルアミン(濃度1ppm)、水素(濃度10ppm)、一酸化炭素(濃度10ppm)、及びエタノール(濃度10ppm)である場合の、それぞれのRs/Rairの値を、図8に示す。尚、これらの結果は、5個の半導体ガスセンサ素子について得られた結果の平均値である。 When the gas to be detected is ammonia (concentration 10 volume ppm), trimethylamine (concentration 1 ppm), hydrogen (concentration 10 ppm), carbon monoxide (concentration 10 ppm), and ethanol (concentration 10 ppm), each R s / The value of R air is shown in FIG. These results are average values of the results obtained for the five semiconductor gas sensor elements.

これらの結果によれば、検出対象のガスがいずれの場合であっても、比較例2に較べて実施例2では、Rs/Rairの値が小さくなった。このため、比較例2に較べて実施例2の方が、検出感度が高いと判断される。 According to these results, the value of R s / R air was smaller in Example 2 than in Comparative Example 2 regardless of the detection target gas. For this reason, it is determined that the detection sensitivity of Example 2 is higher than that of Comparative Example 2.

[雰囲気温湿度依存性評価]
実施例2及び比較例2の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に0.8Vの電圧を印加すると共に、半導体ガスセンサ素子の感ガス体を大気中に曝露した。この大気の温湿度条件を、−10℃、5℃40%RH、20℃60%RH、及び40℃90%RHに設定し、各場合において、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rs)を測定した。
[Ambient temperature and humidity dependency evaluation]
For each of Example 2 and Comparative Example 2, a voltage of 0.8 V was applied between both ends of the heater serving electrode of the semiconductor gas sensor element, and the gas sensitive body of the semiconductor gas sensor element was exposed to the atmosphere. The temperature and humidity conditions of the atmosphere are set to −10 ° C., 5 ° C. 40% RH, 20 ° C. 60% RH, and 40 ° C. 90% RH, and in each case, the electricity between the heater combined electrode and the core wire electrode The resistance value (R s ) was measured.

大気の温湿度条件が20℃60%RHである場合を基準とし、この場合の電気抵抗値(R0)に対する、各条件での電気抵抗値(Rs)の比Rs/R0を、図9に示す。尚、これらの結果は、5個の半導体ガスセンサ素子について得られた結果の平均値である。 The ratio R s / R 0 of the electrical resistance value (R s ) in each condition to the electrical resistance value (R 0 ) in this case is based on the case where the atmospheric temperature and humidity conditions are 20 ° C. and 60% RH. As shown in FIG. These results are average values of the results obtained for the five semiconductor gas sensor elements.

これらの結果によれば、大気中では、実施例2と比較例2の間には、雰囲気の温度及び湿度の変化に対する電気抵抗値の変化の程度に、大きな差はなかった。   According to these results, in the atmosphere, there was no significant difference between Example 2 and Comparative Example 2 in the degree of change in electrical resistance value with respect to changes in the temperature and humidity of the atmosphere.

また、実施例2及び比較例2の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に0.8Vの電圧を印加すると共に、半導体ガスセンサ素子の感ガス体を、アンモニアを含有する雰囲気(濃度100体積ppm)中に曝露した。この雰囲気の温湿度条件を、−10℃、5℃40%RH、20℃60%RH、及び40℃90%RHに設定し、各場合において、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rs)を測定した。 For each of Example 2 and Comparative Example 2, a voltage of 0.8 V was applied between both ends of the heater-cum-use electrode of the semiconductor gas sensor element, and the gas sensitive body of the semiconductor gas sensor element was subjected to an atmosphere (concentration) containing ammonia. 100 ppm by volume). The temperature and humidity conditions of this atmosphere are set to −10 ° C., 5 ° C. 40% RH, 20 ° C. 60% RH, and 40 ° C. 90% RH, and in each case, the electricity between the heater combined electrode and the core wire electrode The resistance value (R s ) was measured.

雰囲気の温湿度条件が20℃60%RHである場合を基準とし、この場合の電気抵抗値(R0)に対する電気抵抗値(Rs)の比Rs/R0を、図10に示す。尚、これらの結果は、5個の半導体ガスセンサ素子について得られた結果の平均値である。 FIG. 10 shows the ratio R s / R 0 of the electrical resistance value (R s ) to the electrical resistance value (R 0 ) based on the case where the temperature and humidity conditions of the atmosphere are 20 ° C. and 60% RH. These results are average values of the results obtained for the five semiconductor gas sensor elements.

これらの結果によれば、アンモニアを含有する雰囲気中では、比較例2に較べて実施例2の場合の方が、雰囲気の温度及び湿度の変化に対する電気抵抗値の変化量が小さかった。   According to these results, in the atmosphere containing ammonia, the amount of change in the electrical resistance value with respect to changes in the temperature and humidity of the atmosphere was smaller in Example 2 than in Comparative Example 2.

以上によれば、比較例2よりも実施例2の場合の方が、電気抵抗値の雰囲気温湿度依存性が低いと、判断される。   Based on the above, it is determined that the dependence of the electrical resistance value on the ambient temperature and humidity is lower in the case of Example 2 than in Comparative Example 2.

[ガス濃度依存性評価]
実施例3及び比較例3の各々について、半導体ガスセンサ素子のヒータ兼用電極の両端間に0.5Vの電圧と0.9Vの電圧とを、1秒間ずつ交互に印加しながら、この半導体ガスセンサ素子の感ガス体を、検出対象のガスを含有する雰囲気中に曝露し、ヒータ兼用電極と芯線状電極との間の電気抵抗値(Rs)を測定した。検出対象のガスとして、一酸化炭素、メタンチオール、アンモニア、二酸化窒素、n−バレルアルデヒド(図11〜14では「n−バレル」と表記している)、及びデカンを用い、ガスの濃度を変動させた場合の、印加電圧が0.5Vの場合と0.9Vの場合の各々において、電気抵抗値(Rs)を測定した。尚、電気抵抗値(Rs)は、電圧を切り替える直前に測定した。
[Gas concentration dependency evaluation]
For each of Example 3 and Comparative Example 3, a voltage of 0.5 V and a voltage of 0.9 V were alternately applied between both ends of the heater combined electrode of the semiconductor gas sensor element for 1 second, while the semiconductor gas sensor element The gas sensitive body was exposed to an atmosphere containing the gas to be detected, and the electrical resistance value (R s ) between the heater combined electrode and the core wire electrode was measured. As the gas to be detected, carbon monoxide, methanethiol, ammonia, nitrogen dioxide, n-valeraldehyde (indicated as “n-barrel” in FIGS. 11 to 14), and decane are used, and the concentration of the gas is varied. When the applied voltage was 0.5 V and 0.9 V, the electric resistance value (R s ) was measured. The electrical resistance value (R s ) was measured immediately before switching the voltage.

その結果を図11〜14に示す。図11は、比較例3において、印加電圧が0.5Vである場合の結果を、図12は実施例3において、印加電圧が0.5Vである場合の結果を、図13は、比較例3において、印加電圧が0.9Vである場合の結果を、図14は実施例3において、印加電圧が0.9Vである場合の結果を、それぞれ示す。   The results are shown in FIGS. 11 shows the result when the applied voltage is 0.5 V in Comparative Example 3, FIG. 12 shows the result when the applied voltage is 0.5 V in Example 3, and FIG. FIG. 14 shows the results when the applied voltage is 0.9V, and FIG. 14 shows the results when the applied voltage is 0.9V in Example 3.

これらの結果によると、印加電圧が0.5V、0.9Vのいずれの場合でも、比較例3よりも実施例3の場合の方が、検出対象のガスの濃度に対する電気抵抗値(Rs)の変化量が大きかった。 According to these results, the electric resistance value (R s ) with respect to the concentration of the gas to be detected is higher in the case of Example 3 than in Comparative Example 3 regardless of whether the applied voltage is 0.5 V or 0.9 V. The amount of change was large.

以上によれば、比較例3よりも実施例3の場合の方が、電気抵抗値(Rs)の変化量に基づいて、検出対象のガスの濃度を、より正確に測定することができると、判断される。 According to the above, the concentration of the gas to be detected can be measured more accurately in the case of Example 3 than in Comparative Example 3 based on the amount of change in the electrical resistance value (R s ). Judgment.

1 半導体ガスセンサ素子
2 電極(ヒータ兼用電極)
3 電極(芯線状電極)
4 感ガス体
1 Semiconductor gas sensor element 2 Electrode (heater combined electrode)
3 Electrode (core wire electrode)
4 Gas sensitive body

Claims (1)

金属酸化物半導体を含有する感ガス体と、この感ガス体に埋め込まれている二つの電極とを備え、前記二つの電極が白金又は白金合金から形成され、且つ前記二つの電極の表面上に金被膜が形成され、
前記二つの電極のうち、一方は、コイル状のヒータ兼用電極であり、他方は、直線状の芯線状電極であり、
前記金属酸化物半導体は、酸化タングステンのみからなり、
前記感ガス体は、ルテニウムを含有し、
前記感ガス体は、更にアルミナを含有し、
前記感ガス体の形状は、球状であり、
前記感ガス体の表面には、コロイダルシリカが塗布されている、
ことを特徴とする半導体ガスセンサ素子。
A gas-sensitive body containing a metal oxide semiconductor; and two electrodes embedded in the gas-sensitive body, the two electrodes being formed of platinum or a platinum alloy, and on the surfaces of the two electrodes. A gold film is formed,
Of the two electrodes, one is a coiled heater combined electrode, the other is a linear core wire electrode,
The metal oxide semiconductor consists only of tungsten oxide ,
The gas sensitive body contains ruthenium,
The gas sensitive body further contains alumina,
The shape of the gas sensitive body is spherical,
Colloidal silica is applied to the surface of the gas sensitive body,
A semiconductor gas sensor element.
JP2012244855A 2012-11-06 2012-11-06 Semiconductor gas sensor element Active JP6224311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244855A JP6224311B2 (en) 2012-11-06 2012-11-06 Semiconductor gas sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244855A JP6224311B2 (en) 2012-11-06 2012-11-06 Semiconductor gas sensor element

Publications (2)

Publication Number Publication Date
JP2014092524A JP2014092524A (en) 2014-05-19
JP6224311B2 true JP6224311B2 (en) 2017-11-01

Family

ID=50936674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244855A Active JP6224311B2 (en) 2012-11-06 2012-11-06 Semiconductor gas sensor element

Country Status (1)

Country Link
JP (1) JP6224311B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692987B2 (en) 2018-12-28 2023-07-04 Korea University Research And Business Foundation CoCr2O4-based gas sensor and method for manufacturing the same
JP7446889B2 (en) 2020-03-31 2024-03-11 株式会社東芝 Conveyance control system and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442574B2 (en) * 2017-03-16 2018-12-19 太平洋セメント株式会社 Nanoparticle aggregate, nanoparticle fired product, and production method thereof
JP7137280B2 (en) * 2018-04-27 2022-09-14 新コスモス電機株式会社 Freon gas sensor
KR102627955B1 (en) * 2021-09-23 2024-01-23 한국생산기술연구원 Porous metal oxide-catalyzed double porous structure for ethylene detection and sensor using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770445A (en) * 1980-10-22 1982-04-30 Ngk Spark Plug Co Ltd Gas sensitive element
JPS57178145A (en) * 1981-04-25 1982-11-02 Ngk Spark Plug Co Ltd Gas sensitive element
JP2702279B2 (en) * 1990-11-30 1998-01-21 新コスモス電機株式会社 Gas detection element
JP3097287B2 (en) * 1991-03-18 2000-10-10 東陶機器株式会社 Gas sensor and method of manufacturing the same
JPH07225214A (en) * 1994-02-14 1995-08-22 Shimadzu Corp Nox measuring apparatus
JP3366118B2 (en) * 1994-06-28 2003-01-14 株式会社ニチレイ Gas sensor for food quality detection
JP4575559B2 (en) * 2000-07-13 2010-11-04 エフアイエス株式会社 Ketone sensitive element
JP2004037378A (en) * 2002-07-05 2004-02-05 Ngk Spark Plug Co Ltd Ammonia sensor and its control method
JP2005337852A (en) * 2004-05-26 2005-12-08 Kyocera Corp Substrate for gas sensor
WO2007097025A1 (en) * 2006-02-27 2007-08-30 Fis Inc. Hydrogen gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692987B2 (en) 2018-12-28 2023-07-04 Korea University Research And Business Foundation CoCr2O4-based gas sensor and method for manufacturing the same
JP7446889B2 (en) 2020-03-31 2024-03-11 株式会社東芝 Conveyance control system and program

Also Published As

Publication number Publication date
JP2014092524A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP6224311B2 (en) Semiconductor gas sensor element
JP5313908B2 (en) Hydrogen sensitive composite material, hydrogen gas sensor, and sensor for detecting hydrogen and other gases with improved reference resistance
US8425846B2 (en) Sensing element for catalytic combustion type gas sensor
JPH04208847A (en) Gas detection element
US4396899A (en) Platinum thin film resistance element and production method therefor
JPH0517650Y2 (en)
JP4571665B2 (en) Hydrogen gas sensor
US8161794B2 (en) Sulfur component detecting device
JPH0468586B2 (en)
JPS6133132B2 (en)
JP5951980B2 (en) Semiconductor gas sensor element, semiconductor gas sensor element manufacturing method, and gas detection apparatus
JP2004020377A (en) Catalytic combustion type gas sensor
JP2005127743A (en) Ammonia gas sensor
JP7403232B2 (en) Semiconductor gas detection element
JP4041228B2 (en) CFC gas sensor and manufacturing method thereof
JP6679789B1 (en) MEMS type semiconductor gas detector
JP2008281584A (en) Oxygen sensor element
JP3393504B2 (en) Contact combustion type carbon monoxide sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JP2726886B2 (en) Contact combustion type carbon monoxide sensor
WO2020203100A1 (en) Mems-type semiconductor gas detection element
JP4359311B2 (en) Semiconductor gas sensor
JPH06148115A (en) Gas sensor
JPH11258192A (en) Semiconductor gas sensor
JPH0949819A (en) Carbon monoxide detector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171005

R150 Certificate of patent or registration of utility model

Ref document number: 6224311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250