JP6683972B2 - Semiconductor device, method of manufacturing the same, and semiconductor laminate - Google Patents

Semiconductor device, method of manufacturing the same, and semiconductor laminate Download PDF

Info

Publication number
JP6683972B2
JP6683972B2 JP2016166155A JP2016166155A JP6683972B2 JP 6683972 B2 JP6683972 B2 JP 6683972B2 JP 2016166155 A JP2016166155 A JP 2016166155A JP 2016166155 A JP2016166155 A JP 2016166155A JP 6683972 B2 JP6683972 B2 JP 6683972B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor
type
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016166155A
Other languages
Japanese (ja)
Other versions
JP2018032828A (en
Inventor
三島 友義
友義 三島
文正 堀切
文正 堀切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Sciocs Co Ltd
Hosei University
Original Assignee
Sumitomo Chemical Co Ltd
Sciocs Co Ltd
Hosei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Sciocs Co Ltd, Hosei University filed Critical Sumitomo Chemical Co Ltd
Priority to JP2016166155A priority Critical patent/JP6683972B2/en
Priority to EP17843193.8A priority patent/EP3506369B1/en
Priority to CN201780052279.XA priority patent/CN109844958B/en
Priority to PCT/JP2017/023554 priority patent/WO2018037705A1/en
Priority to US16/327,969 priority patent/US10797181B2/en
Publication of JP2018032828A publication Critical patent/JP2018032828A/en
Application granted granted Critical
Publication of JP6683972B2 publication Critical patent/JP6683972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and its manufacturing method.

窒化ガリウム(GaN)系半導体は、高耐圧、高出力の高周波電子素子材料や、赤から紫外の発光が可能な発光素子材料として注目を集めている。   BACKGROUND ART Gallium nitride (GaN) -based semiconductors have been attracting attention as high breakdown voltage, high output high frequency electronic device materials and light emitting device materials capable of emitting red to ultraviolet light.

GaN系半導体を用いて、ダイオードとして機能するpn接合を形成する場合、例えば、p型不純物濃度が1018cm−3程度で厚さが数百nm程度のp型GaN系半導体層と、p型不純物濃度が1020cm−3程度で厚さが数十nm程度のp型GaN系半導体層との積層構造で、p型半導体層が構成されている(例えば特許文献1参照)。 When a pn junction that functions as a diode is formed using a GaN-based semiconductor, for example, a p-type GaN-based semiconductor layer having a p-type impurity concentration of about 10 18 cm −3 and a thickness of about several hundred nm, and a p-type The p-type semiconductor layer is formed in a laminated structure with a p-type GaN-based semiconductor layer having an impurity concentration of about 10 20 cm −3 and a thickness of about several tens nm (see, for example, Patent Document 1).

特開2015−149391号公報JP, 2005-149391, A

p型半導体層の構成を単純化できれば、p型半導体層の製造工程が簡素化される等の観点で好ましい。   If the structure of the p-type semiconductor layer can be simplified, it is preferable from the viewpoint of simplifying the manufacturing process of the p-type semiconductor layer.

本発明の一目的は、GaN系半導体を用いたpn接合ダイオードとして機能し、p型半導体層の構成の単純化が図られた半導体装置とその製造方法、および、それらに用いることができる半導体積層物を提供することである。   An object of the present invention is to provide a semiconductor device that functions as a pn junction diode using a GaN-based semiconductor and has a simplified p-type semiconductor layer structure, a method for manufacturing the same, and a semiconductor laminated structure that can be used for them. It is to provide things.

本発明の一観点によれば、
窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、
前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度で添加された窒化ガリウム系半導体で形成され、p型の導電型を有する第2半導体層と、
前記第1半導体層と接触するように配置された第1電極と、
前記第2半導体層と接触するように配置された第2電極と、
を有し、pn接合ダイオードとして機能する半導体装置
が提供される。
According to one aspect of the invention,
A first semiconductor layer formed of a gallium nitride based semiconductor and having an n-type conductivity;
A second semiconductor layer laminated on the first semiconductor layer, formed of a gallium nitride-based semiconductor to which a p-type impurity is added at a concentration of 1 × 10 20 cm −3 or more, and having a p-type conductivity type;
A first electrode arranged in contact with the first semiconductor layer;
A second electrode arranged in contact with the second semiconductor layer;
There is provided a semiconductor device which functions as a pn junction diode.

本発明の他の観点によれば、
窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度で添加された窒化ガリウム系半導体で形成され、p型の導電型を有する第2半導体層と、を有する半導体積層物を準備する工程と、
前記第1半導体層と接触するように配置された第1電極を形成する工程と、
前記第2半導体層と接触するように配置された第2電極を形成する工程と、
を有し、pn接合ダイオードとして機能する半導体装置を製造する、半導体装置の製造方法
が提供される。
According to another aspect of the invention,
A first semiconductor layer made of a gallium nitride-based semiconductor and having an n-type conductivity, and a p-type impurity added at a concentration of 1 × 10 20 cm −3 or more, which is stacked immediately above the first semiconductor layer. A step of preparing a semiconductor laminate including a second semiconductor layer formed of a gallium nitride-based semiconductor and having a p-type conductivity type;
Forming a first electrode arranged in contact with the first semiconductor layer;
Forming a second electrode disposed in contact with the second semiconductor layer;
There is provided a method for manufacturing a semiconductor device, which comprises:

本発明のさらに他の観点によれば、
窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、
前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度で添加された窒化ガリウム系半導体で形成され、p型の導電型を有する第2半導体層と、
を有し、pn接合ダイオードとして機能させることができる半導体積層物
が提供される。
According to still another aspect of the present invention,
A first semiconductor layer formed of a gallium nitride based semiconductor and having an n-type conductivity;
A second semiconductor layer laminated directly on the first semiconductor layer, formed of a gallium nitride-based semiconductor to which a p-type impurity is added at a concentration of 1 × 10 20 cm −3 or more, and having a p-type conductivity type;
There is provided a semiconductor stack which can function as a pn junction diode.

窒化ガリウム系半導体を用いたダイオードを、p型不純物濃度が1×1020cm−3以上の濃度であるp型半導体層(第2半導体層)を用いたpn接合により、形成することができる。このため、p型不純物濃度が1×1020cm−3未満(例えば1018cm−3程度)のp型窒化ガリウム系半導体層が不要となる。これにより、p型半導体層の構成を単純にすることができ、p型半導体層の製造工程を簡素化できる。また、p型半導体層を薄くすることでき、p型半導体層に起因する順方向動作時の抵抗を低減させることが可能となり、消費電力の低減が図られる。 A diode using a gallium nitride-based semiconductor can be formed by a pn junction using a p-type semiconductor layer (second semiconductor layer) having a p-type impurity concentration of 1 × 10 20 cm −3 or higher. Therefore, the p-type gallium nitride based semiconductor layer having a p-type impurity concentration of less than 1 × 10 20 cm −3 (for example, about 10 18 cm −3 ) is unnecessary. Thereby, the structure of the p-type semiconductor layer can be simplified, and the manufacturing process of the p-type semiconductor layer can be simplified. Further, the p-type semiconductor layer can be thinned, and the resistance due to the p-type semiconductor layer at the time of forward operation can be reduced, and power consumption can be reduced.

図1は、本発明の第1実施形態による半導体装置の概略断面図である。FIG. 1 is a schematic sectional view of a semiconductor device according to a first embodiment of the present invention. 図2(a)および図2(b)は、第1実施形態による半導体装置の製造工程を示す概略断面図である。2A and 2B are schematic cross-sectional views showing the manufacturing process of the semiconductor device according to the first embodiment. 図3(a)および図3(b)は、第1実施形態による半導体装置の製造工程を示す概略断面図である。3A and 3B are schematic cross-sectional views showing the manufacturing process of the semiconductor device according to the first embodiment. 図4(a)および図4(b)は、それぞれ、作製したpn接合ダイオードのサンプルに対する、順方向の電流−電圧特性を示すグラフ、および、逆方向の電流−電圧特性を示すグラフである。FIG. 4A and FIG. 4B are a graph showing a forward current-voltage characteristic and a graph showing a reverse current-voltage characteristic with respect to the sample of the manufactured pn junction diode, respectively. 図5は、第2実施形態による半導体装置の概略断面図、および、p側下部電極の形状を示す概略平面図である。FIG. 5 is a schematic cross-sectional view of the semiconductor device according to the second embodiment and a schematic plan view showing the shape of the p-side lower electrode. 図6(a)および図6(b)は、第2実施形態による半導体装置の製造工程を示す概略断面図である。6A and 6B are schematic cross-sectional views showing the manufacturing process of the semiconductor device according to the second embodiment. 図7は、半導体積層物の例を示す概略断面図である。FIG. 7 is a schematic sectional view showing an example of a semiconductor laminate. 図8は、比較形態による半導体装置の概略断面図である。FIG. 8 is a schematic cross-sectional view of a semiconductor device according to a comparative form.

図1を参照して、本発明の第1実施形態による半導体装置100について例示的に説明する。図1は、第1実施形態による半導体装置100の概略断面図である。   A semiconductor device 100 according to a first embodiment of the present invention will be exemplarily described with reference to FIG. FIG. 1 is a schematic cross-sectional view of the semiconductor device 100 according to the first embodiment.

半導体装置100は、窒化ガリウム(GaN)系半導体で形成されn型の導電型を有する半導体層10と、n型半導体層10の直上に積層され、p型不純物が1×1020cm−3以上の濃度で添加されたGaN系半導体で形成されp型の導電型を有する半導体層20と、半導体層10と接触するように配置された電極30と、半導体層20と接触するように配置された電極40と、を有し、pn接合ダイオードとして機能する。半導体層10をn型半導体層10と呼び、半導体層20をp型半導体層20と呼び、電極30をn側電極30と呼び、電極40をp側電極40と呼ぶことがある。 The semiconductor device 100 includes a semiconductor layer 10 made of a gallium nitride (GaN) -based semiconductor and having an n-type conductivity, and is stacked immediately above the n-type semiconductor layer 10. The p-type impurity is 1 × 10 20 cm −3 or more. A semiconductor layer 20 formed of a GaN-based semiconductor having a p-type conductivity added to the semiconductor layer 20; an electrode 30 disposed in contact with the semiconductor layer 10; and a semiconductor layer 20 disposed in contact with the semiconductor layer 20. And an electrode 40, and functions as a pn junction diode. The semiconductor layer 10 may be called the n-type semiconductor layer 10, the semiconductor layer 20 may be called the p-type semiconductor layer 20, the electrode 30 may be called the n-side electrode 30, and the electrode 40 may be called the p-side electrode 40.

なお、以下に説明する実施形態では、GaN系半導体、つまりガリウム(Ga)および窒素(N)を含有する半導体として、GaNを例示するが、GaN系半導体としては、GaNに限定されず、GaおよびNに加え必要に応じてGa以外のIII族元素を含むものを用いることもできる。   In the embodiments described below, GaN is exemplified as a GaN-based semiconductor, that is, a semiconductor containing gallium (Ga) and nitrogen (N), but the GaN-based semiconductor is not limited to GaN, and Ga and In addition to N, a material containing a group III element other than Ga may be used if necessary.

Ga以外のIII族元素としては、例えばアルミニウム(Al)やインジウム(In)が挙げられる。ただし、Ga以外のIII族元素は、格子歪低減の観点から、Ga以外の
III族元素を含有するGaN系半導体の、GaNに対する格子不整合が、1%以下となるように含有されることが好ましい。GaN系半導体中に許容される含有量は、例えばAlGaN中のAlについてはIII族元素の内40原子%以下であり、また例えばInGaN中のInについてはIII族元素の内10原子%以下である。なお、InAlGaNは、InAlN中のInがIII族元素の内10原子%以上30原子%以下となるInAlNと、GaNとを任意の組成で組合せたInAlGaNであっても良い。なお、AlおよびIn組成が上記の範囲内にあると、GaNとの格子歪が大きくなりにくいためクラックが入りにくくなる。
Examples of the group III element other than Ga include aluminum (Al) and indium (In). However, from the viewpoint of reducing the lattice strain, the group III element other than Ga may be contained so that the GaN-based semiconductor containing the group III element other than Ga has a lattice mismatch with GaN of 1% or less. preferable. The permissible content in the GaN-based semiconductor is, for example, 40 atomic% or less of the group III element for Al in AlGaN, and 10 atomic% or less of the group III element for In for In, for example. . The InAlGaN may be InAlGaN in which InAlN in which In in InN is 10 atomic% or more and 30 atomic% or less of the group III element and GaN are combined in an arbitrary composition. When the Al and In compositions are within the above ranges, the lattice strain with GaN is unlikely to be large, and thus cracks are less likely to occur.

n型半導体層10は、例えば、n型GaN基板11とn型GaN層12とn型GaN層13とが積層された積層構造を有する。n型GaN基板11は、例えばn型不純物としてシリコン(Si)が2×1018cm−3の濃度で添加された基板であり、厚さは例えば400μmである。n型GaN層12は、例えばSiが2×1018cm−3の濃度で添加された層(n層)であり、厚さは例えば2μmである。n型GaN層13は、例えばSiが1.2×1016cm−3の濃度で添加された層(n層)であり、厚さは例えば13μmである。 The n-type semiconductor layer 10 has, for example, a laminated structure in which an n-type GaN substrate 11, an n-type GaN layer 12, and an n-type GaN layer 13 are laminated. The n-type GaN substrate 11 is, for example, a substrate to which silicon (Si) is added as an n-type impurity at a concentration of 2 × 10 18 cm −3 and has a thickness of 400 μm, for example. The n-type GaN layer 12 is, for example, a layer (n layer) in which Si is added at a concentration of 2 × 10 18 cm −3 , and has a thickness of 2 μm, for example. The n-type GaN layer 13 is a layer (n layer) to which Si is added at a concentration of 1.2 × 10 16 cm −3 , for example, and the thickness thereof is 13 μm, for example.

なお、n型半導体層10の構造は、特に限定されない。例えば、n型半導体層10は、n型不純物は添加されていないがn型の導電型を有するアンドープのn型GaN層を含んで構成されていてもよい。   The structure of the n-type semiconductor layer 10 is not particularly limited. For example, the n-type semiconductor layer 10 may be configured to include an undoped n-type GaN layer having no n-type impurity but having n-type conductivity.

n型半導体層10の直上に、つまりn型GaN層(n層)13の直上に、p型半導体層20が積層されている。p型半導体層20は、p型GaN層21で構成されている。p型GaN層21は、例えばp型不純物としてマグネシウム(Mg)が2×1020cm−3の濃度で添加された層(p++層)であり、厚さは例えば30nmである。 The p-type semiconductor layer 20 is stacked immediately above the n-type semiconductor layer 10, that is, immediately above the n-type GaN layer (n layer) 13. The p-type semiconductor layer 20 is composed of a p-type GaN layer 21. The p-type GaN layer 21 is, for example, a layer (p ++ layer) to which magnesium (Mg) is added as a p-type impurity at a concentration of 2 × 10 20 cm −3 , and has a thickness of, for example, 30 nm.

p型半導体層20とn型半導体層10とにより、つまり、p型GaN層21とn型GaN層13とにより、pn接合が形成されている。なお、n型半導体層10上にp型半導体層20が積層されているので、n型半導体層10の上面よりも、p型半導体層20の上面の方が、高い位置(基板11から遠い位置)に配置されている(n型半導体層10の上面とp型半導体層20の上面との高さが異なっている)。また、pn接合界面は、平坦となっている。   A pn junction is formed by the p-type semiconductor layer 20 and the n-type semiconductor layer 10, that is, by the p-type GaN layer 21 and the n-type GaN layer 13. Since the p-type semiconductor layer 20 is stacked on the n-type semiconductor layer 10, the upper surface of the p-type semiconductor layer 20 is higher than the upper surface of the n-type semiconductor layer 10 (position far from the substrate 11). ) (The upper surface of the n-type semiconductor layer 10 and the upper surface of the p-type semiconductor layer 20 have different heights). The pn junction interface is flat.

n型GaN基板11の下面上に、n側電極30が設けられている。つまり、n側電極30は、n型半導体層10の下面で、n型半導体層10と接触するように配置されている。n側電極30は、例えば、n型半導体層10側から順に、厚さ50nmのチタン(Ti)層と厚さ250nmのアルミニウム(Al)層とが積層された積層膜で形成される。   An n-side electrode 30 is provided on the lower surface of the n-type GaN substrate 11. That is, the n-side electrode 30 is arranged on the lower surface of the n-type semiconductor layer 10 so as to be in contact with the n-type semiconductor layer 10. The n-side electrode 30 is formed of, for example, a laminated film in which a titanium (Ti) layer having a thickness of 50 nm and an aluminum (Al) layer having a thickness of 250 nm are laminated in this order from the n-type semiconductor layer 10 side.

p型GaN層21の上面上に、p側電極40が設けられている。つまり、p側電極40は、p型半導体層20の上面で、p型半導体層20と接触するように配置されている。第1実施形態による半導体装置100では、p側電極40が、p型半導体層20とは接触し、n型半導体層10とは接触しないように配置されている。   The p-side electrode 40 is provided on the upper surface of the p-type GaN layer 21. That is, the p-side electrode 40 is arranged on the upper surface of the p-type semiconductor layer 20 so as to be in contact with the p-type semiconductor layer 20. In the semiconductor device 100 according to the first embodiment, the p-side electrode 40 is arranged so as to be in contact with the p-type semiconductor layer 20 and not with the n-type semiconductor layer 10.

p側電極40は、例えば、p側下部電極41とp側上部電極42とが積層された積層構造を有する。p側下部電極41は、平面視上、p型半導体層20に内包されるように、p型半導体層20の上面上に設けられている。p側下部電極41は、例えば、平面視上、円形形状を有する。p側下部電極41は、例えば、p型半導体層20側から順に、厚さ200nmのパラジウム(Pd)層と厚さ100nmのニッケル(Ni)層とが積層された積層膜で形成される。p側上部電極42の詳細については、後述する。   The p-side electrode 40 has, for example, a laminated structure in which a p-side lower electrode 41 and a p-side upper electrode 42 are laminated. The p-side lower electrode 41 is provided on the upper surface of the p-type semiconductor layer 20 so as to be included in the p-type semiconductor layer 20 in plan view. The p-side lower electrode 41 has, for example, a circular shape in plan view. The p-side lower electrode 41 is formed of, for example, a laminated film in which a 200-nm-thick palladium (Pd) layer and a 100-nm-thick nickel (Ni) layer are stacked in this order from the p-type semiconductor layer 20 side. Details of the p-side upper electrode 42 will be described later.

例示の半導体装置100は、メサ構造を有し、メサ構造の外側に配置されたn型半導体層10の上面、メサ構造の側面、およびメサ構造の上面を構成するp型半導体層20の上面の縁部を覆うように設けられた絶縁性の保護膜50を有する。保護膜50は、例えば、スピンオングラスによる酸化シリコン(SiO)膜と、スパッタ法によるSiO膜との積層膜で形成される。保護膜50の厚さは、例えば600nm程度である。 The illustrated semiconductor device 100 has a mesa structure and includes an upper surface of the n-type semiconductor layer 10 disposed outside the mesa structure, a side surface of the mesa structure, and an upper surface of the p-type semiconductor layer 20 forming the upper surface of the mesa structure. It has an insulating protective film 50 provided so as to cover the edge portion. The protective film 50 is formed of, for example, a laminated film of a silicon oxide (SiO 2 ) film formed by spin-on-glass and a SiO 2 film formed by a sputtering method. The thickness of the protective film 50 is, for example, about 600 nm.

保護膜50は、p型半導体層20の上面上に開口を有する。保護膜50の開口縁部は、p側下部電極41の縁部上に乗り上げて設けられており、保護膜50の開口内に、p側下部電極41の上面が露出している。   The protective film 50 has an opening on the upper surface of the p-type semiconductor layer 20. The opening edge of the protective film 50 is provided so as to ride over the edge of the p-side lower electrode 41, and the upper surface of the p-side lower electrode 41 is exposed in the opening of the protective film 50.

p側上部電極42は、保護膜50の開口内に露出したp側下部電極41の上面上に設けられており、平面視上、メサ構造の外側のn型半導体層10の上面上まで達するように、保護膜50上に延在している。p側上部電極42は、逆方向電圧印加時の耐圧(逆方向耐圧)を向上させるフィールドプレート電極部として機能する。p側上部電極42は、例えば、p型半導体層20側から順に、厚さ30nmのTi層と厚さ250nmのAl層とが積層された積層膜で形成される。   The p-side upper electrode 42 is provided on the upper surface of the p-side lower electrode 41 exposed in the opening of the protective film 50, and reaches the upper surface of the n-type semiconductor layer 10 outside the mesa structure in plan view. And extends over the protective film 50. The p-side upper electrode 42 functions as a field plate electrode portion that improves the breakdown voltage (reverse breakdown voltage) when a reverse voltage is applied. The p-side upper electrode 42 is formed of, for example, a laminated film in which a Ti layer having a thickness of 30 nm and an Al layer having a thickness of 250 nm are laminated in this order from the p-type semiconductor layer 20 side.

なお、p側電極40の構造は、特に限定されない。例えば、p側電極40は、p側下部電極41とp側上部電極42との積層構造でなく、単層構造であってもよい。また例えば、p側電極40は、フィールドプレート電極部を有しなくてもよい。ただし、フィールドプレート電極部を有することは、逆方向耐圧向上の観点から好ましい。   The structure of the p-side electrode 40 is not particularly limited. For example, the p-side electrode 40 may have a single-layer structure instead of the laminated structure of the p-side lower electrode 41 and the p-side upper electrode 42. Further, for example, the p-side electrode 40 may not have the field plate electrode portion. However, it is preferable to have the field plate electrode portion from the viewpoint of improving the reverse breakdown voltage.

実施形態による半導体装置100は、p型半導体層20が、p型不純物が1×1020cm−3以上の濃度で添加されたp型GaN系半導体層で構成されているという特徴を有する。以下、このような特徴について、比較形態による半導体装置との対比も行いつつ説明する。 The semiconductor device 100 according to the embodiment is characterized in that the p-type semiconductor layer 20 is composed of a p-type GaN-based semiconductor layer to which p-type impurities are added at a concentration of 1 × 10 20 cm −3 or more. Hereinafter, such characteristics will be described while comparing with the semiconductor device according to the comparative mode.

図8は、比較形態による半導体装置100aの概略断面図である。第1実施形態と対応する比較形態の部材や構造について、第1実施形態の参照番号に「a」を追加したものを付して、説明を進める。   FIG. 8 is a schematic cross-sectional view of the semiconductor device 100a according to the comparative form. The members and structures of the comparative embodiment corresponding to the first embodiment will be described with the reference numbers of the first embodiment added with “a”.

比較形態による半導体装置100aは、p型半導体層20aが、p型GaN層22aとp型GaN層21aとが積層された積層構造を有する点で、第1実施形態による半導体装置100と異なる。p型GaN22aは、例えばMgが1×1018cm−3の濃度で添加された層(p層)であり、厚さは例えば400nmである。p型GaN21aは、例えばMgが2×1020cm−3の濃度で添加された層(p++層)であり、厚さは例えば30nmである。 The semiconductor device 100a according to the comparative embodiment is different from the semiconductor device 100 according to the first embodiment in that the p-type semiconductor layer 20a has a stacked structure in which a p-type GaN layer 22a and a p-type GaN layer 21a are stacked. The p-type GaN 22a is a layer (p layer) to which Mg is added at a concentration of 1 × 10 18 cm −3 , for example, and the thickness thereof is 400 nm, for example. The p-type GaN 21a is, for example, a layer (p ++ layer) to which Mg is added at a concentration of 2 × 10 20 cm −3 and has a thickness of 30 nm, for example.

GaN系半導体を用いて、ダイオードとして機能するpn接合を形成する場合、技術常識では、結晶品質の悪化を防ぐ観点から、p型不純物濃度が高々1019cm−3のオーダ、つまり1×1020cm−3未満に抑制されたp型GaN系半導体層が用いられている。p型不純物濃度が1020cm−3以上のオーダ、つまり1×1020cm−3以上であるp型GaN系半導体層は、不純物濃度が高いことに起因して結晶品質が悪く、ダイオードとして機能するpn接合の形成には利用できないと考えられている。 When using a GaN-based semiconductor to form a pn junction that functions as a diode, it is common general knowledge that the p-type impurity concentration is on the order of at most 10 19 cm −3 , that is, 1 × 10 20 from the viewpoint of preventing deterioration of crystal quality. A p-type GaN-based semiconductor layer suppressed to less than cm −3 is used. The p-type GaN-based semiconductor layer having a p-type impurity concentration of the order of 10 20 cm −3 or more, that is, 1 × 10 20 cm −3 or more has poor crystal quality due to the high impurity concentration, and functions as a diode. It is believed that it cannot be used to form a pn junction.

また、技術常識では、逆方向耐圧を高める観点から、厚さが数百nm程度のp型GaN系半導体層が用いられている。厚さが100nm未満のp型GaN系半導体層は、薄すぎて逆方向耐圧を確保できず、ダイオードとして機能するpn接合の形成には利用できないと考えられている。   In addition, according to common general technical knowledge, a p-type GaN-based semiconductor layer having a thickness of about several hundred nm is used from the viewpoint of increasing the reverse breakdown voltage. It is considered that the p-type GaN-based semiconductor layer having a thickness of less than 100 nm is too thin to secure reverse breakdown voltage and cannot be used for forming a pn junction functioning as a diode.

そのため、比較形態では、n型半導体層10aの直上に、Mgが1×1018cm−3の濃度で添加され厚さが400nmのp型GaN層(p層)22aが積層されている。つまり、p型不純物濃度が1×1020cm−3未満に抑制されたp型GaN層(p層)22aと、n型半導体層10aとにより、pn接合が形成されている。 Therefore, in the comparative example, Mg is added at a concentration of 1 × 10 18 cm −3 and a p-type GaN layer (p-layer) 22a having a thickness of 400 nm is stacked directly on the n-type semiconductor layer 10a. That is, a pn junction is formed by the p-type GaN layer (p layer) 22a whose p-type impurity concentration is suppressed to less than 1 × 10 20 cm −3 and the n-type semiconductor layer 10a.

p側電極40aは、Mgが2×1020cm−3の濃度で添加され厚さが30nmのp型GaN層(p++層)21a、つまり、p型不純物濃度が1×1020cm−3以上であるp型GaN層(p++層)21aの上面上に設けられている。p型GaN層(p++層)21aは、p側電極40aとの良好なオーミック接触を形成する目的で、p型GaN層(p層)22a上に積層されている。 In the p-side electrode 40a, Mg is added at a concentration of 2 × 10 20 cm −3 and the p-type GaN layer (p ++ layer) 21a having a thickness of 30 nm, that is, the p-type impurity concentration is 1 × 10 20 cm −3. It is provided on the upper surface of the p-type GaN layer (p ++ layer) 21a described above. The p-type GaN layer (p ++ layer) 21a is stacked on the p-type GaN layer (p layer) 22a for the purpose of forming a good ohmic contact with the p-side electrode 40a.

このように、比較形態においては、p型GaN層(p++層)21aが、p側電極40aとの良好なオーミック接触を形成する目的で設けられており、pn接合を形成する目的で設けられてはいない。 As described above, in the comparative embodiment, the p-type GaN layer (p ++ layer) 21a is provided for the purpose of forming a good ohmic contact with the p-side electrode 40a, and is provided for the purpose of forming a pn junction. Not.

しかしながら、本願発明者は、後述の実験結果に示されるように、p型不純物が1×1020cm−3以上の濃度で添加されたp型GaN系半導体層を用いたpn接合が、技術常識に反して、ダイオードとして良好に機能することを見出した。本発明は、このような知見に基づく。 However, the inventor of the present application has found that a pn junction using a p-type GaN-based semiconductor layer to which a p-type impurity is added at a concentration of 1 × 10 20 cm −3 or more is a common general knowledge as shown in the experimental results described later. On the contrary, it was found that the diode functions well. The present invention is based on such findings.

以下、実施形態による半導体装置100について、さらに説明する。   Hereinafter, the semiconductor device 100 according to the embodiment will be further described.

p型GaN層21つまりp型半導体層20に添加されたp型不純物の濃度は、好ましくは1×1020cm−3以上の濃度であり、より好ましくは2×1020cm−3以上の濃度である。 The concentration of the p-type impurity added to the p-type GaN layer 21, that is, the p-type semiconductor layer 20 is preferably 1 × 10 20 cm −3 or more, more preferably 2 × 10 20 cm −3 or more. Is.

p型GaN層21のp型不純物濃度を1×1020cm−3以上とすることで、p側電極40をp型GaN層21と良好にオーミック接触させることができる。つまり、p型GaN層21で構成されたp型半導体層20を用いて、ダイオードとして良好に機能するpn接合を形成することができるとともに、p側電極40との良好なオーミック接触を得ることができる。 By setting the p-type impurity concentration of the p-type GaN layer 21 to 1 × 10 20 cm −3 or more, the p-side electrode 40 can be brought into good ohmic contact with the p-type GaN layer 21. That is, by using the p-type semiconductor layer 20 composed of the p-type GaN layer 21, it is possible to form a pn junction that functions well as a diode and obtain good ohmic contact with the p-side electrode 40. it can.

このため、比較形態で必要となる厚さ数百nm程度の厚いp型GaN層(p層)22aを用いずに、p型半導体層20を構成することができる。   Therefore, it is possible to configure the p-type semiconductor layer 20 without using the thick p-type GaN layer (p layer) 22a having a thickness of about several hundred nm which is required in the comparative embodiment.

これにより、p型半導体層20の構成を単純にすることができ、p型半導体層20の製造工程を簡素化できる。また、p型半導体層20を薄くすることができ、p型半導体層20に起因する順方向動作時の抵抗を低減させることが可能となり、消費電力の低減が図られる。   Thereby, the structure of the p-type semiconductor layer 20 can be simplified, and the manufacturing process of the p-type semiconductor layer 20 can be simplified. Further, the p-type semiconductor layer 20 can be thinned, and the resistance due to the p-type semiconductor layer 20 during the forward operation can be reduced, and the power consumption can be reduced.

さらに、詳細は後述するように、p型不純物濃度を1×1020cm−3以上とすることで、厚さが100nm未満の薄いp型GaN層21を用いても、数百Vから1000V以上の高い逆方向耐圧を得ることができる。 Further, as will be described later in detail, by setting the p-type impurity concentration to 1 × 10 20 cm −3 or more, even if a thin p-type GaN layer 21 having a thickness of less than 100 nm is used, several hundred V to 1000 V or more. It is possible to obtain a high reverse breakdown voltage.

なお、p型GaN層21のp型不純物濃度は、1×1020cm−3超の濃度としてもよい。 The p-type GaN layer 21 may have a p-type impurity concentration of more than 1 × 10 20 cm −3 .

高い逆方向耐圧が得られるp型GaN層21の厚さをより薄くできる観点から、p型GaN層21のp型不純物濃度は、2×1020cm−3以上とすることがより好ましい。 From the viewpoint that the thickness of the p-type GaN layer 21 that can obtain a high reverse breakdown voltage can be reduced, the p-type impurity concentration of the p-type GaN layer 21 is more preferably 2 × 10 20 cm −3 or more.

p型GaN層21つまりp型半導体層20に添加されたp型不純物の濃度は、好ましくは1×1021cm−3未満の濃度であり、より好ましくは6×1020cm−3以下の濃度であり、さらに好ましくは3×1020cm−3以下の濃度である。 The concentration of the p-type impurity added to the p-type GaN layer 21, that is, the p-type semiconductor layer 20 is preferably less than 1 × 10 21 cm −3 , more preferably 6 × 10 20 cm −3 or less. And more preferably a concentration of 3 × 10 20 cm −3 or less.

p型不純物濃度が高くなることで、p型GaN層の表面平坦性は低くなる。p型GaN層の表面平坦性が低くなり過ぎると、p型GaN層を、下地全面を被覆する膜状に形成できなくなる。本願発明者が、Mg濃度が6×1020cm−3で厚さ30nmのp型GaN層を成長させる実験を行ったところ、結晶表面に深さ30nm程度の凹凸が見られた。また、Mgが3×1020cm−3で厚さ30nmのp型GaN層を成長させる実験を行ったところ、異常成長は生じず、Mg濃度が6×1020cm−3の場合に比べて、表面平坦性が向上した。なお、上記実験と同一のMg濃度でも、成長条件の最適化によって、ある程度は表面平坦性の向上が見込まれる。 The higher p-type impurity concentration reduces the surface flatness of the p-type GaN layer. If the surface flatness of the p-type GaN layer becomes too low, the p-type GaN layer cannot be formed into a film shape that covers the entire underlayer. When the inventor of the present application conducted an experiment to grow a p-type GaN layer having a Mg concentration of 6 × 10 20 cm −3 and a thickness of 30 nm, irregularities having a depth of about 30 nm were observed on the crystal surface. Further, when an experiment was conducted to grow a p-type GaN layer having a thickness of 30 nm and Mg of 3 × 10 20 cm −3 , abnormal growth did not occur, and the Mg concentration was 6 × 10 20 cm −3 as compared with the case. , The surface flatness was improved. Even if the Mg concentration is the same as in the above experiment, improvement of the surface flatness is expected to some extent by optimizing the growth conditions.

このため、p型GaN層21のp型不純物濃度が1020cm−3のオーダであれば、つまりp型不純物濃度を1×1021cm−3未満とすれば、p型GaN層21を、下地全面を被覆する膜状に形成することが可能と考えられる。p型GaN層21のp型不純物濃度は、表面平坦性を向上させる観点から、6×1020cm−3以下とすることがより好ましく、表面平坦性をより向上させて膜を形成しやすくする観点から、3×1020cm−3以下とすることがさらに好ましい。 Therefore, if the p-type impurity concentration of the p-type GaN layer 21 is on the order of 10 20 cm −3 , that is, if the p-type impurity concentration is less than 1 × 10 21 cm −3 , the p-type GaN layer 21 is It is considered possible to form a film that covers the entire surface of the base. The p-type impurity concentration of the p-type GaN layer 21 is more preferably 6 × 10 20 cm −3 or less from the viewpoint of improving the surface flatness, and further improves the surface flatness and facilitates film formation. From the viewpoint, it is more preferably 3 × 10 20 cm −3 or less.

p型GaN層21つまりp型半導体層20の厚さは、好ましくは100nm未満の厚さであり、より好ましくは30nm以下の厚さである。   The thickness of the p-type GaN layer 21, that is, the p-type semiconductor layer 20 is preferably less than 100 nm, more preferably 30 nm or less.

p型不純物濃度が1×1020cm−3以上となると、p型GaN層21を数百nm程度の厚さまで成長させることが難しくなる。また、p型GaN層21が厚いほど、p型GaN層21に起因する抵抗が増加するとともに、p型GaN層21の成長に要する時間が増加する。このため、p型GaN層21の厚さは、100nm未満とすることが好ましく、30nm以下とすることがより好ましい。 When the p-type impurity concentration is 1 × 10 20 cm −3 or more, it becomes difficult to grow the p-type GaN layer 21 to a thickness of about several hundred nm. Further, as the p-type GaN layer 21 is thicker, the resistance due to the p-type GaN layer 21 increases and the time required for growing the p-type GaN layer 21 also increases. Therefore, the thickness of the p-type GaN layer 21 is preferably less than 100 nm, more preferably 30 nm or less.

なお、例えばメサ構造や後述のJBSダイオード等を形成する場合に行う、p型GaN層21の不要部を全厚さ除去するパターニングを容易にする観点からも、p型GaN層21の厚さは、100nm未満と薄いことが好ましい。   Note that the thickness of the p-type GaN layer 21 is also set from the viewpoint of facilitating patterning for removing the entire unnecessary portion of the p-type GaN layer 21 when forming a mesa structure or a JBS diode described later. It is preferably as thin as less than 100 nm.

p型GaN層21つまりp型半導体層20の厚さは、好ましくは2nm以上の厚さであり、より好ましくは10nm以上の厚さである。   The thickness of the p-type GaN layer 21, that is, the p-type semiconductor layer 20 is preferably 2 nm or more, and more preferably 10 nm or more.

逆方向電圧の印加時に、pn接合界面からn型半導体層10側およびp型半導体層20側の双方に、つまりn型GaN層13側およびp型GaN層21側の双方に、空乏層が伸びる。n型GaN層13側に伸びる空乏層の厚さと、p型GaN層21側に伸びる空乏層の厚さとの比率は、n型GaN層13におけるドナー濃度と、p型GaN層21におけるアクセプタ濃度との比率に反比例する。したがって、p型GaN層21におけるアクセプタ濃度が高いほど、つまり、p型不純物濃度が高いほど、p型GaN層21側に伸びる空乏層が薄くなる。   When a reverse voltage is applied, the depletion layer extends from the pn junction interface to both the n-type semiconductor layer 10 side and the p-type semiconductor layer 20 side, that is, both the n-type GaN layer 13 side and the p-type GaN layer 21 side. . The ratio of the thickness of the depletion layer extending to the n-type GaN layer 13 side to the thickness of the depletion layer extending to the p-type GaN layer 21 side is the donor concentration in the n-type GaN layer 13 and the acceptor concentration in the p-type GaN layer 21. Inversely proportional to the ratio of. Therefore, the higher the acceptor concentration in the p-type GaN layer 21, that is, the higher the p-type impurity concentration, the thinner the depletion layer extending to the p-type GaN layer 21 side.

逆方向電圧の印加時に、空乏層がp側電極40まで到達しない厚さに、p型GaN層21を構成することで、p型GaN層21の逆方向耐圧を確保することができる。   The reverse breakdown voltage of the p-type GaN layer 21 can be secured by configuring the p-type GaN layer 21 to a thickness such that the depletion layer does not reach the p-side electrode 40 when a reverse voltage is applied.

本願発明者が、作製したpn接合ダイオードの逆方向耐圧に基づいて、p型GaN層のMg濃度が2×1020cm−3の場合のアクセプタ濃度を見積もったところ、アクセプタ濃度としては、5×1019cm−3程度が期待されることがわかった。 The inventor of the present application estimated the acceptor concentration when the Mg concentration of the p-type GaN layer was 2 × 10 20 cm −3 , based on the reverse breakdown voltage of the manufactured pn junction diode. It was found that about 10 19 cm −3 is expected.

p型GaN層のアクセプタ濃度を5×1019cm−3とし、n型GaN層のドナー濃度を1×1016cm−3とし、逆方向印加電圧を1000Vとして、p型GaN層側に伸びる空乏層の厚さを見積もったところ、2nm程度となることがわかった。 The acceptor concentration of the p-type GaN layer was 5 × 10 19 cm −3 , the donor concentration of the n-type GaN layer was 1 × 10 16 cm −3 , the reverse direction applied voltage was 1000 V, and the depletion extending to the p-type GaN layer side. When the layer thickness was estimated, it was found to be about 2 nm.

なお、本例では、アクセプタ濃度がドナー濃度の5000倍であるため、n型GaN層側に伸びる空乏層の厚さに対する、p型GaN層側に伸びる空乏層の厚さの比率は、1/5000となる。   In this example, since the acceptor concentration is 5000 times the donor concentration, the ratio of the thickness of the depletion layer extending to the p-type GaN layer side to the thickness of the depletion layer extending to the n-type GaN layer side is 1 / It will be 5000.

なお、p型GaN層のMg濃度が1×1020cm−3で逆方向印加電圧が1000Vとした場合は、p型GaN層側の空乏層厚さは4nm程度と見積もられ、p型GaN層のMg濃度が1×1020cm−3で逆方向電圧が500Vとした場合は、p型GaN層側の空乏層厚さは2nm程度と見積もられる。 When the Mg concentration of the p-type GaN layer is 1 × 10 20 cm −3 and the reverse direction applied voltage is 1000 V, the depletion layer thickness on the p-type GaN layer side is estimated to be about 4 nm, and the p-type GaN is estimated. When the Mg concentration of the layer is 1 × 10 20 cm −3 and the reverse voltage is 500 V, the depletion layer thickness on the p-type GaN layer side is estimated to be about 2 nm.

以上の考察より、p型GaN層21の厚さは、例えば500V程度以上の高い逆方向耐圧を得る観点から、2nm以上とすることが好ましく、逆方向耐圧をより高める観点から、10nm以上とすることがより好ましい。   From the above consideration, the thickness of the p-type GaN layer 21 is preferably 2 nm or more from the viewpoint of obtaining a high reverse breakdown voltage of about 500 V or more, and 10 nm or more from the viewpoint of further increasing the reverse breakdown voltage. Is more preferable.

このように、p型GaN層21のp型不純物濃度を1×1020cm−3以上とすることで、厚さが数nmから数十nm程度の(つまり100nm未満の)薄いp型GaN層21を用いても、数百Vから1000V以上の高い逆方向耐圧を得ることができる。例えば、後述の実験結果に示されるように、少なくとも400V以上の逆方向耐圧が得られることが確認されている。 Thus, by setting the p-type impurity concentration of the p-type GaN layer 21 to 1 × 10 20 cm −3 or more, a thin p-type GaN layer having a thickness of several nm to several tens nm (that is, less than 100 nm). Even if 21 is used, a high reverse breakdown voltage of several hundred V to 1000 V or more can be obtained. For example, it has been confirmed that a reverse breakdown voltage of at least 400 V or higher can be obtained, as shown in the experimental results described later.

n型半導体層10の、p型半導体層20とpn接合を形成する部分に添加されたn型不純物の濃度に対する、p型半導体層20に添加されたp型不純物の濃度の比率は、好ましくは10000倍以上である。つまり、例示の半導体装置100において、n型GaN層13のn型不純物濃度に対するp型GaN層21のp型不純物濃度の比率は、好ましくは10000倍以上である。   The ratio of the concentration of the p-type impurity added to the p-type semiconductor layer 20 to the concentration of the n-type impurity added to the portion of the n-type semiconductor layer 10 that forms a pn junction with the p-type semiconductor layer 20 is preferably It is 10,000 times or more. That is, in the illustrated semiconductor device 100, the ratio of the p-type impurity concentration of the p-type GaN layer 21 to the n-type impurity concentration of the n-type GaN layer 13 is preferably 10,000 times or more.

上述のように、n型GaN層13側に伸びる空乏層の厚さと、p型GaN層21側に伸びる空乏層の厚さとの比率は、n型GaN層13におけるドナー濃度と、p型GaN層21におけるアクセプタ濃度との比率に反比例する。このため、高い逆方向耐圧を得つつp型GaN層21を薄くする観点から、n型GaN層13のn型不純物濃度に対するp型GaN層21のp型不純物濃度の比率は、10000倍以上であることが好ましい。   As described above, the ratio of the thickness of the depletion layer extending to the n-type GaN layer 13 side to the thickness of the depletion layer extending to the p-type GaN layer 21 side is determined by the donor concentration in the n-type GaN layer 13 and the p-type GaN layer. It is inversely proportional to the ratio with the acceptor concentration at 21. Therefore, from the viewpoint of thinning the p-type GaN layer 21 while obtaining a high reverse breakdown voltage, the ratio of the p-type impurity concentration of the p-type GaN layer 21 to the n-type impurity concentration of the n-type GaN layer 13 is 10,000 times or more. Preferably there is.

p型GaN層21つまりp型半導体層20における正孔濃度は、好ましくは1×1016cm−3以上の濃度である。 The hole concentration in the p-type GaN layer 21, that is, the p-type semiconductor layer 20 is preferably 1 × 10 16 cm −3 or more.

本願発明者が、p型GaN層のMg濃度が2×1020cm−3の場合の正孔濃度を見積もったところ、正孔濃度は、7×1016cm−3程度であることがわかった。これより、p型GaN層21の正孔濃度は、少なくとも1×1016cm−3以上となる。p型GaN層21の正孔濃度は、低抵抗なp型GaN層21を得る観点から、1×1016cm−3以上であることが好ましい。 The inventor of the present application estimated the hole concentration when the Mg concentration of the p-type GaN layer was 2 × 10 20 cm −3 , and it was found that the hole concentration was about 7 × 10 16 cm −3 . . From this, the hole concentration of the p-type GaN layer 21 becomes at least 1 × 10 16 cm −3 or more. The hole concentration of the p-type GaN layer 21 is preferably 1 × 10 16 cm −3 or more from the viewpoint of obtaining the p-type GaN layer 21 having a low resistance.

次に、図2(a)〜図3(b)を参照して、第1実施形態による半導体装置100の製造方法について例示的に説明する。図2(a)〜図3(b)は、第1実施形態による半導体装置100の製造工程を示す概略断面図である。   Next, with reference to FIGS. 2A to 3B, the method for manufacturing the semiconductor device 100 according to the first embodiment will be exemplarily described. 2A to 3B are schematic cross-sectional views showing the manufacturing process of the semiconductor device 100 according to the first embodiment.

図2(a)を参照する。n型GaN基板11上に、n型GaN層12を成長させ、n型
GaN層12上に、n型GaN層13を成長させて、n型半導体層10を形成する。さらに、n型半導体層10上に、つまりn型GaN層13上に、p型GaN層21を成長させて、p型半導体層20を形成する。各層に添加される不純物の濃度や、各層の厚さ等は、例えば上述の通りである。
Reference is made to FIG. The n-type GaN layer 12 is grown on the n-type GaN substrate 11, and the n-type GaN layer 13 is grown on the n-type GaN layer 12 to form the n-type semiconductor layer 10. Further, the p-type GaN layer 21 is grown on the n-type semiconductor layer 10, that is, on the n-type GaN layer 13, to form the p-type semiconductor layer 20. The concentration of impurities added to each layer, the thickness of each layer, and the like are as described above, for example.

各層の成長方法や原料は、特に限定されない。例えば、成長方法としては、有機金属気相エピタキシ(MOVPE)を用いることができる。Ga源としては、例えばトリメチルガリウム(TMG)を用いることができ、N源としては、例えばアンモニア(NH)を用いることができ、Si源としては、例えばモノシラン(SiH)を用いることができ、Mg源としては、例えばビスシクロペンタジエニルマグネシウム(CpMg)を用
いることができる。
The growth method and raw material of each layer are not particularly limited. For example, metalorganic vapor phase epitaxy (MOVPE) can be used as the growth method. For example, trimethylgallium (TMG) can be used as the Ga source, ammonia (NH 3 ) can be used as the N source, and monosilane (SiH 4 ) can be used as the Si source. As the Mg source, for example, biscyclopentadienyl magnesium (Cp 2 Mg) can be used.

p型半導体層20の形成後、例えば850℃で30分間、不純物を活性化させるための熱処理を行う。このようにして、n型半導体層10上にp型半導体層20が積層された半導体積層物を準備した後、p型GaN層21の上面の、メサ構造の上面を構成する部分を覆うマスクを用いたエッチングにより、メサ構造を形成する。   After forming the p-type semiconductor layer 20, heat treatment for activating the impurities is performed at 850 ° C. for 30 minutes, for example. In this way, after preparing a semiconductor laminate in which the p-type semiconductor layer 20 is laminated on the n-type semiconductor layer 10, a mask covering the upper surface of the p-type GaN layer 21 that constitutes the upper surface of the mesa structure is provided. The mesa structure is formed by the etching used.

図2(b)を参照する。p側下部電極41の形成領域に開口を有するレジストパターンを形成し、p側下部電極41を形成する電極材料を堆積する。そして、レジストパターンとともに不要部の電極材料を除去するリフトオフにより、p側下部電極41を形成する。p側下部電極41の材料や厚さ等は、例えば上述の通りである。   Reference is made to FIG. A resist pattern having an opening is formed in the formation region of the p-side lower electrode 41, and an electrode material for forming the p-side lower electrode 41 is deposited. Then, the p-side lower electrode 41 is formed by lift-off for removing the electrode material of the unnecessary portion together with the resist pattern. The material and thickness of the p-side lower electrode 41 are as described above, for example.

図3(a)を参照する。メサ構造側(p型半導体層20側)の全面上に、保護膜50を形成する絶縁材料を堆積する。そして、p側下部電極41上に開口を有するレジストパターンを形成し、エッチングにより不要部の絶縁材料を除去してp側下部電極41を露出させることで、保護膜50を形成する。保護膜50の材料や厚さ等は、例えば上述の通りである。   Reference is made to FIG. An insulating material for forming the protective film 50 is deposited on the entire surface on the mesa structure side (p-type semiconductor layer 20 side). Then, a resist pattern having an opening is formed on the p-side lower electrode 41, and an unnecessary portion of the insulating material is removed by etching to expose the p-side lower electrode 41, thereby forming the protective film 50. The material and thickness of the protective film 50 are as described above, for example.

図3(b)を参照する。メサ構造と反対側(n型半導体層10側)の全面上に、n側電極30を形成する電極材料を堆積して、n側電極30を形成する。n側電極30の材料や厚さ等は、例えば上述の通りである。   Reference is made to FIG. An electrode material for forming the n-side electrode 30 is deposited on the entire surface opposite to the mesa structure (n-type semiconductor layer 10 side) to form the n-side electrode 30. The material and thickness of the n-side electrode 30 are as described above, for example.

メサ構造側(p型半導体層20側)の上面上に、p側上部電極42の形成領域に開口を有するレジストパターンを形成し、p側上部電極42を形成する電極材料を堆積する。そして、レジストパターンとともに不要部の電極材料を除去するリフトオフにより、p側上部電極42を形成する。p側上部電極42の材料や厚さ等は、例えば上述の通りである。以上のようにして、第1実施形態による半導体装置100が製造される。   A resist pattern having an opening in the formation region of the p-side upper electrode 42 is formed on the upper surface of the mesa structure side (p-type semiconductor layer 20 side), and an electrode material for forming the p-side upper electrode 42 is deposited. Then, the p-side upper electrode 42 is formed by lift-off for removing the electrode material of the unnecessary portion together with the resist pattern. The material and thickness of the p-side upper electrode 42 are as described above, for example. The semiconductor device 100 according to the first embodiment is manufactured as described above.

次に、実際にpn接合ダイオードを作製し、順方向および逆方向の電流−電圧特性を測定した実験結果について例示的に説明する。   Next, an experimental result of actually manufacturing a pn junction diode and measuring the forward-direction and reverse-direction current-voltage characteristics will be exemplarily described.

Si濃度が2×1018cm−3で厚さ400μmのn型GaN基板上に、Si濃度が2×1018cm−3で厚さ2μmのn型GaN層を成長させ、このn型GaN層上に、Si濃度が1.2×1016cm−3で厚さ5μmのn型GaN層を成長させて、n型半導体層を形成した。n型半導体層上に、Mg濃度が2×1020cm−3で厚さ20nmのp型GaN層を成長させて、p型半導体層を形成した。その後、メサ構造を形成し、n側電極とp側電極とを形成した。p側電極としては、フィールドプレート電極部は有さない、直径が60μm、100μm、および200μmのものを形成した。このようにして、pn接合ダイオードのサンプルを作製した。 N-type GaN substrate having a thickness of 400μm to in Si concentration 2 × 10 18 cm -3, Si concentration is grown n-type GaN layer having a thickness of 2μm at 2 × 10 18 cm -3, the n-type GaN layer An n-type GaN layer having a Si concentration of 1.2 × 10 16 cm −3 and a thickness of 5 μm was grown thereon to form an n-type semiconductor layer. A p-type GaN layer having a Mg concentration of 2 × 10 20 cm −3 and a thickness of 20 nm was grown on the n-type semiconductor layer to form a p-type semiconductor layer. After that, a mesa structure was formed, and an n-side electrode and a p-side electrode were formed. As the p-side electrode, those having no field plate electrode portion and having diameters of 60 μm, 100 μm, and 200 μm were formed. In this way, a sample of the pn junction diode was produced.

図4(a)は、p側電極径が100μmのサンプルに対する、順方向の電流−電圧特性を示すグラフである。3V程度の電圧で立ち上がりを示す順方向の電流−電圧特性が得られていることがわかる。なお、図4(a)には、オン抵抗も示している。   FIG. 4A is a graph showing forward current-voltage characteristics for a sample having a p-side electrode diameter of 100 μm. It can be seen that a forward current-voltage characteristic showing a rise at a voltage of about 3 V is obtained. Note that FIG. 4A also shows the on-resistance.

図4(b)は、p側電極径が60μm、100μm、および200μmのサンプルに対する、逆方向の電流−電圧特性を示すグラフである。どの電極径のサンプルについても、400V以上の(450〜460V程度の)逆方向耐圧を有する逆方向の電流−電圧特性が得られていることがわかる。   FIG. 4B is a graph showing current-voltage characteristics in the reverse direction for samples having p-side electrode diameters of 60 μm, 100 μm, and 200 μm. It can be seen that the reverse current-voltage characteristics having the reverse breakdown voltage of 400 V or higher (about 450 to 460 V) are obtained for the samples having any electrode diameter.

なお、Mg濃度が2×1020cm−3で厚さ10nmのp型GaN層によりp型半導体層を構成したサンプル、および、Mg濃度が2×1020cm−3で厚さ30nmのp型GaN層によりp型半導体層を構成したサンプルも作製し、これらの他のサンプルについても、順方向および逆方向の電流−電圧特性を測定した。これらの他のサンプルについても、同様に、3V程度の電圧で立ち上がりを示す順方向の電流−電圧特性と、400V以上の逆方向耐圧を有する逆方向の電流−電圧特性とが得られることがわかった。 A sample in which a p-type semiconductor layer is composed of a p-type GaN layer having a Mg concentration of 2 × 10 20 cm −3 and a thickness of 10 nm, and a p-type having a Mg concentration of 2 × 10 20 cm −3 and a thickness of 30 nm Samples having a p-type semiconductor layer formed of a GaN layer were also prepared, and the forward-direction and reverse-direction current-voltage characteristics of these other samples were also measured. For these other samples as well, it was found that the forward current-voltage characteristic exhibiting a rise at a voltage of about 3 V and the reverse current-voltage characteristic having a reverse breakdown voltage of 400 V or more were similarly obtained. It was

このように、本願発明者は、p型不純物が1×1020cm−3以上の濃度で添加されたp型GaN系半導体層を用いたpn接合が、ダイオードとして良好に機能することを見出した。また、このようなp型GaN系半導体層が、100nm未満という非常に薄い厚さであるにも関らず、数百V以上の高い逆方向耐圧を有するダイオードとして良好に機能するpn接合を形成できることを見出した。 As described above, the present inventor has found that a pn junction using a p-type GaN-based semiconductor layer doped with a p-type impurity at a concentration of 1 × 10 20 cm −3 or more works well as a diode. . In addition, although such a p-type GaN-based semiconductor layer has a very thin thickness of less than 100 nm, it forms a pn junction that functions well as a diode having a high reverse breakdown voltage of several hundreds V or more. I found that I could do it.

次に、図5を参照して、第2実施形態による半導体装置100について例示的に説明する。図5は、第2実施形態による半導体装置100の概略断面図であり、併せて上方に、p側下部電極41の形状を示す概略平面図を示す。第1実施形態と対応する第2実施形態の部材や構造について、第1実施形態と同一の参照番号を付して、説明を進める。   Next, the semiconductor device 100 according to the second embodiment will be exemplarily described with reference to FIG. FIG. 5 is a schematic cross-sectional view of the semiconductor device 100 according to the second embodiment, and a schematic plan view showing the shape of the p-side lower electrode 41 is also shown above. The members and structures of the second embodiment corresponding to the first embodiment will be assigned the same reference numerals as those of the first embodiment and will be described.

第2実施形態では、第1実施形態で説明したpn接合ダイオードの応用として、pn接合ダイオード部分およびショットキーバリアダイオード部分の両方を有するジャンクションバリアショットキー(JBS)ダイオードについて説明する。   In the second embodiment, as an application of the pn junction diode described in the first embodiment, a junction barrier Schottky (JBS) diode having both a pn junction diode portion and a Schottky barrier diode portion will be described.

第2実施形態による半導体装置100は、p型半導体層20が、部分的に全厚さ除去されるようにパターニングされており、p側電極40が、p型半導体層20と接触するとともに、n型半導体層10と接触するように配置されている点で、第1実施形態による半導体装置100と異なる。   In the semiconductor device 100 according to the second embodiment, the p-type semiconductor layer 20 is patterned so that the entire thickness thereof is partially removed, and the p-side electrode 40 contacts the p-type semiconductor layer 20 and n The semiconductor device 100 is different from the semiconductor device 100 according to the first embodiment in that it is arranged so as to be in contact with the type semiconductor layer 10.

p型半導体層20つまりp型GaN層21は、p側下部電極41の内側において、例えば、複数の円環部121が同心円状に残されるようにパターニングされている。隣接する円環部121の間隙では、p型GaN層21が全厚さ除去されて、n型半導体層10の上面つまりn型GaN層13の上面が露出している。   The p-type semiconductor layer 20, that is, the p-type GaN layer 21, is patterned inside the p-side lower electrode 41 so that, for example, a plurality of annular portions 121 are concentrically left. In the gap between the adjacent annular portions 121, the p-type GaN layer 21 is completely removed in thickness, and the upper surface of the n-type semiconductor layer 10, that is, the upper surface of the n-type GaN layer 13 is exposed.

このようにして、平面視上、p型GaN層21とn型GaN層13とが、円環部121の径方向に交互に並んだ構造が構成されている。p側下部電極41の形状を示す平面図部分において、p型GaN層21の配置領域を、ハッチングで示し、n型GaN層13の配置領域を、白抜きで示す。円環部121の幅は、例えば1〜10μm程度であり、隣接する円環部121の間隙幅は、例えば1〜10μm程度である。   In this way, the structure in which the p-type GaN layers 21 and the n-type GaN layers 13 are alternately arranged in the radial direction of the annular portion 121 is configured in a plan view. In the plan view portion showing the shape of the p-side lower electrode 41, the arrangement region of the p-type GaN layer 21 is shown by hatching, and the arrangement region of the n-type GaN layer 13 is shown by white outline. The width of the annular portion 121 is, for example, about 1 to 10 μm, and the gap width between the adjacent annular portions 121 is, for example, about 1 to 10 μm.

平面視上、p側下部電極41は、つまりp側電極40は、p型GaN層21の上面で、p型GaN層21と、つまりp型半導体層20と接触し、n型GaN層13の上面で、n型GaN層13と、つまりn型半導体層10と接触している。このようにして、p側電極
40が、p型半導体層20と接触するとともに、n型半導体層10と接触するように配置された構造が構成されている。なお、p側上部電極42の構造は、第1実施形態と同様である。
In plan view, the p-side lower electrode 41, that is, the p-side electrode 40, contacts the p-type GaN layer 21, that is, the p-type semiconductor layer 20, on the upper surface of the p-type GaN layer 21, and the The upper surface is in contact with the n-type GaN layer 13, that is, the n-type semiconductor layer 10. In this way, a structure is formed in which the p-side electrode 40 is arranged so as to contact the p-type semiconductor layer 20 and the n-type semiconductor layer 10. The structure of the p-side upper electrode 42 is similar to that of the first embodiment.

平面視上、p側電極40がp型半導体層20と接触する領域は、pn接合ダイオードとして機能し、p側電極40がn型半導体層10と接触する領域は、ショットキーバリアダイオードとして機能する。このようにして、JBSダイオードが構成されている。   In plan view, a region where the p-side electrode 40 contacts the p-type semiconductor layer 20 functions as a pn junction diode, and a region where the p-side electrode 40 contacts the n-type semiconductor layer 10 functions as a Schottky barrier diode. . In this way, the JBS diode is constructed.

平面視上、p側電極40がp型半導体層20に接触する面積とp側電極40がn型半導体層10に接触する面積との和に対する、p側電極40がp型半導体層20に接触する面積の比率は、JBSダイオードとしての良好な動作を得る観点から、20%以上であることが好ましく、80%以下であることが好ましい。   In plan view, the p-side electrode 40 contacts the p-type semiconductor layer 20 with respect to the sum of the area where the p-side electrode 40 contacts the p-type semiconductor layer 20 and the area where the p-side electrode 40 contacts the n-type semiconductor layer 10. The area ratio is preferably 20% or more, and more preferably 80% or less, from the viewpoint of obtaining good operation as a JBS diode.

なお、JBSダイオードを構成するためのp型半導体層20のパターニングの態様として、同心の円環状のパターンを例示したが、必要に応じて、ストライプ状等の他のパターンを用いてもよい。   Although the concentric annular pattern is illustrated as the patterning mode of the p-type semiconductor layer 20 for forming the JBS diode, other patterns such as a stripe pattern may be used if necessary.

なお、p側下部電極41は、p型GaN層21の上面でp型GaN層21と接触し、p型GaN層21のパターニングにより露出したn型GaN層13の上面でn型GaN層13と接触している。つまり、p側電極40が接触するp型半導体層20の上面よりも、p側電極40が接触するn型半導体層10の上面の方が、低い位置(基板11に近い位置)に配置されている(p側電極40が接触するp型半導体層20の上面とp側電極40が接触するn型半導体層10の上面との高さが異なっている)。   The p-side lower electrode 41 contacts the p-type GaN layer 21 on the upper surface of the p-type GaN layer 21, and forms the n-type GaN layer 13 on the upper surface of the n-type GaN layer 13 exposed by patterning the p-type GaN layer 21. Are in contact. That is, the upper surface of the n-type semiconductor layer 10 in contact with the p-side electrode 40 is arranged at a lower position (position closer to the substrate 11) than the upper surface of the p-type semiconductor layer 20 in contact with the p-side electrode 40. (The top surface of the p-type semiconductor layer 20 with which the p-side electrode 40 contacts differs from the top surface of the n-type semiconductor layer 10 with which the p-side electrode 40 contacts).

上述のように、p型GaN層21は、p型不純物濃度が1×1020cm−3以上であることで、100nm未満の薄さに構成することができる。p型GaN層21が薄いことで、p型GaN層21の不要部を全厚さ除去するパターニングが容易となり、JBSダイオードを作製することが容易となる。 As described above, the p-type GaN layer 21 can be configured to have a thinness of less than 100 nm because the p-type impurity concentration is 1 × 10 20 cm −3 or more. Since the p-type GaN layer 21 is thin, patterning for removing the entire unnecessary portion of the p-type GaN layer 21 can be facilitated, and the JBS diode can be easily manufactured.

p型GaN層21が薄いことで、p型GaN層21の不要部の全厚さを、ウェットエッチングで除去することが容易となる。ウェットエッチングとしては、例えば陽極酸化を用いることができる。陽極酸化は、n型GaN層13に対してp型GaN層21を選択的にエッチングできるので、好ましい。   Since the p-type GaN layer 21 is thin, it is easy to remove the entire unnecessary portion of the p-type GaN layer 21 by wet etching. As the wet etching, for example, anodic oxidation can be used. Anodization is preferable because the p-type GaN layer 21 can be selectively etched with respect to the n-type GaN layer 13.

p型GaN層21のパターニングに、陽極酸化等のウェットエッチングを用いることで、露出するn型GaN層13の上面での、ドライエッチングを用いたときのようなダメージ(欠陥)を抑制できる。この結果、n型GaN層13の上面における、p型GaN層21に覆われている部分の欠陥密度と、p型GaN層21が除去されて露出した部分(p側電極40と接触している部分)の欠陥密度とが、同等な構造を得ることができる。ここで、欠陥密度が同等とは、p型GaN層21に覆われている部分の欠陥密度に対する、p型GaN層21が除去されて露出した部分(p側電極40と接触している部分)の欠陥密度の増加分が10%以下であることをいう。   By using wet etching such as anodic oxidation for patterning the p-type GaN layer 21, damage (defects) on the exposed upper surface of the n-type GaN layer 13 as when dry etching is used can be suppressed. As a result, the defect density of the portion covered by the p-type GaN layer 21 on the upper surface of the n-type GaN layer 13 and the exposed portion of the p-type GaN layer 21 removed (in contact with the p-side electrode 40). It is possible to obtain a structure having the same defect density as that of (part). Here, the defect density is equal to the defect density of the part covered by the p-type GaN layer 21, and the part exposed by removing the p-type GaN layer 21 (the part in contact with the p-side electrode 40). It means that the increase in the defect density is 10% or less.

なお、p型GaN層21のパターニングには、必要に応じて、ドライエッチングを用いてもよい。p型GaN層21が薄いことで、ドライエッチングを用いる場合でも、穏やかな条件で短時間に処理することができ、露出するn型GaN層13のダメージを抑えることができる。   The p-type GaN layer 21 may be patterned by dry etching if necessary. Since the p-type GaN layer 21 is thin, even if dry etching is used, the p-type GaN layer 21 can be treated in a short time under mild conditions, and damage to the exposed n-type GaN layer 13 can be suppressed.

次に、図6(a)および図6(b)を参照して、第2実施形態による半導体装置100の製造方法について例示的に説明する。図6(a)および図6(b)は、第2実施形態に
よる半導体装置100の製造工程を示す概略断面図である。
Next, with reference to FIGS. 6A and 6B, the method for manufacturing the semiconductor device 100 according to the second embodiment will be exemplarily described. 6A and 6B are schematic cross-sectional views showing the manufacturing process of the semiconductor device 100 according to the second embodiment.

まず、第1実施形態で図2(a)を参照して説明した工程と同様にして、n型半導体層10とp型半導体層20とが積層された半導体積層物を準備し、メサ構造を形成する。   First, in the same manner as the step described with reference to FIG. 2A in the first embodiment, a semiconductor laminated body in which the n-type semiconductor layer 10 and the p-type semiconductor layer 20 are laminated is prepared, and a mesa structure is formed. Form.

図6(a)を参照する。次に、p型GaN層21上のn型GaN層13を露出させる領域に開口を有するマスクを形成し、開口部のp型GaN層21をエッチングで除去するパターニングを行う。p型GaN層21のパターニングには、好ましくはウェットエッチングが用いられ、ウェットエッチングとしては、好ましくは陽極酸化が用いられる。   Reference is made to FIG. Next, a mask having an opening in a region on the p-type GaN layer 21 where the n-type GaN layer 13 is exposed is formed, and patterning is performed to remove the p-type GaN layer 21 in the opening by etching. Wet etching is preferably used for patterning the p-type GaN layer 21, and anodic oxidation is preferably used as wet etching.

陽極酸化を用いたp型GaN層21のパターニングは、例えば以下のように行われる。p型GaN層21上に、スピンオングラス、PECVD法、もしくはスパッタ法により、マスクとなるSiO膜を形成する。そして、JBS用のレジストパターンを形成し、バッファードフッ酸(BHF)を用いて、SiO膜をエッチングし、陽極酸化用のマスクを作製する。次に、テフロン(登録商標)等および接着剤を用いて、p型GaN層21(p型半導体層20)とn型GaN基板11、n型GaN層12、およびn型GaN層13(n型半導体層10)とが電解液を介して接触しない様に封止する。p型GaN層21とアノード電極とを電解液に浸す。アノード電極としてPt網を用いて、参照電極として銀−塩化銀電極を用いる。電解液とアノード電極とを介して、p型GaN層21(p型半導体層20)とn型GaN基板11、n型GaN層12、およびn型GaN層13(n型半導体層10)との間に電圧を印加させることで、陽極酸化を行う。なお、n型GaN基板11の裏面に、SiOマスク形成後に電極を形成し、カソード電極としても良い。 Patterning of the p-type GaN layer 21 using anodization is performed as follows, for example. A SiO 2 film serving as a mask is formed on the p-type GaN layer 21 by spin-on-glass, PECVD, or sputtering. Then, a resist pattern for JBS is formed, the SiO 2 film is etched using buffered hydrofluoric acid (BHF), and a mask for anodic oxidation is prepared. Next, using Teflon (registered trademark) or the like and an adhesive, the p-type GaN layer 21 (p-type semiconductor layer 20), the n-type GaN substrate 11, the n-type GaN layer 12, and the n-type GaN layer 13 (n-type) are used. The semiconductor layer 10) is sealed so as not to come into contact with it via the electrolytic solution. The p-type GaN layer 21 and the anode electrode are immersed in an electrolytic solution. A Pt mesh is used as the anode electrode and a silver-silver chloride electrode is used as the reference electrode. The p-type GaN layer 21 (p-type semiconductor layer 20), the n-type GaN substrate 11, the n-type GaN layer 12, and the n-type GaN layer 13 (n-type semiconductor layer 10) are interposed via the electrolytic solution and the anode electrode. Anodization is performed by applying a voltage between them. The cathode may be formed by forming an electrode on the back surface of the n-type GaN substrate 11 after forming a SiO 2 mask.

図6(b)を参照する。第1実施形態で図2(b)を参照して説明した工程と同様に、p側下部電極41の形成領域に開口を有するレジストパターンを形成し、p側下部電極41を形成する電極材料を堆積する。そして、レジストパターンとともに不要部の電極材料を除去するリフトオフにより、p側下部電極41を形成する。   Reference is made to FIG. Similar to the step described with reference to FIG. 2B in the first embodiment, a resist pattern having an opening in the formation region of the p-side lower electrode 41 is formed, and an electrode material for forming the p-side lower electrode 41 is formed. accumulate. Then, the p-side lower electrode 41 is formed by lift-off for removing the electrode material of the unnecessary portion together with the resist pattern.

第2実施形態では、p型GaN層21がパターニングされているため、p型GaN層21の上面上に加えて、p型GaN層21の間隙に露出したn型GaN層13の上面上にも電極材料が堆積する。このようにして、p型GaN層21上から、露出したn型GaN層13上に延在する形状となるように、p側下部電極41が形成され、p型GaN層21およびn型GaN層13の両方と接触するp側下部電極41が形成される。   In the second embodiment, since the p-type GaN layer 21 is patterned, not only on the upper surface of the p-type GaN layer 21, but also on the upper surface of the n-type GaN layer 13 exposed in the gap between the p-type GaN layers 21. Electrode material is deposited. In this way, the p-side lower electrode 41 is formed so as to have a shape extending from the p-type GaN layer 21 to the exposed n-type GaN layer 13, and the p-type GaN layer 21 and the n-type GaN layer are formed. A p-side lower electrode 41 that contacts both 13 is formed.

その後、第1実施形態で図3(a)および図3(b)を参照して説明した工程と同様にして、保護膜50、n側電極30、および、p側上部電極42を形成する。以上のようにして、第2実施形態による半導体装置100が製造される。   After that, the protective film 50, the n-side electrode 30, and the p-side upper electrode 42 are formed in the same manner as in the steps described with reference to FIGS. 3A and 3B in the first embodiment. The semiconductor device 100 according to the second embodiment is manufactured as described above.

なお、第1実施形態または第2実施形態の半導体装置100を作製する際に、n型半導体層10とp型半導体層20とが予め積層されている半導体積層物110を準備してもよい。つまり、GaN系半導体で形成されたn型半導体層10と、n型半導体層10の直上に積層され、p型不純物が1×1020cm−3以上の濃度で添加されたGaN系半導体で形成されたp型半導体層20とが積層された半導体積層物110を準備してもよい。半導体積層物110は、p型半導体層20とn型半導体層10とが形成するpn接合への電圧印加により、pn接合ダイオードとして機能させることができる半導体積層物である。 When manufacturing the semiconductor device 100 of the first embodiment or the second embodiment, the semiconductor laminate 110 in which the n-type semiconductor layer 10 and the p-type semiconductor layer 20 are laminated in advance may be prepared. That is, an n-type semiconductor layer 10 formed of a GaN-based semiconductor and a GaN-based semiconductor stacked directly on the n-type semiconductor layer 10 and doped with a p-type impurity at a concentration of 1 × 10 20 cm −3 or more. You may prepare the semiconductor laminated body 110 which laminated | stacked the p-type semiconductor layer 20 by which it was laminated | stacked. The semiconductor laminate 110 is a semiconductor laminate that can function as a pn junction diode by applying a voltage to the pn junction formed by the p-type semiconductor layer 20 and the n-type semiconductor layer 10.

図7は、半導体積層物110の例を示す概略断面図である。n型GaN基板11上に、n型GaN層12およびn型GaN層13が成長されて、n型半導体層10が形成されている。n型半導体層10上に、つまりn型GaN層13上に、p型GaN層21が成長されて、p型半導体層20が形成されている。   FIG. 7 is a schematic cross-sectional view showing an example of the semiconductor laminate 110. An n-type GaN layer 12 and an n-type GaN layer 13 are grown on an n-type GaN substrate 11 to form an n-type semiconductor layer 10. A p-type GaN layer 21 is grown on the n-type semiconductor layer 10, that is, on the n-type GaN layer 13, to form a p-type semiconductor layer 20.

p型GaN層21、つまりp型半導体層20は、n型GaN層13の、つまりn型半導体層10の全面上に形成されている。p型GaN層21とn型GaN層13とが形成するpn接合界面、つまりp型半導体層20とn型半導体層10とが形成するpn接合界面は、平坦となっている。p型GaN層21の上面、つまりp型半導体層20の上面は、(その少なくとも一部が)p側電極40の形成領域(接触領域)として用意されている。   The p-type GaN layer 21, that is, the p-type semiconductor layer 20, is formed on the entire surface of the n-type GaN layer 13, that is, the n-type semiconductor layer 10. The pn junction interface formed by the p-type GaN layer 21 and the n-type GaN layer 13, that is, the pn junction interface formed by the p-type semiconductor layer 20 and the n-type semiconductor layer 10 is flat. The upper surface of the p-type GaN layer 21, that is, the upper surface of the p-type semiconductor layer 20 is prepared (at least a part thereof) as a formation region (contact region) of the p-side electrode 40.

n型半導体層10とp型半導体層20とが予め積層された半導体積層物110を用いることで、n型GaN層12やp型GaN層21等の半導体層をエピタキシャル成長させる工程を省略することができ、半導体装置100の作製を容易にすることができる。p型GaN層21つまりp型半導体層20は、上述のように例えば陽極酸化によるウェットエッチングで、所定形状にパターニングすることができる。   By using the semiconductor laminate 110 in which the n-type semiconductor layer 10 and the p-type semiconductor layer 20 are laminated in advance, the step of epitaxially growing a semiconductor layer such as the n-type GaN layer 12 or the p-type GaN layer 21 can be omitted. Therefore, the semiconductor device 100 can be easily manufactured. The p-type GaN layer 21, that is, the p-type semiconductor layer 20 can be patterned into a predetermined shape by wet etching such as anodic oxidation as described above.

半導体積層物110は、それ自体として、つまり例えば、n型半導体層10に電気的に接続されたn側電極30や、p型半導体層20に電気的に接続されたp側電極40等が形成されていない態様で、また例えば、半導体積層物110の上面をp型半導体層20の上面が構成する態様で、市場に流通させてもよい。   The semiconductor laminate 110 is formed as it is, that is, for example, the n-side electrode 30 electrically connected to the n-type semiconductor layer 10 and the p-side electrode 40 electrically connected to the p-type semiconductor layer 20. It may be distributed in the market in a non-formed form, for example, in a form in which the upper surface of the semiconductor laminate 110 is constituted by the upper surface of the p-type semiconductor layer 20.

なお、半導体積層物110は、第1実施形態または第2実施形態の半導体装置100以外の構成を有する半導体装置を作製するために用いてもよい。   The semiconductor laminate 110 may be used to manufacture a semiconductor device having a configuration other than the semiconductor device 100 of the first embodiment or the second embodiment.

以上説明したように、上述の実施形態によれば、GaN系半導体を用いたダイオードを、p型不純物濃度が1×1020cm−3以上の濃度であるp型半導体層を用いたpn接合により、形成することができる。このため、p型不純物濃度が1×1020cm−3未満(例えば1018cm−3程度)のp型GaN系半導体層が不要となる。これにより、p型半導体層の構成を単純にすることができ、p型半導体層の製造工程を簡素化できる。また、p型半導体層を薄くすることでき、p型半導体層に起因する順方向動作時の抵抗を低減させることが可能となり、消費電力の低減が図られる。 As described above, according to the above-described embodiment, the diode using the GaN-based semiconductor is formed by the pn junction using the p-type semiconductor layer having the p-type impurity concentration of 1 × 10 20 cm −3 or more. Can be formed. Therefore, the p-type GaN-based semiconductor layer having a p-type impurity concentration of less than 1 × 10 20 cm −3 (for example, about 10 18 cm −3 ) is unnecessary. Thereby, the structure of the p-type semiconductor layer can be simplified, and the manufacturing process of the p-type semiconductor layer can be simplified. Further, the p-type semiconductor layer can be thinned, and the resistance due to the p-type semiconductor layer at the time of forward operation can be reduced, and power consumption can be reduced.

以上、実施形態に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described above according to the embodiments, the present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

以下、本発明の好ましい形態について付記する。   Hereinafter, a preferable mode of the present invention will be additionally described.

(付記1)
窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、
前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度(1×1020cm−3超の濃度)で添加された窒化ガリウム系半導体で形成され、p型の導電型を有する第2半導体層と、
前記第1半導体層と接触するように配置された第1電極と、
前記第2半導体層と接触するように配置された第2電極と、
を有し、pn接合ダイオードとして機能する半導体装置。
(Appendix 1)
A first semiconductor layer formed of a gallium nitride based semiconductor and having an n-type conductivity;
It is formed of a gallium nitride-based semiconductor laminated directly on the first semiconductor layer and to which p-type impurities are added at a concentration of 1 × 10 20 cm −3 or more (concentration of more than 1 × 10 20 cm −3 ), p A second semiconductor layer having a conductivity type of
A first electrode arranged in contact with the first semiconductor layer;
A second electrode arranged in contact with the second semiconductor layer;
And a semiconductor device which functions as a pn junction diode.

(付記2)
前記第2半導体層に添加された前記p型不純物の濃度は、より好ましくは2×1020cm−3超の濃度である付記1に記載の半導体装置。
(Appendix 2)
The semiconductor device according to appendix 1, wherein the concentration of the p-type impurity added to the second semiconductor layer is more preferably more than 2 × 10 20 cm −3 .

(付記3)
前記第2半導体層に添加された前記p型不純物の濃度は、好ましくは1×1021cm−3未満の濃度であり、より好ましくは6×1020cm−3以下の濃度であり、さらに
好ましくは3×1020cm−3以下の濃度である付記1または2に記載の半導体装置。
(Appendix 3)
The concentration of the p-type impurity added to the second semiconductor layer is preferably less than 1 × 10 21 cm −3 , more preferably 6 × 10 20 cm −3 or less, and further preferably. Is the semiconductor device according to appendix 1 or 2, which has a concentration of 3 × 10 20 cm −3 or less.

(付記4)
前記第2半導体層の厚さは、好ましくは100nm未満の厚さであり、より好ましくは30nm以下の厚さである付記1〜3のいずれか1つに記載の半導体装置。
(Appendix 4)
The semiconductor device according to any one of appendices 1 to 3, wherein the thickness of the second semiconductor layer is preferably less than 100 nm, more preferably 30 nm or less.

(付記5)
前記第2半導体層の厚さは、好ましくは2nm以上の厚さであり、より好ましくは10nm以上の厚さである付記1〜4のいずれか1つに記載の半導体装置。
(Appendix 5)
The semiconductor device according to any one of appendices 1 to 4, wherein the thickness of the second semiconductor layer is preferably 2 nm or more, and more preferably 10 nm or more.

(付記6)
前記第1半導体層にn型不純物が添加されており、
前記第1半導体層の、前記第2半導体層とpn接合を形成する部分に添加された前記n型不純物の濃度に対する、前記第2半導体層に添加された前記p型不純物の濃度の比率は、10000倍以上である付記1〜5のいずれか1つに記載の半導体装置。
(Appendix 6)
N-type impurities are added to the first semiconductor layer,
The ratio of the concentration of the p-type impurity added to the second semiconductor layer to the concentration of the n-type impurity added to a portion of the first semiconductor layer that forms a pn junction with the second semiconductor layer is 6. The semiconductor device according to any one of appendices 1 to 5, which is 10,000 times or more.

(付記7)
前記第2半導体層における正孔濃度は、1×1016cm−3以上の濃度である付記1〜6のいずれか1つに記載の半導体装置。
(Appendix 7)
7. The semiconductor device according to any one of appendices 1 to 6, wherein the second semiconductor layer has a hole concentration of 1 × 10 16 cm −3 or more.

(付記8)
逆方向電圧の印加時に400V以上の耐圧を示す付記1〜7のいずれか1つに記載の半導体装置。
(Appendix 8)
8. The semiconductor device according to any one of appendices 1 to 7, which exhibits a breakdown voltage of 400 V or more when a reverse voltage is applied.

(付記9)
前記第1半導体層の上面よりも、前記第2半導体層の上面の方が、高い位置に配置されている(前記第1半導体層の上面と前記第2半導体層の上面との高さが異なっている)付記1〜8のいずれか1つに記載の半導体装置。
(Appendix 9)
The upper surface of the second semiconductor layer is arranged at a higher position than the upper surface of the first semiconductor layer (the upper surface of the first semiconductor layer and the upper surface of the second semiconductor layer have different heights. The semiconductor device according to any one of appendices 1 to 8.

(付記10)
前記第2電極は、前記第2半導体層とは接触し、前記第1半導体層とは接触しないように配置されている付記1〜9のいずれか1つに記載の半導体装置。
(Appendix 10)
10. The semiconductor device according to any one of appendices 1 to 9, wherein the second electrode is arranged so as to be in contact with the second semiconductor layer and not to be in contact with the first semiconductor layer.

(付記11)
前記第2電極は、前記第2半導体層と接触するとともに、前記第1半導体層と接触するように配置されており、
pn接合ダイオードとして機能するとともにショットキーバリアダイオードとして機能するジャンクションバリアショットキーダイオードである付記1〜9のいずれか1つに記載の半導体装置。
(Appendix 11)
The second electrode is arranged to be in contact with the second semiconductor layer and to be in contact with the first semiconductor layer,
10. The semiconductor device according to any one of appendices 1 to 9, which is a junction barrier Schottky diode that functions as a pn junction diode and a Schottky barrier diode.

(付記12)
平面視上、前記第2電極が前記第2半導体層に接触する面積と前記第2電極が前記第1半導体層に接触する面積との和に対する、前記第2電極が前記第2半導体層に接触する面積の比率は、20%以上である付記11に記載の半導体装置。
(Appendix 12)
The second electrode contacts the second semiconductor layer with respect to the sum of the area where the second electrode contacts the second semiconductor layer and the area where the second electrode contacts the first semiconductor layer in plan view. 12. The semiconductor device according to Appendix 11, wherein the ratio of the area to be formed is 20% or more.

(付記13)
平面視上、前記第2電極が前記第2半導体層に接触する面積と前記第2電極が前記第1半導体層に接触する面積との和に対する、前記第2電極が前記第2半導体層に接触する面積の比率は、80%以下である付記11または12に記載の半導体装置。
(Appendix 13)
The second electrode contacts the second semiconductor layer with respect to the sum of the area where the second electrode contacts the second semiconductor layer and the area where the second electrode contacts the first semiconductor layer in plan view. 13. The semiconductor device according to supplementary note 11 or 12, wherein a ratio of an area to be formed is 80% or less.

(付記14)
前記第1半導体層の上面における前記第2半導体層に覆われている部分の欠陥密度に対する、前記第1半導体層の上面における前記第2電極と接触している部分の欠陥密度の増加分は、10%以下である付記11〜13のいずれか1つに記載の半導体装置。
(Appendix 14)
An increase in the defect density of a portion of the upper surface of the first semiconductor layer in contact with the second electrode with respect to the defect density of a portion of the upper surface of the first semiconductor layer covered by the second semiconductor layer is: The semiconductor device according to any one of appendices 11 to 13, which is 10% or less.

(付記15)
前記第2電極が接触する前記第2半導体層の上面よりも、前記第2電極が接触する前記第1半導体層の上面の方が、低い位置に配置されている(前記第2電極が接触する前記第2半導体層の上面と前記第2電極が接触する前記第1半導体層の上面との高さが異なっている)付記11〜14のいずれか1つに記載の半導体装置。
(Appendix 15)
The upper surface of the first semiconductor layer with which the second electrode contacts is arranged at a lower position than the upper surface of the second semiconductor layer with which the second electrode contacts (the second electrode contacts). The upper surface of the second semiconductor layer and the upper surface of the first semiconductor layer in contact with the second electrode are different in height) The semiconductor device according to any one of appendices 11 to 14.

(付記16)
窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度(1×1020cm−3超の濃度)で添加された窒化ガリウム系半導体で形成され、p型の導電型を有する第2半導体層と、を有する半導体積層物を準備する工程と、
前記第1半導体層と接触するように配置された第1電極を形成する工程と、
前記第2半導体層と接触するように配置された第2電極を形成する工程と、
を有し、pn接合ダイオードとして機能する半導体装置を製造する、半導体装置の製造方法。
(Appendix 16)
A first semiconductor layer formed of a gallium nitride-based semiconductor and having an n-type conductivity, and a p-type impurity that is stacked immediately above the first semiconductor layer and has a concentration of 1 × 10 20 cm −3 or more (1 × 10 2 A concentration of more than 20 cm −3 ) and a second semiconductor layer formed of a gallium nitride-based semiconductor and having a p-type conductivity type, and a step of preparing a semiconductor laminate including:
Forming a first electrode arranged in contact with the first semiconductor layer;
Forming a second electrode disposed in contact with the second semiconductor layer;
A method of manufacturing a semiconductor device, comprising: manufacturing a semiconductor device having:

(付記17)
前記第2半導体層を部分的にウェットエッチングにより全厚さ除去して、前記第1半導体層を露出させる工程をさらに有し、
前記第2電極を形成する工程は、前記第2半導体層上から前記ウェットエッチングで露出した前記第1半導体層上に延在する形状となるように前記第2電極を形成することで、前記第2半導体層と接触するとともに前記第1半導体層と接触するように配置された前記第2電極を形成し、
pn接合ダイオードとして機能するとともにショットキーバリアダイオードとして機能するジャンクションバリアショットキーダイオードを製造する、付記16に記載の半導体装置の製造方法。
(Appendix 17)
The method further includes a step of partially removing the second semiconductor layer by wet etching so as to expose the first semiconductor layer.
In the step of forming the second electrode, the second electrode is formed so as to have a shape extending from above the second semiconductor layer onto the first semiconductor layer exposed by the wet etching. Forming the second electrode arranged to be in contact with the second semiconductor layer and to be in contact with the first semiconductor layer,
17. The method for manufacturing a semiconductor device according to appendix 16, wherein a junction barrier Schottky diode that functions as a pn junction diode and a Schottky barrier diode is manufactured.

(付記18)
前記ウェットエッチングとして陽極酸化が用いられる付記17に記載の半導体装置の製造方法。
(Appendix 18)
18. The method for manufacturing a semiconductor device according to appendix 17, wherein anodization is used as the wet etching.

(付記19)
窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、
前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度(1×1020cm−3超の濃度)で添加された窒化ガリウム系半導体で形成され、p型の導電型を有する第2半導体層と、
を有し、pn接合ダイオードとして機能させることができる半導体積層物。
(Appendix 19)
A first semiconductor layer formed of a gallium nitride based semiconductor and having an n-type conductivity;
It is formed of a gallium nitride-based semiconductor laminated directly on the first semiconductor layer and to which p-type impurities are added at a concentration of 1 × 10 20 cm −3 or more (concentration of more than 1 × 10 20 cm −3 ), p A second semiconductor layer having a conductivity type of
And a semiconductor stack which can function as a pn junction diode.

(付記20)
前記第2半導体層の上面は、電極の接触領域として用意されている付記19に記載の半導体積層物。
(Appendix 20)
20. The semiconductor laminate according to appendix 19, wherein the upper surface of the second semiconductor layer is prepared as a contact region of an electrode.

(付記21)
前記半導体積層物の上面を前記第2半導体層の上面が構成する態様で、市場に流通される付記19または20に記載の半導体積層物。
(Appendix 21)
21. The semiconductor laminate according to appendix 19 or 20, which is put on the market, in such a manner that an upper face of the semiconductor laminate constitutes an upper face of the second semiconductor layer.

10 n型半導体層
11、12、13 n型GaN層
20 p型半導体層
21 p型GaN層
30 n側電極
40 p側電極
41 p側下部電極
42 p側上部電極
50 保護膜
100 半導体装置
110 半導体積層物
121 円環部
10 n-type semiconductor layers 11, 12, 13 n-type GaN layer 20 p-type semiconductor layer 21 p-type GaN layer 30 n-side electrode 40 p-side electrode 41 p-side lower electrode 42 p-side upper electrode 50 protective film 100 semiconductor device 110 semiconductor Laminate 121 Ring part

Claims (12)

窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、
前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度で添加された窒化ガリウム系半導体で形成され、p型の導電型を有し、100nm未満の厚さである第2半導体層と、
前記第1半導体層と接触するように配置された第1電極と、
前記第2半導体層と接触するように配置された第2電極と、
を有し、pn接合ダイオードとして機能する半導体装置。
A first semiconductor layer formed of a gallium nitride based semiconductor and having an n-type conductivity;
Stacked directly on the first semiconductor layer, p-type impurities is formed in less than 1 × 10 20 cm -3 concentration added gallium nitride-based semiconductor, the have a p-type conductivity, lower than 100nm thick A second semiconductor layer, which is
A first electrode arranged in contact with the first semiconductor layer;
A second electrode arranged in contact with the second semiconductor layer;
And a semiconductor device which functions as a pn junction diode.
前記第2半導体層における正孔濃度は、1×1016cm−3以上の濃度である請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the hole concentration in the second semiconductor layer is 1 × 10 16 cm −3 or more. 逆方向電圧の印加時に400V以上の耐圧を示す請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1 or 2 shows a more pressure-resistant 400V during application of a reverse voltage. 前記第2電極は、前記第2半導体層とは接触し、前記第1半導体層とは接触しないように配置されている請求項1〜のいずれか1項に記載の半導体装置。 The second electrode, wherein the second semiconductor layer in contact, the semiconductor device according to any one of claims 1 to 3, wherein the first semiconductor layer is disposed so as not to contact. 前記第2電極は、前記第2半導体層と接触するとともに、前記第1半導体層と接触するように配置されており、
pn接合ダイオードとして機能するとともにショットキーバリアダイオードとして機能するジャンクションバリアショットキーダイオードである請求項1〜のいずれか1項に記載の半導体装置。
The second electrode is arranged to be in contact with the second semiconductor layer and to be in contact with the first semiconductor layer,
The semiconductor device according to any one of claims 1 to 3 which is a junction barrier Schottky diode that functions as a Schottky barrier diode functions as a pn junction diode.
平面視上、前記第2電極が前記第2半導体層に接触する面積と前記第2電極が前記第1半導体層に接触する面積との和に対する、前記第2電極が前記第2半導体層に接触する面積の比率は、20%以上である請求項に記載の半導体装置。 The second electrode contacts the second semiconductor layer with respect to the sum of the area where the second electrode contacts the second semiconductor layer and the area where the second electrode contacts the first semiconductor layer in plan view. The semiconductor device according to claim 5 , wherein the ratio of the area to be formed is 20% or more. 窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度で添加された窒化ガリウム系半導体で形成され、p型の導電型を有し、100nm未満の厚さである第2半導体層と、を有する半導体積層物を準備する工程と、
前記第1半導体層と接触するように配置された第1電極を形成する工程と、
前記第2半導体層と接触するように配置された第2電極を形成する工程と、
を有し、pn接合ダイオードとして機能する半導体装置を製造する、半導体装置の製造方法。
A first semiconductor layer made of a gallium nitride-based semiconductor and having an n-type conductivity, and a p-type impurity added at a concentration of 1 × 10 20 cm −3 or more, which is stacked immediately above the first semiconductor layer. is formed in the gallium nitride-based semiconductor, a step of have a p-type conductivity, a semiconductor laminate having a second semiconductor layer has a thickness of less than 100 nm, and
Forming a first electrode arranged in contact with the first semiconductor layer;
Forming a second electrode disposed in contact with the second semiconductor layer;
A method of manufacturing a semiconductor device, comprising: manufacturing a semiconductor device having:
前記第2半導体層を部分的にウェットエッチングにより全厚さ除去して、前記第1半導体層を露出させる工程をさらに有し、
前記第2電極を形成する工程は、前記第2半導体層上から前記ウェットエッチングで露出した前記第1半導体層上に延在する形状となるように前記第2電極を形成することで、前記第2半導体層と接触するとともに前記第1半導体層と接触するように配置された前記第2電極を形成し、pn接合ダイオードとして機能するとともにショットキーバリアダイオードとして機能するジャンクションバリアショットキーダイオードを製造する、請求項に記載の半導体装置の製造方法。
The method further includes a step of partially removing the second semiconductor layer by wet etching so as to expose the first semiconductor layer.
In the step of forming the second electrode, the second electrode is formed so as to have a shape extending from above the second semiconductor layer onto the first semiconductor layer exposed by the wet etching. A junction barrier Schottky diode which functions as a pn junction diode and a Schottky barrier diode is formed by forming the second electrode arranged so as to be in contact with the second semiconductor layer and in contact with the first semiconductor layer. A method of manufacturing a semiconductor device according to claim 7 .
前記ウェットエッチングとして陽極酸化が用いられる請求項に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 8 , wherein anodization is used as the wet etching. 窒化ガリウム系半導体で形成され、n型の導電型を有する第1半導体層と、
前記第1半導体層の直上に積層され、p型不純物が1×1020cm−3以上の濃度で添加された窒化ガリウム系半導体で形成され、p型の導電型を有し、100nm未満の厚さである第2半導体層と、
を有し、pn接合ダイオードとして機能させることができる半導体積層物。
A first semiconductor layer formed of a gallium nitride based semiconductor and having an n-type conductivity;
Stacked directly on the first semiconductor layer, p-type impurities is formed in less than 1 × 10 20 cm -3 concentration added gallium nitride-based semiconductor, the have a p-type conductivity, lower than 100nm thick A second semiconductor layer, which is
And a semiconductor stack which can function as a pn junction diode.
前記第2半導体層の上面は、電極の接触領域として用意されている請求項10に記載の半導体積層物。 The semiconductor laminate according to claim 10 , wherein the upper surface of the second semiconductor layer is prepared as a contact region of an electrode. 前記半導体積層物の上面を前記第2半導体層の上面が構成する請求項10または11に記載の半導体積層物。 The semiconductor multilayer structure according to Motomeko 10 or 11 a top that make up the upper surface of the second semiconductor layer of the semiconductor multilayer structure.
JP2016166155A 2016-08-26 2016-08-26 Semiconductor device, method of manufacturing the same, and semiconductor laminate Active JP6683972B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016166155A JP6683972B2 (en) 2016-08-26 2016-08-26 Semiconductor device, method of manufacturing the same, and semiconductor laminate
EP17843193.8A EP3506369B1 (en) 2016-08-26 2017-06-27 Semiconductor device and method for manufacturing same
CN201780052279.XA CN109844958B (en) 2016-08-26 2017-06-27 Semiconductor device and method for manufacturing the same
PCT/JP2017/023554 WO2018037705A1 (en) 2016-08-26 2017-06-27 Semiconductor device and method for manufacturing same
US16/327,969 US10797181B2 (en) 2016-08-26 2017-06-27 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166155A JP6683972B2 (en) 2016-08-26 2016-08-26 Semiconductor device, method of manufacturing the same, and semiconductor laminate

Publications (2)

Publication Number Publication Date
JP2018032828A JP2018032828A (en) 2018-03-01
JP6683972B2 true JP6683972B2 (en) 2020-04-22

Family

ID=61245610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166155A Active JP6683972B2 (en) 2016-08-26 2016-08-26 Semiconductor device, method of manufacturing the same, and semiconductor laminate

Country Status (5)

Country Link
US (1) US10797181B2 (en)
EP (1) EP3506369B1 (en)
JP (1) JP6683972B2 (en)
CN (1) CN109844958B (en)
WO (1) WO2018037705A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424950A (en) * 2018-07-12 2021-02-26 株式会社Flosfia Semiconductor device with a plurality of semiconductor chips
JP2020021767A (en) * 2018-07-30 2020-02-06 トヨタ自動車株式会社 diode
JP7279587B2 (en) 2018-09-25 2023-05-23 豊田合成株式会社 Semiconductor device manufacturing method
CN114730739B (en) * 2019-12-05 2023-06-06 苏州晶湛半导体有限公司 Semiconductor structure and manufacturing method thereof
CN112186033A (en) * 2020-10-22 2021-01-05 西安电子科技大学 Gallium nitride junction barrier Schottky diode with slant field plate and manufacturing method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982260A (en) * 1989-10-02 1991-01-01 General Electric Company Power rectifier with trenches
JP3495544B2 (en) * 1997-02-17 2004-02-09 古河電気工業株式会社 GaN-based semiconductor device and manufacturing method thereof
JP4857484B2 (en) * 2001-04-20 2012-01-18 富士電機株式会社 Semiconductor device and manufacturing method thereof
US20070096239A1 (en) * 2005-10-31 2007-05-03 General Electric Company Semiconductor devices and methods of manufacture
JP4986472B2 (en) * 2006-02-13 2012-07-25 日本電信電話株式会社 Nitride semiconductor structure
JP2009081269A (en) 2007-09-26 2009-04-16 Nippon Telegr & Teleph Corp <Ntt> Vertical nitride semiconductor device and manufacturing method thereof
JP5218117B2 (en) * 2008-03-18 2013-06-26 三菱電機株式会社 Nitride semiconductor multilayer structure, optical semiconductor device, and manufacturing method thereof
JP5056658B2 (en) * 2008-08-04 2012-10-24 住友電気工業株式会社 Guard ring structure, method for forming the same, and semiconductor device
CN102630349B (en) * 2009-09-18 2017-06-13 天空公司 Method power led and using current density operation
US8822311B2 (en) * 2011-12-22 2014-09-02 Avogy, Inc. Method of fabricating a GaN P-i-N diode using implantation
US8927999B2 (en) 2011-11-21 2015-01-06 Avogy, Inc. Edge termination by ion implantation in GaN
JP5820710B2 (en) * 2011-12-02 2015-11-24 新電元工業株式会社 Semiconductor device
JP2013149914A (en) * 2012-01-23 2013-08-01 Mitsubishi Electric Corp Photoelectrochemical device and manufacturing method for semiconductor device
JP6107430B2 (en) * 2012-06-08 2017-04-05 豊田合成株式会社 Semiconductor device
CN102969423A (en) * 2012-12-10 2013-03-13 党随虎 Silver coupling reinforced GaN-based light emitting diode structure and preparation method thereof
FR3010575B1 (en) * 2013-09-09 2015-10-02 Commissariat Energie Atomique LOCALIZED PHOTONIC CRYSTAL LIGHT EMITTING DIODE
JP6175009B2 (en) 2014-02-06 2017-08-02 住友化学株式会社 High breakdown voltage gallium nitride semiconductor device and manufacturing method thereof
JP2016025264A (en) * 2014-07-23 2016-02-08 住友電気工業株式会社 Semiconductor device
JP2016143780A (en) * 2015-02-03 2016-08-08 日本電信電話株式会社 Element structure for evaluation and evaluation method
JP6715780B2 (en) * 2015-02-04 2020-07-01 住友化学株式会社 Method for manufacturing niobate-based ferroelectric thin film element
CN105321994B (en) * 2015-11-06 2018-08-17 江苏能华微电子科技发展有限公司 A kind of gallium nitride diode and preparation method thereof
DE112017001490B4 (en) * 2016-03-23 2023-04-06 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
CN109844958B (en) 2022-07-08
US20190189808A1 (en) 2019-06-20
EP3506369A1 (en) 2019-07-03
JP2018032828A (en) 2018-03-01
CN109844958A (en) 2019-06-04
WO2018037705A1 (en) 2018-03-01
US10797181B2 (en) 2020-10-06
EP3506369B1 (en) 2022-08-10
EP3506369A4 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6683972B2 (en) Semiconductor device, method of manufacturing the same, and semiconductor laminate
US8354663B2 (en) Micro-pixel ultraviolet light emitting diode
CN110313071B (en) Semiconductor device with a plurality of semiconductor chips
US8896027B2 (en) Nitride semiconductor diode
KR101537330B1 (en) Method of manufacturing nitride semiconductor light emitting device
US20130256650A1 (en) Semiconductor device and fabrication method thereof
JP5817833B2 (en) Semiconductor device, manufacturing method thereof, and power supply device
US20170033098A1 (en) GaN-BASED SCHOTTKY DIODE RECTIFIER
CN113725296B (en) Nitride semiconductor epitaxial lamination structure and power element thereof
TW200410466A (en) GaN semiconductor device
JPWO2012137781A1 (en) Semiconductor laminate, method for manufacturing the same, and semiconductor element
KR20140086184A (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP2010199597A (en) Method of manufacturing compound semiconductor device
KR20120115775A (en) Light emitting diode and method for fabricating the same
US20120138986A1 (en) Method for fabrication of (al,in,ga) nitride based vertical light emitting diodes with enhanced current spreading of n-type electrode
KR101008268B1 (en) Vertical Light Emitting Diode and manufacturing method of the same
KR101018280B1 (en) Vertical Light Emitting Diode and manufacturing method of the same
JP2012064663A (en) Nitride semiconductor device and method of manufacturing the same
JP2009004566A (en) Semiconductor device and method of manufacturing semiconductor device
JP2012084617A (en) Semiconductor device and method of manufacturing the same
JP5098482B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
TW201709511A (en) Semiconductor cell
JP2015119028A (en) Semiconductor device, field effect transistor and diode
US20140027770A1 (en) Semiconductor laminate and process for production thereof, and semiconductor element
JP5904033B2 (en) Group III nitride compound semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6683972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250