JP6682190B2 - Insulator with metal coating, semiconductor device, and method for manufacturing insulator with metal coating - Google Patents

Insulator with metal coating, semiconductor device, and method for manufacturing insulator with metal coating Download PDF

Info

Publication number
JP6682190B2
JP6682190B2 JP2015084967A JP2015084967A JP6682190B2 JP 6682190 B2 JP6682190 B2 JP 6682190B2 JP 2015084967 A JP2015084967 A JP 2015084967A JP 2015084967 A JP2015084967 A JP 2015084967A JP 6682190 B2 JP6682190 B2 JP 6682190B2
Authority
JP
Japan
Prior art keywords
insulator
metal coating
metal
film
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015084967A
Other languages
Japanese (ja)
Other versions
JP2016203426A (en
Inventor
聡子 高橋
聡子 高橋
吉田 真樹
真樹 吉田
木村 秀樹
秀樹 木村
篤 小菅
篤 小菅
陽介 飯森
陽介 飯森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2015084967A priority Critical patent/JP6682190B2/en
Publication of JP2016203426A publication Critical patent/JP2016203426A/en
Application granted granted Critical
Publication of JP6682190B2 publication Critical patent/JP6682190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、金属被膜付絶縁体、この金属被膜付絶縁体を有する半導体装置、および金属被膜付絶縁体の製造方法に関する。   The present invention relates to an insulator with a metal coating, a semiconductor device having the insulator with a metal coating, and a method for manufacturing an insulator with a metal coating.

近年、半導体分野において、伝送信号の高周波化が進んでいる。この伝送信号の高周波化に対応可能な、高周波領域で優れた誘電特性(低誘電率(ε)、低誘電正接(tanδ))を有する材料として、シクロオレフィンポリマーが知られている。   In recent years, the frequency of transmission signals has been increasing in the semiconductor field. A cycloolefin polymer is known as a material having excellent dielectric properties (low dielectric constant (ε) and low dielectric loss tangent (tan δ)) in a high frequency region that can cope with the high frequency of the transmission signal.

このシクロオレフィンポリマーに対して、密着性が良好な導電膜を形成する技術として、表面改質したシクロオレフィンポリマー材表面に金属薄膜を形成した、金属皮膜付シクロオレフィンポリマー材が開示されている(特許文献1)。このシクロオレフィンポリマー材表面になされる表面改質方法は、シクロオレフィンポリマー材の表面を脱脂する工程、シクロオレフィンポリマー材に有酸素雰囲気下で紫外線を照射する工程、得られたシクロオレフィンポリマー材を水洗する工程を含む。   As a technique for forming a conductive film having good adhesion to the cycloolefin polymer, a cycloolefin polymer material with a metal film in which a metal thin film is formed on the surface of the surface-modified cycloolefin polymer material is disclosed ( Patent Document 1). The surface modification method applied to the surface of the cycloolefin polymer material includes a step of degreasing the surface of the cycloolefin polymer material, a step of irradiating the cycloolefin polymer material with ultraviolet rays in an aerobic atmosphere, and the resulting cycloolefin polymer material. Including a step of washing with water.

しかしながら、シクロオレフィンポリマーは、一般的に、ガラス転移温度(以下、Tgという)が120℃程度であるため、高耐熱性が求められる用途の市場要求には応えることができない、という問題がある。また、銅めっきの接着強度が十分ではない、という問題もある。   However, since the cycloolefin polymer generally has a glass transition temperature (hereinafter, referred to as Tg) of about 120 ° C., there is a problem that it cannot meet the market demand for applications requiring high heat resistance. There is also a problem that the adhesive strength of copper plating is not sufficient.

特開2009−94923号公報JP, 2009-94923, A

本発明は、上記課題を解決すること、すなわち、高周波特性に優れ、耐熱性にも優れ、絶縁体と金属被膜の接着強度が高い金属被膜付絶縁体を提供することを目的とする。   It is an object of the present invention to solve the above problems, that is, to provide an insulator with a metal coating, which has excellent high-frequency characteristics, excellent heat resistance, and high adhesive strength between the insulator and the metal coating.

本発明は、以下の構成を有することによって上記問題を解決した金属被膜付絶縁体、半導体装置、および金属被膜付絶縁体の製造方法に関する。
〔1〕(A)樹脂と、(B)分子中の主鎖の不飽和二重結合が水添されたスチレン系ブロックコポリマーとを含む樹脂組成物であり、かつガラス転移温度(Tg)が、150℃以上である絶縁体、および絶縁体の少なくとも一面に金属被膜を有することを特徴とする、金属被膜付絶縁体。
〔2〕絶縁体のガラス転移温度(Tg)が、180℃以上である、上記〔1〕記載の金属被膜付絶縁体。
〔3〕絶縁体の弾性率が、100MPa〜2GPaである、上記〔1〕または〔2〕記載の金属被膜付絶縁体。
〔4〕絶縁体と金属被膜との界面における、絶縁体の表面粗さ(Rzjis)が、1μm以下である上記〔1〕〜〔3〕のいずれか記載の金属被膜付絶縁体。
〔5〕上記〔1〕〜〔4〕のいずれか記載の金属被膜付絶縁体を有する、半導体装置。
〔6〕(I)(A)樹脂と、(B)分子中の主鎖の不飽和二重結合が水添されたスチレン系ブロックコポリマーとを含む樹脂組成物であり、かつガラス転移温度(Tg)が150℃以上の絶縁体を形成する工程、
(II)形成した絶縁体上に、無電解めっきと、電解めっきを、この順に行い、金属被膜を形成する工程、
をこの順に有することを特徴とする、金属被膜付絶縁体の製造方法。
The present invention relates to an insulator with a metal coating, a semiconductor device, and a method for manufacturing an insulator with a metal coating, which solve the above problems by having the following configurations.
[1] A resin composition comprising (A) a resin and (B) a styrenic block copolymer in which an unsaturated double bond of a main chain in a molecule is hydrogenated, and having a glass transition temperature (Tg) of An insulator with a metal coating, comprising an insulator having a temperature of 150 ° C. or higher and a metal coating on at least one surface of the insulator.
[2] The insulator with a metal coating according to the above [1], wherein the insulator has a glass transition temperature (Tg) of 180 ° C. or higher.
[3] The insulator with a metal coating according to the above [1] or [2], wherein the insulator has an elastic modulus of 100 MPa to 2 GPa.
[4] The insulator with a metal coating according to any one of the above [1] to [3], wherein the surface roughness (Rzjis) of the insulator at the interface between the insulator and the metal coating is 1 μm or less.
[5] A semiconductor device having the insulator with a metal coating according to any one of [1] to [4] above.
[6] A resin composition comprising (I) (A) resin and (B) a styrene block copolymer in which an unsaturated double bond of the main chain in the molecule is hydrogenated, and having a glass transition temperature (Tg ) Forms an insulator having a temperature of 150 ° C. or higher,
(II) A step of performing electroless plating and electrolytic plating in this order on the formed insulator to form a metal film,
Are provided in this order, and a method for producing an insulator with a metal coating.

本発明〔1〕によれば、高周波特性に優れ、耐熱性にも優れ、絶縁体と金属被膜の接着強度が高い金属被膜付絶縁体を提供することができる。   According to the present invention [1], it is possible to provide an insulator with a metal coating, which has excellent high-frequency characteristics, excellent heat resistance, and high adhesive strength between the insulator and the metal coating.

本発明〔5〕によれば、高周波特性に優れ、耐熱性にも優れ、絶縁体と金属被膜の接着強度が高い金属被膜付絶縁体により、高信頼性の半導体装置を提供することができる。   According to the present invention [5], a highly reliable semiconductor device can be provided by an insulator with a metal coating, which has excellent high-frequency characteristics, excellent heat resistance, and high adhesive strength between the insulator and the metal coating.

本発明〔6〕によれば、高周波特性に優れ、耐熱性にも優れ、絶縁体と金属被膜の接着強度が高い金属被膜付絶縁体を製造することができる。   According to the present invention [6], it is possible to produce an insulator with a metal coating, which has excellent high-frequency characteristics, excellent heat resistance, and high adhesive strength between the insulator and the metal coating.

本発明に係る金属被膜付絶縁体の伝送損失を示す図である。It is a figure which shows the transmission loss of the insulator with a metal film which concerns on this invention.

〔金属被膜付絶縁体〕
本発明の金属被膜付絶縁体(以下、金属被膜付絶縁体という)は、(A)樹脂と、(B)分子中の主鎖の不飽和二重結合が水添されたスチレン系ブロックコポリマーとを含む樹脂組成物であり、かつガラス転移温度(Tg)が、150℃以上である絶縁体、および絶縁体の少なくとも一面に金属被膜を有する。ここで、絶縁体は、絶縁体用組成物から形成される。
[Insulator with metal coating]
The insulator with a metal coating of the present invention (hereinafter referred to as the insulator with a metal coating) is a resin (A) and a styrene block copolymer in which an unsaturated double bond of a main chain in a molecule is hydrogenated. Which has a glass transition temperature (Tg) of 150 ° C. or higher, and a metal coating on at least one surface of the insulator. Here, the insulator is formed from the composition for insulator.

(A)成分である樹脂は、絶縁体に、高周波特性、耐熱性、接着性を付与する。ここで、高周波特性とは、10GHz以上の高周波領域での伝送損失を小さくする性質をいい、誘電率(ε)が4以下であり、かつ誘電正接(tanδ)が0.01以下であることをいう。(A)成分としては、熱硬化性樹脂が好ましく、末端にスチレン基を有する熱硬化性樹脂、エポキシ樹脂、イミド樹脂が、より好ましく、更に末端にスチレン基を有する熱硬化性樹脂が好ましい。   The resin as the component (A) imparts high frequency characteristics, heat resistance and adhesiveness to the insulator. Here, the high frequency characteristic refers to a property of reducing transmission loss in a high frequency region of 10 GHz or more, a dielectric constant (ε) of 4 or less, and a dielectric loss tangent (tan δ) of 0.01 or less. Say. The component (A) is preferably a thermosetting resin, more preferably a thermosetting resin having a styrene group at the terminal, an epoxy resin or an imide resin, and further preferably a thermosetting resin having a styrene group at the terminal.

末端にスチレン基を有する熱硬化性樹脂としては、下記の一般式(1):   As the thermosetting resin having a styrene group at the terminal, the following general formula (1):

(式中、
、R、R、R、R、R、Rは同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基であり、
−(O−X−O)−は構造式(2)で示され、ここで、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、
−(Y−O)−は構造式(3)で示される1種類の構造、又は構造式(3)で示される2種類以上の構造がランダムに配列したものであり、ここで、R16、R17は同一又は異なってもよく、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、R18、R19は同一又は異なってもよく、水素原子、ハロゲン原子又は炭素数6以下のアルキル基又はフェニル基であり、
Zは炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともあり、
a、bは少なくともいずれか一方が0でない、0〜300の整数を示し、
c、dは0又は1の整数を示す)で示される、ビニル基が結合したフェニル基を両末端に持つ熱硬化性ポリフェニレンエーテルのオリゴマー体(以下、変性PPEという)が好ましい。(A)成分として変性PPEを用いる場合には、高周波特性が優れていることに加えて、耐熱性が優れており、絶縁体の経時変化が生じにくく、この絶縁体を有する半導体装置の長期信頼性を維持できる。さらに、樹脂中の親水基の数が少ないため吸湿性や耐薬品性に優れる、という特徴がある。このため、150℃近くの温度がかかる用途であっても絶縁体が、金属被膜と剥離せず、信頼性の高い半導体装置となる。また、変性PPEは、絶縁性に優れており、絶縁体の厚さを薄くしても、半導体装置の信頼性を維持することができる。この変性PPEは、特開2004−59644号公報に記載されたとおりである。
(In the formula,
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group,
— (O—X—O) — is represented by Structural Formula (2), wherein R 8 , R 9 , R 10 , R 14 and R 15 may be the same or different and each is a halogen atom or a carbon number. An alkyl group having 6 or less or a phenyl group, R 11 , R 12 , and R 13 may be the same or different and each is a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group;
-(Y-O)-is one kind of structure represented by Structural Formula (3) or two or more kinds of structures represented by Structural Formula (3) are randomly arranged, wherein R 16 , R 17 may be the same or different and is a halogen atom or an alkyl group having 6 or less carbon atoms or a phenyl group, R 18 and R 19 may be the same or different, and is a hydrogen atom, a halogen atom or a C 6 or less. An alkyl group or a phenyl group,
Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom,
a and b show the integer of 0-300 in which at least one is not 0,
C and d each represent an integer of 0 or 1), and a thermosetting polyphenylene ether oligomer having a phenyl group to which a vinyl group is bonded at both ends (hereinafter referred to as modified PPE) is preferable. When the modified PPE is used as the component (A), in addition to excellent high-frequency characteristics, it also has excellent heat resistance, so that the insulator does not easily change over time, and the long-term reliability of a semiconductor device having this insulator is high. You can maintain sex. Further, since the number of hydrophilic groups in the resin is small, it is excellent in hygroscopicity and chemical resistance. For this reason, the insulator does not peel off from the metal coating even in applications where a temperature of about 150 ° C. is required, and the semiconductor device has high reliability. In addition, the modified PPE has excellent insulating properties and can maintain the reliability of the semiconductor device even when the thickness of the insulator is reduced. This modified PPE is as described in JP-A-2004-59644.

一般式(1)で示される変性PPEの−(O−X−O)−についての構造式(2)において、R、R、R10、R14、R15は、好ましくは、炭素数3以下のアルキル基であり、R11、R12、R13は、好ましくは、水素原子又は炭素数3以下のアルキル基である。具体的には、構造式(4)が挙げられる。 Formula (1) shown by the modified PPE - (O-X-O ) - structural formula for the (2), R 8, R 9, R 10, R 14, R 15 is preferably a carbon number It is an alkyl group having 3 or less, and R 11 , R 12 , and R 13 are preferably hydrogen atoms or alkyl groups having 3 or less carbon atoms. Specifically, structural formula (4) can be given.

−(Y−O)−についての構造式(3)において、R16、R17は、好ましくは、炭素数3以下のアルキル基であり、R18、R19は、好ましくは、水素原子又は炭素数3以下のアルキル基である。具体的には、構造式(5)又は(6)が挙げられる。 In Structural Formula (3) for — (YO) —, R 16 and R 17 are preferably alkyl groups having 3 or less carbon atoms, and R 18 and R 19 are preferably hydrogen atoms or carbon atoms. It is an alkyl group having a number of 3 or less. Specifically, structural formula (5) or (6) is mentioned.

Zは、炭素数3以下のアルキレン基が挙げられ、具体的には、メチレン基である。   Z is an alkylene group having 3 or less carbon atoms, and is specifically a methylene group.

a、bは少なくともいずれか一方が0でない、0〜300の整数を示し、好ましくは0〜30の整数を示す。   a and b show the integer of 0-300 in which at least one is not 0, Preferably the integer of 0-30 is shown.

末端にスチレン基を有する熱硬化性樹脂は、平均分子量分子量800〜3500であると好ましく、800〜3000である一般式(1)の変性PPEが、より好ましい。更に好ましくは、数平均分子量800〜2500である。数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。   The thermosetting resin having a styrene group at its terminal preferably has an average molecular weight of 800 to 3500, and more preferably 800 to 3000 of the modified PPE of the general formula (1). More preferably, the number average molecular weight is 800 to 2500. The number average molecular weight is a value using a calibration curve based on standard polystyrene by gel permeation chromatography (GPC).

エポキシ樹脂は、組成物の溶融粘度低下の観点から、液状エポキシ樹脂であると好ましい。エポキシ樹脂としては、アミノフェノール型エポキシ樹脂、液状ビスフェノールA型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、液状ナフタレン型エポキシ樹脂、液状水添ビスフェノール型エポキシ樹脂、液状脂環式エポキシ樹脂、液状アルコールエーテル型エポキシ樹脂、液状環状脂肪族型エポキシ樹脂、液状フルオレン型エポキシ樹脂、液状シロキサン系エポキシ樹脂等が挙げられ、絶縁体用組成物の流動性、柔軟性の観点から、液状ビスフェノールA型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、液状ナフタレン型エポキシ樹脂が、好ましい。なお、接着性、耐熱性、耐久性の観点からは固形エポキシ樹脂であると好ましい。   The epoxy resin is preferably a liquid epoxy resin from the viewpoint of reducing the melt viscosity of the composition. As the epoxy resin, aminophenol type epoxy resin, liquid bisphenol A type epoxy resin, liquid bisphenol F type epoxy resin, liquid naphthalene type epoxy resin, liquid hydrogenated bisphenol type epoxy resin, liquid alicyclic epoxy resin, liquid alcohol ether type Examples of the epoxy resin, liquid cycloaliphatic epoxy resin, liquid fluorene epoxy resin, liquid siloxane epoxy resin, and the like. From the viewpoint of fluidity and flexibility of the insulating composition, liquid bisphenol A epoxy resin, liquid Bisphenol F type epoxy resin and liquid naphthalene type epoxy resin are preferable. From the viewpoint of adhesiveness, heat resistance and durability, solid epoxy resin is preferable.

エポキシ樹脂のエポキシ当量は、粘度調整の観点から、80〜300g/eqが好ましい。エポキシ樹脂の市販品としては、ダイセル化学製ビスフェノールA型エポキシ樹脂(品名:LX−01)、三菱化学製アミノフェノール型エポキシ樹脂(グレード:JER630、JER630LSD)、三菱化学製液状エポキシ樹脂(グレード:828、828EL)、新日鐵化学製ビスフェノールA型エポキシ樹脂(品名:YDF8170)、新日鐵化学製ビスフェノールF型エポキシ樹脂(品名:YDF870GS)、DIC製ナフタレン型エポキシ樹脂(品名:HP4032D)、日本化薬製ビフェニル型エポキシ樹脂(品名:NC−3000−H)、信越化学製シロキサン系エポキシ樹脂(品名:TSL9906)等が挙げられる。   The epoxy equivalent of the epoxy resin is preferably 80 to 300 g / eq from the viewpoint of viscosity adjustment. Commercially available epoxy resins include bisphenol A type epoxy resin manufactured by Daicel Chemical (product name: LX-01), aminophenol type epoxy resin manufactured by Mitsubishi Chemical (grade: JER630, JER630LSD), liquid epoxy resin manufactured by Mitsubishi Chemical (grade: 828). , 828EL), bisphenol A type epoxy resin manufactured by Nippon Steel Chemical (product name: YDF8170), bisphenol F type epoxy resin manufactured by Nippon Steel Chemical (product name: YDF870GS), naphthalene type epoxy resin manufactured by DIC (product name: HP4032D), made into Japan A medicinal biphenyl type epoxy resin (product name: NC-3000-H), a Shin-Etsu Chemical siloxane-based epoxy resin (product name: TSL9906) and the like can be mentioned.

イミド樹脂としては、ポリイミド、マレイミド化合物が挙げられ、例えば、N−エチルマレイミド、N−シクロヘキシルマレイミド、N−イソプロピルマレイミド、N−メチルマレイミド、N−ブチルマレイミド、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン等である。   Examples of the imide resin include polyimide and maleimide compounds, and examples thereof include N-ethylmaleimide, N-cyclohexylmaleimide, N-isopropylmaleimide, N-methylmaleimide, N-butylmaleimide, 1,6-bismaleimide- (2, 2,4-trimethyl) hexane and the like.

イミド樹脂は、好ましくは、N−フェニルマレイミド骨格を含む化合物である。N−(o−ヒドロキシフェニル)マレイミド、N−(m−ヒドロキシフェニル)マレイミド、N−(p−ヒドロキシフェニル)マレイミド、N−(p−ニトロフェニル)マレイミド、N−フェニルマレイミド、N−(o−メチルフェニル)マレイミド、N−(m−メチルフェニル)マレイミド、N−(p−メチルフェニル)マレイミド、N−(o−メトキシフェニル)マレイミド、N−(m−メトキシフェニル)マレイミド、N−(p−メトキシフェニル)マレイミド、N−(o−クロロフェニル)マレイミド、N−(m−クロロフェニル)マレイミド、N−(p−クロロフェニル)マレイミド、N−(o−カルボキシフェニル)マレイミド、N−(p−カルボキシフェニル)マレイミド、4−メチル−1,3―フェニレンビスマレイミド、m−フェニレンビスマレイミド等である。   The imide resin is preferably a compound containing an N-phenylmaleimide skeleton. N- (o-hydroxyphenyl) maleimide, N- (m-hydroxyphenyl) maleimide, N- (p-hydroxyphenyl) maleimide, N- (p-nitrophenyl) maleimide, N-phenylmaleimide, N- (o- Methylphenyl) maleimide, N- (m-methylphenyl) maleimide, N- (p-methylphenyl) maleimide, N- (o-methoxyphenyl) maleimide, N- (m-methoxyphenyl) maleimide, N- (p- Methoxyphenyl) maleimide, N- (o-chlorophenyl) maleimide, N- (m-chlorophenyl) maleimide, N- (p-chlorophenyl) maleimide, N- (o-carboxyphenyl) maleimide, N- (p-carboxyphenyl) Maleimide, 4-methyl-1,3-phenylene bismaleimide, - it is a phenylene bismaleimide.

上記マレイミドフェニル化合物は、好ましくは、少なくとも2個のN−フェニルマレイミド骨格を含有する化合物である。例えば、4,4’−ビスマレイミドジフェニルメタン、4,4’−ビスマレイミドジフェニルエーテル、4,4’−ビスマレイミドジフェニルスルホン、1,3−ビス−(3−マレイミドフェノキシ)ベンゼン、1,3−ビス−(4−マレイミドフェノキシ)ベンゼン、ビス−(3−エチル−5−メチル−4−マレイミドフェニル)メタン、2,2’−ビス―[4−(4−マレイミドフェノキシ)フェニル]プロパン等である。   The maleimidophenyl compound is preferably a compound containing at least two N-phenylmaleimide skeletons. For example, 4,4′-bismaleimide diphenylmethane, 4,4′-bismaleimide diphenyl ether, 4,4′-bismaleimide diphenyl sulfone, 1,3-bis- (3-maleimidophenoxy) benzene, 1,3-bis- (4-maleimidophenoxy) benzene, bis- (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2'-bis- [4- (4-maleimidophenoxy) phenyl] propane and the like.

(A)成分は、単独でも2種以上を併用してもよい。   The component (A) may be used alone or in combination of two or more kinds.

(B)成分は、分子中の主鎖の不飽和二重結合が水添されたスチレン系ブロックコポリマーであり、この水添スチレン系ブロックコポリマーとしては、スチレン−エチレン/ブチレン−スチレンブロック共重合体(SEBS)や、スチレン−(エチレン−エチレン/プロピレン)−スチレンブロック共重合体(SEEPS)、スチレン−エチレン/プロピレン−スチレンブロック共重合体(SEPS)等が、挙げられ、SEBS、SEEPSが好ましい。SEBSやSEEPSは、(A)成分の選択肢であるポリフェニレンエーテル(PPE)、変性PPE等と相溶性がよく、耐熱性をもつ絶縁体を形成できるからである。さらに、スチレン系ブロックコポリマーは、絶縁体の低弾性化にも寄与するため、絶縁体に2GPa以下の低弾性が求められる用途に好適である。   The component (B) is a styrene block copolymer in which an unsaturated double bond of the main chain in the molecule is hydrogenated, and this hydrogenated styrene block copolymer is a styrene-ethylene / butylene-styrene block copolymer. (SEBS), styrene- (ethylene-ethylene / propylene) -styrene block copolymer (SEEPS), styrene-ethylene / propylene-styrene block copolymer (SEPS), etc. are mentioned, and SEBS and SEEPS are preferable. This is because SEBS and SEEPS have good compatibility with polyphenylene ether (PPE), modified PPE, etc., which are options of the component (A), and can form an insulator having heat resistance. Further, since the styrene block copolymer contributes to lowering the elasticity of the insulator, it is suitable for applications where the insulator is required to have low elasticity of 2 GPa or less.

(B)成分の重量平均分子量は、30,000〜200,000であるものが好ましく、80,000〜120,000であることがより好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。   The weight average molecular weight of the component (B) is preferably 30,000 to 200,000, and more preferably 80,000 to 120,000. The weight average molecular weight is a value using a calibration curve based on standard polystyrene by gel permeation chromatography (GPC).

(B)成分は、単独でも2種以上を併用してもよい。   The component (B) may be used alone or in combination of two or more kinds.

(A)成分は、絶縁体の高周波特性、耐熱性、耐薬品性の観点から、絶縁体100質量部に対して、15〜55質量部が好ましい。   The component (A) is preferably 15 to 55 parts by mass with respect to 100 parts by mass of the insulator, from the viewpoint of high frequency characteristics, heat resistance and chemical resistance of the insulator.

(B)成分は、絶縁体100質量部に対して、めっき密着性、絶縁体用組成物の成形性、低溶融粘度化の観点から、15〜80質量部が好ましい。   The component (B) is preferably 15 to 80 parts by mass with respect to 100 parts by mass of the insulator, from the viewpoints of plating adhesion, moldability of the insulating composition, and low melt viscosity.

絶縁体用組成物は、絶縁体の高周波特性、耐熱性、耐薬品性の観点から、ポリテトラフルオロエチレン(PTFE)粒子を含むと、好ましい。PTFE粒子の形状は、絶縁体中での分散性の観点から、球状であり、平均粒径が、5μm以下であると、好ましい。PTFE粒子は、絶縁体100質量部に対して、0〜65質量部が好ましい。   From the viewpoint of high frequency characteristics, heat resistance, and chemical resistance of the insulator, the insulator composition preferably contains polytetrafluoroethylene (PTFE) particles. The shape of the PTFE particles is preferably spherical and has an average particle diameter of 5 μm or less from the viewpoint of dispersibility in the insulator. The PTFE particles are preferably 0 to 65 parts by mass with respect to 100 parts by mass of the insulator.

なお、絶縁体用組成物は、本発明の効果を損なわない範囲で、PTFE以外のフィラー、シランカップリング剤等のカップリング剤、粘着性付与剤、消泡剤、流動調整剤、成膜補助剤、分散助剤等の添加剤を含むことができる。   In addition, the composition for insulators is a filler other than PTFE, a coupling agent such as a silane coupling agent, a tackifier, a defoaming agent, a flow control agent, and a film formation aid, as long as the effect of the present invention is not impaired. Additives such as agents and dispersion aids may be included.

以下、絶縁体の形成方法を説明する。絶縁体は、絶縁体用組成物から、所望の形状に形成される。   The method for forming the insulator will be described below. The insulator is formed into a desired shape from the insulator composition.

絶縁体用組成物は、樹脂組成物を構成する(A)、(B)成分等の原料を、有機溶剤に溶解又は分散等させることにより、作製することができる。これらの原料の溶解又は分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。   The composition for insulators can be prepared by dissolving or dispersing raw materials such as the components (A) and (B) constituting the resin composition in an organic solvent. The apparatus for dissolving or dispersing these raw materials is not particularly limited, but a Leika machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, a bead mill and the like can be used. . Further, these devices may be used in appropriate combination.

有機溶剤としては、芳香族系溶剤として、例えばトルエン、キシレン等、ケトン系溶剤として、例えばメチルエチルケトン、メチルイソブチルケトン等が挙げられる。有機溶剤は、単独でも、2種以上を組み合わせて用いてもよい。また、有機溶剤の使用量は、特に限定されないが、固形分が15〜50質量%となるように使用することが好ましい。作業性の点から、絶縁体用組成物は、200〜3000mPa・sの粘度の範囲であることが好ましい。粘度は、E型粘度計を用いて、回転数10rpm、25℃で測定した値とする。   Examples of the organic solvent include aromatic solvents such as toluene and xylene, and examples of ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone. The organic solvent may be used alone or in combination of two or more kinds. The amount of the organic solvent used is not particularly limited, but it is preferably used so that the solid content is 15 to 50% by mass. From the viewpoint of workability, the composition for insulators preferably has a viscosity in the range of 200 to 3000 mPa · s. The viscosity is a value measured using an E-type viscometer at a rotation speed of 10 rpm and 25 ° C.

上述のように、絶縁体は、絶縁体用組成物から、所望の形状に形成される。具体的には、絶縁体は、上述の絶縁体用組成物を、支持体の上に、塗布した後、乾燥する、または成形用型中に注ぐ等により、得ることができる。以下、絶縁体のフィルムを得るために、絶縁体用組成物を、支持体の上に、塗布した後、乾燥、硬化する場合について、説明する。支持体は、特に限定されず、銅、アルミニウム等の金属箔、ポリエステル樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂(PET)等の有機フィルム等が挙げられる。支持体はシリコーン系化合物等で離型処理されていてもよい。なお、絶縁体の形状は、特に限定されないが、フィルム、プレート状、ブロック状、ライン状等が挙げられ、高周波用途向けには、フィルムが好ましい。   As described above, the insulator is formed into a desired shape from the insulating composition. Specifically, the insulator can be obtained by applying the above-mentioned composition for an insulator onto a support, followed by drying or pouring it into a molding die. Hereinafter, a case will be described in which the composition for an insulator is applied on a support and then dried and cured to obtain a film of the insulator. The support is not particularly limited, and examples thereof include metal foils such as copper and aluminum, and organic films such as polyester resin, polyethylene resin, and polyethylene terephthalate resin (PET). The support may be release-treated with a silicone compound or the like. The shape of the insulator is not particularly limited, and examples thereof include a film, a plate, a block, and a line, and the film is preferable for high frequency applications.

絶縁体用組成物を支持体に塗布する方法は、特に限定されないが、薄膜化・膜厚制御の点からはグラビア法、スロットダイ法、ドクターブレード法が好ましい。スロットダイ法により、熱硬化後の厚さが10〜300μmになる絶縁体組成物の未硬化フィルムを得ることができる。ここで、絶縁体組成物の未硬化フィルムの厚さは、高周波特性、耐薬品性の観点から、10〜300μmであると好ましい。なお、絶縁体フィルムの好ましい厚さも、絶縁体組成物の未硬化フィルムの好ましい厚さと、同様である。   The method of applying the insulating composition to the support is not particularly limited, but from the viewpoint of thinning and controlling the film thickness, the gravure method, the slot die method, and the doctor blade method are preferable. By the slot die method, an uncured film of an insulating composition having a thickness after heat curing of 10 to 300 μm can be obtained. Here, the thickness of the uncured film of the insulating composition is preferably 10 to 300 μm from the viewpoint of high frequency characteristics and chemical resistance. The preferable thickness of the insulating film is the same as the preferable thickness of the uncured film of the insulating composition.

乾燥条件は、絶縁体用組成物に使用される有機溶剤の種類や量、塗布の厚み等に応じて、適宜、設定することができ、例えば、50〜120℃で、1〜60分程度とすることができる。このようにして得られた絶縁体用組成物の未硬化フィルムは、良好な保存安定性を有する。なお、絶縁体用組成物の未硬化フィルムは、所望のタイミングで、支持体から剥離することができる。   The drying conditions can be appropriately set according to the type and amount of the organic solvent used in the insulating composition, the thickness of coating, and the like, and for example, at 50 to 120 ° C. for about 1 to 60 minutes. can do. The uncured film of the insulating composition thus obtained has good storage stability. The uncured film of the insulating composition can be peeled from the support at a desired timing.

絶縁体用組成物の未硬化フィルムの硬化は、例えば、150〜230℃で、30〜180分間の条件で行うことができる。絶縁体組成物の未硬化フィルムの硬化は、絶縁体組成物の未硬化フィルム単体で行ってもよく、後述する金属被膜を形成した後に行ってもよい。   The uncured film of the insulating composition can be cured, for example, at 150 to 230 ° C. for 30 to 180 minutes. Curing of the uncured film of the insulator composition may be performed on the uncured film of the insulator composition alone, or after forming the metal coating described below.

絶縁体(例えば、硬化後の絶縁体フィルム)のガラス転移温度(Tg)は、150℃以上であり、180℃以上であると、絶縁体の耐熱性の観点から、好ましい。ここで、絶縁体のガラス転移温度(Tg)は、エスアイアイ・ナノテクノロジー社製「DMS6100」により測定する。   The glass transition temperature (Tg) of the insulator (for example, the cured insulator film) is 150 ° C. or higher, and preferably 180 ° C. or higher from the viewpoint of the heat resistance of the insulator. Here, the glass transition temperature (Tg) of the insulator is measured by "DMS6100" manufactured by SII Nanotechnology Inc.

絶縁体の弾性率は、100MPa〜2.5GPaであると、フレキシブル配線板への適用の観点から、好ましい。より好ましくは、200MPa〜2GPa、さらに好ましくは、200MPa〜1GPaである。ここで、絶縁体の弾性率は、オートグラフを用いて室温で、測定する。   The elastic modulus of the insulator is preferably 100 MPa to 2.5 GPa from the viewpoint of application to a flexible wiring board. The pressure is more preferably 200 MPa to 2 GPa, further preferably 200 MPa to 1 GPa. Here, the elastic modulus of the insulator is measured at room temperature using an autograph.

絶縁体の少なくとも一面に有される金属被膜は、後述する金属被膜付絶縁体の製造方法により、形成される。   The metal coating on at least one surface of the insulator is formed by the method for producing an insulator with a metal coating described below.

絶縁体と金属被膜との界面における、絶縁体の表面粗さ(Rzjis)は、1μm以下であると、高周波用途での性能を発揮する観点から、好ましい。絶縁体の表面に、1μmを超える凹凸があれば、物理的なアンカー効果による金属被膜との密着性を向上させることも可能であるが、絶縁体の表面が1μm以下の平滑である方が、絶縁体の表面に1μmを超える凹凸があるものと比べて、高周波特性がよくなる。ここで、絶縁体の表面粗さ(Rzjis)は、コンフォーカル顕微鏡(レーザーテック(株)、OPTELICS H1200)を用いて、解析範囲0.9mm2、5点平均粗さにて測定する。   The surface roughness (Rzjis) of the insulator at the interface between the insulator and the metal coating is preferably 1 μm or less from the viewpoint of exhibiting performance in high frequency applications. If the surface of the insulator has irregularities of more than 1 μm, it is possible to improve the adhesion with the metal film by the physical anchor effect, but it is preferable that the surface of the insulator is smoother than 1 μm. The high-frequency characteristics are improved as compared with the insulator having irregularities of more than 1 μm on the surface. Here, the surface roughness (Rzjis) of the insulator is measured with a confocal microscope (Lasertec Co., Ltd., OPTELICS H1200) in an analysis range of 0.9 mm 2 and a 5-point average roughness.

本発明の金属被膜付絶縁体は、高周波特性に優れ、耐熱性にも優れ、絶縁体と金属被膜の接着強度が高いので、高信頼性の半導体装置を提供することができる。   INDUSTRIAL APPLICABILITY The insulator with a metal coating of the present invention has excellent high-frequency characteristics, excellent heat resistance, and high adhesive strength between the insulator and the metal coating, so that a highly reliable semiconductor device can be provided.

〔金属被膜付絶縁体の製造方法〕
本発明の金属被膜付絶縁体の製造方法は、
(I)(A)樹脂と、(B)分子中の主鎖の不飽和二重結合が水添されたスチレン系ブロックコポリマーとを含む樹脂組成物であり、かつガラス転移温度(Tg)が150℃以上の絶縁体を形成する工程、
(II)形成した絶縁体上に、無電解めっきと、電解めっきを、この順に行い、金属被膜を形成する工程、
をこの順に有する。
[Method for producing insulator with metal coating]
The method for producing an insulator with a metal coating of the present invention,
A resin composition comprising (I) (A) resin and (B) a styrene block copolymer in which an unsaturated double bond of the main chain in the molecule is hydrogenated, and having a glass transition temperature (Tg) of 150. A step of forming an insulator of ℃ or higher,
(II) A step of performing electroless plating and electrolytic plating in this order on the formed insulator to form a metal film,
In this order.

〈(I)工程〉
(I)工程は、上述のとおりである。ここでの絶縁体は、絶縁体用組成物の未硬化体、または絶縁体用組成物の硬化体である。なお、絶縁体が、絶縁体用組成物の未硬化体の場合のガラス転移温度(Tg)は、硬化後の絶縁体のガラス転移温度(Tg)である。
<(I) step>
The step (I) is as described above. The insulator here is an uncured product of the composition for insulator or a cured product of the composition for insulator. The glass transition temperature (Tg) in the case where the insulator is an uncured product of the insulating composition is the glass transition temperature (Tg) of the cured insulator.

〈(II)工程〉
(II)工程では、絶縁体上に、密着性に優れる無電解めっきで金属薄膜層を形成した後、生産性に優れる電解めっきを行い、金属被膜を形成する。
<(II) step>
In the step (II), a metal thin film layer is formed on the insulator by electroless plating having excellent adhesion, and then electrolytic plating having excellent productivity is performed to form a metal film.

絶縁体に無電解めっきを行う前に、絶縁体と金属被膜の接着強度を向上させるために、前処理を行うと、好ましい。前処理としては、紫外線(UV)照射処理、クリーナ処理、キャタリスト処理が好ましい。   Before performing electroless plating on the insulator, it is preferable to perform pretreatment in order to improve the adhesive strength between the insulator and the metal coating. As the pretreatment, ultraviolet (UV) irradiation treatment, cleaner treatment, catalyst treatment are preferable.

紫外線(UV)照射処理で、絶縁体に紫外線を照射するときは、有酸素雰囲気下で行うと好ましい。有酸素雰囲気下で、紫外線照射すると、照射する紫外線エネルギーにより、絶縁体の表面のC−H結合を、−OH基および/または−C=O基に転化し、親水性にすることができる、と考えられるからである。有酸素雰囲気としては、大気雰囲気下が、最も簡便であるので、好ましい。しかし、例えば、窒素雰囲気やアンモニア雰囲気など、有機高分子を構成しうる元素を含有する雰囲気下で実施すれば、絶縁体の表面に、N等を取り込んだ構造に転化させることも可能である。   When the insulator is irradiated with ultraviolet rays in the ultraviolet (UV) irradiation treatment, it is preferable to perform it in an oxygen-containing atmosphere. When UV irradiation is performed in an oxygen-containing atmosphere, the C—H bond on the surface of the insulator can be converted into —OH group and / or —C═O group by the irradiation UV energy to make it hydrophilic. Because it is considered. As the aerobic atmosphere, the atmosphere is preferable because it is the simplest. However, it is also possible to convert the structure into a structure in which N or the like is incorporated on the surface of the insulator, if it is carried out in an atmosphere containing an element capable of forming an organic polymer, such as a nitrogen atmosphere or an ammonia atmosphere.

この処理で用いる紫外線の主波長は、180nm〜400nmであると好ましく、絶縁体の表面における紫外線強度は、1mW/cm〜500mW/cmであると好ましい。ここで、紫外線の波長が180nm未満では、改質効果が得られないということではなく、一般的に使用可能な波長の下限として設定している。したがって、より短波長が得られる光源があれば、より好ましい効果が得られる、と考えられる。一方、紫外線の波長が、400nmを超えると、絶縁体の光線透過率が大きくなり、改質効果が得られにくくなる、と考えられる。より好ましい紫外線の波長範囲は、180nm〜300nmであり、更に好ましい波長範囲は180nm〜260nmである。 Dominant wavelength of the ultraviolet to be used in this process, preferable to be 180Nm~400nm, UV intensity at the surface of the insulator is preferably a 1mW / cm 2 ~500mW / cm 2 . Here, when the wavelength of the ultraviolet rays is less than 180 nm, it does not mean that the modifying effect cannot be obtained, but is set as the lower limit of the wavelength that can be generally used. Therefore, it is considered that if there is a light source that can obtain a shorter wavelength, a more preferable effect can be obtained. On the other hand, when the wavelength of ultraviolet rays exceeds 400 nm, it is considered that the light transmittance of the insulator becomes large and it becomes difficult to obtain the modifying effect. A more preferable wavelength range of ultraviolet rays is 180 nm to 300 nm, and a further preferable wavelength range is 180 nm to 260 nm.

また、使用する紫外線の強度が1mW/cm未満では、改質に長時間を要して生産効率が悪くなり易い。一方、紫外線強度が500mW/cmでは、紫外線強度が強くなりすぎ、表面だけではなく内部にまで変質が及ぶ場合があり、絶縁体の全体が脆くなり易くなってしまう。 When the intensity of ultraviolet rays used is less than 1 mW / cm 2, it takes a long time for reforming and the production efficiency is apt to deteriorate. On the other hand, when the intensity of ultraviolet rays is 500 mW / cm 2 , the intensity of ultraviolet rays becomes too strong, and the deterioration of not only the surface but also the inside may occur, and the entire insulator tends to become brittle.

紫外線の照射時間は、5秒以上300秒未満が好ましく、15秒以上300秒未満がより好ましく、30秒以上300秒未満がさらに好ましい。5秒未満では、紫外線照射の効果が十分でない場合があり、300秒を超えると、生産効率が悪くなり易い。   The irradiation time of ultraviolet rays is preferably 5 seconds or more and less than 300 seconds, more preferably 15 seconds or more and less than 300 seconds, and further preferably 30 seconds or more and less than 300 seconds. If it is less than 5 seconds, the effect of ultraviolet irradiation may not be sufficient, and if it exceeds 300 seconds, the production efficiency tends to deteriorate.

次に、クリーナ処理では、アルカリクリーナを使用すると、絶縁体表面に付着した油脂分等の脱脂効果の観点から、好ましい。例えば、フィルム状の絶縁体の場合には、塗布時に使用される支持体の離型剤等が、フィルム状絶縁体の表面に付着している。軽微な付着であれば、苛性ソーダ濃度50g/dm程度のアルカリ水溶液を用いた脱脂処理等が挙げられる。また、超音波洗浄や、プラズマ洗浄などを用いても良い。なお、クリーナ処理は、紫外線照射の前に実施しても、十分な効果が得られる場合がある。 Next, in the cleaner treatment, it is preferable to use an alkaline cleaner from the viewpoint of the effect of degreasing the oil and fat adhering to the insulator surface. For example, in the case of a film-shaped insulator, a release agent for the support used during coating is attached to the surface of the film-shaped insulator. For slight adhesion, degreasing treatment using an alkaline aqueous solution having a caustic soda concentration of about 50 g / dm 3 may be used. Alternatively, ultrasonic cleaning, plasma cleaning, or the like may be used. Even if the cleaner treatment is performed before the irradiation of ultraviolet rays, a sufficient effect may be obtained in some cases.

無電解めっきには、無電解銅めっき、無電解ニッケルめっき等を用いることができる。高周波用途で使用するためには、磁性金属でない無電解銅めっきが好ましい。無電解ニッケルめっきを用いる場合には、非磁性の中リンタイプ(ニッケルめっき被膜中のP濃度が、8〜10質量%)、高リンタイプ(ニッケルめっき被膜中のP濃度が、11〜13質量%)が、好ましい。無電解銅めっきのめっき浴としては、還元剤にホルムアルデヒドを用いた無電解銅めっき浴が挙げられる。そして、この無電解めっきで形成する金属薄膜層は、厚さ:0.1μm〜3μmであると、好ましい。金属薄膜層の厚さが、0.1μm未満では、膜厚の均一性に欠け易く、電解めっきを行うときに安定した通電状態が得らにくくなる。一方、金属薄膜層の厚さが3μmを超えた場合はコストが高くなってしまう。そのため、金属薄膜層の厚さは、0.5μm〜2μmであると、より好ましい。   For electroless plating, electroless copper plating, electroless nickel plating, or the like can be used. For use in high frequency applications, electroless copper plating that is not a magnetic metal is preferred. When electroless nickel plating is used, non-magnetic medium phosphorus type (P concentration in nickel plating film is 8 to 10% by mass), high phosphorus type (P concentration in nickel plating film is 11 to 13% by mass) %) Is preferred. Examples of the electroless copper plating bath include an electroless copper plating bath using formaldehyde as a reducing agent. The metal thin film layer formed by this electroless plating preferably has a thickness of 0.1 μm to 3 μm. If the thickness of the metal thin film layer is less than 0.1 μm, the uniformity of the film thickness tends to be impaired, and it becomes difficult to obtain a stable energized state during electrolytic plating. On the other hand, if the thickness of the metal thin film layer exceeds 3 μm, the cost will increase. Therefore, the thickness of the metal thin film layer is more preferably 0.5 μm to 2 μm.

電解めっきとしては、銅めっき、ニッケルめっき、スズめっき、銅−亜鉛合金めっき、ニッケル−コバルト合金めっき、ニッケル−亜鉛合金めっき等が挙げられ、高周波特性、導電性の観点から、銅めっきが好ましい。電解銅めっき浴としては、硫酸銅浴、シアン化銅浴、ピロリン酸銅浴、硼フッ化銅浴が挙げられ、生産性、コストの観点から、硫酸銅浴が好ましい。   Examples of electrolytic plating include copper plating, nickel plating, tin plating, copper-zinc alloy plating, nickel-cobalt alloy plating, nickel-zinc alloy plating, and the like, and copper plating is preferable from the viewpoint of high-frequency characteristics and conductivity. Examples of the electrolytic copper plating bath include a copper sulfate bath, a copper cyanide bath, a copper pyrophosphate bath, and a copper borofluoride bath. From the viewpoint of productivity and cost, the copper sulfate bath is preferable.

なお、めっきされる絶縁体に、絶縁体用組成物の未硬化体を使用した場合には、電解めっきの後、硬化を行う。   When an uncured product of the insulating composition is used as an insulator to be plated, it is cured after electrolytic plating.

以上のようにして、金属被膜付絶縁体を得ることができる。   As described above, the metal-coated insulator can be obtained.

〔半導体装置〕
本発明の半導体装置は、上述の高周波特性に優れ、耐熱性にも優れ、絶縁体と金属被膜の接着強度が高い金属被膜付絶縁体を用いて形成されるので、高信頼性である。ここで、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電子部品、半導体回路、これらを組み込んだモジュール、電子機器等を含むものである。
[Semiconductor device]
The semiconductor device of the present invention is highly reliable because it is formed by using the above-described insulator with a metal film, which has excellent high-frequency characteristics, excellent heat resistance, and high adhesion strength between the insulator and the metal film. Here, the semiconductor device refers to all devices that can function by utilizing semiconductor characteristics, and includes electronic parts, semiconductor circuits, modules incorporating these, electronic devices, and the like.

〔積層板〕
また、本発明の金属被膜付き絶縁体は、特に、フレキシブルプリント配線板(Flexible Printed Circuit,FPC)用のフレキシブル銅張積層板(Flexible Copper Clad Laminate, FCCL)、多層基板用の銅張積層板 (Copper Clad Laminate,CCL)、またはビルドアップ材などに適している。
[Laminated board]
In addition, the insulator with a metal coating of the present invention is particularly applicable to a flexible copper clad laminate (FCCL) for a flexible printed circuit board (Flexible Printed Circuit, FPC) and a copper clad laminate for a multilayer board (FCCL). It is suitable for Copper Clad Laminate (CCL) or build-up material.

本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。   The present invention will be described with reference to examples, but the present invention is not limited thereto. In the following examples, parts and% are parts by mass and% by mass, unless otherwise specified.

〔実施例1〜7、比較例1〜3〕
〈絶縁体フィルムの作製〉
に示す配合で、(A)成分、(B)成分等の原料と、有機溶媒として適量のトルエンを計量配合した後、これらを70℃に加温された反応釜に投入し、回転数300rpmで回転させながら、常圧混合を3時間行い、絶縁体用組成物を含むワニスを作製した。
[Examples 1 to 7, Comparative Examples 1 to 3]
<Production of insulator film>
In the formulation shown in Table 7 , raw materials such as the components (A) and (B) and an appropriate amount of toluene as an organic solvent are metered and blended, and then these are put into a reaction kettle heated to 70 ° C. While rotating at 300 rpm, normal pressure mixing was performed for 3 hours to prepare a varnish containing the insulating composition.

得られたワニスを支持体(離型処理をほどこしたPETフィルム)の片面に塗布し、100℃で乾燥させることにより、支持体付の絶縁体組成物の未硬化フィルム(厚さ:25μm)を得た。   The varnish thus obtained was applied to one side of a support (a PET film that had been subjected to a mold release treatment) and dried at 100 ° C. to give an uncured film (thickness: 25 μm) of an insulator composition with a support. Obtained.

〈絶縁体組成物の未硬化フィルムの硬化〉
厚さ25μmの未硬化フィルムを2枚貼り合わせ、支持体をつけたまま200℃で加熱硬化することにより、厚さ:50μmの硬化フィルムを得た。
<Curing of uncured film of insulating composition>
Two 25 μm-thick uncured films were stuck together and heat-cured at 200 ° C. with the support attached to obtain a cured film having a thickness of 50 μm.

〈表面改質〉
表1に示す条件で、表面改質処理を行った。
<Surface modification>
The surface modification treatment was performed under the conditions shown in Table 1.

〈金属被膜の形成〉
表面改質処理を行った硬化フィルムに、銅被膜を形成した。表2に、無電解銅めっき、電解銅めっきによる金属被膜の形成フローを、表3に、無電解銅ニッケルめっき、電解銅めっきによる金属被膜の形成フローを、示す。
<Formation of metal coating>
A copper coating was formed on the cured film that had been subjected to the surface modification treatment. Table 2 shows a flow of forming a metal coating by electroless copper plating and electrolytic copper plating, and Table 3 shows a flow of forming a metal coating by electroless copper nickel plating and electrolytic copper plating.

銅被膜を形成した後の金属被膜の形成には無電解めっきを用い、ホルマリン浴(銅薄膜形成用)と、次亜リン酸浴(銅ニッケル薄膜形成用)の2種類を用いて、厚さ0.2〜0.3μmの無電解めっき薄膜を形成した。表4に、ホルマリン浴の浴組成と処理条件を、表5に、次亜リン酸浴の浴組成と処理条件を示す。   Electroless plating is used to form the metal coating after the copper coating is formed, and two types are used: formalin bath (for copper thin film formation) and hypophosphorous acid bath (for copper nickel thin film formation). An electroless plated thin film of 0.2 to 0.3 μm was formed. Table 4 shows the bath composition and treatment conditions of the formalin bath, and Table 5 shows the bath composition and treatment conditions of the hypophosphorous acid bath.

この銅薄膜上に、表6に示す組成の硫酸酸性銅めっき液を用い、液温25℃、電流密度2A/dmで電解し、厚さ:20μmの電解銅被膜を形成した。 On this copper thin film, a sulfuric acid copper plating solution having the composition shown in Table 6 was used to perform electrolysis at a solution temperature of 25 ° C. and a current density of 2 A / dm 2 to form an electrolytic copper coating film having a thickness of 20 μm.

〔比較例4〕
上述のとおり作製した支持体付きの絶縁体組成物の未硬化フィルムに、電解銅箔(福田金属箔粉工業製CF−T9FZ−SV−18)をプレスで貼り付けた(200℃、60min、10kgf)後、支持体付きフィルムを除去し、比較例4の試験片を作製した。この試験片を、10mm幅にカットし、オートグラフ((株)島津製作所ASG−J−5kNJ)で引きはがし、ピール強度を測定した。測定結果について、各N=5の平均値を計算した。
[Comparative Example 4]
Electrolytic copper foil (CF-T9FZ-SV-18 manufactured by Fukuda Metal Foil & Powder Co., Ltd.) was attached to the uncured film of the insulator composition with a support produced as described above by a press (200 ° C., 60 min, 10 kgf). After that, the film with a support was removed to prepare a test piece of Comparative Example 4. The test piece was cut into a width of 10 mm and peeled off with an autograph (Shimadzu Corporation ASG-J-5kNJ) to measure the peel strength. With respect to the measurement results, an average value of N = 5 was calculated.

〔ガラス転移温度(Tg)の評価〕
耐熱性を確認するため、動的粘弾性測定(DMA)を用いて、ガラス転移温度(Tg)を測定した。厚さ:25μmの未硬化フィルムを2枚貼り合わせ、支持体をつけたまま、200℃で60分間、加熱硬化することにより、厚さ:50μmの硬化フィルムを得た。この硬化フィルムを支持体から剥離した後、硬化フィルムから試験片(10±0.5mm×40±1mm)を切り出し、試験片の幅、厚みを測定した。その後、エスアイアイ・ナノテクノロジー社製DMS6100を用いて、測定を行った(昇温速度:3℃/min、測定範囲:25〜220℃)。tanδのピーク温度を読み取り、Tgとした。表7に、結果を示す。
[Evaluation of glass transition temperature (Tg)]
To confirm the heat resistance, the glass transition temperature (Tg) was measured using dynamic viscoelasticity measurement (DMA). Two uncured films having a thickness of 25 μm were stuck together and heat-cured at 200 ° C. for 60 minutes with the support attached to obtain a cured film having a thickness of 50 μm. After peeling this cured film from the support, a test piece (10 ± 0.5 mm × 40 ± 1 mm) was cut out from the cured film, and the width and thickness of the test piece were measured. Then, the measurement was performed using DMS6100 manufactured by SII Nano Technology Inc. (temperature rising rate: 3 ° C./min, measurement range: 25 to 220 ° C.). The peak temperature of tan δ was read and set as Tg. The results are shown in Table 7.

〔弾性率の評価〕
厚さ:25μmの未硬化フィルムを加熱硬化して(200℃、60min)、硬化フィルムを作製し、オートグラフ((株)島津製作所ASG−J−5kNJ)を用いて、室温での引張弾性率を求めた。なお、n=3で測定し、平均値を用いた。引張弾性率は、好ましくは、200〜2500MPaである。表7に、弾性率(引張弾性率)の評価結果を示す。
[Evaluation of elastic modulus]
Thickness: An uncured film having a thickness of 25 μm is heat-cured (200 ° C., 60 min) to prepare a cured film, and an autograph (Shimadzu Corporation ASG-J-5kNJ) is used to measure the tensile modulus at room temperature. I asked. In addition, it measured at n = 3 and used the average value. The tensile modulus is preferably 200 to 2500 MPa. Table 7 shows the evaluation results of the elastic modulus (tensile elastic modulus).

〔表面粗さの評価〕
上記の方法で作製した金属被膜付絶縁体を用いて、エッチング、洗浄(水洗)、乾燥(50℃、60min)により金属被膜を除去した試験片を作製した。エッチングは、エッチング液(サンハヤト製エッチング液H−1000A)に10分間浸漬し、目視でCu箔が除去できたことを確認して取り出し、水洗、乾燥して行った。
得られた試料の表面粗さ(Rzjis)を、コンフォーカル顕微鏡(レーザーテック(株)OPTELICS H1200)を用いて測定した(解析範囲0.9mm、5点平均粗さ)。絶縁体の表面粗さ(Rzjis)は、1μm以下であると、好ましい。
[Evaluation of surface roughness]
Using the metal-coated insulator prepared by the above method, a test piece having a metal film removed by etching, washing (water washing) and drying (50 ° C., 60 min) was produced. The etching was performed by immersing in an etching solution (etching solution H-1000A manufactured by Sunhayato) for 10 minutes, visually confirming that the Cu foil could be removed, taking out, washing with water and drying.
The surface roughness (Rzjis) of the obtained sample was measured using a confocal microscope (Lasertec Corp. OPTELICS H1200) (analysis range 0.9 mm 2 , 5-point average roughness). The surface roughness (Rzjis) of the insulator is preferably 1 μm or less.

〔めっき性の評価〕
めっき性の評価を、目視で行った。無電解めっき、電解めっきの各工程で、めっきのはがれ、ふくれが広範囲(面積が30%以上)で発生したものを×、一部(面積が1%以上30%未満)で発生したものを△、はがれ、ふくれがなく、均一に電解めっき工程まで終了したものを○とした。
[Evaluation of plating property]
The plating property was evaluated visually. In each step of electroless plating and electroplating, plating peeling and blistering occurred in a wide range (area of 30% or more) ×, partial (area of 1% or more and less than 30%) generated △ No peeling, swelling, and even completion of the electroplating process were marked with ◯.

〔ピール強度の評価〕
上述の表面改質、めっき工程を行った金属被膜付絶縁体を、10mm幅にカットし、金属被膜の部分をオートグラフ((株)島津製作所ASG−J−5kNJ)で引きはがし、ピール強度を測定した。測定結果について、各N=5の平均値を計算した。ピール強度は、6N/cm以上が好ましい。表7に、結果を示す。
[Evaluation of peel strength]
The insulator with a metal coating, which has been subjected to the above-mentioned surface modification and plating steps, is cut into a width of 10 mm, and the portion of the metal coating is peeled off by an autograph (Shimadzu Corporation ASG-J-5kNJ) to obtain peel strength. It was measured. With respect to the measurement results, an average value of N = 5 was calculated. The peel strength is preferably 6 N / cm or more. The results are shown in Table 7.

〔伝送損失の評価〕
上述の方法で、硬化フィルムの両面に金属被膜を有する金属被膜付絶縁体を作製した(実施例4のサンプルに相当)。また、上述の方法で、硬化フィルムの両面に、電解銅箔を有する絶縁体を作製した(比較例4のサンプルに相当)。それぞれインピーダンスが50Ωになるよう、配線幅を調整し、マイクロストリップラインを作製した(パターン長さ:100mm)。この試験片を用いて、20GHzまでの伝送損失を測定した(E8363B Agilent Technologies社製)。図1に、結果を示す。高周波用途において伝送損失はより小さいほうが好ましい。
[Evaluation of transmission loss]
By the method described above, a metal-coated insulator having metal coatings on both sides of a cured film was produced (corresponding to the sample of Example 4). In addition, an insulator having electrolytic copper foils was prepared on both sides of the cured film by the method described above (corresponding to the sample of Comparative Example 4). The wiring width was adjusted so that the impedance was 50Ω, and microstrip lines were produced (pattern length: 100 mm). Using this test piece, the transmission loss up to 20 GHz was measured (manufactured by E8363B Agilent Technologies). The results are shown in FIG. Lower transmission losses are preferred in high frequency applications.

表7からわかるように、実施例1〜6は、弾性率、表面粗さ、めっき性、ピール強度、耐熱性のすべてにおいて良好な結果であった。表1には記載していないが、実施例1〜6の周波数10GHzでの誘電率(ε)は、2.3〜2.8、誘電正接(tanδ)は、0.0005〜0.005であった。これに対して、(B)成分の代わりにSBRを使用した比較例1は、めっき性が悪かった。(A)成分、(B)成分の代わりにCOPを使用した比較例2は、ガラス転移温度、弾性率が低く、耐熱性が悪かった。(A)成分、(B)成分の代わりにLCPを使用した比較例3は、弾性率が低く、めっき性が悪かった。   As can be seen from Table 7, Examples 1 to 6 were good results in all of the elastic modulus, surface roughness, plating property, peel strength, and heat resistance. Although not described in Table 1, the dielectric constant (ε) at a frequency of 10 GHz of Examples 1 to 6 is 2.3 to 2.8, and the dielectric loss tangent (tan δ) is 0.0005 to 0.005. there were. On the other hand, in Comparative Example 1 in which SBR was used instead of the component (B), the plating property was poor. In Comparative Example 2 in which COP was used instead of the component (A) and the component (B), the glass transition temperature and the elastic modulus were low, and the heat resistance was poor. Comparative Example 3 in which LCP was used instead of the component (A) and the component (B) had a low elastic modulus and poor plating properties.

上記のように、本発明の金属被膜付絶縁体は、高周波特性に優れ、耐熱性にも優れ、絶縁体と金属被膜の接着強度が高い。また、高周波特性に優れ、耐熱性にも優れ、絶縁体と金属被膜の接着強度が高い金属被膜付絶縁体を有するため、本発明の半導体装置は高信頼性である。   As described above, the metal-coated insulator of the present invention has excellent high-frequency characteristics, excellent heat resistance, and high adhesive strength between the insulator and the metal coating. Further, the semiconductor device of the present invention has high reliability because it has an insulator with excellent high-frequency characteristics, excellent heat resistance, and high adhesive strength between the insulator and the metal coating.

Claims (6)

(A)樹脂と、(B)分子中の主鎖の不飽和二重結合が水添されたスチレン系ブロックコポリマーとを含む樹脂組成物であり、かつガラス転移温度(Tg)が、150℃以上である絶縁体、および絶縁体の少なくとも一面の表面に、転化された−OH基および/または−C=O基が存在し、表面に金属めっき被膜を有することを特徴とする、金属めっき被膜付絶縁体。 A resin composition comprising (A) a resin and (B) a styrenic block copolymer in which an unsaturated double bond of a main chain in a molecule is hydrogenated, and having a glass transition temperature (Tg) of 150 ° C. or higher. insulator is, and on at least one side surface of the insulator, there is converted by the -OH group and / or -C = O group, characterized by having a metal plating film on the surface, with metal-plated coating film Insulator. 絶縁体のガラス転移温度(Tg)が、180℃以上である、請求項1記載の金属被膜付絶縁体。   The metal-coated insulator according to claim 1, wherein the insulator has a glass transition temperature (Tg) of 180 ° C. or higher. 絶縁体の弾性率が、100MPa〜2GPaである、請求項1または2記載の金属被膜付絶縁体。   The insulator with a metal coating according to claim 1 or 2, wherein the insulator has an elastic modulus of 100 MPa to 2 GPa. 絶縁体と金属被膜との界面における、絶縁体の表面粗さ(Rzjis)が、1μm以下である請求項1〜3のいずれか1項記載の金属被膜付絶縁体。   The insulator with a metal coating according to any one of claims 1 to 3, wherein a surface roughness (Rzjis) of the insulator at an interface between the insulator and the metal coating is 1 µm or less. 請求項1〜4のいずれか1項記載の金属被膜付絶縁体を有する、半導体装置。   A semiconductor device comprising the insulator with a metal film according to claim 1. (I)(A)樹脂と、(B)分子中の主鎖の不飽和二重結合が水添されたスチレン系ブロックコポリマーとを含む樹脂組成物であり、かつガラス転移温度(Tg)が150℃以上の絶縁体を形成する工程、
(II)形成した絶縁体上に、酸素雰囲気下の紫外線照射と、無電解めっきと、電解めっきを、この順に行い、金属めっき被膜を形成する工程、
をこの順に有することを特徴とする、金属めっき被膜付絶縁体の製造方法。
A resin composition comprising (I) (A) resin and (B) a styrene block copolymer in which an unsaturated double bond of the main chain in the molecule is hydrogenated, and having a glass transition temperature (Tg) of 150. A step of forming an insulator of ℃ or higher,
(II) A step of performing ultraviolet irradiation in an oxygen atmosphere, electroless plating, and electrolytic plating on the formed insulator in this order to form a metal plating film,
Is provided in this order, and a method for producing an insulator with a metal plating film.
JP2015084967A 2015-04-17 2015-04-17 Insulator with metal coating, semiconductor device, and method for manufacturing insulator with metal coating Active JP6682190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084967A JP6682190B2 (en) 2015-04-17 2015-04-17 Insulator with metal coating, semiconductor device, and method for manufacturing insulator with metal coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084967A JP6682190B2 (en) 2015-04-17 2015-04-17 Insulator with metal coating, semiconductor device, and method for manufacturing insulator with metal coating

Publications (2)

Publication Number Publication Date
JP2016203426A JP2016203426A (en) 2016-12-08
JP6682190B2 true JP6682190B2 (en) 2020-04-15

Family

ID=57488526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084967A Active JP6682190B2 (en) 2015-04-17 2015-04-17 Insulator with metal coating, semiconductor device, and method for manufacturing insulator with metal coating

Country Status (1)

Country Link
JP (1) JP6682190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306449B2 (en) * 2019-03-01 2023-07-11 Jsr株式会社 Laminate for high frequency circuit, flexible printed circuit board, and laminate wound body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128941A (en) * 1989-10-14 1991-05-31 I S I:Kk Surface modification of material
JP2001284821A (en) * 2000-03-30 2001-10-12 Nippon Zeon Co Ltd Multilayer circuit board
JP2003347723A (en) * 2002-05-24 2003-12-05 Nippon Zeon Co Ltd Circuit board fabricating method
JP5176336B2 (en) * 2006-03-15 2013-04-03 三菱瓦斯化学株式会社 Polyvinylbenzyl ether compound and curable resin composition and curable film containing the same
TWI404744B (en) * 2006-08-08 2013-08-11 Namics Corp Thermosetting resin composition and uncured film composed of the resin composition

Also Published As

Publication number Publication date
JP2016203426A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
TWI378864B (en)
TWI707915B (en) Method for manufacturing metal foil with resin layer, metal laminated laminate, and printed wiring board
TWI609942B (en) Binder composition with high frequency characteristics and use thereof
JP2018201024A (en) Resin film for flexible printed wiring board and bonding sheet
TWI721236B (en) Copper foil, copper foil laminated board and wiring board with adhesive
TWI673163B (en) Resin composition and articles made therefrom
JP2018504511A (en) High-frequency thermosetting resin composition, prepreg, laminate sheet and printed circuit board using the same
TW201802175A (en) Resin composition and multilayer substrate
TW200944370A (en) Copper foil with resin and process for producing copper foil with resin
TW201716500A (en) Resin-clad copper foil, copper-clad laminated plate, and printed wiring board
JP5118469B2 (en) Copper foil with filler particle-containing resin layer and copper-clad laminate using the filler particle-containing copper foil with resin layer
JP2021031530A (en) Thermosetting resin composition, and adhesive, film, prepreg, laminate, circuit board and printed wiring board using the same
JP2016147945A (en) Resin composition, insulation film and semiconductor device
WO2009084533A1 (en) Copper foil with resin and process for producing copper foil with resin
TWI810151B (en) Metal-clad laminates, resin-coated metal components, and circuit boards
TWI413460B (en) Laminate for wiring board
WO2022034872A1 (en) Resin layer-equipped copper foil and layered body using same
JP6682190B2 (en) Insulator with metal coating, semiconductor device, and method for manufacturing insulator with metal coating
JP6697759B2 (en) Metal-clad laminate, method of manufacturing metal-clad laminate, metal member with resin, method of manufacturing metal member with resin, wiring board, and method of manufacturing wiring board
JP4363137B2 (en) Substrate film with metal foil layer and substrate film with double-sided metal foil
JP2008105409A (en) Copper foil with resin layer containing filler particle and copper-clad laminated plate using the same
TW200536444A (en) Flexible printed wiring board and manufacturing method thereof
WO2022034871A1 (en) Copper foil with resin layer and laminate using same
JP2006089595A (en) Build-up resin composition and its application
CN111995832B (en) Resin composition, adhesive and flexible copper-clad plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6682190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250