JP6669354B2 - How to process composites - Google Patents

How to process composites Download PDF

Info

Publication number
JP6669354B2
JP6669354B2 JP2016062004A JP2016062004A JP6669354B2 JP 6669354 B2 JP6669354 B2 JP 6669354B2 JP 2016062004 A JP2016062004 A JP 2016062004A JP 2016062004 A JP2016062004 A JP 2016062004A JP 6669354 B2 JP6669354 B2 JP 6669354B2
Authority
JP
Japan
Prior art keywords
composite material
resin
sulfuric acid
reinforcing material
processing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016062004A
Other languages
Japanese (ja)
Other versions
JP2017171830A (en
Inventor
康久 永田
康久 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2016062004A priority Critical patent/JP6669354B2/en
Publication of JP2017171830A publication Critical patent/JP2017171830A/en
Application granted granted Critical
Publication of JP6669354B2 publication Critical patent/JP6669354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、複合材の処理方法、詳しくは、樹脂と補強材からなる複合材から補強材を回収することが可能な複合材の処理方法に関する。   The present invention relates to a method for treating a composite material, and more particularly, to a method for treating a composite material capable of recovering a reinforcing material from a composite material comprising a resin and a reinforcing material.

樹脂と補強材(ガラス繊維や炭素繊維、無機充填材など)とからなる複合材は、その強度が高いことから釣竿等の小型成形品から船舶等の大型製品まで広く利用されている。特に近年では、補強材として炭素繊維を用いた複合材(炭素繊維強化プラスチック)を用いることにより製品の軽量化が可能であることから、航空機等の構造材に炭素繊維強化プラスチックが用いられている。そして、今後は、炭素繊維強化プラスチックは自動車等の燃費向上に大きな期待が寄せられている。
炭素繊維強化プラスチックの補強材である炭素繊維は、現在数万トンの生産量であるが、2020年にはその需要量が10〜15万トンまで拡大し、その後も更に生産量が増えることが予想されている。しかしながら、炭素繊維の製造には膨大なエネルギーが必要であり、環境負荷の観点から、炭素繊維強化プラスチックをリサイクル(特にマテリアルリサイクル)できることが必要である。炭素繊維強化プラスチックスのリサイクル技術は用途限定で実用化されているものの、マテリアルリサイクルにより、自動車や航空機の部品として繰り返し使用することができる技術としては、現時点において実用化されていない。
Composite materials comprising a resin and a reinforcing material (glass fiber, carbon fiber, inorganic filler, and the like) are widely used from small molded products such as fishing rods to large products such as ships because of their high strength. Particularly in recent years, carbon fiber reinforced plastics have been used as structural materials for aircraft and the like because a composite material using carbon fibers (carbon fiber reinforced plastic) as a reinforcing material can be used to reduce the weight of a product. . In the future, carbon fiber reinforced plastics are expected to greatly improve fuel efficiency of automobiles and the like.
Carbon fiber, which is a reinforcing material for carbon fiber reinforced plastic, is currently producing tens of thousands of tons, but in 2020 the demand will increase to 100,000 to 150,000 tons, and the production will increase further thereafter. Is expected. However, production of carbon fiber requires enormous energy, and it is necessary to be able to recycle carbon fiber reinforced plastic (particularly, material recycling) from the viewpoint of environmental load. Although the technology for recycling carbon fiber reinforced plastics has been put to practical use for limited applications, it has not been put into practical use at present as a technology that can be repeatedly used as parts for automobiles and aircraft by material recycling.

そこで、炭素繊維強化プラスチックを含む樹脂と補強材とからなる複合材から、補強材を分離し、補強材を回収する方法として、特許文献1に記載の方法や、特許文献2に記載の方法が挙げられる。
特許文献1に記載の方法は、複合材を高温で樹脂を燃焼・分解し、回収した無機物を強化材の原料とするものである。特許文献2に記載の方法は、炭素繊維複合材料を用いて、電解処理による陽極酸化でマトリックスを分解させ、炭素繊維を回収するものである。
Therefore, as a method of separating a reinforcing material from a composite material composed of a resin containing a carbon fiber reinforced plastic and a reinforcing material and recovering the reinforcing material, a method described in Patent Document 1 and a method described in Patent Document 2 are known. No.
The method described in Patent Literature 1 involves burning and decomposing a resin at a high temperature in a composite material, and using the recovered inorganic substance as a raw material of a reinforcing material. The method described in Patent Literature 2 uses a carbon fiber composite material to decompose a matrix by anodic oxidation by electrolytic treatment and recover carbon fibers.

特開平06−127978号公報JP 06-127978 A 特開2013−249386号公報JP 2013-249386 A

しかしながら、特許文献1に記載の方法によれば、複合材を300〜950℃に加熱する必要があり、補強材の劣化等の品質上の問題を有するだけでなく、高温加熱による環境負荷の問題も有している。
また、特許文献2に記載の方法では、炭素繊維複合材料を陽極(電極)として用いることから、一度に処理できる炭素繊維複合材料の量に制限がある。これにより、工業的に炭素繊維複合材料を処理する方法としては不向きであるといえる。また、炭素繊維複合材料に電流を与えることから、補強材の劣化等の品質上の問題も生じ得る。
このように、樹脂と補強材とからなる複合材の効率的なマテリアルリサイクル技術は数多く提案されているが、環境負荷をかけずに、効率的にかつ補強材の品質を低下させずに複合材を処理するプロセスは未だ確立されておらず、埋立て処理やサーマルリサイクルに頼っているのが現状である。
However, according to the method described in Patent Document 1, it is necessary to heat the composite material to 300 to 950 ° C., which not only has a quality problem such as deterioration of the reinforcing material, but also has a problem of environmental load due to high-temperature heating. Also have.
Further, in the method described in Patent Document 2, since the carbon fiber composite material is used as an anode (electrode), the amount of the carbon fiber composite material that can be processed at one time is limited. This makes it unsuitable as a method for industrially processing a carbon fiber composite material. In addition, since current is applied to the carbon fiber composite material, quality problems such as deterioration of the reinforcing material may occur.
As described above, many efficient material recycling technologies for a composite material composed of a resin and a reinforcing material have been proposed, but the composite material can be efficiently and without deteriorating the quality of the reinforcing material without imposing an environmental burden. The process of treating wastewater has not yet been established, and at present it relies on landfill treatment and thermal recycling.

そこで、発明者は、鋭意研究の結果、酸化性活性種による樹脂の分解反応に着目し、酸化性活性種を含む処理用溶液に、複合材を浸漬すれば、上述した問題はすべて解消されることを知見し、この発明を完成させた。   Therefore, the inventor focused on the decomposition reaction of the resin by the oxidizing active species as a result of earnest research, and if the composite material was immersed in a processing solution containing the oxidizing active species, all the above-mentioned problems would be solved With this knowledge, the present invention was completed.

この発明は、環境負荷をかけずに、効率的にかつ補強材の品質を低下させずに複合材を処理するプロセスを提供することを目的とする   An object of the present invention is to provide a process for treating a composite material efficiently and without reducing the quality of a reinforcing material without imposing an environmental burden.

請求項1に記載の発明は、30〜95重量%の硫酸溶液を、電流密度0.01〜10A/cm 、電圧0.1〜100Vにて電気分解することにより得られた酸化性活性種を含む処理用溶液に、樹脂と補強材とからなる複合材を浸漬することにより、前記樹脂が水と二酸化炭素とに分解し、分解後の分解物が該処理用溶液に溶解され、その後、前記補強材を前記処理用溶液から取り出すことを特徴とする複合材の処理方法である。 The oxidizing active species obtained by electrolyzing a 30 to 95% by weight sulfuric acid solution at a current density of 0.01 to 10 A / cm 2 and a voltage of 0.1 to 100 V is described. In a processing solution containing, by immersing a composite material comprising a resin and a reinforcing material, the resin is decomposed into water and carbon dioxide, and the decomposed product after decomposition is dissolved in the processing solution. A method for treating a composite material, comprising removing the reinforcing material from the treatment solution.

酸化性活性種とは、所定電流、所定電圧にて硫酸溶液を電気分解することで生成されるものであり、具体的には、ヒドロキシラジカルやペルオキソ硫酸、ペルオキソ二硫酸等である。
硫酸溶液は、硫酸(HSO)と水(HO)とからなる溶液である。硫酸溶液中に含まれる硫酸の濃度は30〜95重量%が好ましく、さらに好ましくは50〜80重量%である。硫酸の濃度が30重量%未満の場合は、複合材の樹脂を分解するために必要な酸化性活性種の量を得ることができず、樹脂の分解に長時間を要する。なお、濃度98重量%の濃硫酸においても、電気分解の方法を工夫しさえすれば酸化性活性種を生成させることは可能ではあるが、電気分解の際において電流が流れにくいことから酸化性活性種の生成量が極端に低下したり、電気分解に使用する電極の寿命が極端に短くなることから好ましくはない。
なお、電気分解した酸化性活性種を含む処理用溶液に濃硫酸や塩酸、硝酸を加えてもよい。また、処理用溶液に過酸化水素やペルオキソ硫酸のような過酸化物を添加してもよい。この場合、複合材の樹脂の分解速度を速める効果が得られる。
The oxidizing active species is generated by electrolyzing a sulfuric acid solution at a predetermined current and a predetermined voltage, and specifically includes hydroxy radical, peroxosulfuric acid, peroxodisulfuric acid, and the like.
The sulfuric acid solution is a solution composed of sulfuric acid (H 2 SO 4 ) and water (H 2 O). The concentration of sulfuric acid contained in the sulfuric acid solution is preferably 30 to 95% by weight, more preferably 50 to 80% by weight. When the concentration of sulfuric acid is less than 30% by weight, it is not possible to obtain an amount of oxidizing active species required for decomposing the resin of the composite material, and it takes a long time to decompose the resin. Although it is possible to generate oxidatively active species even with concentrated sulfuric acid having a concentration of 98% by weight if the method of electrolysis is devised, it is difficult to supply current during electrolysis, so It is not preferable because the production amount of the seed is extremely reduced and the life of the electrode used for the electrolysis is extremely short.
Note that concentrated sulfuric acid, hydrochloric acid, or nitric acid may be added to the processing solution containing the electrolyzed oxidizing active species. Further, a peroxide such as hydrogen peroxide or peroxosulfuric acid may be added to the processing solution. In this case, an effect of increasing the decomposition rate of the resin of the composite material can be obtained.

硫酸溶液の電気分解では、白金電極やカーボン電極等が使用できるが、濃度の高い硫酸溶液の電気分解にあっては、耐久性の面から、金属板表面に薄膜状にダイヤモンドコーティングされたいわゆるダイヤモンド電極を用いることができる。硫酸溶液の電気分解装置としては、ダイヤモンド電極を用いた隔膜式の電解セルを用いることが好ましい。
電気分解の通電条件は、ダイヤモンド電極の場合、電流密度を0.01〜10A/cm、電圧0.1〜100Vであればよいが、電極の種類、硫酸溶液の硫酸濃度、硫酸溶液の液量等によって適宜変更される。
なお、電気分解は、閉鎖系にて行う必要があり、閉鎖した硫酸溶液循環系にて、所定量の硫酸溶液を循環させながら行うことが好ましい。循環方法としては、ポンプ等を利用して電極面に対して平行方向に50mL/分以上の流量で通液する方法、電気分解によって発生するガスの流れに従って対流させる自然循環による方法でもよい。
電気分解の処理時間は、硫酸溶液の量、硫酸濃度、硫酸溶液の流量、通電条件等によって適宜変更されるが、硫酸溶液1L当たり0.5〜10時間処理することが酸化性活性種を効率的に生成させる点で好ましい。
陰極液及び陽極液に硫酸溶液を用いて電解する硫酸電解方法の場合は、両極に濃度の異なる硫酸を用いてもよい。特に、本発明では、濃度の高い硫酸を電気分解して得られた酸化性活性種を含む硫酸溶液が複合材の樹脂の分解を促進する上で有効であることから、陽極側の硫酸濃度を高くし、陰極側の硫酸濃度を低くすることが電極の寿命を長くする上で好ましい。
In the electrolysis of a sulfuric acid solution, a platinum electrode, a carbon electrode, or the like can be used, but in the electrolysis of a highly concentrated sulfuric acid solution, from the viewpoint of durability, a so-called diamond in which a metal plate surface is diamond-coated in a thin film shape is used. Electrodes can be used. As a sulfuric acid solution electrolyzer, it is preferable to use a diaphragm type electrolytic cell using a diamond electrode.
The electrolysis conditions for the electrolysis include a diamond electrode having a current density of 0.01 to 10 A / cm 2 and a voltage of 0.1 to 100 V. The type of the electrode, the sulfuric acid concentration of the sulfuric acid solution, and the sulfuric acid solution It is appropriately changed depending on the amount and the like.
The electrolysis must be performed in a closed system, and is preferably performed while circulating a predetermined amount of the sulfuric acid solution in a closed sulfuric acid solution circulation system. As a circulation method, a method of passing a liquid at a flow rate of 50 mL / min or more in a direction parallel to the electrode surface using a pump or the like, or a method of natural circulation in which convection is performed in accordance with a flow of gas generated by electrolysis may be used.
The electrolysis treatment time is appropriately changed depending on the amount of the sulfuric acid solution, the sulfuric acid concentration, the flow rate of the sulfuric acid solution, the energizing conditions, and the like. It is preferable in that it is generated in a uniform manner.
In the case of the sulfuric acid electrolysis method in which a sulfuric acid solution is used for the catholyte and the anolyte, sulfuric acids having different concentrations may be used for both electrodes. In particular, in the present invention, the sulfuric acid solution containing the oxidizing active species obtained by electrolyzing sulfuric acid having a high concentration is effective in promoting the decomposition of the resin of the composite material. It is preferable to increase the concentration and decrease the concentration of sulfuric acid on the cathode side in order to prolong the life of the electrode.

硫酸溶液の電気分解するための電源としては、考えられる様々な装置類から電気を調達することが可能であるが、太陽電池のようないわゆる再生可能エネルギーより生成された電気を用いることが好ましい。また、電気分解で発生した水素(陰極より発生)と酸素(陽極より発生)を回収して、発電することもでき、原材料として用いることも可能である。ただし、陽極より発生するガスにはオゾンが数%混在する可能性があることから、酸素と分離して回収することが好ましい。   As a power source for electrolyzing the sulfuric acid solution, it is possible to procure electricity from various conceivable devices, but it is preferable to use electricity generated from so-called renewable energy such as a solar cell. In addition, hydrogen (generated from the cathode) and oxygen (generated from the anode) generated by electrolysis can be recovered to generate power, and can be used as a raw material. However, since there is a possibility that several% of ozone may be mixed in the gas generated from the anode, it is preferable that the gas is separated and recovered from oxygen.

得られた酸化性活性種を含む硫酸溶液を、複合材の樹脂を分解させるための処理槽に供給する方式としては、ポンプ等で電解装置から連続して処理槽に供給する方式(連続式)、閉ざされた系内で硫酸溶液を循環させて電気分解処理後に系内から処理用溶液を採取し、処理槽に処理用溶液を供給する方式(バッチ式)のいずれでもよい。また、採取された処理用溶液を加熱または冷却、加圧できる装置を組み合わせてもよい。
なお、複合材を処理した後の処理用溶液は繰り返し使用することができるため、回収して濃度調節し、再度酸化性活性種を生成させるための電気分解を行うための硫酸溶液として再利用することができる。
酸化性活性種を含む処理用溶液は、複合材の樹脂の分解を高めるために加熱することが好ましい。加熱温度は処理用溶液の沸点にも関係するが、好ましくは100℃以上の温度で加熱して使用することが複合材を効率的に短期間に分解する上で好ましい。加熱温度は、硫酸溶液の沸点以下の温度でもよく、大気圧又は不活性ガス下で加熱される。なお、処理用溶液の加熱の際、加圧あるいは減圧下で行ってもよい。
As a method of supplying the obtained sulfuric acid solution containing the oxidizing active species to the processing tank for decomposing the resin of the composite material, a method of continuously supplying the processing tank from an electrolytic device with a pump or the like (continuous type) Alternatively, any of a system (batch system) of circulating a sulfuric acid solution in a closed system, collecting a processing solution from the system after the electrolytic treatment, and supplying the processing solution to a processing tank may be used. Further, a device that can heat, cool, and pressurize the collected processing solution may be combined.
In addition, since the processing solution after processing the composite material can be used repeatedly, it is collected, adjusted in concentration, and reused as a sulfuric acid solution for electrolysis for generating oxidative active species again. be able to.
The processing solution containing the oxidizing active species is preferably heated to enhance the decomposition of the resin of the composite material. The heating temperature is also related to the boiling point of the processing solution, but it is preferable to use the heating at a temperature of 100 ° C. or higher in order to efficiently decompose the composite material in a short time. The heating temperature may be a temperature equal to or lower than the boiling point of the sulfuric acid solution, and the heating is performed at atmospheric pressure or under an inert gas. The heating of the treatment solution may be performed under pressure or under reduced pressure.

複合材は、樹脂と補強材とから構成されるものである。樹脂は、複合材として一般的に用いられるものであれば特に問わず、熱硬化性樹脂、熱可塑性樹脂などが挙げられる。これらの樹脂を単独であってもよく、複数の樹脂を混合してもよい。熱硬化性樹脂としては、エポキシ樹脂、ビスマレイミド樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等がある。熱可塑性樹脂としては、ポリエーテルエーテルケトンやポリエーテルスルフォンのようなスーパーエンジニアリングプラスチック、ポリエステル、ナイロン、ポリプロピレン、ポリエチレンのような汎用プラスチックがある。これらの混合物や結晶化物、熱処理物、配向物あるいは可塑剤のような樹脂成分の副成分を含んだものも複合材の樹脂とすることができる。また、複合材の樹脂に改質剤、可塑剤など樹脂の副成分としてよい。
補強材についても、複合材として一般に用いられるものであれば特に問わず、炭素繊維、ガラス繊維、金属繊維、アラミド等の有機系高強度繊維、カーボンナノチューブやセルロース系ナノ繊維のような有機系・無機系のナノ繊維がある。これらの繊維は単独使用であってもよく、これらの繊維を複合してハイブリット系の繊維として用いてもよい。また、充填材(無機系フィラー)を補強材として用いてもよい。しかし、処理後の補強材を高品質のままリサイクルする観点から、複合材は連続した長繊維状の強化繊維を補強材とした複合材が好ましい。また、補強材は無機系のものが酸化性活性種による繊維欠陥が少ないため好ましい。特に炭素繊維にいたっては、酸化性活性種による耐久性が強いためより好ましい。
複合材の形態は特に問わず、処理するために適した形で切断または粉砕した後に、酸化性活性種を含む処理用溶液にて処理することができる。
複合材は、硫酸溶液を電気分解して得られた酸化性活性種を含む処理用溶液に対して0.5重量%以上、浸漬して、樹脂を水と二酸化炭素とに分解し、分解物を処理することができる。硫酸溶液の電気分解の条件にもよるが、0.5重量%未満の場合であっても、複合材の処理を従来の方法より効率的に行うことは可能であるものの、酸化性活性種を含む処理用溶液が過剰に存在するため、無駄が生じる。
The composite material is composed of a resin and a reinforcing material. The resin is not particularly limited as long as it is generally used as a composite material, and examples thereof include a thermosetting resin and a thermoplastic resin. These resins may be used alone or a plurality of resins may be mixed. Examples of the thermosetting resin include an epoxy resin, a bismaleimide resin, a polyimide resin, an unsaturated polyester resin, and a vinyl ester resin. Examples of the thermoplastic resin include super engineering plastics such as polyetheretherketone and polyethersulfone, and general-purpose plastics such as polyester, nylon, polypropylene and polyethylene. A mixture of these, a crystallized product, a heat-treated product, an oriented product, or a product containing a subcomponent of a resin component such as a plasticizer can also be used as the resin of the composite material. The resin of the composite material may be used as an auxiliary component of the resin such as a modifier and a plasticizer.
The reinforcing material is not particularly limited as long as it is generally used as a composite material.Carbon fibers, glass fibers, metal fibers, organic high-strength fibers such as aramid, and organic fibers such as carbon nanotubes and cellulosic nanofibers. There are inorganic nanofibers. These fibers may be used alone, or these fibers may be combined and used as a hybrid fiber. Further, a filler (inorganic filler) may be used as a reinforcing material. However, from the viewpoint of recycling the reinforcing material after treatment with high quality, the composite material is preferably a composite material using continuous long-fiber reinforcing fibers. In addition, the reinforcing material is preferably an inorganic material because there are few fiber defects due to the oxidizing active species. In particular, carbon fiber is more preferable because of its high durability due to the oxidizing active species.
The form of the composite material is not particularly limited, and the composite material may be cut or pulverized in a form suitable for processing, and then processed with a processing solution containing an oxidizing active species.
The composite material is immersed in a treatment solution containing an oxidizing active species obtained by electrolyzing a sulfuric acid solution in an amount of 0.5% by weight or more to decompose the resin into water and carbon dioxide, Can be processed. Although depending on the conditions of the electrolysis of the sulfuric acid solution, even if the amount is less than 0.5% by weight, the treatment of the composite material can be performed more efficiently than the conventional method, but the oxidizing active species is reduced. Since there is an excessive amount of the processing solution, waste occurs.

補強材が繊維状の場合、処理後の補強材をその長さを維持したまま一方向にそろえるか、擬似等方性に配向させるか、ランダムに配列させることが、処理後の補強材を利用した複合材の品質を高める上で好ましい。処理後の補強材を一方向にそろえる方法としては、水中あるいは空気中にて一定形状のノズルの中に処理後の補強材を通して補強材の方向をそろえて束ねる方法等がある。擬似等方性に配向させる方法としては、プログラミング可能なロボット等を使用して、繊維の配向方向を一方向にそろえ、樹脂等で固定化する方法等がある。繊維をランダムに配列させる方法としては、ランダムマット製造機を用いる方法等がある。   When the reinforcing material is fibrous, the processed reinforcing material can be aligned in one direction while maintaining its length, or pseudo-isotropically oriented, or randomly arranged, using the processed reinforcing material. It is preferable in improving the quality of the composite material obtained. As a method of aligning the treated reinforcing materials in one direction, there is a method in which the treated reinforcing materials are passed through a nozzle having a predetermined shape in water or in the air, and the reinforcing materials are aligned in the same direction. As a method of quasi-isotropic orientation, there is a method of using a programmable robot or the like, aligning the orientation directions of the fibers in one direction, and fixing the fibers with a resin or the like. As a method for randomly arranging the fibers, there is a method using a random mat manufacturing machine and the like.

請求項2に記載の発明は、前記補強材が取り出された前記処理用溶液に別の複合材を浸漬することにより、その複合材を構成する樹脂が分解し、分解後の分解物が該処理用溶液に溶解されることを特徴とする請求項1に記載の複合材の処理方法である。   According to a second aspect of the present invention, the resin constituting the composite material is decomposed by immersing another composite material in the processing solution from which the reinforcing material has been taken out, and the decomposed product after the decomposition is subjected to the treatment. The method for treating a composite material according to claim 1, wherein the composite material is dissolved in a solution for use.

請求項3に記載の発明は、前記補強材は、炭素繊維、ガラス繊維、金属繊維、有機系高強度繊維、無機系充填材、金属系充填材、カーボンナノチューブの少なくとも1つから構成される請求項1または請求項2に記載の複合材の処理方法である。   According to a third aspect of the present invention, the reinforcing material comprises at least one of carbon fiber, glass fiber, metal fiber, organic high-strength fiber, inorganic filler, metal filler, and carbon nanotube. A method for treating a composite material according to claim 1 or 2.

請求項4に記載の発明は、前記処理用溶液は、さらに過酸化物が加えられ、その後、所定温度に加熱されたものである請求項1〜3のいずれか1項に記載の複合材の処理方法である。
過酸化物とは、ペルオキシド構造または過カルボン酸構造を有する有機化合物または過酸化物イオンを含む無機化合物であり、過酸化水素やペルオキソ硫酸等がある。過酸化物はフリーラジカルに分解しやすい等化学的に不安定な物質であり、樹脂との反応性が高い。
According to a fourth aspect of the present invention, there is provided the composite material according to any one of the first to third aspects, wherein the processing solution is further added with a peroxide and then heated to a predetermined temperature. Processing method.
The peroxide is an organic compound having a peroxide structure or a percarboxylic acid structure or an inorganic compound containing a peroxide ion, such as hydrogen peroxide or peroxosulfuric acid. Peroxide is a chemically unstable substance that is easily decomposed into free radicals and has high reactivity with a resin.

本発明によれば、硫酸溶液を電気分解することにより得られる酸化性活性種を含む処理用溶液に、複合材を浸漬しさえすれば、酸化性活性種の影響により樹脂が水と二酸化炭素とに分解され、分解物は処理用溶液に溶解される。これにより、環境負荷をかけずに、効率的にかつ補強材の品質を低下させずに複合材を処理することができる。   According to the present invention, as long as the composite material is immersed in a processing solution containing an oxidizing active species obtained by electrolyzing a sulfuric acid solution, the resin becomes water and carbon dioxide under the influence of the oxidizing active species. And the decomposition product is dissolved in the processing solution. Thereby, the composite material can be processed efficiently and without deteriorating the quality of the reinforcing material without imposing an environmental load.

また、請求項2に記載の発明によれば、複合材の処理後の処理用溶液を再利用することにより、さらなる環境負荷の低減に寄与することができる。   According to the second aspect of the present invention, by reusing the processing solution after the processing of the composite material, it is possible to contribute to a further reduction in environmental load.

さらに、請求項4に記載の発明によれば、硫酸溶液の電気分解によって得られる酸化性活性種だけでなく、過酸化物によるフリーラジカルの生成によって、複合材の樹脂の分解速度を速めることができ、その結果、さらに効率的に複合材を処理することができる。また、処理用溶液を加熱することで、複合材の樹脂の分解速度を速める、効率的に複合材を処理することができる。   Furthermore, according to the invention as set forth in claim 4, not only the oxidizing active species obtained by electrolysis of the sulfuric acid solution but also the generation of free radicals by the peroxide can accelerate the decomposition rate of the resin of the composite material. As a result, the composite material can be processed more efficiently. Further, by heating the processing solution, the decomposition rate of the resin of the composite material is increased, and the composite material can be efficiently processed.

以下、本発明を実施例により詳細に説明する。ただし、実施例は本発明の例示であり、本発明は実施例に限定される意図ではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.

(酸化性活性種を含む処理用溶液の作製)
電極面積7cmのダイヤモンド電極を用い、電極を水冷しながら、隔膜式の電解セル内で硫酸水溶液を電気分解して酸化性活性種を含む処理用溶液を作製した。電気分解する硫酸水溶液の量は50〜100mLであった。その後、酸化性活性種の全濃度を測定した。実施例1〜3については、電解セル内の硫酸水溶液を、ポンプ(knf社製ダイアフラム式液体ポンプ SIMDOS FEM1.02KT)を用いて、電解セル内を循環させた。
(Preparation of treatment solution containing oxidizing active species)
Using a diamond electrode having an electrode area of 7 cm 2, an aqueous solution of sulfuric acid was electrolyzed in a diaphragm-type electrolytic cell while cooling the electrode with water to prepare a treatment solution containing an oxidizing active species. The amount of the aqueous sulfuric acid solution to be electrolyzed was 50 to 100 mL. Thereafter, the total concentration of the oxidizing active species was measured. In Examples 1 to 3, the aqueous sulfuric acid solution in the electrolytic cell was circulated in the electrolytic cell using a pump (a diaphragm liquid pump SIMDOS FEM1.02KT manufactured by knf).

酸化性活性種の全濃度は、ヨウ化カリウム(和光純薬工業製試薬)と酸化性活性種とを反応させてヨウ素を遊離させ、ヨウ素の全濃度をチオ硫酸ナトリウム標準溶液(和光純薬工業製試薬)にて滴定することによって測定した。   The total concentration of the oxidizing active species is determined by reacting potassium iodide (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) with the oxidizing active species to release iodine. The reagent was measured by titration.

電気分解の通電条件、硫酸溶液の循環方法、循環速度、電気分解時間を表1にて示す。また、あわせて、酸化性活性種の全濃度を表1に示す。   Table 1 shows the electrolysis conditions, the circulation method of the sulfuric acid solution, the circulation speed, and the electrolysis time. Table 1 also shows the total concentration of the oxidizing active species.

Figure 0006669354
Figure 0006669354

(複合材の処理)
作製した酸化性活性種を含む処理用溶液を用い、複合材を処理溶液に浸漬した。浸漬後に、補強材を処理用溶液から取り出して観察したところ、複合材の樹脂成分は存在しなかった。このことから、複合材を構成する樹脂は完全に分解されたものと認められる。
(Composite processing)
The composite material was immersed in the processing solution using the prepared processing solution containing the oxidizing active species. After the immersion, the reinforcing material was taken out of the processing solution and observed. As a result, no resin component of the composite material was present. From this, it is recognized that the resin constituting the composite material was completely decomposed.

処理用溶液から取り出された補強材について、万能引っ張り試験機(島津製作所製小型卓上試験機EZ TEST−5N)を用いて23℃にて繊維強度を測定した。引っ張り速度は1.5mm/分である。   The fiber strength of the reinforcing material taken out from the treatment solution was measured at 23 ° C. using a universal tensile tester (EZ TEST-5N, a small bench tester manufactured by Shimadzu Corporation). The pulling speed is 1.5 mm / min.

複合材の処理における複合剤の種類、繊維体積含有率、仕込み量、処理温度、処理時間については表2に示す。なお、仕込み量は、複合材の重量を処理用溶液の重量で除したものを百分率で表したものである。また、繊維強度測定の結果を強度比(処理用溶液から取り出された補強材の強度を補強材本来の強度で除した値)として表2に併せて示す。   Table 2 shows the type of composite agent, fiber volume content, charge amount, processing temperature, and processing time in the processing of the composite material. In addition, the charged amount is obtained by dividing the weight of the composite material by the weight of the processing solution and expressing the result in percentage. The results of fiber strength measurement are also shown in Table 2 as strength ratios (values obtained by dividing the strength of the reinforcing material taken out of the processing solution by the original strength of the reinforcing material).

Figure 0006669354
Figure 0006669354

(比較例1)
濃度50重量%の硫酸水溶液1000mLに濃度30wt/vol%過酸化水素水10gを加えて混合溶液を作製した。この混合溶液に複合材を10g投入し、150℃にて5時間処理を行ったが、複合材に変化はなかった。このため、樹脂の分解は生じなかったものと認められる。なお、複合材は、補強材が炭素繊維、樹脂はエポキシ樹脂で加熱成形して得られたものを使用した。
(Comparative Example 1)
A mixed solution was prepared by adding 10 g of a 30 wt / vol% hydrogen peroxide solution to 1000 mL of a 50 wt% sulfuric acid aqueous solution. 10 g of the composite material was added to this mixed solution, and the mixture was treated at 150 ° C. for 5 hours, but there was no change in the composite material. For this reason, it is recognized that decomposition of the resin did not occur. As the composite material, a reinforcing material obtained by heating and molding a carbon fiber and an epoxy resin was used.

(比較例2)
濃度50重量%の硫酸水溶液1000mLを100℃に加熱した状態にて、ペルオキソ二硫酸アンモニウム100gを徐々に添加して、酸化性活性種としてペルオキソ二硫酸を含んだ処理用溶液を作製した。この処理用溶液に比較例1にて使用した複合材と同じ複合材を10g投入し、150℃にて5時間処理を行ったが、複合材に変化はなかった。このため、樹脂の分解は生じなかったものと認められる。
(Comparative Example 2)
100 g of ammonium peroxodisulfate was gradually added in a state in which 1000 mL of a 50% by weight aqueous sulfuric acid solution was heated to 100 ° C., to prepare a treatment solution containing peroxodisulfuric acid as an oxidizing active species. 10 g of the same composite material as used in Comparative Example 1 was added to the treatment solution, and the mixture was treated at 150 ° C. for 5 hours, but there was no change in the composite material. For this reason, it is recognized that decomposition of the resin did not occur.

本発明は、環境負荷をかけずに、効率的に複合材をマテリアルリサイクルするプロセス技術に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a process technology for efficiently recycling a composite material without imposing an environmental burden.

Claims (4)

30〜95重量%の硫酸溶液を、電流密度0.01〜10A/cm 、電圧0.1〜100Vにて電気分解することにより得られた酸化性活性種を含む処理用溶液に、樹脂と補強材とからなる複合材を浸漬することにより、前記樹脂が水と二酸化炭素とに分解し、分解後の分解物が該処理用溶液に溶解され、
その後、前記補強材を前記処理用溶液から取り出すことを特徴とする複合材の処理方法。
30 to 95 wt% of sulfuric acid aqueous solution, the current density 0.01~10A / cm 2, the processing solution containing an oxidizing active species obtained by electrolysis at voltages 0.1~100V, resin By immersing a composite material comprising a reinforcing material, the resin is decomposed into water and carbon dioxide, and the decomposed product is dissolved in the processing solution,
Thereafter, removing the reinforcing material from the processing solution.
前記補強材が取り出された前記処理用溶液に別の複合材を浸漬することにより、その複合材を構成する樹脂が分解し、分解後の分解物が該処理用溶液に溶解されることを特徴とする請求項1に記載の複合材の処理方法。   By immersing another composite material in the processing solution from which the reinforcing material has been taken out, a resin constituting the composite material is decomposed, and a decomposed product after decomposition is dissolved in the processing solution. The method for treating a composite material according to claim 1, wherein 前記補強材は、炭素繊維、ガラス繊維、金属繊維、有機系高強度繊維、無機系充填材、金属系充填材、カーボンナノチューブの少なくとも1つから構成される請求項1または請求項2に記載の複合材の処理方法。   3. The reinforcing material according to claim 1, wherein the reinforcing material comprises at least one of carbon fiber, glass fiber, metal fiber, organic high-strength fiber, inorganic filler, metal filler, and carbon nanotube. 4. How to process composites. 前記処理用溶液は、さらに過酸化物が加えられ、その後、所定温度に加熱されたものである請求項1〜3のいずれか1項に記載の複合材の処理方法。   The method for processing a composite material according to claim 1, wherein the processing solution is further added with a peroxide, and then heated to a predetermined temperature.
JP2016062004A 2016-03-25 2016-03-25 How to process composites Active JP6669354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016062004A JP6669354B2 (en) 2016-03-25 2016-03-25 How to process composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016062004A JP6669354B2 (en) 2016-03-25 2016-03-25 How to process composites

Publications (2)

Publication Number Publication Date
JP2017171830A JP2017171830A (en) 2017-09-28
JP6669354B2 true JP6669354B2 (en) 2020-03-18

Family

ID=59970394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062004A Active JP6669354B2 (en) 2016-03-25 2016-03-25 How to process composites

Country Status (1)

Country Link
JP (1) JP6669354B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203995A (en) * 2019-06-18 2020-12-24 旭化成株式会社 Method of reproducing reinforced material
JP7328019B2 (en) * 2019-06-18 2023-08-16 旭化成株式会社 How to recycle reinforced composites
JP2020203997A (en) * 2019-06-18 2020-12-24 旭化成株式会社 Method of treating reinforced composite material
JP2021014518A (en) * 2019-07-11 2021-02-12 旭化成株式会社 Method for recycling and recovering reinforcement material from reinforced composite material
JP7484407B2 (en) * 2020-05-18 2024-05-16 栗田工業株式会社 Method for starting up an electrolytic sulfuric acid solution production system
CN118076674A (en) * 2021-11-05 2024-05-24 旭化成株式会社 Method for processing composite material and method for manufacturing composite material
JP7382460B1 (en) 2022-07-14 2023-11-16 ニッタ株式会社 Injection molded product and method for manufacturing the same, method for manufacturing composite fiber, CNT-adhered carbon fiber and method for manufacturing the same, and method for manufacturing carbon fiber composite material
WO2024101364A1 (en) * 2022-11-07 2024-05-16 旭化成株式会社 Composite material treatment method, gas and recycling system
WO2024106277A1 (en) * 2022-11-14 2024-05-23 旭化成株式会社 Reinforcement, method for producing reinforcement, method for producing composite material, and composite material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152605A (en) * 1980-04-30 1981-11-26 Nippon Carbon Co Ltd Production of carbon fiber brush
US4923931A (en) * 1987-09-28 1990-05-08 The Dow Chemical Company Oxidation of halogenated polymers
JPH0459986A (en) * 1990-06-28 1992-02-26 Agency Of Ind Science & Technol Production of ammonium peroxydisulfate
JPH06313008A (en) * 1993-04-28 1994-11-08 Mitsubishi Petrochem Co Ltd Decomposition of water absorptive polymer
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP4743404B2 (en) * 2005-09-29 2011-08-10 栗田工業株式会社 Sulfuric acid recycling type cleaning system and sulfuric acid recycling type cleaning method
JP5087325B2 (en) * 2006-06-16 2012-12-05 株式会社東芝 Cleaning system and cleaning method
JP5839412B2 (en) * 2011-04-15 2016-01-06 ハイモ株式会社 Water-soluble ionic polymer and production method thereof
WO2014179939A1 (en) * 2013-05-08 2014-11-13 East China University Of Science And Technology Methods for recovering carbon fiber from carbon-fiber-reinforced polymer (cfrp) composites

Also Published As

Publication number Publication date
JP2017171830A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6669354B2 (en) How to process composites
JP6044946B2 (en) Method for recovering carbon fiber from carbon fiber composite material
KR102251944B1 (en) Graphene oxide nanoplatelet serialization manufacturing method
JP6963501B2 (en) Graphene oxide produced by electrochemically oxidatively cutting the end face of a carbon-based three-dimensional material and its production method.
KR102099714B1 (en) Processes and systems for preparing lithium hydroxide
CN1062032C (en) Chlorine dioxide generation from chloric acid
CN104499039B (en) Recovery method of carbon fibers
CN109371416B (en) Method for recovering bromine from bromine-containing wastewater
JP2021014518A (en) Method for recycling and recovering reinforcement material from reinforced composite material
US20120055807A1 (en) Methods for decomposing partially fluorinated and perfluorinated surfactants
CN108046248A (en) A kind of method for preparing graphene with graphene production waste water
JP7328019B2 (en) How to recycle reinforced composites
JP2020203997A (en) Method of treating reinforced composite material
KR20240055015A (en) Processing method of composite material and manufacturing method of composite material
CN105600772B (en) The graphene oxide and method of electrochemical oxidation cutting carbon system three-dimensional material end face
CN106591871A (en) Method for preparing graphene through electrochemical in-situ oxidation and reduction
CN105714323A (en) Method for rapidly preparing fluorescent carbon quantum dot by using direct-current pulse process
JP2009114557A (en) Uniformly surface-treated carbon fiber and method for producing the same
JP5376152B2 (en) Sulfuric acid electrolysis method
Matsuda et al. Effect of annealing on the separation of resin from CFRP cross-ply laminate via electrical treatment
KR101373522B1 (en) Apparatus for treating high salinity waste water
CN111020614B (en) Method for recycling phosphoric acid by electrolyzing mixed acid solution
WO2024106277A1 (en) Reinforcement, method for producing reinforcement, method for producing composite material, and composite material
Kong et al. Electrochemical Synthesis of Periodate Combined with Indirect Oxidation of Chlorine on RuOx/Ti Electrode
JP2020203995A (en) Method of reproducing reinforced material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200219

R150 Certificate of patent or registration of utility model

Ref document number: 6669354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350