JP2009114557A - Uniformly surface-treated carbon fiber and method for producing the same - Google Patents

Uniformly surface-treated carbon fiber and method for producing the same Download PDF

Info

Publication number
JP2009114557A
JP2009114557A JP2007285731A JP2007285731A JP2009114557A JP 2009114557 A JP2009114557 A JP 2009114557A JP 2007285731 A JP2007285731 A JP 2007285731A JP 2007285731 A JP2007285731 A JP 2007285731A JP 2009114557 A JP2009114557 A JP 2009114557A
Authority
JP
Japan
Prior art keywords
carbon fiber
electrolytic
electrolyte
electrolytic solution
electrolytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007285731A
Other languages
Japanese (ja)
Inventor
Takaya Suzuki
貴也 鈴木
Kiyoto Sasaki
清人 佐々木
Hidekazu Yoshikawa
秀和 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2007285731A priority Critical patent/JP2009114557A/en
Publication of JP2009114557A publication Critical patent/JP2009114557A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber that has a surface uniformly treated by electrolytic oxidation and excellent surface adhesiveness, and to provide a method for producing the same. <P>SOLUTION: The method for producing a carbon fiber includes applying a voltage between a traveling carbon fiber as a positive terminal and a negative terminal by an electrolytic oxidation apparatus having an electrolytic bath 3 storing an electrolyte 7, a positive terminal roller 11 arranged above the water surface of the electrolyte 7, immersion rollers 13 and 15 for continuously immersing a carbon fiber 9 passed from the positive terminal roller in the electrolyte in the electrolytic bath, a guide roller 17 that pulls up the carbon fiber 9 from the electrolyte 7 and is arranged above the water surface of the electrolyte, the negative terminal 5 that is immersed in the electrolyte 7 in the electrolytic bath 3 and arranged on the rear side of a bath immersion position A to the electrolyte of carbon fiber in the traveling direction of carbon fiber and carrying out electrolytic oxidation of carbon fiber in a surface treatment electric quantity in a range of 3 C/g-8.5 C/g. The carbon fiber obtained by the method is a carbon fiber having a reduced treatment unevenness between the inside and the outside of fiber bundle and having a high impregnation with a matrix resin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電解酸化処理法により得られる界面接着性に優れた炭素繊維とその製造方法に関する。   The present invention relates to a carbon fiber excellent in interfacial adhesion obtained by an electrolytic oxidation method and a method for producing the same.

熱硬化性樹脂や熱可塑性樹脂を炭素繊維で補強した炭素繊維複合材料は、引張強度・引張弾性率が高く、耐熱性、疲労特性に優れるなどの優れた特長を有しており、スポーツ・レジャー、航空・宇宙等の分野で幅広く用いられている。   Carbon fiber composites reinforced with carbon fibers of thermosetting resins and thermoplastic resins have excellent features such as high tensile strength and tensile modulus, and excellent heat resistance and fatigue properties. Widely used in fields such as aviation and space.

炭素繊維は、アクリル繊維等の原料繊維を、空気中で200〜300℃に加熱することにより耐炎繊維とした後、不活性ガス雰囲気中1000℃以上で焼成することにより製造される。   Carbon fiber is manufactured by heating raw fiber such as acrylic fiber to 200 to 300 ° C. in the air to make it flame resistant fiber, and then firing at 1000 ° C. or higher in an inert gas atmosphere.

炭素繊維複合材料の強度・弾性率等の機械的特性は、炭素繊維とマトリックス樹脂との親和性や接着性により大きな影響を受ける。そのため、耐炎化工程、炭素化工程を経た後、マトリックス樹脂との親和性を高めることを目的として炭素繊維の表面に含酸素官能基を導入する酸化処理が一般に行われる。   Mechanical properties such as strength and elastic modulus of the carbon fiber composite material are greatly influenced by the affinity and adhesion between the carbon fiber and the matrix resin. Therefore, after passing through the flameproofing step and the carbonization step, an oxidation treatment for introducing oxygen-containing functional groups into the surface of the carbon fiber is generally performed for the purpose of increasing the affinity with the matrix resin.

炭素繊維表面の酸化処理としては、液相における薬液酸化・電解酸化、気相酸化などの方法で処理することが知られている。これら表面処理のうち、生産性が高く、処理が均一に行える等の理由により、液相における電解酸化処理が広く採用されている。液相電解酸化処理は、電解質水溶液中で陽極としての炭素繊維と、負極との間に電圧を印加することにより、炭素繊維を電解酸化する処理方法である。   As the oxidation treatment of the carbon fiber surface, it is known to treat by a method such as chemical liquid oxidation / electrolytic oxidation or gas phase oxidation in a liquid phase. Among these surface treatments, electrolytic oxidation treatment in a liquid phase has been widely adopted because of high productivity and uniform treatment. The liquid phase electrolytic oxidation treatment is a treatment method in which carbon fiber is electrolytically oxidized by applying a voltage between a carbon fiber as an anode and a negative electrode in an aqueous electrolyte solution.

炭素繊維は、その製造工程において1,000〜80,000本程度の束形状に製造される。通常の条件で電解酸化処理装置により電解酸化処理した炭素繊維は、束の外側に位置する繊維の酸化状態に比較して内側に位置する繊維の酸化状態が不十分となり、表面の酸化状態にばらつきがある。表面の酸化処理が均一でない炭素繊維をマトリックス樹脂に配合した場合には、炭素繊維の表面の官能基が少ない部分とマトリックス樹脂との接着が不十分となり、高いコンポジット物性を示す複合材料が得られない。   Carbon fibers are manufactured in a bundle shape of about 1,000 to 80,000 in the manufacturing process. Carbon fibers that have been electrolytically oxidized using an electrolytic oxidation treatment device under normal conditions have an insufficient oxidation state of the fibers located inside compared to the oxidation state of the fibers located outside the bundle, and the surface oxidation state varies. There is. When carbon fiber with non-uniform surface oxidation treatment is blended with the matrix resin, the adhesion between the part of the carbon fiber surface with few functional groups and the matrix resin is insufficient, and a composite material with high composite properties can be obtained. Absent.

表面処理の不均一性を解決するために、特開2002−38368号公報には、炭素繊維束を均一に表面酸化処理する処理装置が記載されている。この処理装置は、2つの陽極槽の間に陰極槽を配設し、上流側の陽極槽で炭素繊維に電解液を含浸させた後、陰極槽と下流側の陽極槽の液面に接触させて炭素繊維を走行させることにより炭素繊維の酸化処理を行うものである。この装置は3つの電解槽が必要であり、より簡便な装置が求められている。   In order to solve the non-uniformity of the surface treatment, Japanese Patent Application Laid-Open No. 2002-38368 describes a treatment apparatus that uniformly oxidizes carbon fiber bundles. In this processing apparatus, a cathode tank is disposed between two anode tanks, and after impregnating carbon fiber with an electrolyte in the upstream anode tank, the cathode tank and the downstream anode tank are brought into contact with the liquid surface. The carbon fiber is oxidized by running the carbon fiber. This apparatus requires three electrolytic cells, and a simpler apparatus is required.

表面処理の不均一性を解決するために、断続的に炭素繊維束に電圧を印加し、炭素繊維束内部の拡散効率を向上させ、陽極酸化させる方法が提案されている(特許文献2〜4など)。何れも、炭素繊維束内部と外周部間の処理斑の低減に繋がる。しかし、断続的に処理を行うために、炭素繊維束の内部と外周部間の処理斑は低減するが、炭素繊維長手方向、機幅方向での斑の改善までには至ってない。   In order to solve the non-uniformity of the surface treatment, methods have been proposed in which a voltage is intermittently applied to the carbon fiber bundle to improve the diffusion efficiency inside the carbon fiber bundle and anodize (Patent Documents 2 to 4). Such). Any of them leads to reduction of processing spots between the carbon fiber bundle inside and the outer periphery. However, in order to perform processing intermittently, the processing spots between the inside and the outer periphery of the carbon fiber bundle are reduced, but the improvement in the spots in the carbon fiber longitudinal direction and the machine width direction has not been achieved.

また、特許文献5には、還元電気量を酸化電気量と還元電気量との和で除した値である還元率を0.001〜0.5とし、炭素繊維表面の陽極酸化と陰極還元を周期的に繰り返すことにより均一な処理効果が得られることが記載されている。しかし得られた繊維束は、界面せん断力で示される接着力のバラツキが30%であるに過ぎず、均一処理が不十分である。
特開2002−38368号公報(図1) 特開昭63−264967号公報(特許請求の範囲) 特開平7−189113号公報(特許請求の範囲) 特開平1−298275号公報(図1) 特開平10−266066号公報(特許請求の範囲)
In Patent Document 5, the reduction rate, which is a value obtained by dividing the amount of reduced electricity by the sum of the amount of oxidized electricity and the amount of reduced electricity, is set to 0.001 to 0.5, and anodization and cathodic reduction on the carbon fiber surface It is described that a uniform treatment effect can be obtained by repeating periodically. However, the obtained fiber bundle has only a 30% variation in adhesive force indicated by the interfacial shear force, and the uniform treatment is insufficient.
JP 2002-38368 A (FIG. 1) JP 63-264967 A (Claims) JP-A-7-189113 (Claims) JP-A-1-298275 (FIG. 1) JP-A-10-266066 (Claims)

本発明の目的は、表面が均一に酸化処理され、マトリックス樹脂に配合したときに高いコンポジット物性を示す炭素繊維が得られる炭素繊維および炭素繊維の製造方法を提供することにある。   An object of the present invention is to provide a carbon fiber and a method for producing the carbon fiber in which the surface is uniformly oxidized and carbon fibers exhibiting high composite properties when blended in a matrix resin are obtained.

本発明者は鋭意検討を行った結果、電解酸化処理装置における炭素繊維の電解液への浴入り位置に対する負極位置と、炭素繊維表面の酸化処理状態との間に一定の関係が存在することを見出した。更に、負極位置を所定の位置に設けた装置を用いて表面処理を行った炭素繊維は、表面の酸化状態のばらつきが極めて少ないものであることを知得し、本発明を完成するに到った。   As a result of intensive studies, the present inventor has found that there is a certain relationship between the position of the negative electrode relative to the position of the carbon fiber in the electrolytic solution bathed in the electrolytic oxidation treatment apparatus and the oxidation treatment state of the carbon fiber surface. I found it. Furthermore, it was found that carbon fibers that had been subjected to surface treatment using a device in which the negative electrode position was provided at a predetermined position had very little variation in the oxidation state of the surface, and the present invention was completed. It was.

即ち、上記課題を解決する本発明は、以下に記載するものである。   That is, the present invention that solves the above problems is described below.

〔1〕 X線光電子分光法により測定される表面酸素濃度O/Cが0.05〜0.15、サイクリックボルタンメトリー(Cyclic Voltammetry)法により測定される炭素繊維の表面特性Ipaが0.16〜0.25であり、サイクリックボルタンメトリー法により測定される炭素繊維表面処理度合いのバラツキが6%以下であることを特徴とする炭素繊維。   [1] Surface oxygen concentration O / C measured by X-ray photoelectron spectroscopy is 0.05 to 0.15, and surface property Ipa of carbon fiber measured by cyclic voltammetry is 0.16 to 0.16. A carbon fiber having a variation of the carbon fiber surface treatment degree of 0.25, measured by a cyclic voltammetry method, of 6% or less.

〔2〕 電解液が貯留してある電解槽と、前記電解槽の電解液水面上方に配設された陽極ローラと、前記陽極ローラを通過した炭素繊維を連続的に前記電解槽内の電解液に浸漬させる浸漬ローラと、電解液から炭素繊維を引き上げる電解液水面上方に配設されたガイドローラと、前記電解槽内に電解液に浸漬され、炭素繊維の走行方向において炭素繊維の電解液への浴入り位置より後方側に配設されている負極と、を有する炭素繊維用電解酸化処理装置で、走行する炭素繊維を陽極として負極との間に電圧を印加し、表面処理電気量 3〜8.5 C/gの範囲で炭素繊維を電解酸化処理することを特徴とする〔1〕に記載の炭素繊維の製造方法。   [2] An electrolytic bath in which an electrolytic solution is stored, an anode roller disposed above the electrolytic solution water surface of the electrolytic bath, and a carbon fiber that has passed through the anode roller are continuously fed into the electrolytic solution in the electrolytic bath. An immersion roller immersed in the electrolyte, a guide roller disposed above the surface of the electrolytic solution for pulling up the carbon fiber from the electrolytic solution, and immersed in the electrolytic solution in the electrolytic bath, into the electrolytic solution of the carbon fiber in the running direction of the carbon fiber And a negative electrode disposed on the rear side of the bathing position of the carbon fiber, and applying a voltage between the negative electrode with the traveling carbon fiber as an anode, and having a surface treatment quantity of electricity 3 to The method for producing carbon fiber according to [1], wherein the carbon fiber is electrolytically oxidized in a range of 8.5 C / g.

〔3〕 負極が電解液に浸漬されて走行する炭素繊維の下方に配設される炭素繊維用電解酸化処理装置を用いる〔2〕に記載の炭素繊維の製造方法。   [3] The carbon fiber production method according to [2], wherein the carbon fiber electrolytic oxidation treatment device is used, which is disposed below the carbon fiber that travels while the negative electrode is immersed in an electrolytic solution.

本発明で用いる電解酸化処理装置は、電解槽内に、負極が炭素繊維の走行方向において炭素繊維の電解液への浴入り位置より後方側に配設されている。その結果、炭素繊維の酸化処理が緩やかに行われ、炭素繊維の表面が均一に酸化処理される。この装置で表面処理される本発明の炭素繊維束は、内部に存在する繊維と外周部に存在する繊維間での処理斑が極めて少ない。装置の陽極と陰極の間に印加される電圧は常時一定であるので、炭素繊維束の繊維方向間で生じる処理斑も極めて少ない。更に、多数の炭素繊維束を平行に走行させて同時に表面処理する場合には、炭素繊維間での表面処理状態のばらつきが少ない。本発明の炭素繊維は表面処理状態にばらつきが少なく樹脂との親和性が高いので、熱硬化性樹脂や熱可塑性樹脂に配合することにより機械的強度の高い炭素繊維複合材料を得ることができる。   In the electrolytic oxidation treatment apparatus used in the present invention, the negative electrode is disposed in the electrolytic cell on the rear side from the bathing position of the carbon fiber in the electrolytic solution in the running direction of the carbon fiber. As a result, the oxidation treatment of the carbon fiber is performed slowly, and the surface of the carbon fiber is uniformly oxidized. The carbon fiber bundle of the present invention, which is surface-treated with this apparatus, has very few treatment spots between the fibers present inside and the fibers present on the outer periphery. Since the voltage applied between the anode and the cathode of the apparatus is always constant, there are very few processing spots occurring between the fiber directions of the carbon fiber bundle. Furthermore, when a large number of carbon fiber bundles are run in parallel and simultaneously surface-treated, there is little variation in the surface treatment state between the carbon fibers. Since the carbon fiber of the present invention has little variation in the surface treatment state and high affinity with a resin, a carbon fiber composite material having high mechanical strength can be obtained by blending with a thermosetting resin or a thermoplastic resin.

本発明で使用する電解酸化処理装置の一例の概略構成図を図1に示す。   FIG. 1 shows a schematic configuration diagram of an example of an electrolytic oxidation treatment apparatus used in the present invention.

図1中、1は電解酸化処理装置で、3は電解槽である。電解槽3は内部に浸漬ローラ13、15と、負極5とを備えている。電解槽3内には硫酸等の電解液7が貯留されており、浸漬ローラ13、15の下部側と負極5は電解液7に浸漬された状態となっている。浸漬ローラ13、15は直径が同一に形成され、同じ高さに取り付けられている。   In FIG. 1, 1 is an electrolytic oxidation treatment apparatus, and 3 is an electrolytic cell. The electrolytic cell 3 includes immersion rollers 13 and 15 and a negative electrode 5 inside. An electrolytic solution 7 such as sulfuric acid is stored in the electrolytic bath 3, and the lower side of the immersion rollers 13 and 15 and the negative electrode 5 are immersed in the electrolytic solution 7. The immersion rollers 13 and 15 have the same diameter and are attached at the same height.

電解槽3の上方には、炭素繊維9の走行方向の前方側に陽極ローラ11が、後方側にガイドローラ17が設けられている。陽極ローラ11はその表面が+に帯電した金属ローラで、不図示の電源から電解電流が供給される。炭素繊維9は、陽極ローラ11を通過した後、浸漬ローラ13、15に導かれて電解液に浸漬される。炭素繊維9は導電性が高いので、電解液中で陽極として作用する。陽極ローラ11と負極5との間に電圧を印可することにより炭素繊維の表面が電解酸化され、カルボキシル基、カルボニル基等の含酸素官能基が炭素繊維表面に導入される。表面が電解酸化処理された炭素繊維9は浸漬ローラ13、15を通過した後、ガイドローラ17により電解液7から引き上げられ、電解酸化処理が終了する。   Above the electrolytic cell 3, an anode roller 11 is provided on the front side in the traveling direction of the carbon fiber 9, and a guide roller 17 is provided on the rear side. The anode roller 11 is a metal roller whose surface is positively charged, and an electrolytic current is supplied from a power source (not shown). After passing through the anode roller 11, the carbon fiber 9 is guided to the immersion rollers 13 and 15 and immersed in the electrolytic solution. Since the carbon fiber 9 has high conductivity, it acts as an anode in the electrolytic solution. When a voltage is applied between the anode roller 11 and the negative electrode 5, the surface of the carbon fiber is electrolytically oxidized, and oxygen-containing functional groups such as a carboxyl group and a carbonyl group are introduced to the carbon fiber surface. The carbon fiber 9 whose surface has been subjected to electrolytic oxidation treatment passes through the immersion rollers 13 and 15 and then is pulled up from the electrolytic solution 7 by the guide roller 17, and the electrolytic oxidation treatment is completed.

電解酸化処理装置1において、負極5は炭素繊維9が電解液7に液没する浴入り位置Aより炭素繊維9の走行方向において後方かつ電解液に液没している炭素繊維9の下方に配置されている。負極5を浴入り位置Aより後方に配置することにより、浴入りした炭素繊維の酸化反応が緩やかとなり、炭素繊維の表面は均一に電解酸化処理される。   In the electrolytic oxidation treatment apparatus 1, the negative electrode 5 is disposed behind the carbon fiber 9 where the carbon fiber 9 is immersed in the electrolytic solution 7 and behind the carbon fiber 9 where the carbon fiber 9 is immersed in the electrolytic solution. Has been. By disposing the negative electrode 5 behind the bathing position A, the oxidation reaction of the bathed carbon fiber becomes slow, and the surface of the carbon fiber is uniformly electrolytically oxidized.

負極5の配設位置は、炭素繊維の浴入り位置Aより炭素繊維の走行方向の後方側であれば特に制限されない。炭素繊維が浴入り後、3〜20秒後、より好ましくは8〜20秒後に負極5の上方を通過するように、負極5の配設位置を調節することが好ましい。なお、炭素繊維の走行速度は、通常50〜600m/h程度である。   The position where the negative electrode 5 is disposed is not particularly limited as long as it is located behind the carbon fiber bathing position A in the running direction of the carbon fiber. It is preferable to adjust the position of the negative electrode 5 so that the carbon fiber passes over the negative electrode 5 after 3 to 20 seconds, more preferably after 8 to 20 seconds after entering the bath. The running speed of the carbon fiber is usually about 50 to 600 m / h.

上記説明においては、浸漬ローラ13、15の上部側が電解液の液面より高い場合について説明したが、浸漬ローラは全体が完全に液没していてもよい。ローラー巻付きのトラブル防止の観点から、浸漬ローラ13、15の上部側は液面より高い方が好ましい。具体的には、浸漬ローラ13、15は、その直径の好ましくは50〜80%、より好ましくは60〜70%が液面より高く取り付けられている。   In the above description, the case where the upper side of the immersion rollers 13 and 15 is higher than the liquid level of the electrolytic solution has been described. However, the entire immersion roller may be completely submerged. From the viewpoint of preventing troubles caused by winding the roller, the upper side of the immersion rollers 13 and 15 is preferably higher than the liquid level. Specifically, the immersion rollers 13 and 15 are mounted such that the diameter thereof is preferably 50 to 80%, more preferably 60 to 70% higher than the liquid level.

炭素繊維の電解酸化処理に用いる電解液7としては、硫酸、硝酸、塩酸等の無機酸や、水酸化ナトリウム、水酸化カリウムなどの無機水酸化物、硫酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩類などの電解質水溶液を挙げることができる。   Examples of the electrolytic solution 7 used for the electrolytic oxidation treatment of carbon fiber include inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid, inorganic hydroxides such as sodium hydroxide and potassium hydroxide, inorganic substances such as ammonium sulfate, sodium carbonate and sodium hydrogen carbonate. Examples include aqueous electrolyte solutions such as salts.

本発明で電解酸化処理する炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維の他、石油・石炭ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維も使用することができる。   As the carbon fiber to be subjected to electrolytic oxidation treatment in the present invention, any carbon fiber such as petroleum / coal pitch-based, rayon-based, lignin-based, etc. can be used in addition to polyacrylonitrile (PAN) -based carbon fiber.

炭素繊維9は、通常、直径4〜8μmのフィラメントが1000〜80000本程度集合した束形状に製造される。本発明の処理装置では、上記繊維径、フィラメント数に限定されず、いかなる繊維径、フィラメント数のものでも処理することが可能である。   The carbon fibers 9 are usually manufactured in a bundle shape in which about 1000 to 80000 filaments having a diameter of 4 to 8 μm are gathered. In the processing apparatus of this invention, it is not limited to the said fiber diameter and the number of filaments, It is possible to process what kind of fiber diameter and number of filaments.

炭素繊維9に通電する電気量は、電解液7に使用する電解質の種類や炭素繊維9の弾性率等の条件に応じて表面酸素濃度比O/C、Ipa値から適宜決定すればよい。例えば、電解液に硫酸アンモニウム水溶液を用いて弾性率24tonf/mmの炭素繊維の電解酸化処理を行う場合には、炭素繊維に通電する電気量を3〜8.5C/gとすることが好ましく、4〜7C/gとすることがより好ましい。 The amount of electricity applied to the carbon fiber 9 may be appropriately determined from the surface oxygen concentration ratio O / C and the Ipa value according to conditions such as the type of electrolyte used in the electrolytic solution 7 and the elastic modulus of the carbon fiber 9. For example, when an electrolytic oxidation treatment of carbon fiber having an elastic modulus of 24 ton / mm 2 using an aqueous ammonium sulfate solution as an electrolytic solution, it is preferable that the amount of electricity applied to the carbon fiber is 3 to 8.5 C / g. It is more preferable to set it as 4-7 C / g.

炭素繊維9の電解酸化処理温度は10〜80℃の範囲とするが、20〜50℃とすることが好ましい。   The electrolytic oxidation treatment temperature of the carbon fiber 9 is in the range of 10 to 80 ° C, but preferably 20 to 50 ° C.

炭素繊維の表面処理を行う際の指標としては、X線光電子分光法(ESCA)を用いて測定できる炭素繊維の表面酸素濃度比(O/C)により管理するのが良い。本発明の炭素繊維束を熱硬化性樹脂に配合して複合材料とする場合には、O/Cが、0.05〜0.15となるように電解酸化処理することが好ましい。   As an index for the surface treatment of the carbon fiber, it is preferable to manage it by the surface oxygen concentration ratio (O / C) of the carbon fiber that can be measured using X-ray photoelectron spectroscopy (ESCA). When the carbon fiber bundle of the present invention is blended with a thermosetting resin to form a composite material, it is preferable to perform electrolytic oxidation treatment so that O / C is 0.05 to 0.15.

O/Cが0.05より低いと表面処理効果が十分ではなく、マトリックス樹脂との接着性が低下してしまい、複合材料は安定した機械的特性が得られない。一方、O/Cが0.15より高いと炭素繊維の表面が過度に酸化され、繊維自体が脆弱になるため安定した機械的特性が得られない。   If the O / C is lower than 0.05, the surface treatment effect is not sufficient, the adhesiveness with the matrix resin is lowered, and the composite material cannot obtain stable mechanical properties. On the other hand, if O / C is higher than 0.15, the surface of the carbon fiber is excessively oxidized and the fiber itself becomes brittle, so that stable mechanical properties cannot be obtained.

表面酸素濃度O/Cが0.05〜0.15、サイクリックボルタンメトリー(Cyclic Voltammetry)法により測定されるIpaが0.16〜0.25、後述する実施例に記載の方法により測定される表面処理度合いのバラツキが6%以下の本発明の炭素繊維は、上述した電解酸化処理装置を用い、表面処理電気量3〜8.5C/gで表面処理を行うことにより得ることができる。   Surface oxygen concentration O / C is 0.05 to 0.15, Ipa measured by the cyclic voltammetry method is 0.16 to 0.25, surface measured by the method described in Examples described later The carbon fiber of the present invention having a treatment degree variation of 6% or less can be obtained by performing a surface treatment using the above-described electrolytic oxidation treatment apparatus with a surface treatment electricity of 3 to 8.5 C / g.

本発明の炭素繊維束は、炭素繊維表面特性Ipaの値を0.16〜0.25とするが、好ましくは 0.16 〜 0.22、より好ましくは 0.16 〜 0.20 である。Ipaが0.16より低いと表面処理効果が十分ではなく、マトリックス樹脂との接着性が低下してしまい、複合材料は安定した機械的特性が得られない。一方、Ipaが0.25より高いと炭素繊維の表面が過度に酸化され、繊維自体が脆弱になるため安定した機械的特性が得られない。   The carbon fiber bundle of the present invention has a carbon fiber surface property Ipa value of 0.16 to 0.25, preferably 0.16 to 0.22, and more preferably 0.16 to 0.20. When Ipa is lower than 0.16, the surface treatment effect is not sufficient, the adhesiveness with the matrix resin is lowered, and the composite material cannot obtain stable mechanical properties. On the other hand, if Ipa is higher than 0.25, the surface of the carbon fiber is excessively oxidized and the fiber itself becomes brittle, so that stable mechanical properties cannot be obtained.

本発明の炭素繊維束は、サイクリックボルタンメトリー法により測定される炭素繊維表面処理度合いのバラツキが6%以下であるが、好ましくは5%以下、より好ましくは4%以下である。炭素繊維表面処理度合いのバラツキが6%より高いと、炭素繊維の表面の官能基が少ない部分とマトリックス樹脂との接着が不十分となり、マトリックス樹脂との接着状態が悪くなり、優れた機械的特性が得られない。炭素繊維表面処理度合いのバラツキは少ないほどマトリックス樹脂に配合したときに機械的強度が高い複合材料とすることができる。そのため、表面処理度合いのバラツキに特に下限値は設定していないが、上記装置を用いた表面処理により得られる炭素繊維束は、表面処理度合いのバラツキが最も少ない場合で2%程度である。   The carbon fiber bundle of the present invention has a carbon fiber surface treatment variation of 6% or less measured by a cyclic voltammetry method, preferably 5% or less, more preferably 4% or less. If the dispersion of the carbon fiber surface treatment degree is higher than 6%, the adhesion between the part of the carbon fiber surface with few functional groups and the matrix resin becomes insufficient, the adhesion state with the matrix resin becomes poor, and excellent mechanical properties. Cannot be obtained. The smaller the variation in the degree of carbon fiber surface treatment, the higher the mechanical strength when blended in the matrix resin. Therefore, although the lower limit is not particularly set for the variation in the degree of surface treatment, the carbon fiber bundle obtained by the surface treatment using the above apparatus is about 2% when the variation in the degree of surface treatment is the smallest.

以下に示す実施例、比較例の方法により、炭素繊維ストランドの表面処理を行った。各実施例及び比較例では、電解酸化処理後の炭素繊維を上述の方法で、表面酸素濃度比O/C、炭素繊維表面特性Ipa、炭素繊維表面処理度合いのバラツキ、炭素繊維のストランド強度及び弾性率、IPSSを測定した。   The surface treatment of the carbon fiber strand was performed by the methods of Examples and Comparative Examples shown below. In each of the examples and comparative examples, the carbon fiber after electrolytic oxidation treatment was subjected to the surface oxygen concentration ratio O / C, the carbon fiber surface property Ipa, the variation in the carbon fiber surface treatment degree, the strand strength and elasticity of the carbon fiber. The rate and IPSS were measured.

〔表面酸素濃度比O/Cの測定〕
日本電子社製X線光電子分光器(ESCA JPS−9000MX)を用いて測定を行った。炭素繊維ストランドを10−6Paに減圧した測定室に入れ、Mgを対極として電子線加速電圧10kV、10mAの条件で発生させたX線を照射した。酸素原子、炭素原子より発生する光電子のスペクトルからその面積比を算出し、表面酸素濃度比O/Cとした。
[Measurement of surface oxygen concentration ratio O / C]
The measurement was performed using an X-ray photoelectron spectrometer (ESCA JPS-9000MX) manufactured by JEOL Ltd. The carbon fiber strand was put in a measurement chamber whose pressure was reduced to 10 −6 Pa, and irradiated with X-rays generated under conditions of an electron beam acceleration voltage of 10 kV and 10 mA using Mg as a counter electrode. The area ratio was calculated from the spectrum of photoelectrons generated from oxygen atoms and carbon atoms, and was defined as the surface oxygen concentration ratio O / C.

〔サイクリックボルタンメトリー法による炭素繊維表面特性Ipaの測定方法〕
燐酸を用いて電気伝導度90mS/cmの燐酸水溶液を作製した。参照電極としてAg/AgCl電極、対極として十分な表面積を有する白金電極、作動電極として炭素繊維束を使用した。
[Measurement of carbon fiber surface property Ipa by cyclic voltammetry]
A phosphoric acid aqueous solution having an electric conductivity of 90 mS / cm was prepared using phosphoric acid. An Ag / AgCl electrode was used as the reference electrode, a platinum electrode having a sufficient surface area as the counter electrode, and a carbon fiber bundle as the working electrode.

電位操作範囲は−0.2V〜0.8Vとし、電位操作速度は、5mV/secとした。3回以上掃引させ、電位―電流曲線を描いた。電位―電流曲線が安定した段階で、Ag/AgCl電極に対して、+0.4Vでの電位を標準にとって電流値を読み取った。   The potential operation range was −0.2 V to 0.8 V, and the potential operation speed was 5 mV / sec. A potential-current curve was drawn by sweeping three times or more. When the potential-current curve was stabilized, the current value was read with respect to the Ag / AgCl electrode with the potential at +0.4 V as the standard.

次式に従い、炭素繊維表面特性Ipaを算出した。
Ipa[μA/cm2]=電流値[μA]/試料長[cm]×{4π・目付[g/m]・フィラメント数/密度[g/cm3]}1/2
The carbon fiber surface property Ipa was calculated according to the following formula.
Ipa [μA / cm 2 ] = current value [μA] / sample length [cm] × {4π, basis weight [g / m], filament number / density [g / cm 3 ]} 1/2

〔炭素繊維表面処理度合いのバラツキ〕
本発明における炭素繊維表面処理度合いのバラツキIpaを求めるために、炭素繊維束を2本以上に分繊し、それぞれについてIpaを測定した。分繊した各炭素繊維束のIpa測定値から、Ipaのバラツキとして、その標準偏差の平均値に対する割合、即ちC.V.値を求めた。
[Variation in the degree of carbon fiber surface treatment]
In order to obtain the variation Ipa of the carbon fiber surface treatment degree in the present invention, the carbon fiber bundle was divided into two or more, and Ipa was measured for each. From the Ipa measurement value of each split carbon fiber bundle, the ratio of the standard deviation to the average value, that is, the CV value was obtained as Ipa variation.

〔炭素繊維のストランド強度及び弾性率の測定方法〕
炭素繊維の樹脂含浸ストランド強度は、JIS R 7601に規定された方法により測定した。密度は、アルキメデス法により測定し、試料繊維はアセトン中にて脱泡処理し測定した。
[Measurement method of strand strength and elastic modulus of carbon fiber]
The resin-impregnated strand strength of the carbon fiber was measured by the method defined in JIS R7601. The density was measured by Archimedes method, and the sample fiber was defoamed in acetone and measured.

〔面内せん断応力(IPSS)〕
また、電解酸化処理後の炭素繊維束を用い、炭素繊維束を一方向に引きそろえて並べ、炭素繊維シートを得た。得られた炭素繊維シートにエポキシ樹脂(東邦テナックス社製、#135、硬化温度180℃)を含浸させた後、80〜100℃に加熱してエポキシ樹脂を予備重合させ、一方向プリプレグを得た。次いで、得られた一方向プリプレグ8枚を繊維の方向が順に[+45/−45/−45/+45/+45/−45/−45/+45]となるように積層し、炭素繊維束の含有量が体積含有率で60%である、繊維強化プラスチック板材を製造した。
[In-plane shear stress (IPSS)]
Moreover, using the carbon fiber bundle after the electrolytic oxidation treatment, the carbon fiber bundle was aligned in one direction to obtain a carbon fiber sheet. The obtained carbon fiber sheet was impregnated with an epoxy resin (manufactured by Toho Tenax Co., Ltd., # 135, curing temperature 180 ° C.) and then heated to 80 to 100 ° C. to prepolymerize the epoxy resin to obtain a unidirectional prepreg. . Subsequently, the obtained eight unidirectional prepregs were laminated so that the fiber direction was [+ 45 / −45 / −45 / + 45 / + 45 / −45 / −45 / + 45] in order, and the content of the carbon fiber bundle Produced a fiber reinforced plastic sheet having a volume content of 60%.

得られた試験片を用いて、JIS K 7079に記載の±45°方向引張法に従って、面内せん断応力(IPSS)を測定した。   Using the obtained test piece, in-plane shear stress (IPSS) was measured according to a ± 45 ° direction tensile method described in JIS K 7079.

実施例1
図1に示す電解酸化処理装置を用い、炭素繊維ストランド(400tex、フィラメント数:6K)の電解処理を行った。電解槽には、長さ3400mm、幅3600mm、深さ250mmのものを使用し、浸漬ローラ13、15間の距離を2800mmとした。浸漬ローラ13、15の下方2cmに100cm×3600cmの負極5を長手方向が炭素繊維ストランドの繊維軸方向に対して垂直になるように配置した。電解液には10%硫酸アンモニウムを使用した。平行に並べた複数本の炭素繊維ストランドを処理装置に供給し、表面処理電気量を4.75C/gとし、表1に示す条件で電解酸化を行った。炭素繊維の電解液への浸漬時間は、22秒であった。なお、炭素繊維ストランドが浴入り後、負極5の上方に到達するまでに要した時間は18秒であった。
Example 1
The electrolytic treatment of the carbon fiber strand (400 tex, the number of filaments: 6K) was performed using the electrolytic oxidation treatment apparatus shown in FIG. The electrolytic cell having a length of 3400 mm, a width of 3600 mm, and a depth of 250 mm was used, and the distance between the immersion rollers 13 and 15 was 2800 mm. A negative electrode 5 of 100 cm × 3600 cm was disposed 2 cm below the dipping rollers 13 and 15 so that the longitudinal direction was perpendicular to the fiber axis direction of the carbon fiber strand. The electrolyte used was 10% ammonium sulfate. A plurality of carbon fiber strands arranged in parallel were supplied to the treatment apparatus, and the surface treatment electricity was 4.75 C / g, and electrolytic oxidation was performed under the conditions shown in Table 1. The immersion time of the carbon fiber in the electrolytic solution was 22 seconds. The time required for the carbon fiber strand to reach the upper side of the negative electrode 5 after entering the bath was 18 seconds.

実施例2
表面処理電気量を3 C/gとし、電解酸化を行った以外は、実施例1と同様の方法で炭素繊維ストランドの電解酸化処理を行った。
Example 2
The carbon fiber strand was subjected to electrolytic oxidation treatment in the same manner as in Example 1 except that the surface treatment electricity was 3 C / g and electrolytic oxidation was performed.

実施例3
表面処理電気量を6 C/gとし、電解酸化を行った以外は、実施例1と同様の方法で炭素繊維ストランドの電解酸化処理を行った。
Example 3
The carbon fiber strand was subjected to electrolytic oxidation treatment in the same manner as in Example 1 except that the surface treatment electricity was 6 C / g and electrolytic oxidation was performed.

実施例4
表面処理電気量を8 C/gとし、電解酸化を行った以外は、実施例1と同様の方法で炭素繊維ストランドの電解酸化処理を行った。
Example 4
The carbon fiber strand was subjected to electrolytic oxidation treatment in the same manner as in Example 1 except that the surface treatment electricity was 8 C / g and electrolytic oxidation was performed.

比較例1
表面処理電気量を9C/gとし、電解酸化を行った以外は、実施例1と同様の方法で、炭素繊維ストランドの電解酸化処理を行った。
Comparative Example 1
The carbon fiber strand was subjected to electrolytic oxidation treatment in the same manner as in Example 1 except that the surface treatment electricity was 9 C / g and electrolytic oxidation was performed.

比較例2
表面処理電気量を4.75C/gとし、図2に示す装置により炭素繊維ストランドの電解酸化処理を行った。負極5は、炭素繊維の走行方向において浴入り位置Aの前方に、浴入り位置Aとの水平距離が100mmになるように配設した。
Comparative Example 2
The surface treatment electricity amount was 4.75 C / g, and the carbon fiber strand was subjected to electrolytic oxidation treatment using the apparatus shown in FIG. The negative electrode 5 was disposed in front of the bathing position A in the running direction of the carbon fiber so that the horizontal distance from the bathing position A was 100 mm.

比較例3
表面処理電気量を9C/gとし、電解酸化を行った以外は、比較例2と同様の方法で炭素繊維ストランドの電解酸化処理を行った。
Comparative Example 3
The carbon fiber strand was subjected to electrolytic oxidation treatment in the same manner as in Comparative Example 2 except that the surface treatment electricity was 9 C / g and electrolytic oxidation was performed.

比較例4
表面処理電気量を3C/gとし、電解酸化を行った以外は、比較例2と同様の方法で炭素繊維ストランドの電解酸化処理を行った。
Comparative Example 4
The carbon fiber strand was subjected to electrolytic oxidation treatment in the same manner as in Comparative Example 2 except that the surface treatment electricity was 3 C / g and electrolytic oxidation was performed.

Figure 2009114557
Figure 2009114557

本発明で使用する電解酸化処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the electrolytic oxidation processing apparatus used by this invention. 本発明の比較例2〜4で用いた電解酸化処理装置を示す概略構成図である。It is a schematic block diagram which shows the electrolytic oxidation treatment apparatus used in Comparative Examples 2-4 of this invention.

符号の説明Explanation of symbols

1 電解酸化処理装置
3 電解槽
5 負極
7 電解液
9 炭素繊維
11 陽極ローラ
13、15 浸漬ローラ
17 ガイドローラ
A 浴入り位置
DESCRIPTION OF SYMBOLS 1 Electrolytic oxidation processing apparatus 3 Electrolytic tank 5 Negative electrode 7 Electrolytic solution 9 Carbon fiber 11 Anode roller 13, 15 Immersion roller 17 Guide roller A Bathing position

Claims (3)

X線光電子分光法により測定される表面酸素濃度O/Cが0.05〜0.15、サイクリックボルタンメトリー(Cyclic Voltammetry)法により測定される炭素繊維の表面特性Ipaが0.16〜0.25であり、サイクリックボルタンメトリー法により測定される炭素繊維表面処理度合いのバラツキが6%以下であることを特徴とする炭素繊維。 The surface oxygen concentration O / C measured by X-ray photoelectron spectroscopy is 0.05 to 0.15, and the surface property Ipa of the carbon fiber measured by cyclic voltammetry is 0.16 to 0.25. The carbon fiber has a variation in the degree of carbon fiber surface treatment measured by a cyclic voltammetry method of 6% or less. 電解液が貯留してある電解槽と、前記電解槽の電解液水面上方に配設された陽極ローラと、前記陽極ローラを通過した炭素繊維を連続的に前記電解槽内の電解液に浸漬させる浸漬ローラと、電解液から炭素繊維を引き上げる電解液水面上方に配設されたガイドローラと、前記電解槽内に電解液に浸漬され、炭素繊維の走行方向において炭素繊維の電解液への浴入り位置より後方側に配設されている負極と、を有する炭素繊維用電解酸化処理装置で、走行する炭素繊維を陽極として負極との間に電圧を印加し、表面処理電気量 3〜8.5 C/gの範囲で炭素繊維を電解酸化処理することを特徴とする請求項1に記載の炭素繊維の製造方法。 An electrolytic bath in which the electrolytic solution is stored, an anode roller disposed above the electrolytic solution water surface of the electrolytic bath, and carbon fibers that have passed through the anode roller are continuously immersed in the electrolytic solution in the electrolytic bath. An immersion roller, a guide roller disposed above the electrolytic solution water surface for pulling up the carbon fiber from the electrolytic solution, and immersed in the electrolytic solution in the electrolytic bath and bathed in the electrolytic solution of the carbon fiber in the running direction of the carbon fiber A carbon fiber electrolytic oxidation treatment apparatus having a negative electrode disposed on the rear side of the position, applying a voltage between the negative electrode with the traveling carbon fiber as an anode, and a surface treatment amount of electricity of 3 to 8.5 C / The carbon fiber production method according to claim 1, wherein the carbon fiber is subjected to electrolytic oxidation treatment in a range of g. 負極が電解液に浸漬されて走行する炭素繊維の下方に配設される炭素繊維用電解酸化処理装置を用いる請求項2に記載の炭素繊維の製造方法。 The manufacturing method of the carbon fiber of Claim 2 using the electrolytic oxidation treatment apparatus for carbon fibers arrange | positioned under the carbon fiber which a negative electrode is immersed in electrolyte solution and drive | works.
JP2007285731A 2007-11-02 2007-11-02 Uniformly surface-treated carbon fiber and method for producing the same Pending JP2009114557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285731A JP2009114557A (en) 2007-11-02 2007-11-02 Uniformly surface-treated carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285731A JP2009114557A (en) 2007-11-02 2007-11-02 Uniformly surface-treated carbon fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009114557A true JP2009114557A (en) 2009-05-28

Family

ID=40782008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285731A Pending JP2009114557A (en) 2007-11-02 2007-11-02 Uniformly surface-treated carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009114557A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132632A (en) * 2009-12-24 2011-07-07 Mitsubishi Rayon Co Ltd Carbon fiber bundle and manufacturing method thereof
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same
KR101236199B1 (en) 2011-03-31 2013-02-22 최대규 Apparatus for maunfacturing carbon fiber
CN110777526A (en) * 2019-11-28 2020-02-11 北京化工大学 Carbon fiber surface treatment device
CN111600087A (en) * 2020-05-29 2020-08-28 重庆长安新能源汽车科技有限公司 Reference electrode and three-electrode system for lithium ion battery detection and preparation method thereof
CN115974520A (en) * 2023-02-07 2023-04-18 河南冠合新材料科技有限公司 Preparation method of short carbon fiber composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132632A (en) * 2009-12-24 2011-07-07 Mitsubishi Rayon Co Ltd Carbon fiber bundle and manufacturing method thereof
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same
KR101236199B1 (en) 2011-03-31 2013-02-22 최대규 Apparatus for maunfacturing carbon fiber
CN110777526A (en) * 2019-11-28 2020-02-11 北京化工大学 Carbon fiber surface treatment device
CN111600087A (en) * 2020-05-29 2020-08-28 重庆长安新能源汽车科技有限公司 Reference electrode and three-electrode system for lithium ion battery detection and preparation method thereof
CN111600087B (en) * 2020-05-29 2022-10-04 重庆长安新能源汽车科技有限公司 Reference electrode and three-electrode system for lithium ion battery detection and preparation method thereof
CN115974520A (en) * 2023-02-07 2023-04-18 河南冠合新材料科技有限公司 Preparation method of short carbon fiber composite material

Similar Documents

Publication Publication Date Title
JP2009114557A (en) Uniformly surface-treated carbon fiber and method for producing the same
CN107819137A (en) A kind of soft graphite bipolar plates and preparation method thereof
CN106367952A (en) Surface treatment method for carbon fibers using oxidized graphene quantum dots as coating, and composite material
JP2015507100A (en) Carbon fiber for composites with improved conductivity
US20170335507A1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
GB2159178A (en) A method of electrochemically surface treating carbon fibers, fibers treated by the method, and composite materials including such fibers
JPS6245773A (en) Surface treatment of carbon fiber
CN105484012B (en) A kind of polyacrylonitrile carbon fiber surface treatment method and device
CN111793857A (en) Carbon fiber surface treatment method
CN108625151A (en) A kind of surface treatment method of high-strength carbon fiber
CN109161947A (en) High modulus carbon fiber surface treatment method and device and its application
JP5662113B2 (en) Carbon fiber surface treatment method
CN110997264A (en) Method and system for producing unidirectional carbon fiber tape and method for surface treating carbon fibers
JP2014118659A (en) Surface treatment apparatus of carbon fiber bundle and surface treatment method of carbon fiber bundle
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP5621253B2 (en) Carbon fiber bundle and method for producing the same
JP2015209605A (en) Production method of carbon fiber bundle
JP2009242971A (en) Carbon fiber having excellent compression strength and method for producing the same
US5078840A (en) Process for the surface treatment of carbon fiber strands
JP2012021238A (en) Method for producing carbon fiber bundle
JP2016141913A (en) Method for producing fiber bundle
KR101013783B1 (en) Method and apparatus for treating surface of carbon fiber
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JP2008248424A (en) Method of multistage electrolytic treatment of carbon fiber
JP6893638B2 (en) Surface-treated carbon fiber, its manufacturing method and carbon fiber reinforced resin composite