JP5621253B2 - Carbon fiber bundle and method for producing the same - Google Patents

Carbon fiber bundle and method for producing the same Download PDF

Info

Publication number
JP5621253B2
JP5621253B2 JP2009293117A JP2009293117A JP5621253B2 JP 5621253 B2 JP5621253 B2 JP 5621253B2 JP 2009293117 A JP2009293117 A JP 2009293117A JP 2009293117 A JP2009293117 A JP 2009293117A JP 5621253 B2 JP5621253 B2 JP 5621253B2
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
value
electrolytic
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009293117A
Other languages
Japanese (ja)
Other versions
JP2011132632A (en
Inventor
孝之 桐山
孝之 桐山
昌宏 畑
昌宏 畑
宏子 松村
宏子 松村
渡辺賢一
渡辺  賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009293117A priority Critical patent/JP5621253B2/en
Publication of JP2011132632A publication Critical patent/JP2011132632A/en
Application granted granted Critical
Publication of JP5621253B2 publication Critical patent/JP5621253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Description

本発明は、電解酸化処理された炭素繊維束およびその製造方法に関する。   The present invention relates to an electrolytically oxidized carbon fiber bundle and a method for producing the same.

炭素繊維束を補強材とする複合材料は、軽量で、かつ強度及び弾性率に優れていることから、スポーツやレジャー用品の構成部材として、あるいは宇宙航空機用部材として幅広い分野にわたり用途開発がなされ、実用化されている。
炭素繊維束は、通常、マトリックス樹脂に含浸させて複合材料として成型されるが、従来、炭素繊維束はマトリックス樹脂との接着性が必ずしも十分ではなかった。
そこで、炭素繊維束とマトリックス樹脂との接着性を高めるべく、炭素繊維束の繊維表面を活性化させるため、炭素繊維束には薬剤酸化処理、気相酸化処理、電解酸化処理等の表面処理が施される場合が多い。これらの表面処理方の中でも、特に電解酸化処理方法は操作性が良好で、反応制御が容易であり、実用的な表面処理方法である。
Composite materials using carbon fiber bundles as reinforcements are lightweight and have excellent strength and elastic modulus, so applications have been developed over a wide range of fields as components for sports and leisure goods or as spacecraft components. It has been put into practical use.
The carbon fiber bundle is usually impregnated into a matrix resin and molded as a composite material. Conventionally, the carbon fiber bundle has not always had sufficient adhesion to the matrix resin.
Therefore, in order to activate the fiber surface of the carbon fiber bundle in order to improve the adhesion between the carbon fiber bundle and the matrix resin, the carbon fiber bundle is subjected to surface treatment such as chemical oxidation treatment, vapor phase oxidation treatment, electrolytic oxidation treatment, etc. Often given. Among these surface treatment methods, the electrolytic oxidation treatment method is a practical surface treatment method that has good operability and easy reaction control.

近年、複合材料の用途や需要の拡大に伴い、複合材料の生産性を向上させる目的で、炭素繊維の前駆体繊維であるプレカーサー繊維を構成する単繊維の本数を増やす傾向にある。また、同時に焼成する炭素繊維束の糸条本数も増えており、それに伴い表面処理の均一性も求められている。   In recent years, with the expansion of applications and demand for composite materials, for the purpose of improving the productivity of composite materials, the number of single fibers constituting precursor fibers, which are precursor fibers of carbon fibers, tends to increase. In addition, the number of yarns of carbon fiber bundles to be fired at the same time is increasing, and accordingly, surface treatment uniformity is also required.

しかし、単繊維の本数が多い炭素繊維束では電解酸化処理するに際し、繊維束の表面(外周部)側に位置する単繊維が、繊維束の内部側に位置する単繊維よりも電解酸化処理されやすいため、炭素繊維束はその内外で電解酸化処理が不均一になり、接着性や複合材料の特性(特に強度)が低下しやすい。すなわち、繊維束の内部側に位置する単繊維では酸化が進みにくく、繊維束の外周部側に位置する単繊維では酸化が進みすぎる。そのために繊維束の内部側に位置する単繊維は、電解酸化処理が不十分となりマトリックス樹脂との接着力が小さい。一方、繊維束の外周部側に位置する単繊維は酸化が十分であるため、マトリックス樹脂との接着力が十分に得られるものの、酸化の進みすぎによる繊維強度の低下を招きやすい。
このように、単繊維の本数が多い炭素繊維束は、繊維束の内部まで均一に電解酸化処理されにくく、その結果、複合材料としたときに、マトリックス樹脂との接着性が不十分であり、かつ十分な強度が発揮されにくかった。
However, when carbon fiber bundles having a large number of single fibers are subjected to electrolytic oxidation treatment, single fibers located on the surface (outer peripheral portion) side of the fiber bundle are subjected to electrolytic oxidation treatment more than single fibers located on the inner side of the fiber bundle. Therefore, the carbon fiber bundle is not subjected to electrolytic oxidation treatment on the inside and outside of the carbon fiber bundle, and the adhesiveness and the characteristics (particularly strength) of the composite material tend to decrease. That is, oxidation is difficult to proceed with single fibers located on the inner side of the fiber bundle, and oxidation proceeds too much with single fibers located on the outer peripheral side of the fiber bundle. Therefore, the single fiber located on the inner side of the fiber bundle is insufficient in electrolytic oxidation treatment and has a low adhesive force with the matrix resin. On the other hand, since the single fiber located on the outer peripheral side of the fiber bundle is sufficiently oxidized, the adhesive strength with the matrix resin can be sufficiently obtained, but the fiber strength tends to be lowered due to excessive oxidation.
Thus, the carbon fiber bundle with a large number of single fibers is difficult to be uniformly electrolytically oxidized up to the inside of the fiber bundle, and as a result, when it is a composite material, the adhesion with the matrix resin is insufficient, And it was difficult to demonstrate sufficient strength.

ところで、電解酸化処理による効果としては、炭素繊維束のマトリックス樹脂との接着性の向上だけでなく、炭素繊維束に対するマトリックス樹脂の含浸性(濡れ性)の向上も重要である。炭素繊維束に対するマトリックス樹脂の含浸性が繊維束の内外で不均一であると、繊維束では炭素繊維の強度を伝達する界面が存在しない部分を生じやすくなり、複合材料の特性に悪影響を与えることとなる。   By the way, as an effect by the electrolytic oxidation treatment, not only the improvement of the adhesion of the carbon fiber bundle to the matrix resin but also the improvement of the impregnation property (wetting property) of the matrix resin to the carbon fiber bundle is important. If the impregnation property of the matrix resin to the carbon fiber bundle is not uniform inside and outside the fiber bundle, the fiber bundle is likely to have a part where there is no interface for transmitting the strength of the carbon fiber, which adversely affects the properties of the composite material. It becomes.

電解酸化処理による炭素繊維束の表面処理の方法は、これまで数多く報告されている。
例えば特許文献1には、陽極とした炭素繊維に、酸性電解質溶液中で断続的に給電することで、具体的には5秒通電、5秒停電を60回繰り返すなどして電解酸化処理することで、炭素繊維を表面処理する方法が開示されている。
特許文献1によれば、断続的に給電することにより、炭素繊維の結合酸素量を増加させると共に、酸素の結合状態を制御することができ、その結果、マトリックス樹脂に対する相溶性が向上し、強度の大きい複合材料を製造できるとしている。
Many methods for surface treatment of carbon fiber bundles by electrolytic oxidation have been reported so far.
For example, in Patent Document 1, the carbon fiber used as the anode is subjected to electrolytic oxidation treatment by intermittently supplying power in an acidic electrolyte solution, specifically, energizing for 5 seconds and repeating 60 seconds for 5 seconds. And the method of surface-treating carbon fiber is disclosed.
According to Patent Document 1, by intermittently supplying power, the amount of bonded oxygen of the carbon fiber can be increased and the bonded state of oxygen can be controlled. As a result, the compatibility with the matrix resin is improved and the strength is increased. A large composite material can be manufactured.

また、特許文献2には、印加電圧を10V以上とし、パルス給電間隔を給電時間が0.02秒以下、給電停止時間が給電時間の5倍以上となるように設定して電解酸化処理を行うことで、炭素繊維を表面処理する方法が開示されている。
特許文献2によれば、炭素繊維に間欠的にパルス給電を行うことにより、炭素繊維の中心部へのOHイオンの補給(無通電)と電解酸化(通電)とが交互に行われ、その結果、炭素繊維の中心部にも十分にOHイオンが存在するため酸化反応が起こり、均一な処理が得られるとしている。
Further, in Patent Document 2, the electrolytic oxidation treatment is performed by setting the applied voltage to 10 V or more, setting the pulse feeding interval so that the feeding time is 0.02 seconds or less, and the feeding stop time is 5 times or more of the feeding time. Thus, a method for surface treatment of carbon fibers is disclosed.
According to Patent Document 2, by intermittently supplying power to the carbon fiber, OH ions are replenished (non-energized) and electrolytic oxidation (energized) to the center of the carbon fiber alternately. As a result, since OH ions are sufficiently present in the central portion of the carbon fiber, an oxidation reaction occurs and a uniform treatment can be obtained.

特許文献3には、処理電流波形を、炭素繊維表面電位が基準電極に対してプラスになる電流値Aとマイナスになる電流値Bとからなる矩形波とし、かつ、電流値A及びBの印加時間を所定の値とすることで、炭素繊維を表面処理する方法が開示されている。
特許文献3によれば、炭素繊維の表面電位を間欠的に変化させることによって、炭素繊維表面に形成される濃度分極層を薄くすることができ、電気力線が炭素繊維表面に均一に分散しやすくなるため、表面の脆弱層が形成されにくくなる。さらに、炭素繊維表面電位をマイナスにすることによって、生成された微量の脆弱層を除去することができる。また、電解液が繊維束の内部まで拡散しやすくなる。炭素繊維とマトリックス樹脂との接着力の低下は、炭素繊維表面に形成される脆弱層が原因と考えられるため、脆弱層の形成を抑制したり、生成された脆弱層を除去したりする特許文献3は、炭素繊維とマトリックス樹脂との接着力を向上できる。
In Patent Document 3, the treatment current waveform is a rectangular wave composed of a current value A in which the carbon fiber surface potential is positive with respect to the reference electrode and a current value B in which the carbon fiber surface potential is negative, and the application of the current values A and B A method for surface-treating carbon fibers by setting the time to a predetermined value is disclosed.
According to Patent Document 3, the concentration polarization layer formed on the carbon fiber surface can be thinned by intermittently changing the surface potential of the carbon fiber, and the lines of electric force are uniformly dispersed on the surface of the carbon fiber. Since it becomes easy, it becomes difficult to form a weak layer on the surface. Further, by making the carbon fiber surface potential negative, it is possible to remove the generated minute amount of the fragile layer. In addition, the electrolytic solution easily diffuses into the fiber bundle. The decrease in the adhesive strength between the carbon fiber and the matrix resin is considered to be caused by a fragile layer formed on the surface of the carbon fiber, so that the formation of the fragile layer is suppressed or the generated fragile layer is removed. 3 can improve the adhesive force between the carbon fiber and the matrix resin.

特許文献4には、還元率(=還元電気量/(酸化電気量+還元電気量))が0.001〜0.5となるように陽極酸化と陰極酸化を周期的に繰り返すことで、炭素繊維を表面処理する方法が開示されている。
特許文献4によれば、特定の還元率で陽極酸化と陰極酸化を周期的に繰り返すことにより、均一な表面処理効果が得られるとしている。
In Patent Document 4, carbon is obtained by periodically repeating anodization and cathodic oxidation so that the reduction rate (= reduction electricity amount / (oxidization electricity amount + reduction electricity amount)) is 0.001 to 0.5. A method for surface treating fibers is disclosed.
According to Patent Document 4, a uniform surface treatment effect can be obtained by periodically repeating anodization and cathodic oxidation at a specific reduction rate.

特許文献5には、単繊維本数が24000本以上の炭素繊維束を陽極として、7.5〜45C/gの電気量をもって4秒以上電解酸化処理することで、炭素繊維束を表面処理する方法が開示されている。
特許文献5によれば、7.5〜45C/gの電気量で4秒以上電解酸化処理することにより、バラツキの少ない炭素繊維束が得られるとしている。
Patent Document 5 discloses a method for surface-treating a carbon fiber bundle by subjecting a carbon fiber bundle having 24,000 or more single fibers as an anode to electrolytic oxidation treatment for 4 seconds or more with an electric quantity of 7.5 to 45 C / g. Is disclosed.
According to Patent Document 5, it is said that a carbon fiber bundle with little variation can be obtained by electrolytic oxidation treatment with an electric quantity of 7.5 to 45 C / g for 4 seconds or more.

特開昭63−264967号公報JP-A 63-264967 特開平1−298275号公報JP-A-1-298275 特開平7−207573号公報JP-A-7-207573 特開平10−266066号公報Japanese Patent Laid-Open No. 10-266066 特開2002−38368号公報JP 2002-38368 A

しかしながら、特許文献1〜5に記載の表面処理方法では、繊維束の内部まで均一に電解酸化処理することは必ずしも容易ではなかった。特に、特許文献4に記載の表面処理方法により得られる炭素繊維束は、界面せん断力で示される接着力のバラツキが30%以下程度に過ぎず、電解酸化処理のバラツキが顕著であった。   However, in the surface treatment methods described in Patent Documents 1 to 5, it is not always easy to perform the electrolytic oxidation treatment uniformly to the inside of the fiber bundle. In particular, the carbon fiber bundle obtained by the surface treatment method described in Patent Document 4 has a variation in adhesive strength represented by an interfacial shear force of only about 30% or less, and the variation in electrolytic oxidation treatment was significant.

また、特許文献1、2は、単一の繊維束を構成する単繊維の本数が少ない(4000〜6000本程度)炭素繊維束を表面処理する方法である。従って、単繊維の本数をさらに増やした炭素繊維束を表面処理する場合には十分な効果は得られず、繊維束の内部まで均一に電解酸化処理されにくかった。
また、特許文献3では、単繊維数が12000本の炭素繊維束を表面処理しており、特許文献1、2に比べると単繊維の本数は多い。しかし、近年では、炭素繊維の製造効率を向上させるために単繊維の本数はさらに増加しており、24000本以上の単繊維からなる、いわゆるラージトウと呼ばれる炭素繊維束が製造されている。このようなラージトウタイプの炭素繊維束に特許文献3に記載の表面処理方法を適用した場合には、繊維束の内部まで均一に電解酸化処理することが困難であった。
Patent Documents 1 and 2 are methods for surface-treating a carbon fiber bundle having a small number of single fibers (about 4000 to 6000) constituting a single fiber bundle. Accordingly, when the surface treatment is performed on a carbon fiber bundle in which the number of single fibers is further increased, a sufficient effect cannot be obtained, and it is difficult to uniformly perform electrolytic oxidation treatment to the inside of the fiber bundle.
Moreover, in patent document 3, the surface treatment is performed for the carbon fiber bundle whose number of single fibers is 12,000, and compared with patent documents 1 and 2, the number of single fibers is large. However, in recent years, the number of single fibers has been further increased in order to improve the production efficiency of carbon fibers, and so-called large tow carbon fiber bundles made of 24,000 or more single fibers have been produced. When the surface treatment method described in Patent Document 3 is applied to such a large tow type carbon fiber bundle, it is difficult to uniformly perform electrolytic oxidation treatment to the inside of the fiber bundle.

さらに、特許文献4では、単繊維数が18000本と24000本の炭素繊維束をそれぞれ表面処理しているが、いずれの場合も単繊維間での接着力のバラツキは24%であり、繊維束の内部まで均一に電解酸化処理できていない。
また、特許文献5では、単繊維数が48000本の炭素繊維束を表面処理しているが、それ以上の本数の炭素繊維束を処理することについては言及していない。また、電解酸化処理する際の電気量が7.5〜45C/gと高く、電気量を下げると繊維束の内部まで十分かつ均一に電解酸化処理することが困難であった。
Furthermore, in Patent Document 4, carbon fiber bundles having 18000 single fibers and 24000 single fibers are respectively surface-treated. In any case, the dispersion of the adhesive strength between single fibers is 24%, and the fiber bundles It is not possible to carry out the electrolytic oxidation treatment even to the inside.
Moreover, in patent document 5, although the carbon fiber bundle whose number of single fibers is 48000 is surface-treated, it does not mention about processing the carbon fiber bundle more than that. Further, the amount of electricity at the time of electrolytic oxidation treatment is as high as 7.5 to 45 C / g, and when the amount of electricity is lowered, it is difficult to perform electrolytic oxidation treatment sufficiently and uniformly to the inside of the fiber bundle.

本発明は上記事情に鑑みてなされたもので、単繊維の本数が多く、かつ少ない電気量で電解酸化処理されても、複合材料としたときに、マトリックス樹脂との接着性が良好で、十分な強度を発揮できる炭素繊維束を提供することを課題とする。
また、単繊維の本数が多く、かつ少ない電気量で処理する場合でも、繊維束の内部まで均一に電解酸化処理できる炭素繊維束の製造方法を提供することを課題とする。
The present invention has been made in view of the above circumstances, and even when the number of single fibers is large and the electrolytic oxidation treatment is performed with a small amount of electricity, when the composite material is used, the adhesiveness with the matrix resin is good and sufficient. It is an object to provide a carbon fiber bundle that can exhibit a sufficient strength.
It is another object of the present invention to provide a method for producing a carbon fiber bundle that can perform electrolytic oxidation treatment uniformly even inside the fiber bundle even when the number of single fibers is large and the treatment is performed with a small amount of electricity.

本発明者らは鋭意検討した結果、電解酸化処理された炭素繊維束の表面酸素濃度のCV値、および単位面積当たりに流れる電流値のCV値を規定することで、単繊維の本数が多く、かつ少ない電気量で電解酸化処理されても、複合材料としたときにマトリックス樹脂との接着性が向上し、かつ十分な強度を発揮できることを見出した。
そこで、本発明者らは、炭素繊維束の各CV値と、電解酸化処理の条件、特に給電方式、電気量、処理時間等の条件との関係に着目した。そして、電解酸化処理の条件を最適化することで電解液の拡散効率が向上し、その結果、単繊維の本数が多く、かつ少ない電気量で処理する場合でも、繊維束の内部まで均一に電解酸化処理でき、マトリックス樹脂との接着性や含浸性の斑を抑制できることを見出し、本発明を完成するに至った。
As a result of intensive studies, the inventors have determined the CV value of the surface oxygen concentration of the carbon fiber bundle subjected to electrolytic oxidation treatment and the CV value of the current value flowing per unit area, thereby increasing the number of single fibers, Further, it has been found that even when the electrolytic oxidation treatment is performed with a small amount of electricity, the adhesiveness with the matrix resin is improved when the composite material is formed, and sufficient strength can be exhibited.
Therefore, the present inventors paid attention to the relationship between each CV value of the carbon fiber bundle and the conditions of the electrolytic oxidation treatment, particularly the conditions such as the power feeding method, the amount of electricity, and the treatment time. And by optimizing the conditions of electrolytic oxidation treatment, the diffusion efficiency of the electrolytic solution is improved. As a result, even when processing with a large number of single fibers and a small amount of electricity, the inside of the fiber bundle can be electrolyzed uniformly. It has been found that it can be subjected to oxidation treatment, and can suppress adhesion and impregnation spots with the matrix resin, and the present invention has been completed.

すなわち、本発明の炭素繊維束は、49000〜175000本の単繊維からなり、以下の条件(a)、(b)を満たすことを特徴とする。
(a):X線光電子分光法により測定される表面酸素濃度のCV値{(表面酸素濃度の標準偏差/表面酸素濃度の平均値)×100}が8%以下。
(b):サイクリックボルタンメトリー法により測定される、単位面積当たりに流れる電流値(ipa値)のCV値{(ipa値の標準偏差/ipa値の平均値)×100}が5%以下。
That is, the carbon fiber bundle of the present invention is composed of 49000-175000 single fibers, and satisfies the following conditions (a) and (b).
(A): CV value {(standard deviation of surface oxygen concentration / average value of surface oxygen concentration) × 100} of surface oxygen concentration measured by X-ray photoelectron spectroscopy is 8% or less.
(B): CV value {(standard deviation of ipa value / average value of ipa value) × 100} of the current value (ipa value) flowing per unit area measured by the cyclic voltammetry method is 5% or less.

また、本発明の炭素繊維束の製造方法は、49000〜175000本の単繊維を束状にした、トウ幅8mm以上の炭素繊維を陽極として用い、単繊維数24000本当たりの張力を4kg以下とし、接触給電方式によりロール状の陽極を介して前記炭素繊維に直接電気を付与し、次いで、電解液が充填され、かつ陰極が配された電解槽に炭素繊維を導き、電解液の液面に接触させながら走行させて5秒以上電解酸化処理することを特徴とする。 Moreover, the manufacturing method of the carbon fiber bundle of the present invention uses a carbon fiber having a tow width of 8 mm or more in the form of a bundle of 49000-175000 single fibers as an anode, and the tension per 24,000 single fibers is 4 kg or less. Then, electricity is directly applied to the carbon fiber via a roll-shaped anode by a contact power feeding method , and then the carbon fiber is led to an electrolytic cell filled with an electrolyte and provided with a cathode, It is characterized by carrying out electrolytic oxidation treatment for 5 seconds or more by running while contacting .

本発明の炭素繊維束は、単繊維の本数が多く、かつ少ない電気量で電解酸化処理されても、複合材料としたときに、マトリックス樹脂との接着性が良好で、十分な強度を発揮できる。
また、本発明の炭素繊維束の製造方法によれば、単繊維の本数が多く、かつ少ない電気量で処理する場合でも、繊維束の内部まで均一に電解酸化処理できる。また、複合材料としたときに、マトリックス樹脂との接着性が良好で、十分な強度を発揮できる炭素繊維束を製造できる。
Even if the carbon fiber bundle of the present invention has a large number of single fibers and is electrolytically oxidized with a small amount of electricity, when it is made into a composite material, it has good adhesiveness with a matrix resin and can exhibit sufficient strength. .
In addition, according to the method for producing a carbon fiber bundle of the present invention, even when the number of single fibers is large and the treatment is performed with a small amount of electricity, the inside of the fiber bundle can be uniformly electrolytically oxidized. Moreover, when it is set as a composite material, the carbon fiber bundle which has favorable adhesiveness with matrix resin and can exhibit sufficient intensity | strength can be manufactured.

本発明に用いられる電解酸化装置の一例を示す概略図である。It is the schematic which shows an example of the electrolytic oxidation apparatus used for this invention. 非接触給電方式を採用した電解酸化装置の一例を示す概略図である。It is the schematic which shows an example of the electrolytic oxidation apparatus which employ | adopted the non-contact electric power feeding system.

以下、本発明を詳細に説明する。
本発明の炭素繊維束は、49000〜17500以下の単繊維からなり、該単繊維を束状にした炭素繊維を電解酸化処理により表面処理することで得られる。
以下、本発明において電解酸化処理される、単繊維を束状にした炭素繊維を「処理前繊維束」という。
Hereinafter, the present invention will be described in detail.
The carbon fiber bundle of the present invention consists of single fibers of 49000 to 17500 or less, and can be obtained by subjecting carbon fibers in the form of bundles to surface treatment by electrolytic oxidation treatment.
Hereinafter, the carbon fiber in the form of a bundle of single fibers that is electrolytically oxidized in the present invention is referred to as a “fiber bundle before treatment”.

処理前繊維束は、前駆体繊維束を焼成することで得られる。焼成方法としては公知の方法を採用することができ、例えば前駆体繊維束を耐炎化炉で耐炎化処理し、ついで炭素化炉で前炭素化処理および炭素化処理する方法が挙げられる。
前駆体繊維束としては、例えばポリアクリロニトリル系、ピッチ系、レーヨン系などが挙げられるが、コストと性能のバランスから、ポリアクリロニトリル系が好ましい。
The pre-treatment fiber bundle is obtained by firing the precursor fiber bundle. As the firing method, a known method can be adopted, and examples thereof include a method in which the precursor fiber bundle is subjected to flame resistance treatment in a flame resistance furnace, and then pre-carbonization treatment and carbonization treatment in a carbonization furnace.
Examples of the precursor fiber bundle include polyacrylonitrile-based, pitch-based, rayon-based, and the like, and polyacrylonitrile-based is preferable from the balance of cost and performance.

処理前繊維束を構成する単繊維の本数は49000〜175000であり、好ましくは60000〜175000である。
単繊維の本数を上記範囲内とする方法としては特に制限されないが、例えばトウボリュームの多い前駆体繊維を出発物質として用いる方法、トウボリュームの少ない前駆体繊維を複数、焼成工程の途中で合糸する方法などが挙げられる。
The number of single fibers constituting the untreated fiber bundle is 4900 to 175000, preferably 60000 to 175000.
The method for setting the number of single fibers within the above range is not particularly limited. For example, a method using a precursor fiber having a large tow volume as a starting material, a plurality of precursor fibers having a low tow volume, and a yarn in the middle of a firing process. The method of doing is mentioned.

本発明の炭素繊維束は、以下の条件(a)、(b)を満たす。
<条件(a)>
本発明の炭素繊維束は、X線光電子分光法により測定される表面酸素濃度(O/C)のCV値{(表面酸素濃度の標準偏差/表面酸素濃度の平均値)×100}が8%以下である。
表面酸素濃度(O/C)のCV値は、炭素繊維束の表面酸素濃度のバラツキの程度を表す指標である。CV値が8%を超えると、酸化が不均一に起こっているために、後述する電解酸化処理において少ない電気量で処理された炭素繊維束を複合材料としたときに、炭素繊維束のマトリックス樹脂に対する接着性が低下する。
The carbon fiber bundle of the present invention satisfies the following conditions (a) and (b).
<Condition (a)>
The carbon fiber bundle of the present invention has a CV value {(standard deviation of surface oxygen concentration / average value of surface oxygen concentration) × 100} of the surface oxygen concentration (O / C) measured by X-ray photoelectron spectroscopy of 8%. It is as follows.
The CV value of the surface oxygen concentration (O / C) is an index representing the degree of variation in the surface oxygen concentration of the carbon fiber bundle. When the CV value exceeds 8%, oxidation occurs non-uniformly. Therefore, when a carbon fiber bundle treated with a small amount of electricity in the electrolytic oxidation treatment described later is used as a composite material, a matrix resin for the carbon fiber bundle. Adhesiveness to decreases.

炭素繊維束の表面酸素濃度(O/C)およびそのCV値は、以下のようにして求めることができる。
まず、炭素繊維束を所定の長さに切断して、測定装置の試料ホルダーに両面テープを用いて固定し、光電子脱出速度を90°とし、測定装置の測定チャンバー内を1×10−6Paの真空に保つ。
測定時の帯電に伴うピークの補正として、まずC1S(表面炭素濃度)の主ピークの結合エネルギー値を285.6eVに合わせる。そして、C1Sのピーク面積を282〜296eVの範囲で直線のベースラインを引くことにより求める。一方、O1S(表面酸素濃度)のピーク面積を528〜540eVの範囲で直線のベースラインを引くことにより求める。
表面酸素濃度(O/C)は、先に求めたO1Sのピーク面積とC1Sのピーク面積の比を、装置固有の感度補正値で除すことにより算出した原子数比で求めることができる。
同様の操作を切断した3本の炭素繊維束について行い、それぞれについて表面酸素濃度(O/C)を求め、その平均値および標準偏差を算出し、下記式(1)によりCV値を求める。
CV値[%]=(表面酸素濃度の標準偏差/表面酸素濃度の平均値)×100 ・・・(1)
The surface oxygen concentration (O / C) of the carbon fiber bundle and its CV value can be determined as follows.
First, the carbon fiber bundle is cut into a predetermined length, fixed to the sample holder of the measuring device using double-sided tape, the photoelectron escape rate is 90 °, and the inside of the measuring chamber of the measuring device is 1 × 10 −6 Pa. Keep the vacuum.
As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1S (surface carbon concentration) is adjusted to 285.6 eV. Then, the C 1S peak area is obtained by drawing a straight base line in the range of 282 to 296 eV. On the other hand, the peak area of O 1S (surface oxygen concentration) is obtained by drawing a straight base line in the range of 528 to 540 eV.
The surface oxygen concentration (O / C) can be obtained by the atomic ratio calculated by dividing the ratio of the peak area of O 1S and the peak area of C 1S obtained previously by the sensitivity correction value unique to the apparatus. .
The same operation is performed on three cut carbon fiber bundles, the surface oxygen concentration (O / C) is determined for each, the average value and the standard deviation are calculated, and the CV value is determined by the following equation (1).
CV value [%] = (standard deviation of surface oxygen concentration / average value of surface oxygen concentration) × 100 (1)

<条件(b)>
本発明の炭素繊維束は、サイクリックボルタンメトリー法により測定される、単位面積当たりに流れる電流値(ipa値)のCV値{(ipa値の標準偏差/ipa値の平均値)×100}が5%以下である。
ipa値は炭素繊維束の表面特性ipaの指標であり、ipa値が高くなるほど炭素繊維束の表面積が大きいことを意味し、アンカー効果によりマトリックス樹脂との接着強度が向上する。ただし、ipa値のCV値が5%を超えると、酸化が不均一に起こっているために、後述する電解酸化処理において少ない電気量で処理された炭素繊維束を複合材料としたときに、炭素繊維束の特性(強度)が十分に発揮されず、複合材料の曲げ強度が低下する。
<Condition (b)>
The carbon fiber bundle of the present invention has a CV value {(standard deviation of ipa value / average value of ipa value) × 100} of a current value (ipa value) flowing per unit area, measured by a cyclic voltammetry method. % Or less.
The ipa value is an index of the surface property ipa of the carbon fiber bundle, meaning that the higher the ipa value, the larger the surface area of the carbon fiber bundle, and the anchor strength improves the adhesive strength with the matrix resin. However, when the CV value of the ipa value exceeds 5%, oxidation occurs unevenly. Therefore, when a carbon fiber bundle treated with a small amount of electricity in the electrolytic oxidation treatment described later is used as a composite material, carbon The characteristic (strength) of the fiber bundle is not sufficiently exhibited, and the bending strength of the composite material is lowered.

炭素繊維束のipa値およびそのCV値は、特開昭60−246864号公報に開示されているサイクリックボルタンメトリー法によって求めることができる。
なお、本発明でいうサイクリックボルタンメトリー法とは、ポテンシオスタットとファンクションゼネレータとからなる分析装置において、作動電極として炭素繊維束を用い、その電流と電極電位(電圧)との関係を測定する方法のことである。
The ipa value and the CV value of the carbon fiber bundle can be determined by the cyclic voltammetry method disclosed in JP-A-60-246864.
The cyclic voltammetry method referred to in the present invention is a method of measuring the relationship between the current and the electrode potential (voltage) using a carbon fiber bundle as the working electrode in an analyzer comprising a potentiostat and a function generator. That is.

具体的には、まず、5%リン酸水溶液を用いてpHを3とし、窒素をバブリングさせ容存酸素を除去した溶液を調製する。
この溶液に、参照電極としてAg/AgCl電極と、対電極として十分な表面積を有する白金電極と、作動電極として炭素繊維束とを差し込み、炭素繊維束の電流と電極電位を測定する。
電位操作範囲は−0.2〜0.8Vとし、電位操作速度は2mV/secとし、X−Yリコーダーにより電位−電流曲線を描き、3回以上掃引させ、曲線が安定した段階で、Ag/AgCl電極に対して、+0.4Vでの電位を標準にとって電流を読み取り、下記式(2)に従ってipa値を算出する。なお、式(2)において、「試料長」とは作動電極に用いた炭素繊維束の長手方向の長さであり、「目付」とは作動電極に用いた炭素繊維束の単位長さ当たりの重さのことである。
ipa値[μA/cm]=電流値[μA]/試料長[cm]×{4π×目付[g/m] ×単繊維数/密度[g/cm] }1/2 ・・・(2)
Specifically, first, a solution in which 5% phosphoric acid aqueous solution is used to adjust the pH to 3 and nitrogen is bubbled to remove the remaining oxygen is prepared.
An Ag / AgCl electrode as a reference electrode, a platinum electrode having a sufficient surface area as a counter electrode, and a carbon fiber bundle as a working electrode are inserted into this solution, and the current and electrode potential of the carbon fiber bundle are measured.
The potential operation range is -0.2 to 0.8 V, the potential operation speed is 2 mV / sec, a potential-current curve is drawn with an XY recorder, swept three or more times, and when the curve becomes stable, Ag / With respect to the AgCl electrode, the current is read with the potential at +0.4 V as a standard, and the ipa value is calculated according to the following formula (2). In the formula (2), “sample length” is the length in the longitudinal direction of the carbon fiber bundle used for the working electrode, and “weight per unit” is the unit length of the carbon fiber bundle used for the working electrode. It is weight.
ipa value [μA / cm 2 ] = current value [μA] / sample length [cm] × {4π × weight per unit area [g / m] × number of single fibers / density [g / cm 3 ]} 1/2. 2)

同様の操作を切断した3本の炭素繊維束について行い、それぞれについてipa値を求め、その平均値および標準偏差を算出し、下記式(3)によりCV値を求める。
CV値[%]=(ipa値の標準偏差/ipa値の平均値)×100 ・・・(3)
The same operation is performed on three cut carbon fiber bundles, the ipa value is obtained for each, the average value and the standard deviation are calculated, and the CV value is obtained by the following equation (3).
CV value [%] = (standard deviation of ipa value / average value of ipa value) × 100 (3)

上述した条件(a)、(b)を満たす炭素繊維束は、処理前繊維束の長手方向に対してはもちろんのこと、処理前繊維束の径方向、すなわち内部まで均一に表面処理(電解酸化処理)することで得られる。単繊維束の内部まで均一に電解酸化処理するためには、処理前繊維束を陽極として用い、接触給電方式により処理前繊維束のトウ幅8mm以上、処理時間5秒以上の条件で行うことが重要である。   Carbon fiber bundles that satisfy the conditions (a) and (b) described above are not only in the longitudinal direction of the fiber bundle before treatment but also in the radial direction of the fiber bundle before treatment, that is, the surface treatment (electrolytic oxidation). It is obtained by processing. In order to perform the electrolytic oxidation treatment uniformly to the inside of the single fiber bundle, the pre-treatment fiber bundle is used as an anode, and the tow width of the pre-treatment fiber bundle is 8 mm or more and the treatment time is 5 seconds or more by the contact power feeding method. is important.

処理前繊維束のトウ幅を8mm以上とすることで、単繊維数が49000本以上であっても繊維束の内部まで電解液が十分に拡散され、均一に電解酸化処理できる。なお、処理前繊維束のトウ幅が8mm未満であると、単繊維数が49000本以上の処理前繊維束を電解酸化処理する際に、繊維束の内部まで電解液が十分に拡散されにくく、均一に電解酸化処理されない。そのため、上述した条件、特に条件(b)を満足する炭素繊維束が得られにくくなる。
電解酸化処理する際の処理前繊維束のトウ幅は、製造される炭素繊維束の単繊維数により適宜決定されるが、単繊維数が49000〜175000本の間では、8mm以上が好ましい。また、トウ幅の上限については特に制限されないが、炭素繊維の生産性の観点から20mm以下が好ましい。
By setting the toe width of the untreated fiber bundle to 8 mm or more, even when the number of single fibers is 49000 or more, the electrolytic solution is sufficiently diffused to the inside of the fiber bundle, and the electrolytic oxidation treatment can be performed uniformly. When the toe width of the pre-treatment fiber bundle is less than 8 mm, the electrolytic solution is not easily diffused to the inside of the fiber bundle when the pre-treatment fiber bundle having a single fiber number of 49000 or more is subjected to electrolytic oxidation treatment. It is not uniformly electrolytically oxidized. Therefore, it becomes difficult to obtain a carbon fiber bundle that satisfies the above-described conditions, particularly the condition (b).
The toe width of the pre-treatment fiber bundle at the time of electrolytic oxidation treatment is appropriately determined depending on the number of single fibers of the carbon fiber bundle to be produced, but is preferably 8 mm or more when the number of single fibers is between 49000 and 175000. The upper limit of the tow width is not particularly limited, but is preferably 20 mm or less from the viewpoint of carbon fiber productivity.

また、電解酸化処理の処理時間を5秒以上とすることで、少ない電気量であっても繊維束の内部まで均一に電解酸化処理できる。なお、処理時間が5秒未満であると、十分な電解酸化処理効果を確保するために電気量を多くする必要がある。しかし、電気量が多くなると繊維束の内部まで均一に電解酸化処理されず、処理斑が生じやすくなる傾向にある。そのため、上述した条件、特に条件(b)を満足する炭素繊維束が得られにくくなる。
電解酸化処理する際の処理時間は長く設定しても効果が頭打ちになる。また、処理時間が長くなると工程の生産速度の低下を招いたり、電解酸化処理装置を大きくする必要があったりするため、炭素繊維束の製造コストが上がる結果となる。従って、処理時間は12秒以下が好ましい。
Further, by setting the electrolytic oxidation treatment time to 5 seconds or more, even within a small amount of electricity, the inside of the fiber bundle can be uniformly electrolytically oxidized. If the treatment time is less than 5 seconds, it is necessary to increase the amount of electricity in order to ensure a sufficient electrolytic oxidation treatment effect. However, when the amount of electricity increases, even the inside of the fiber bundle is not uniformly subjected to electrolytic oxidation treatment, and treatment spots tend to be generated. Therefore, it becomes difficult to obtain a carbon fiber bundle that satisfies the above-described conditions, particularly the condition (b).
Even if the treatment time for the electrolytic oxidation treatment is set long, the effect reaches its peak. In addition, if the treatment time is lengthened, the production rate of the process is reduced, or the electrolytic oxidation treatment apparatus needs to be enlarged, resulting in an increase in the production cost of the carbon fiber bundle. Accordingly, the processing time is preferably 12 seconds or less.

処理前繊維束を電解酸化処理する際は、単繊維数24000本当たりの張力を4kg以下とするのが好ましい。単繊維数24000本当たりの張力が4kg以下であれば、繊維束の内部まで電解液がより十分に拡散されやすくなり、電解液拡散効率を容易に高めることができる。加えて、電解酸化処理中に処理前繊維束が毛羽立つのを抑制できるので、品質の高い炭素繊維束および複合材料が得られやすくなる。   When electrolytically oxidizing the pre-treatment fiber bundle, the tension per 24,000 single fibers is preferably 4 kg or less. When the tension per 24,000 single fibers is 4 kg or less, the electrolyte solution is more easily diffused into the fiber bundle, and the electrolyte solution diffusion efficiency can be easily increased. In addition, fluffing of the unprocessed fiber bundle during the electrolytic oxidation treatment can be suppressed, so that a high-quality carbon fiber bundle and a composite material can be easily obtained.

ここで、図1を用いて本発明の炭素繊維束の製造方法の一例について具体的に説明する。
図1は、本発明に用いられる、接触給電方式を採用した電解酸化装置の一例を示す概略図である。
ここで、「接触給電方式」とは、ロール状の電極を介して処理前繊維束に直接電気を付与することで、処理前繊維束に対して給電する方式のことである。
Here, an example of the method for producing a carbon fiber bundle of the present invention will be specifically described with reference to FIG.
FIG. 1 is a schematic diagram illustrating an example of an electrolytic oxidation apparatus that employs a contact power supply method, which is used in the present invention.
Here, the “contact power supply method” is a method of supplying power to the unprocessed fiber bundle by directly applying electricity to the unprocessed fiber bundle via the roll-shaped electrode.

図1に示す電解酸化装置1は、処理前繊維束11の走行方向に沿って、電解液が充填された1つの電解槽12が設置されている。該電解槽12は中に陰極13が配されており、陰極槽となっている。また、電解槽12の上流側および下流側には、ロール状の陽極14、15が設置され、該陽極14、15と陰極13とは直流電源16に接続されている。さらに、陽極14の上流側、および陽極15の下流側には、それぞれ処理前繊維束11を搬送する搬送ロール17、17が設置されている。
搬送ロール17としては、処理前繊維束11のトウ幅を規制できる溝を表面に有する溝ロールが好ましい。溝ロールを用いれば、電解酸化処理される処理前繊維束11のトウ幅を所望の大きさに調節しやすい。
電解槽12に充填される電解液としてはアルカリ性電解質水溶液が好ましく、アルカリ性電解質としては炭酸水素アンモニウム塩が好適である。なお、電解質として酸性電解質、特に硝酸を用いる場合もあるが、酸性電解質を用いる場合は陽極が腐食することがあるため、アルカリ性電解質を用いるのがよい。
In the electrolytic oxidation apparatus 1 shown in FIG. 1, one electrolytic tank 12 filled with an electrolytic solution is installed along the traveling direction of the untreated fiber bundle 11. The electrolytic cell 12 has a cathode 13 disposed therein and serves as a cathode cell. Rolled anodes 14 and 15 are installed on the upstream side and downstream side of the electrolytic cell 12, and the anodes 14 and 15 and the cathode 13 are connected to a DC power source 16. Further, on the upstream side of the anode 14 and on the downstream side of the anode 15, conveyance rolls 17 and 17 for conveying the unprocessed fiber bundle 11 are installed.
As the transport roll 17, a groove roll having a groove on the surface that can regulate the toe width of the fiber bundle 11 before processing is preferable. If the groove roll is used, it is easy to adjust the tow width of the unprocessed fiber bundle 11 to be electrolytically oxidized to a desired size.
As the electrolytic solution filled in the electrolytic cell 12, an aqueous alkaline electrolyte solution is preferable, and as the alkaline electrolyte, an ammonium hydrogen carbonate salt is preferable. In addition, although acidic electrolyte, especially nitric acid may be used as electrolyte, when using acidic electrolyte, since an anode may corrode, it is good to use alkaline electrolyte.

処理前繊維束11は、搬送ロール17により上流側の陽極14、電解槽12、下流側の陽極15の順に導かれて電解酸化装置1内を走行する。
処理前繊維束11は、陽極14を通過するときに直接電気が付与される。そして、電解槽12に導かれて電解液の液面に接触しながら走行する。電解槽を走行の際、処理前繊維束11は陽極として作用し、処理前繊維束11自身には電解酸化処理が施される。すなわち、電解槽12において電解酸化処理が行われる。その後、陽極15を通過し、電解酸化処理された炭素繊維束18が得られる。
The untreated fiber bundle 11 is guided by the transport roll 17 in the order of the upstream anode 14, the electrolytic bath 12, and the downstream anode 15 and travels in the electrolytic oxidation apparatus 1.
The untreated fiber bundle 11 is directly charged with electricity when passing through the anode 14. And it guide | induces to the electrolytic vessel 12, and drive | works, contacting the liquid level of electrolyte solution. When traveling in the electrolytic cell, the untreated fiber bundle 11 acts as an anode, and the untreated fiber bundle 11 itself is subjected to electrolytic oxidation treatment. That is, the electrolytic oxidation process is performed in the electrolytic cell 12. Then, the carbon fiber bundle 18 which passed the anode 15 and was subjected to electrolytic oxidation treatment is obtained.

接触給電方式を採用した電解酸化装置1は、陽極14を介して処理前繊維束11に直接電気を付与するので、十分に給電することができる。従って、電解槽12において処理前繊維束11は陽極として十分に作用できる。その結果、単繊維の本数が多くても、また電解酸化処理時の電気量を少なくしても繊維束の内部まで十分かつ均一に電解酸化処理を行うことが可能となり、上述した条件(a)(b)を満足する炭素繊維束を容易に得ることができる。   The electrolytic oxidation apparatus 1 adopting the contact power supply method directly supplies electricity to the unprocessed fiber bundle 11 via the anode 14, and thus can sufficiently supply power. Therefore, the untreated fiber bundle 11 can sufficiently function as an anode in the electrolytic cell 12. As a result, even if the number of single fibers is large or the amount of electricity during the electrolytic oxidation treatment is reduced, the electrolytic oxidation treatment can be performed sufficiently and uniformly to the inside of the fiber bundle, and the above-described condition (a) A carbon fiber bundle satisfying (b) can be easily obtained.

本発明は、接触給電方式により処理前繊維束を電解酸化処理することを特徴とするが、非接触給電方式により電解酸化処理すると、繊維束の内部まで均一に電解酸化処理されない。
ここで、図2を用いて非接触給電方式による処理前繊維束の電解酸化処理の一例について説明する。なお、「非接触給電方式」とは、電解槽中の電解液を介して処理前繊維束に間接的に電気を付与することで、処理前繊維束に対して給電する方式のことである。
The present invention is characterized in that the pre-treatment fiber bundle is electrolytically oxidized by the contact power feeding method, but when the electrolytic oxidation treatment is performed by the non-contact power feeding method, the inside of the fiber bundle is not uniformly electrolytically oxidized.
Here, an example of the electrolytic oxidation treatment of the unprocessed fiber bundle by the non-contact power feeding method will be described with reference to FIG. The “non-contact power supply method” is a method of supplying electricity to the fiber bundle before treatment by indirectly applying electricity to the fiber bundle before treatment via the electrolytic solution in the electrolytic cell.

図2に示す電解酸化装置2は、処理前繊維束21の走行方向に沿って、電解液が充填された3つの電解槽22a、22b、22cが直列に設置されている。この3つの電解槽のうち、中央の電解槽22bは中に陰極23が配されており、陰極槽となっている。また、電解槽22bの上流側および下流側の電解槽22a、22cは中に陽極24、25がそれぞれ配されており、陽極槽となっている。陽極24、25と陰極23とは直流電源26に接続されている。さらに、電解槽22aの上流側、および電解槽22cの下流側には、それぞれ処理前繊維束21を搬送する搬送ロール27、27が設置されている。   In the electrolytic oxidation apparatus 2 shown in FIG. 2, three electrolytic tanks 22 a, 22 b, and 22 c filled with an electrolytic solution are installed in series along the traveling direction of the untreated fiber bundle 21. Of these three electrolytic cells, the central electrolytic cell 22b has a cathode 23 disposed therein, which is a cathode cell. In addition, anodes 24 and 25 are respectively disposed in the electrolytic tanks 22a and 22c on the upstream side and the downstream side of the electrolytic tank 22b, thereby forming an anode tank. The anodes 24 and 25 and the cathode 23 are connected to a DC power source 26. Furthermore, conveyance rolls 27 and 27 for conveying the unprocessed fiber bundle 21 are installed on the upstream side of the electrolytic cell 22a and the downstream side of the electrolytic cell 22c, respectively.

処理前繊維束21は、搬送ロール27により上流側の電解槽から順に、すなわち電解槽22a、22b、22cの順に導かれて、各電解槽において電解液の液面に接触しながら走行する。
処理前繊維束21は、陽極槽である電解槽22aにおいて電解液の液面に接触しながら通過するときに、電解液を介して間接的に電気が付与される。そして、陰極槽である電解槽22bに導かれて電解液の液面に接触しながら走行する。電解槽22bを走行の際、処理前繊維束21は陽極として作用し、処理前繊維束21自身には電解酸化処理が施される。すなわち、電解槽22bにおいて電解酸化処理が行われる。その後、陽極槽である電解槽22cを通過し、電解酸化処理された炭素繊維束28が得られる。
The untreated fiber bundle 21 is guided in order from the upstream electrolytic tank by the transport roll 27, that is, in the order of the electrolytic tanks 22a, 22b, and 22c, and travels in contact with the liquid level of the electrolytic solution in each electrolytic tank.
When the pre-treatment fiber bundle 21 passes through the electrolytic cell 22a as an anode cell while contacting the liquid surface of the electrolytic solution, electricity is indirectly applied through the electrolytic solution. And it guide | induces to the electrolytic cell 22b which is a cathode cell, and it drive | works, contacting the liquid level of electrolyte solution. When traveling through the electrolytic cell 22b, the untreated fiber bundle 21 acts as an anode, and the untreated fiber bundle 21 itself is subjected to electrolytic oxidation. That is, the electrolytic oxidation process is performed in the electrolytic bath 22b. Thereafter, it passes through the electrolytic cell 22c, which is an anode cell, and the carbon fiber bundle 28 subjected to electrolytic oxidation treatment is obtained.

非接触給電方式を採用した電解酸化装置2では、陽極槽である電解槽22a中の電解液を介して処理前繊維束21に間接的に電気を付与することになるので、陽極から直接電気を付与する接触給電方式に比べて給電が不十分である。そのため、陰極槽である電解槽22bにおいて処理前繊維束21は陽極として十分に作用できず、その結果、繊維束の内部まで均一に電解酸化処理されにくい。特に、電解酸化処理時の電気量が少ないと処理斑が起こりやすく、得られた炭素繊維束を用いた複合材料の、炭素繊維束とマトリックス樹脂との接着性が低下しやすくなる。   In the electrolytic oxidation apparatus 2 adopting the non-contact power feeding method, electricity is indirectly applied to the fiber bundle 21 before treatment through the electrolytic solution in the electrolytic tank 22a which is an anode tank. The power supply is insufficient compared to the contact power supply method to be applied. For this reason, in the electrolytic cell 22b which is a cathode cell, the untreated fiber bundle 21 cannot sufficiently function as an anode, and as a result, it is difficult to uniformly perform electrolytic oxidation treatment to the inside of the fiber bundle. In particular, if the amount of electricity during the electrolytic oxidation treatment is small, processing spots are likely to occur, and the adhesion between the carbon fiber bundle and the matrix resin of the composite material using the obtained carbon fiber bundle tends to be lowered.

以上説明したように、本発明によれば、トウ幅8mm以上の処理前繊維束を接触給電方式により5秒以上電解酸化処理するので、単繊維の本数が多く、かつ少ない電気量で処理する場合でも、繊維束の内部まで均一に電解酸化処理できる。その結果、繊維束の長手方向はもちろんのこと、内部まで均一に電解酸化処理された、条件(a)、(b)を満たす炭素繊維束が得られる。該炭素繊維束は、複合材料としたときに、マトリックス樹脂との接着性が良好で、十分な強度を発揮できる。   As described above, according to the present invention, the fiber bundle before processing having a tow width of 8 mm or more is subjected to electrolytic oxidation treatment for 5 seconds or more by the contact power feeding method, and therefore, the case where the number of single fibers is large and the amount of electricity is treated However, the electrolytic oxidation treatment can be uniformly performed to the inside of the fiber bundle. As a result, a carbon fiber bundle satisfying the conditions (a) and (b), which has been subjected to electrolytic oxidation treatment uniformly to the inside as well as the longitudinal direction of the fiber bundle, is obtained. When the carbon fiber bundle is a composite material, the carbon fiber bundle has good adhesion to the matrix resin and can exhibit sufficient strength.

なお、本発明は単繊維の本数が49000本未満と少ない場合でも、繊維束の内部まで均一に電解酸化処理された炭素繊維束を得ることができる。ただし、単繊維の本数が少ない場合は、従来の方法でも繊維束の内部まで均一に電解酸化処理できることもある。
しかし、単繊維の本数が49000〜175000本と多い場合、従来の方法では、繊維束の内部まで均一に電解酸化処理するのは困難である。
本発明は、単繊維の本数が49000〜175000本と多い繊維束を電解酸化処理する場合に、特に好適である。
In the present invention, even when the number of single fibers is as small as less than 49000, it is possible to obtain a carbon fiber bundle that is uniformly electrolytically oxidized to the inside of the fiber bundle. However, when the number of single fibers is small, even the conventional method may be able to uniformly perform electrolytic oxidation treatment to the inside of the fiber bundle.
However, when the number of single fibers is as large as 49000 to 175000, it is difficult to uniformly perform electrolytic oxidation treatment to the inside of the fiber bundle by the conventional method.
The present invention is particularly suitable for the case where a fiber bundle having a large number of single fibers of 49000 to 175000 is subjected to electrolytic oxidation treatment.

以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。
本実施例で用いた処理前繊維束、および各種測定方法は以下の通りである。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
The fiber bundle before processing used in this example and various measurement methods are as follows.

<処理前繊維束>
ポリアクリロニトリル系の前駆体繊維束(単繊維繊度:1.0dtex、単繊維の本数:60000)を空気中で220℃から270℃で耐炎化し、さらに不活性雰囲気中、700℃で前炭素化処理を行った後、最高処理温度1400℃で炭素化し、処理前繊維束を得た。
<Fiber bundle before treatment>
Polyacrylonitrile-based precursor fiber bundle (single fiber fineness: 1.0 dtex, number of single fibers: 60000) is flame-resistant in air at 220 ° C. to 270 ° C., and further pre-carbonized in an inert atmosphere at 700 ° C. Then, carbonization was performed at a maximum treatment temperature of 1400 ° C. to obtain a fiber bundle before treatment.

<ストランド試験>
炭素繊維束のストランド強度およびストランド弾性率は、JIS R 7601に準拠して測定した。
<Strand test>
The strand strength and strand modulus of the carbon fiber bundle were measured according to JIS R7601.

<表面酸素濃度(O/C)およびそのCV値の測定>
炭素繊維束の表面酸素濃度(O/C)およびそのCV値は、以下のようにして求めた。
まず、炭素繊維束を所定の長さに切断して、測定装置の試料ホルダーに両面テープを用いて固定し、光電子脱出速度を90°とし、測定装置の測定チャンバー内を1×10−6Paの真空に保った。
測定時の帯電に伴うピークの補正として、まずC1S(表面炭素濃度)の主ピークの結合エネルギー値を285.6eVに合わせる。そして、C1Sのピーク面積を282〜296eVの範囲で直線のベースラインを引くことにより求めた。一方、O1S(表面酸素濃度)のピーク面積を528〜540eVの範囲で直線のベースラインを引くことにより求めた。
表面酸素濃度(O/C)は、先に求めたO1Sのピーク面積とC1Sのピーク面積の比を、装置固有の感度補正値で除すことにより算出した原子数比で求めた。
同様の操作を切断した3本の炭素繊維束について行い、それぞれについて表面酸素濃度(O/C)を求め、その平均値および標準偏差を算出し、下記式(1)によりCV値を求めた。
CV値[%]=(表面酸素濃度の標準偏差/表面酸素濃度の平均値)×100 ・・・(1)
<Measurement of surface oxygen concentration (O / C) and its CV value>
The surface oxygen concentration (O / C) of the carbon fiber bundle and its CV value were determined as follows.
First, the carbon fiber bundle is cut into a predetermined length, fixed to the sample holder of the measuring device using double-sided tape, the photoelectron escape rate is 90 °, and the inside of the measuring chamber of the measuring device is 1 × 10 −6 Pa. The vacuum was maintained.
As correction of the peak accompanying charging during measurement, first, the binding energy value of the main peak of C 1S (surface carbon concentration) is adjusted to 285.6 eV. Then, the C 1S peak area was determined by drawing a straight base line in the range of 282 to 296 eV. On the other hand, the peak area of O 1S (surface oxygen concentration) was determined by drawing a straight base line in the range of 528 to 540 eV.
The surface oxygen concentration (O / C) was obtained by an atomic ratio calculated by dividing the ratio of the peak area of O 1S and the peak area of C 1S obtained previously by the sensitivity correction value unique to the apparatus.
The same operation was performed on three cut carbon fiber bundles, the surface oxygen concentration (O / C) was determined for each, the average value and the standard deviation were calculated, and the CV value was determined by the following equation (1).
CV value [%] = (standard deviation of surface oxygen concentration / average value of surface oxygen concentration) × 100 (1)

<ipa値およびそのCV値の測定>
炭素繊維束のipa値およびそのCV値は、サイクリックボルタンメトリー法により、以下のようにして求めた。
なお、測定装置として、ポテンシオスタットとファンクションゼネレータとからなる分析装置(北斗電工株式会社製「HZ-3000 AUTOMATIC POLARIZATION SYSTEM」)を用いた。
<Measurement of ipa value and its CV value>
The ipa value of the carbon fiber bundle and its CV value were determined by the cyclic voltammetry method as follows.
In addition, as a measuring device, an analyzer (“HZ-3000 AUTOMATIC POLARIZATION SYSTEM” manufactured by Hokuto Denko Co., Ltd.) composed of a potentiostat and a function generator was used.

まず、5%リン酸水溶液を用いてpHを3とし、窒素をバブリングさせ容存酸素を除去した溶液を調製した。
この溶液に、参照電極としてAg/AgCl電極と、対電極として十分な表面積を有する白金電極と、作動電極として炭素繊維束とを差し込み、上記の分析装置にて炭素繊維束の電流と電極電位を測定した。
電位操作範囲は−0.2〜0.8Vとし、電位操作速度は2mV/secとした。X−Yリコーダーにより電位−電流曲線を描き、3回以上掃引させ、曲線が安定した段階で、Ag/AgCl電極に対して、+0.4Vでの電位を標準にとって電流を読み取り、下記式(2)に従ってipa値を算出した。なお、式(2)において、「試料長」とは作動電極に用いた炭素繊維束の長手方向の長さであり、「目付」とは作動電極に用いた炭素繊維束の単位長さ当たりの重さのことである。
ipa値[μA/cm]=電流値[μA]/試料長[cm]×{4π×目付[g/m] ×単繊維数/密度[g/cm] }1/2 ・・・(2)
同様の操作を切断した3本の炭素繊維束について行い、それぞれについてipa値を求め、その平均値および標準偏差を算出し、下記式(3)によりCV値を求めた。
CV値[%]=(ipa値の標準偏差/ipa値の平均値)×100 ・・・(3)
First, a solution was prepared by adjusting the pH to 3 using a 5% phosphoric acid aqueous solution and removing nitrogen by bubbling nitrogen.
An Ag / AgCl electrode as a reference electrode, a platinum electrode having a sufficient surface area as a counter electrode, and a carbon fiber bundle as a working electrode are inserted into this solution, and the current and electrode potential of the carbon fiber bundle are measured with the above analyzer. It was measured.
The potential operation range was −0.2 to 0.8 V, and the potential operation speed was 2 mV / sec. Draw a potential-current curve with an XY recorder and sweep it three or more times. When the curve is stable, read the current with respect to the Ag / AgCl electrode with the potential at +0.4 V as the standard. ) To calculate the ipa value. In the formula (2), “sample length” is the length in the longitudinal direction of the carbon fiber bundle used for the working electrode, and “weight per unit” is the unit length of the carbon fiber bundle used for the working electrode. It is weight.
ipa value [μA / cm 2 ] = current value [μA] / sample length [cm] × {4π × weight per unit area [g / m] × number of single fibers / density [g / cm 3 ]} 1/2. 2)
The same operation was performed on three cut carbon fiber bundles, the ipa value was determined for each, the average value and the standard deviation were calculated, and the CV value was determined by the following equation (3).
CV value [%] = (standard deviation of ipa value / average value of ipa value) × 100 (3)

<界面剪断強度の測定>
炭素繊維束とマトリックス樹脂との接着強度は、単繊維埋め込み(フラグメンテーション)法により界面剪断強度を測定することで評価した。単繊維埋め込み法としては、例えば、「炭素繊維の展開と評価方法」(リアライズ社)、第157〜160頁に記載されている方法を用いることができ、具体的には、以下に示す手順で評価した。
<Measurement of interfacial shear strength>
The bond strength between the carbon fiber bundle and the matrix resin was evaluated by measuring the interfacial shear strength by a single fiber embedding (fragmentation) method. As a single fiber embedding method, for example, the method described in “Development and evaluation method of carbon fiber” (Realize), pages 157 to 160 can be used, and specifically, the procedure shown below is used. evaluated.

まず、炭素繊維束から単繊維1本を抜き出し、これをマトリックス樹脂中に包埋させて試験片を作製した。この試験片に、繊維の破断伸度より大きな伸張を付与した(引張試験の実施)。マトリックス樹脂中で破断した各破断繊維の長さを測定し、下記式(4)、(5)より界面剪断強度を算出した。
臨界繊維長[mm]=4×平均繊維長[mm]/3 ・・・(4)
界面剪断強度[MPa]=繊維強度[MPa]×繊維直径[mm]/2×臨界繊維長[mm] ・・・(5)
なお、マトリックス樹脂としてはCIBA−GEIGY社製の「アラルダイドCY230」100質量部と、「ハードナーHY2967」35質量部とを混合し、これを型枠に注入し、20℃で24時間の条件で硬化させ、引き続き60℃で6時間の条件で硬化させたものを用いた。
また、引張試験は温度22℃、湿度50%の環境下で行い、試験片が破断しない範囲内(伸度7%)で伸張を付与した後、樹脂内で破断した破断繊維の長さを偏光顕微鏡にて読み取り、平均繊維長を算出した。
First, one single fiber was extracted from the carbon fiber bundle and embedded in a matrix resin to prepare a test piece. The test piece was given an elongation greater than the breaking elongation of the fiber (execution of a tensile test). The length of each broken fiber broken in the matrix resin was measured, and the interfacial shear strength was calculated from the following formulas (4) and (5).
Critical fiber length [mm] = 4 × average fiber length [mm] / 3 (4)
Interfacial shear strength [MPa] = fiber strength [MPa] × fiber diameter [mm] / 2 × critical fiber length [mm] (5)
As a matrix resin, 100 parts by mass of “Araldide CY230” manufactured by CIBA-GEIGY Co., Ltd. and 35 parts by mass of “Hardener HY2967” are mixed, poured into a mold, and cured at 20 ° C. for 24 hours. And subsequently cured at 60 ° C. for 6 hours.
In addition, the tensile test is performed in an environment of a temperature of 22 ° C. and a humidity of 50%. After the test piece is stretched within a range where it does not break (elongation: 7%), the length of the broken fiber broken in the resin is polarized. The average fiber length was calculated by reading with a microscope.

<曲げ強度の測定>
複合材料の曲げ強度は以下のようにして測定した。
まず、炭素繊維束と、マトリックス樹脂(三菱レイヨン株式会社製、「#350エポキシ樹脂」)とを用い、炭素繊維束の含有量が体積含有率で60%となるようにマトリックス樹脂に含浸させ、板厚が2mmの繊維強化プラスチック板材(複合材料)を製造した。
得られた複合材料について、ASTM D790に準拠して、3点曲げショートビーム法により繊維方向に対して直角方向の曲げ強度(FS90°) を測定した。
<Measurement of bending strength>
The bending strength of the composite material was measured as follows.
First, using a carbon fiber bundle and a matrix resin (“# 350 epoxy resin” manufactured by Mitsubishi Rayon Co., Ltd.), the matrix resin is impregnated so that the content of the carbon fiber bundle is 60% by volume, A fiber-reinforced plastic plate (composite material) having a plate thickness of 2 mm was produced.
With respect to the obtained composite material, the bending strength (FS 90 °) in the direction perpendicular to the fiber direction was measured by a three-point bending short beam method in accordance with ASTM D790.

[実施例1]
<実施例1−1>
電解酸化処理の電解液として炭酸水素アンモニウム水溶液(5質量%)を使用し、図1に示す電解酸化装置1を用いて、トウ幅10mm、処理時間12秒、電気量1.4C/gの条件で、処理前繊維束を電解酸化処理し、炭素繊維束を得た。なお、電解酸化処理を行う際の張力は、単繊維24000本当たり3.2kgとした。また、処理前繊維束のトウ幅は、搬送ロール17として、表面に幅10mmの溝を有する溝ロールを用いることで規制した。
得られた炭素繊維束について各種測定を行った。結果を表1、2に示す。
[Example 1]
<Example 1-1>
Using an aqueous solution of ammonium hydrogen carbonate (5% by mass) as an electrolytic solution for electrolytic oxidation treatment, using the electrolytic oxidation apparatus 1 shown in FIG. 1, a tow width of 10 mm, a treatment time of 12 seconds, and an electric charge of 1.4 C / g Then, the fiber bundle before treatment was electrolytically oxidized to obtain a carbon fiber bundle. The tension during the electrolytic oxidation treatment was 3.2 kg per 24,000 single fibers. Further, the toe width of the fiber bundle before treatment was regulated by using a groove roll having a groove with a width of 10 mm on the surface as the transport roll 17.
Various measurements were performed on the obtained carbon fiber bundle. The results are shown in Tables 1 and 2.

<実施例1−2、1−3>
電気量を表1に示す値に変更した以外は、実施例1−1と同様にして処理前繊維束を電解酸化処理し、炭素繊維束を得た。
得られた炭素繊維束について、各種測定を行った。結果を表1、2に示す。
<Examples 1-2 and 1-3>
Except that the amount of electricity was changed to the value shown in Table 1, the fiber bundle before treatment was electrolytically oxidized in the same manner as in Example 1-1 to obtain a carbon fiber bundle.
Various measurements were performed on the obtained carbon fiber bundle. The results are shown in Tables 1 and 2.

[実施例2〜4]
トウ幅、処理時間、および電気量を表1に示す値に変更した以外は、実施例1−1と同様にして処理前繊維束を電解酸化処理し、炭素繊維束を得た。なお、実施例4では、搬送ロール17として、表面に幅8mmの溝を有する溝ロールに変更して、処理前繊維束のトウ幅を規制した。
得られた炭素繊維束について、各種測定を行った。結果を表1、2に示す。
[Examples 2 to 4]
Except for changing the tow width, the treatment time, and the amount of electricity to the values shown in Table 1, the fiber bundle before treatment was subjected to electrolytic oxidation treatment in the same manner as in Example 1-1 to obtain a carbon fiber bundle. In Example 4, the conveying roll 17 was changed to a groove roll having a groove having a width of 8 mm on the surface, and the toe width of the fiber bundle before processing was regulated.
Various measurements were performed on the obtained carbon fiber bundle. The results are shown in Tables 1 and 2.

[比較例1、2]
トウ幅、処理時間、および電気量を表1に示す値に変更した以外は、実施例1−1と同様にして処理前繊維束を電解酸化処理し、炭素繊維束を得た。なお、比較例1では、搬送ロール17として、表面に幅3mmの溝を有する溝ロールに変更して、処理前繊維束のトウ幅を規制した。
得られた炭素繊維束について、各種測定を行った。結果を表1、2に示す。
[Comparative Examples 1 and 2]
Except for changing the tow width, the treatment time, and the amount of electricity to the values shown in Table 1, the fiber bundle before treatment was subjected to electrolytic oxidation treatment in the same manner as in Example 1-1 to obtain a carbon fiber bundle. In Comparative Example 1, the tow width of the unprocessed fiber bundle was regulated by changing the conveying roll 17 to a groove roll having a groove with a width of 3 mm on the surface.
Various measurements were performed on the obtained carbon fiber bundle. The results are shown in Tables 1 and 2.

[比較例3−1〜3−3]
電解酸化装置として図2に示す装置を用い、トウ幅、および電気量を表1に示す値に変更した以外は、実施例1−1と同様にして処理前繊維束を電解酸化処理し、炭素繊維束を得た。なお、処理前繊維束のトウ幅は、搬送ロール27として、表面に幅8mmの溝を有する溝ロールを用いることで規制した。また、全ての電解槽には、炭酸水素アンモニウム水溶液(5質量%)を電解液として充填した。
得られた炭素繊維束について、各種測定を行った。結果を表1、2に示す。
[Comparative Examples 3-1 to 3-3]
The apparatus shown in FIG. 2 was used as the electrolytic oxidation apparatus, and the fiber bundle before treatment was subjected to electrolytic oxidation treatment in the same manner as in Example 1-1 except that the tow width and the amount of electricity were changed to the values shown in Table 1. Carbon A fiber bundle was obtained. The tow width of the fiber bundle before treatment was regulated by using a groove roll having a groove with a width of 8 mm on the surface as the transport roll 27. Moreover, all the electrolytic tanks were filled with ammonium hydrogencarbonate aqueous solution (5 mass%) as electrolyte solution.
Various measurements were performed on the obtained carbon fiber bundle. The results are shown in Tables 1 and 2.

[比較例4、5]
電解酸化装置として図2に示す装置を用い、全ての電解槽に充填される電解液として硝酸水溶液(5質量%)を使用し、トウ幅、および電気量を表1に示す値に変更した以外は、実施例1−1と同様にして処理前繊維束を電解酸化処理し、炭素繊維束を得た。なお、処理前繊維束のトウ幅は、搬送ロール27として、表面に幅8mmの溝を有する溝ロールを用いることで規制した。
得られた炭素繊維束について、各種測定を行った。結果を表1、2に示す。
[Comparative Examples 4 and 5]
2 except that the apparatus shown in FIG. 2 is used as the electrolytic oxidation apparatus, an aqueous nitric acid solution (5% by mass) is used as the electrolytic solution filled in all the electrolytic cells, and the tow width and the amount of electricity are changed to the values shown in Table 1. In the same manner as in Example 1-1, the fiber bundle before treatment was electrolytically oxidized to obtain a carbon fiber bundle. The tow width of the fiber bundle before treatment was regulated by using a groove roll having a groove with a width of 8 mm on the surface as the transport roll 27.
Various measurements were performed on the obtained carbon fiber bundle. The results are shown in Tables 1 and 2.

Figure 0005621253
Figure 0005621253

Figure 0005621253
Figure 0005621253

表2から明らかなように、表面酸素濃度のCV値が8%以下、ipa値のCV値が5%以下である、各実施例で得られた炭素繊維束は、界面剪断強度および曲げ強度が十分な値であり、複合材料としたときに、マトリックス樹脂との接着性が良好で、十分な強度を発揮できた。
特に、実施例1−1〜1−3を比較すると、電気量を小さくしても界面剪断強度の変化(強度振れ)が小さいことが分かった。すなわち、電気量が変化してもマトリックス樹脂との接着性に優れた炭素繊維束を安定して製造することが示唆された。
このように、各実施例では、単繊維の本数が多く、かつ少ない電気量で処理しても、繊維束の内部まで均一に電解酸化処理できた。そして、得られた炭素繊維束は、複合材料としたときに、マトリックス樹脂との接着性が良好で、十分な強度を発揮できた。
As is clear from Table 2, the carbon fiber bundles obtained in each example having a surface oxygen concentration CV value of 8% or less and an ipa value CV value of 5% or less have interfacial shear strength and bending strength. When the composite material was used, the adhesiveness with the matrix resin was good and sufficient strength was exhibited.
In particular, when Examples 1-1 to 1-3 were compared, it was found that even if the amount of electricity was reduced, the change in interfacial shear strength (strength fluctuation) was small. That is, it was suggested that a carbon fiber bundle excellent in adhesiveness with a matrix resin can be stably produced even if the amount of electricity changes.
Thus, in each Example, even if the number of single fibers was large and the treatment was performed with a small amount of electricity, even the inside of the fiber bundle could be uniformly electrolytically oxidized. And when the obtained carbon fiber bundle was made into the composite material, adhesiveness with a matrix resin was favorable and was able to exhibit sufficient intensity | strength.

一方、ipa値のCV値が5%を超えた、比較例1、2で得られた炭素繊維束は、曲げ強度の値が各実施例の炭素繊維束に比べて低く、十分な強度を発揮できなかった。
非接触給電方式により電解酸化処理を行った比較例3−1〜3−3の場合、得られた炭素繊維束は表面酸素濃度のCV値が8%を超えていた。特に、電気量を2.7C/g以上にした比較例3−2、3−3はipa値のCV値も5%を超えていた。比較例3−1〜3−3では、電気量を変化させると界面剪断強度も大きく変化し、特に電気量を小さくすると界面剪断強度が極端に低下した。すなわち、電気量が変化するとマトリックス樹脂との接着性に優れた炭素繊維束の安定製造が困難であることが示唆された。
非接触給電方式により電解酸化処理を行い、電解液として硝酸水溶液を用いた比較例4、5の場合、得られた炭素繊維束はipa値のCV値が5%を超えていた。特に、電気量を9C/gにした比較例4は表面酸素濃度のCV値も8%を超えていた。これら炭素繊維束は、曲げ強度の値が各実施例の炭素繊維束に比べて低く、十分な強度を発揮できなかった。
このように、各比較例では繊維束の内部まで均一に電解酸化処理ができなかった。
On the other hand, the carbon fiber bundles obtained in Comparative Examples 1 and 2 in which the CV value of the ipa value exceeded 5% had a lower bending strength value than the carbon fiber bundles of each Example, and exhibited sufficient strength. could not.
In the case of Comparative Examples 3-1 to 3-3 in which the electrolytic oxidation treatment was performed by the non-contact power feeding method, the obtained carbon fiber bundle had a CV value of surface oxygen concentration exceeding 8%. In particular, in Comparative Examples 3-2 and 3-3 in which the amount of electricity was 2.7 C / g or more, the CV value of the ipa value also exceeded 5%. In Comparative Examples 3-1 to 3-3, when the amount of electricity was changed, the interfacial shear strength was also greatly changed. In particular, when the amount of electricity was reduced, the interfacial shear strength was extremely reduced. That is, it was suggested that when the amount of electricity changes, it is difficult to stably produce a carbon fiber bundle excellent in adhesiveness with a matrix resin.
In the case of Comparative Examples 4 and 5 in which electrolytic oxidation treatment was performed by a non-contact power feeding method and an aqueous nitric acid solution was used as the electrolytic solution, the CV value of the obtained carbon fiber bundle exceeded 5%. In particular, in Comparative Example 4 in which the amount of electricity was 9 C / g, the CV value of the surface oxygen concentration exceeded 8%. These carbon fiber bundles had lower bending strength values than the carbon fiber bundles of the respective examples, and could not exhibit sufficient strength.
As described above, in each comparative example, the electrolytic oxidation treatment could not be performed uniformly up to the inside of the fiber bundle.

1、2:電解酸化装置
11、21:処理前繊維束
12、22a、22b、22c:電解槽
13、23:陰極
14、15、24、25:陽極
16、26:直流電源
17、27:搬送ロール
18、28:炭素繊維束
1, 2: Electrolytic oxidation apparatus 11, 21: Fiber bundle before treatment 12, 22a, 22b, 22c: Electrolyzer 13, 23: Cathode 14, 15, 24, 25: Anode 16, 26: DC power supply 17, 27: Transport Roll 18, 28: Carbon fiber bundle

Claims (2)

49000〜175000本の単繊維からなり、以下の条件(a)、(b)を満たすことを特徴とする炭素繊維束。
(a):X線光電子分光法により測定される表面酸素濃度のCV値{(表面酸素濃度の標準偏差/表面酸素濃度の平均値)×100}が8%以下。
(b):サイクリックボルタンメトリー法により測定される、単位面積当たりに流れる電流値(ipa値)のCV値{(ipa値の標準偏差/ipa値の平均値)×100}が5%以下。
A carbon fiber bundle comprising 49000 to 175000 single fibers and satisfying the following conditions (a) and (b).
(A): CV value {(standard deviation of surface oxygen concentration / average value of surface oxygen concentration) × 100} of surface oxygen concentration measured by X-ray photoelectron spectroscopy is 8% or less.
(B): CV value {(standard deviation of ipa value / average value of ipa value) × 100} of the current value (ipa value) flowing per unit area measured by the cyclic voltammetry method is 5% or less.
49000〜175000本の単繊維を束状にした、トウ幅8mm以上の炭素繊維を陽極として用い、
単繊維数24000本当たりの張力を4kg以下とし、
接触給電方式によりロール状の陽極を介して前記炭素繊維に直接電気を付与し、
次いで、電解液が充填され、かつ陰極が配された電解槽に炭素繊維を導き、電解液の液面に接触させながら走行させて5秒以上電解酸化処理することを特徴とする炭素繊維束の製造方法。
Using a carbon fiber having a tow width of 8 mm or more in the form of a bundle of 49000-175000 single fibers as an anode,
The tension per 24,000 single fibers is 4 kg or less,
Applying electricity directly to the carbon fiber via a roll-shaped anode by a contact power supply method ,
Next, the carbon fiber bundle is characterized in that the carbon fiber is guided to an electrolytic cell filled with an electrolytic solution and provided with a cathode, and is run while being in contact with the liquid surface of the electrolytic solution and subjected to electrolytic oxidation treatment for 5 seconds or more. Production method.
JP2009293117A 2009-12-24 2009-12-24 Carbon fiber bundle and method for producing the same Active JP5621253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293117A JP5621253B2 (en) 2009-12-24 2009-12-24 Carbon fiber bundle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293117A JP5621253B2 (en) 2009-12-24 2009-12-24 Carbon fiber bundle and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011132632A JP2011132632A (en) 2011-07-07
JP5621253B2 true JP5621253B2 (en) 2014-11-12

Family

ID=44345669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293117A Active JP5621253B2 (en) 2009-12-24 2009-12-24 Carbon fiber bundle and method for producing the same

Country Status (1)

Country Link
JP (1) JP5621253B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266066A (en) * 1997-03-27 1998-10-06 Toray Ind Inc Carbon fiber tow and its production
JP2002038368A (en) * 2000-07-24 2002-02-06 Mitsubishi Rayon Co Ltd Carbon fiber bundle and method for treating surface of carbon fiber bundle
JP2009114557A (en) * 2007-11-02 2009-05-28 Toho Tenax Co Ltd Uniformly surface-treated carbon fiber and method for producing the same
JP5161604B2 (en) * 2008-02-18 2013-03-13 三菱レイヨン株式会社 Carbon fiber manufacturing method

Also Published As

Publication number Publication date
JP2011132632A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
US4690738A (en) Method of electrochemically surface treating carbon fibers, fibers treated by the method, and composite materials including such fibers
US4704196A (en) Process for surface treatment of carbon fiber
EP2905364A1 (en) Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
JPH0353245B2 (en)
JP2530767B2 (en) Carbon fiber and manufacturing method thereof
JP6381009B1 (en) Opening carbon fiber ultrafine yarn manufacturing equipment
CN108193482A (en) A kind of processing method for carbon fiber surface modification
KR930011306B1 (en) Surface-improved carbon fiber and production thererof
JP2009114557A (en) Uniformly surface-treated carbon fiber and method for producing the same
Fitzer et al. Anodic oxidation of high modulus carbon fibres in sulphuric acid
EP0293867B1 (en) Surface treatment process for carbon fibers
JPH08113876A (en) Carbon fiber and its production
JP5621253B2 (en) Carbon fiber bundle and method for producing the same
CN109161947A (en) High modulus carbon fiber surface treatment method and device and its application
JPS62276075A (en) Carbon fiber and its production
Neffe Effect of anodic oxidation of PAN-based carbon fibers on the morphological changes of their surfaces
JPH1193078A (en) Carbon fiber and its production
JP2002038368A (en) Carbon fiber bundle and method for treating surface of carbon fiber bundle
Akbarov et al. Development of electroconductive polyacrylonitrile fibers through chemical metallization and galvanisation
JP2002180370A (en) Carbon fiber for metal oxide coating and method for producing the same
JP2002105850A (en) Method for surface treatment of carbonaceous material
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
CN115897241B (en) High-shear-strength ultrahigh-modulus asphalt-based graphite fiber and preparation method thereof
JP2910275B2 (en) Surface treatment method for carbon fiber
JP2012021238A (en) Method for producing carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R151 Written notification of patent or utility model registration

Ref document number: 5621253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250