JPH10266066A - Carbon fiber tow and its production - Google Patents

Carbon fiber tow and its production

Info

Publication number
JPH10266066A
JPH10266066A JP7605397A JP7605397A JPH10266066A JP H10266066 A JPH10266066 A JP H10266066A JP 7605397 A JP7605397 A JP 7605397A JP 7605397 A JP7605397 A JP 7605397A JP H10266066 A JPH10266066 A JP H10266066A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber tow
reduction
tow
single fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7605397A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
正信 小林
Motoi Ito
基 伊藤
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7605397A priority Critical patent/JPH10266066A/en
Publication of JPH10266066A publication Critical patent/JPH10266066A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon fiber tow relatively uniform in adhesivity to matrix resin, thus capable of stabilizing the mechanical properties of the composite materials made by use thereof by subjecting a carbon fiber tow to such surface treatment as to periodically repeat anodization and cathodic reduction via an electrolyte solution. SOLUTION: A carbon fiber tow >=10,000 filaments of single fiber produced by baking acrylic fiber as precursor fiber is introduced into an electrolytic surface treatment unit where the tow is subjected to surface treatment in an electrolyte solution such as aqueous sulfuric acid solution by periodically repeating anodization and cathodic reduction through supplying electricity so that the reduction ratio defined by the relationship: reduction ratio = quantity of electricity for reduction/(quantity of electricity for oxidation + quantity of electricity for reduction) fall within the range 0.001 to 0.5, thus obtaining the objective carbon fiber tow 0.02-0.2 in the surface oxygen concentration: O/C determined by the X-Ray photoelectron spectroscopy and <=30% in the adhesive force variance among single fibers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維トウおよ
びその製造方法に関する。詳しくはマトリックス樹脂と
の接着特性のバラツキが小さく、さらにはマトリックス
樹脂との接着特性が安定して良好に得られる炭素繊維ト
ウおよびその製造方法に関する。
[0001] The present invention relates to a carbon fiber tow and a method for producing the same. More specifically, the present invention relates to a carbon fiber tow having a small variation in adhesive properties with a matrix resin, and furthermore, a stable and good adhesive property with a matrix resin, and a method for producing the same.

【0002】[0002]

【従来の技術】炭素繊維は各種マトリックス樹脂とから
なる複合材料として利用されるが、炭素繊維の特性を複
合材料に生かすには、マトリックス樹脂との接着性が重
要である。一般に炭素繊維には表面処理が施され、マト
リックス樹脂に対する接着性を向上せしめることにより
複合材料の剥離強度や剪断強度が向上させられてきた。
2. Description of the Related Art Carbon fibers are used as a composite material composed of various matrix resins. In order to make use of the properties of the carbon fibers in the composite material, adhesion to the matrix resin is important. Generally, carbon fibers have been subjected to a surface treatment, and the peel strength and the shear strength of the composite material have been improved by improving the adhesiveness to a matrix resin.

【0003】最近では生産性向上の観点からプリカーサ
繊維を構成する単繊維の本数、いわゆるフィラメント数
が増加する傾向にあり、また、同時に焼成する炭素繊維
トウの糸条本数も増え、表面処理の均一性が求められて
いる。フィラメント数の多い炭素繊維トウでは、表面処
理、特に電解表面処理するに際し、トウ外周の単繊維が
処理され易いため、炭素繊維トウ内外で処理が不均一に
なり、複合材料特性を低下させる可能性がある。すなわ
ちトウの内部に位置する単繊維では酸化が進みにくく、
トウの外周に位置する単繊維では酸化が進みすぎる。そ
のためにトウの内部に位置する単繊維は表面処理が不十
分となりマトリックス樹脂との接着力が小さく、一方ト
ウの外部に位置する単繊維は充分な接着力は得られるも
のの、酸化の進みすぎによる繊維強度の低下を引き起こ
す。特に高弾性率炭素繊維トウでは、黒鉛構造が発達す
る傾向、すなわち表面がより不活性化になっているため
電解処理量を増やさざるをえない。そのために炭素繊維
トウ内外の電解表面処理がさらに不均一になり、複合材
料特性を低下させる傾向が顕著となる。
In recent years, from the viewpoint of improving productivity, the number of monofilaments constituting the precursor fiber, that is, the number of filaments, has tended to increase. Also, the number of filaments of carbon fiber tow fired at the same time has increased, resulting in uniform surface treatment. Sex is required. In the case of carbon fiber tow with a large number of filaments, single fibers around the tow are easy to be treated during surface treatment, especially electrolytic surface treatment, so the treatment becomes uneven inside and outside the carbon fiber tow, and the properties of the composite material may deteriorate. There is. In other words, oxidation is difficult to progress in the single fiber located inside the tow,
Oxidation proceeds too much for single fibers located on the outer periphery of the tow. For this reason, the single fibers located inside the tow have insufficient surface treatment and have low adhesion to the matrix resin, while the single fibers located outside the tow have sufficient adhesion, but due to excessive oxidation. Causes a decrease in fiber strength. In particular, in a high modulus carbon fiber tow, the amount of electrolytic treatment must be increased because the graphite structure tends to develop, that is, the surface is more inactivated. As a result, the electrolytic surface treatment inside and outside the carbon fiber tow becomes more uneven, and the tendency of deteriorating the properties of the composite material becomes significant.

【0004】この表面処理の不均一は、電解液がトウ内
部まで十分に拡散しないためと考えられ、この問題を解
決するために、パルス的に炭素繊維トウを印加して陽極
酸化し、トウ内部への電解質の拡散効率を上げる方法が
提案されている(特開昭63−264967号公報、特
開平1−298275号公報、特開平7−189113
号公報、特公平6−21420号公報、特開平7−20
7573号公報など)。何れも、炭素繊維トウ内部への
電解質の拡散によってトウ内部と外周部の処理ムラが抑
えられる。しかし、特に高弾性率炭素繊維トウで強い電
解処理をする場合、単繊維内の処理ムラの抑制がまだ不
十分であり、安定した複合材料特性を得るまでには至っ
てない。
[0004] The non-uniformity of the surface treatment is considered to be due to the fact that the electrolytic solution does not sufficiently diffuse into the tow. There have been proposed methods for increasing the diffusion efficiency of the electrolyte into the electrolyte (JP-A-63-264967, JP-A-1-298275, JP-A-7-189113).
JP, JP-B-6-21420, JP-A-7-20
7573). In each case, the unevenness of processing inside and outside of the tow is suppressed by diffusion of the electrolyte into the inside of the carbon fiber tow. However, particularly when a strong electrolytic treatment is performed with a high modulus carbon fiber tow, the treatment unevenness in the single fiber is still insufficiently suppressed, and stable composite material properties have not yet been obtained.

【0005】本発明者らは、かかる現状を鑑み、炭素繊
維トウの電解処理方法、特に還元電解について詳細に検
討した結果、これが炭素繊維トウとマトリックスとの接
着性のバラツキを低下させ得ることを見いだし、本発明
を完成するに至った。
In view of the present situation, the present inventors have studied in detail the electrolytic treatment method of carbon fiber tow, particularly reduction electrolysis, and have found that this can reduce the variation in the adhesiveness between the carbon fiber tow and the matrix. They have found and completed the present invention.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決すること、すなわち接着力のバラツキが小
さく、さらには炭素繊維トウとマトリックス樹脂との接
着力を向上させて、結果として得られる複合材料の機械
的特性を安定して良好なものとしえる炭素繊維トウを提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, that is, to reduce the variation in the adhesive force and to improve the adhesive force between the carbon fiber tow and the matrix resin. An object of the present invention is to provide a carbon fiber tow capable of stably improving the mechanical properties of the obtained composite material.

【0007】[0007]

【課題を解決するための手段】上記した課題を解決する
ために本発明の炭素繊維トウは以下の構成を有する。す
なわち、単繊維本数が10000フィラメント以上の炭
素繊維トウであって、X線光電子分光法により測定され
る表面酸素濃度O/Cが0.02〜0.2であり、単繊
維間の接着力のバラツキが30%以下であることを特徴
とする炭素繊維トウである。
Means for Solving the Problems To solve the above problems, the carbon fiber tow of the present invention has the following constitution. That is, the number of single fibers is a carbon fiber tow having 10,000 filaments or more, the surface oxygen concentration O / C measured by X-ray photoelectron spectroscopy is 0.02 to 0.2, and the adhesive force between the single fibers is A carbon fiber tow having a variation of 30% or less.

【0008】また、上記した課題を解決するために、本
発明の炭素繊維トウの製造方法は以下の構成を有する。
すなわち、前駆体繊維を焼成して、単繊維本数が100
00フィラメント以上である炭素繊維トウを得、その後
電解質溶液を介した給電により、該炭素繊維トウに対し
て、下式で定義される還元率が0.001〜0.5とな
るよう陽極酸化と陰極還元を周期的に繰り返して表面処
理することを特徴とする炭素繊維トウの製造方法であ
る。
Further, in order to solve the above-mentioned problems, a method for producing a carbon fiber tow of the present invention has the following constitution.
That is, the precursor fibers are fired, and the number of single fibers is 100
A carbon fiber tow having a length of at least 00 filaments is obtained, and thereafter, anodization is performed such that a reduction rate defined by the following formula is 0.001 to 0.5 with respect to the carbon fiber tow by power supply through an electrolyte solution. A method for producing a carbon fiber tow, characterized in that a surface treatment is performed by periodically repeating cathodic reduction.

【0009】 還元率=還元電気量/(酸化電気量+還元電気量)Reduction rate = reduction electricity amount / (oxidation electricity amount + reduction electricity amount)

【0010】[0010]

【発明の実施の形態】まず、本発明の炭素繊維トウにつ
いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the carbon fiber tow of the present invention will be described in detail.

【0011】炭素繊維トウにおける単繊維の接着力のバ
ラツキについて詳細に検討したところ、特定の表面処理
によって製造された炭素繊維トウは、単繊維間および単
繊維内ともにマトリックス樹脂との接着特性のバラツキ
が小さく、従来にない高い接着力が得られることがわか
った。これは以下のように考えられる。
When the variation in the adhesive strength of the single fibers in the carbon fiber tow was examined in detail, the carbon fiber tow produced by the specific surface treatment showed a variation in the adhesive properties between the single fiber and the inside of the single fiber with the matrix resin. , And it was found that an unprecedentedly high adhesive strength could be obtained. This is considered as follows.

【0012】炭素繊維トウにおける単繊維間の接着力の
バラツキは、トウの内部では酸化が進まず、外部では酸
化が進みすぎて起こる。これは電解表面処理時にトウ外
周の単繊維が処理され易いため、炭素繊維トウの処理が
単繊維間で不均一になる場合がある。また、酸化を受け
易い突起部、エッジ部等の特定の場所がある単繊維は酸
化が進みすぎ、酸化を受け難い単繊維では酸化が進まず
単繊維間で処理が不均一になる場合がある。このため、
結果的に複合材料物性のバラツキが大きくなり、安定し
た機械的物性が得られない。ひいては耐久性の低い複合
材料になる。
The variation in the adhesive force between the single fibers in the carbon fiber tow occurs because oxidation does not proceed inside the tow and oxidation proceeds too much outside. This is because the single fibers on the outer periphery of the tow are easily treated during the electrolytic surface treatment, so that the treatment of the carbon fiber tow may be uneven between the single fibers. In addition, single fibers having specific locations such as protrusions and edge portions that are susceptible to oxidation may be excessively oxidized, and oxidation may not proceed with single fibers that are not easily oxidized, and the treatment may be uneven between the single fibers. . For this reason,
As a result, the dispersion of the physical properties of the composite material increases, and stable mechanical physical properties cannot be obtained. As a result, the composite material has low durability.

【0013】炭素繊維トウを陽極酸化すると、単繊維に
おいて、まず酸化を受け易い突起部、エッジ部等の特定
の場所に官能基が生成する。引き続き連続的であれ間欠
的であれ陽極酸化を続けると、同じ場所および近傍に官
能基の生成が更に進む。従って、陽極酸化を受け難い場
所に官能基を生成させるには、必要以上の陽極酸化が必
要となる。局所的に官能基が生成した場所ではマトリッ
クス樹脂との結合が高いものの、過度の陽極酸化により
構造破壊が起こり基質強度が低下し、結果的に高い接着
力が得られない。以上のことから酸化を受け易い突起
部、エッジ部等の特定の場所を多く有する単繊維は接着
強度が高くなり、酸化を受け易い場所の少ない単繊維で
は接着力が低くなる。結果的に炭素繊維トウにおける単
繊維間の接着力のバラツキが大きくなる。
When the carbon fiber tow is anodized, a functional group is first generated in a specific portion of the single fiber, such as a projection or an edge, which is easily oxidized. If the anodic oxidation is continued, either continuously or intermittently, the generation of the functional group further proceeds at the same location and in the vicinity. Therefore, in order to generate a functional group in a place where anodic oxidation is difficult, anodic oxidation more than necessary is necessary. Although the bond with the matrix resin is high at the location where the functional group is locally generated, excessive anodic oxidation causes structural destruction and lowers the substrate strength, and as a result, high adhesive strength cannot be obtained. From the above, a single fiber having many specific places such as a projection portion and an edge portion which are susceptible to oxidation has high adhesive strength, and a single fiber having few places susceptible to oxidation has low adhesive strength. As a result, the dispersion of the adhesive force between the single fibers in the carbon fiber tow increases.

【0014】一方で陰極還元は、生成した水酸基やカル
ボキシル基等の反応性の高い官能基が脱離し、カルボニ
ル基への転換や官能基のない構造になる。そのため炭素
繊維表面が不活性となり、官能基の減少によって結果的
に接着力が低下する。しかし、陰極還元は、酸化を受け
た場所、特に酸化を受け易い場所で起こる。このこと
は、酸化を受け易い場所が、陰極還元によって電気抵抗
値の高い酸素を含む炭素構造、すなわち相対的に酸化を
受け難い構造に転換されたと考えられる。続けて陽極酸
化を行うと、最初の電解表面処理で酸化を受け難かった
場所が相対的に酸化されやすくなり全体が均一に処理さ
れると考えられる。従って、適切な還元率で陰極還元を
することによって、過度に接着力が高い場所が減少し、
単繊維内の接着力のバラツキが小さく、かつ結果的に高
い接着強度が得られることがわかった。また同時に、適
切に還元処理することにより、単繊維間の酸化処理程度
が均一になり、結果的に炭素繊維トウにおいて単繊維間
の接着力のバラツキが小さくなる。
On the other hand, in the cathodic reduction, a highly reactive functional group such as a generated hydroxyl group or a carboxyl group is eliminated, so that conversion to a carbonyl group or a structure without a functional group is obtained. As a result, the surface of the carbon fiber becomes inactive, and as a result, the adhesive force decreases due to the decrease in the number of functional groups. However, cathodic reduction occurs where oxidation has occurred, especially where oxidation is prone. This is presumably because the place that is susceptible to oxidation has been converted to a carbon structure containing oxygen having a high electric resistance value, that is, a structure that is relatively resistant to oxidation by cathodic reduction. If anodic oxidation is subsequently performed, it is considered that a portion that is hardly oxidized in the first electrolytic surface treatment is relatively easily oxidized, and the whole is uniformly treated. Therefore, by performing cathodic reduction at an appropriate reduction rate, places with excessively high adhesive strength are reduced,
It was found that the dispersion of the adhesive force in the single fiber was small, and high adhesive strength was obtained as a result. At the same time, by performing the appropriate reduction treatment, the degree of the oxidation treatment between the single fibers becomes uniform, and as a result, the variation in the adhesive force between the single fibers in the carbon fiber tow is reduced.

【0015】炭素繊維トウ内外の単繊維間で表面処理を
均一にするには、電解電流が単繊維間で均一に流れるこ
とが必要である。パルス電解処理では、電解液が拡散に
よって炭素繊維トウ内部まで入るものの炭素繊維トウへ
の印加方法によって電解液の拡散性が大きく変わる。炭
素繊維トウを電解液に介さずに直接電極と接触すると、
フィラメント数が多くなるほど電極に接触した単繊維で
流れやすくなり、束内の均一処理が困難である。一方、
一旦電解液を介して炭素繊維トウを開繊したのち間接的
に印加することによって、炭素繊維トウ内の電流の流れ
が均一になる。しかし、連続的あるいは間欠的に印加す
ると、単繊維内の接着力のバラツキが生じ、結果的に複
合材料接着強度のバラツキが生じる。そのため、陽極酸
化、適切量の陰極還元を周期的に繰り返すことによって
初めて、単繊維間および単繊維内の両方のバラツキを抑
えることでき、この組合せによって単繊維間の接着性の
バラツキが小さい炭素繊維トウが得られる。
In order to make the surface treatment uniform between the single fibers inside and outside the carbon fiber tow, it is necessary for the electrolytic current to flow uniformly between the single fibers. In the pulse electrolysis, although the electrolytic solution enters the inside of the carbon fiber tow by diffusion, the diffusivity of the electrolytic solution greatly changes depending on the application method to the carbon fiber tow. When the carbon fiber tow comes into direct contact with the electrode without intervening in the electrolyte,
As the number of filaments increases, the single fibers that are in contact with the electrodes are more likely to flow, making it difficult to perform uniform treatment within the bundle. on the other hand,
Once the carbon fiber tow is opened via the electrolytic solution and applied indirectly, the current flow in the carbon fiber tow becomes uniform. However, if the voltage is applied continuously or intermittently, the adhesive strength in the single fiber varies, and as a result, the composite material adhesive strength varies. Therefore, only by periodically repeating the anodic oxidation and the appropriate amount of cathodic reduction, variations between both single fibers and within single fibers can be suppressed. Tow is obtained.

【0016】本発明の炭素繊維トウは、X線光電子分光
により測定される表面酸素濃度O/Cを0.02〜0.
2、好ましくは0.04〜0.15、より好ましくは
0.06〜0.1である。O/Cが0.2を超えると、
樹脂の官能基と炭素繊維最表面との化学結合は強固にな
るものの、本来炭素繊維基質自身が有する強度よりもか
なり低い酸化物層が炭素繊維表層を覆うことになるた
め、結果として得られる複合材料の横方向特性は低くな
ってしまう。O/Cが0.02に満たないと、そのよう
な炭素繊維トウを用いた複合材料は、その横方向特性が
十分に満足できるものとならない。
The carbon fiber tow of the present invention has a surface oxygen concentration O / C measured by X-ray photoelectron spectroscopy of 0.02-0.
2, preferably 0.04 to 0.15, more preferably 0.06 to 0.1. When O / C exceeds 0.2,
Although the chemical bond between the functional group of the resin and the outermost surface of the carbon fiber becomes strong, the oxide layer, which is considerably lower than the strength of the carbon fiber substrate itself, covers the carbon fiber surface layer, and the resulting composite The lateral properties of the material will be low. If the O / C is less than 0.02, a composite material using such a carbon fiber tow does not have a sufficiently satisfactory lateral characteristic.

【0017】ここで、表面酸素濃度O/Cとは、次の手
順に従ってX線光電子分光法により求めた値をいう。先
ず、溶媒でサイジング剤などを除去した炭素繊維トウを
カットしてステンレス製の試料支持台に拡げて並べた
後、光電子脱出角度を90°とし、X線源としてMgK
α1,2を用い、試料チャンバー内を1×10-8torr
の真空度を保つ。測定時の帯電に伴うピークの補正とし
て、まずC1Sの主ピーク結合エネルギー値を284.6
eVに合わせる。C1Sピーク面積は、282〜296e
Vの範囲で直線のベースラインを引くことにより求め、
1Sピーク面積は、528〜540eVの範囲で直線の
ベースラインを引くことにより求めた。表面酸素濃度O
/Cは、上記O1Sピーク面積とC1Sピーク面積の比を、
装置固有の感度補正値で割ることにより算出した原子数
比で表した。なお、後述する実施例では島津製作所
(株)製ESCA−750を用い、上記装置固有の感度
補正値は2.85であった。
Here, the surface oxygen concentration O / C refers to a value obtained by X-ray photoelectron spectroscopy according to the following procedure. First, a carbon fiber tow from which a sizing agent or the like has been removed with a solvent is cut and spread on a stainless steel sample support, and the photoelectron escape angle is set to 90 °.
Using α 1,2 , 1 × 10 -8 torr in the sample chamber
The degree of vacuum is maintained. As a correction of a peak due to charging at the time of measurement, first, the main peak binding energy value of C 1S is set to 284.6.
Adjust to eV. C 1S peak area is 282-296e
It is obtained by drawing a straight base line in the range of V,
The O 1S peak area was determined by drawing a linear baseline in the range of 528 to 540 eV. Surface oxygen concentration O
/ C is the ratio of the O 1S peak area to the C 1S peak area,
It was represented by the atomic ratio calculated by dividing by the sensitivity correction value specific to the device. In the examples described later, ESCA-750 manufactured by Shimadzu Corporation was used, and the sensitivity correction value unique to the above-described apparatus was 2.85.

【0018】また、本発明の炭素繊維トウは、それを構
成する単繊維の本数が、10000フィラメント以上、
好ましくは15000フィラメント以上、さらに好まし
くは20000フィラメント以上である。これが100
00フィラメント未満であれば、後述する特定の製造方
法を用いずとも、炭素繊維トウにおける単繊維の接着力
のバラツキを小さなものとすることができることが多
い。
In the carbon fiber tow of the present invention, the number of single fibers constituting the tow is 10,000 filaments or more.
It is preferably at least 15,000 filaments, more preferably at least 20,000 filaments. This is 100
If the number of filaments is less than 00 filaments, the variation in the adhesive strength of the single fibers in the carbon fiber tow can often be reduced without using a specific manufacturing method described later.

【0019】本発明の炭素繊維トウは、単繊維間の接着
力のバラツキが30%以下、好ましくは25%以下、さ
らに好ましくは20%以下である。単繊維間の接着力の
バラツキが30%を超えると、接着強度など本来有する
複合材料物性が十分に発現できず、結果的に低い複合材
料物性になる。ひいては繰り返し負荷を加え続けた疲労
特性が低くなる場合がある。
The carbon fiber tow of the present invention has a variation in the adhesive strength between the single fibers of 30% or less, preferably 25% or less, more preferably 20% or less. If the variation in the adhesive strength between the single fibers exceeds 30%, the inherent properties of the composite material such as the adhesive strength cannot be sufficiently exhibited, resulting in low composite material properties. As a result, the fatigue characteristics of the steel sheet continuously applied with the load may be lowered.

【0020】本発明において、単繊維の接着力とは、次
の手順に従って求めた界面剪断強度をいう。先ず、ユニ
オンカーバイド社製ベークライト(登録商標)ERL4
221を100部、三フッ化ホウ素モノエチルアミン3
部、アセトン4部で調合したエポキシ樹脂を、単繊維に
100〜120μm長の樹脂ビーズを付着させる。樹脂
ビーズを昇温速度5℃/分、130℃で30分硬化し
た。引き続き樹脂ビーズの付着した単繊維を、スリット
に通し、一定速度でビーズを引き抜く。スリット幅は、
炭素繊維直径プラス0.1μmに合わせ、引き抜き速度
は0.5mm/分で行なう。そして、界面剪断強度
(τ)は、得られた荷重(P)から次式で求める。
In the present invention, the adhesive strength of a single fiber refers to the interfacial shear strength determined according to the following procedure. First, Bakelite (registered trademark) ERL4 manufactured by Union Carbide Co., Ltd.
221 100 parts, boron trifluoride monoethylamine 3
Parts, and an epoxy resin prepared with 4 parts of acetone, and resin beads having a length of 100 to 120 μm are attached to a single fiber. The resin beads were cured at a rate of 5 ° C./min at 130 ° C. for 30 minutes. Subsequently, the single fiber with the resin beads attached is passed through a slit, and the beads are pulled out at a constant speed. The slit width is
The drawing speed is set at 0.5 mm / min according to the carbon fiber diameter plus 0.1 μm. The interface shear strength (τ) is determined from the obtained load (P) by the following equation.

【0021】τ=P/2πrl ここでrは単繊維半径、lはビーズ長である。Τ = P / 2πrl where r is a single fiber radius and 1 is a bead length.

【0022】このような界面剪断強度を、炭素繊維トウ
内から無作為に採取した単繊維50本の、各単繊維につ
き長手方向に位置を変えて5回づつ測定を行なう。ここ
で、単繊維間の接着力のバラツキとは、各単繊維におけ
る測定値5点を平均したものの単繊維50本にわたる変
動率(%)のことであり、単繊維内の接着力のバラツキ
とは、各単繊維における測定値5点の変動率を単繊維5
0本にわたり平均したものである。また、250点すべ
ての測定値の平均値を平均界面剪断強度という。
The interfacial shear strength is measured five times by changing the position of each single fiber in the longitudinal direction of 50 single fibers randomly collected from the inside of the carbon fiber tow. Here, the variation in the adhesive strength between the single fibers is a variation rate (%) over 50 single fibers after averaging five measured values of each single fiber. Indicates the rate of change of 5 points for each single fiber
Averaged over 0 tubes. The average value of the measured values at all 250 points is called the average interfacial shear strength.

【0023】次に、本発明の炭素繊維トウを得るための
好ましい製造方法について説明する。
Next, a preferred production method for obtaining the carbon fiber tow of the present invention will be described.

【0024】まず、前駆体繊維を焼成して、単繊維本数
が10000フィラメント以上である、後述する表面処
理に供されるべき炭素繊維トウを得る。前駆体繊維とし
ては、ポリアクリロニトリル系、ピッチ系、レーヨン系
等の公知の前駆体繊維を適用できる。好ましくは高強度
の炭素繊維トウが得られやすいポリアクリロニトリル系
繊維がよい。以下、アクリル系繊維を前駆体繊維とした
場合を例にとって詳細に説明する。
First, the precursor fiber is fired to obtain a carbon fiber tow having a single fiber count of 10,000 filaments or more to be subjected to a surface treatment described later. Known precursor fibers such as polyacrylonitrile-based, pitch-based, and rayon-based precursor fibers can be used as the precursor fibers. Preferably, polyacrylonitrile-based fibers from which a high-strength carbon fiber tow is easily obtained are preferred. Hereinafter, the case where the acrylic fiber is used as the precursor fiber will be described in detail by way of example.

【0025】紡糸原液にはポリアクリロニトリルのホモ
ポリマーあるいは共重合成分の溶液あるいは懸濁液等を
用いることができるが、濾過を強化して不純物をポリマ
ーから除去することが、高性能炭素繊維を得るために重
要である。紡糸方法としては湿式、乾式、乾湿式等を採
用できるが、高強度を得られやすい湿式あるいは乾湿式
が好ましく、特に乾湿式が良い。
As the spinning solution, a solution or suspension of a polyacrylonitrile homopolymer or copolymer component can be used. However, it is necessary to enhance the filtration to remove impurities from the polymer to obtain high-performance carbon fibers. Important for. As a spinning method, a wet method, a dry method, a dry-wet method, and the like can be adopted, but a wet method or a dry-wet method, which easily provides high strength, is preferable, and a dry-wet method is particularly preferable.

【0026】該紡糸原液を凝固、水洗、延伸、油剤付与
して前駆体繊維とし、さらに耐炎化、炭化、さらに必要
に応じて黒鉛化処理といった、いわゆる焼成を行って炭
素繊維トウを得る。製糸、焼成工程を通して、用役ある
いは雰囲気から塵埃、異物といった不純物を最小限に抑
え、繊維への欠陥導入を防ぐこと、張力をかけて配向を
高くすることが高性能炭素繊維を得るために重要であ
る。炭化あるいは黒鉛化条件として、最高熱処理温度を
1100℃以上、好ましくは1300℃以上とするのが
良い。
The spinning stock solution is coagulated, washed, stretched, and applied with an oil agent to form a precursor fiber, and further subjected to so-called calcination such as flame resistance, carbonization, and, if necessary, graphitization, to obtain a carbon fiber tow. Throughout the spinning and baking processes, minimizing impurities such as dust and foreign matter from the utility or atmosphere, preventing the introduction of defects into the fibers, and increasing the orientation by applying tension are important to obtain high-performance carbon fibers. It is. As the conditions for carbonization or graphitization, the maximum heat treatment temperature is set to 1100 ° C. or higher, preferably 1300 ° C. or higher.

【0027】強度および弾性率を高めるとともに、炭素
繊維製造時の単繊維切れを抑制し単繊維間の強度のバラ
ツキを抑える観点から、単繊維径が3μm以上7.5μ
m以下、好ましくは4μm以上6μm以下の細繊度の炭
素繊維トウとするのがよい。炭素繊維トウの単繊維径
は、炭素繊維トウの繊度および比重から繊維断面を円形
と仮定して算出することが出来る。なお、一般には、炭
素繊維の単繊維径は、表面処理前後で実質的に変化しな
い。
From the viewpoint of increasing the strength and the elastic modulus, suppressing the breakage of the single fibers during the production of carbon fibers, and suppressing the variation in the strength between the single fibers, the diameter of the single fibers is from 3 μm to 7.5 μm.
m or less, preferably 4 μm or more and 6 μm or less. The single fiber diameter of the carbon fiber tow can be calculated from the fineness and specific gravity of the carbon fiber tow assuming that the fiber cross section is circular. In general, the diameter of the single fiber of the carbon fiber does not substantially change before and after the surface treatment.

【0028】表面処理に供する炭素繊維トウを構成する
単繊維本数は、10000フィラメント以上、好ましく
は15000フィラメント以上、より好ましくは200
00フィラメント以上である。フィラメント数が100
00フィラメント未満であると、炭素繊維トウの内側の
単繊維と外周の単繊維との接着力のバラツキが相対的に
小さくなり、本発明の効果が小さくなる。
The number of single fibers constituting the carbon fiber tow to be subjected to the surface treatment is 10,000 filaments or more, preferably 15,000 filaments or more, more preferably 200 filaments or more.
00 filament or more. 100 filaments
When the number of filaments is less than 00 filaments, the variation in the adhesive force between the single fiber inside the carbon fiber tow and the single fiber on the outer periphery becomes relatively small, and the effect of the present invention is reduced.

【0029】このような炭素繊維トウに対して、複数個
の電解槽を有する電解表面処理装置において、電解質溶
液を介して給電、いわゆる間接給電して電解処理するに
際して、かかる装置における最終電解槽での還元率を、
0.001以上0.5以下、好ましくは0.01以上
0.4以下、さらに好ましくは0.1以上0.3以下と
なるように、陽極酸化と陰極還元を周期的に繰り返して
電解表面処理する。
In an electrolytic surface treatment apparatus having a plurality of electrolytic cells, such a carbon fiber tow is supplied with an electrolytic solution through an electrolytic solution, that is, indirectly supplied with electricity. Reduction rate of
Electrolytic surface treatment by periodically repeating anodic oxidation and cathodic reduction so as to be 0.001 or more and 0.5 or less, preferably 0.01 or more and 0.4 or less, and more preferably 0.1 or more and 0.3 or less. I do.

【0030】 還元率=還元電気量/(酸化電気量+還元電気量) かかる還元率が0.001未満であると、局所的な陽極
酸化が進むために単繊維の接着力のバラツキが大きくな
り、かつ過度に陽極酸化されているために基質強度が低
下し、結果的に安定したコンポジット特性が得られな
い。また、還元率が0.5を超えると繊維表面全体が不
活性になり、最終的に生成官能基量が少なくなるため、
結果的に十分な接着力が得られない。
Reduction ratio = reduction electricity amount / (oxidation electricity amount + reduction electricity amount) When the reduction ratio is less than 0.001, local anodic oxidation proceeds, so that the dispersion of the adhesive force of the single fibers becomes large. In addition, because of excessive anodization, the strength of the substrate is reduced, and as a result, stable composite properties cannot be obtained. Further, if the reduction ratio exceeds 0.5, the entire fiber surface becomes inactive, and finally the amount of generated functional groups decreases,
As a result, sufficient adhesive strength cannot be obtained.

【0031】電解処理の槽数は、最終電解槽の還元率が
上述の範囲に入っておれば制限を受けないが、10槽以
下、好ましくは6槽以下、さらには還元電解処理による
表面不活性化を受けない2槽の場合に、本発明の表面処
理効果が著しく好ましい。また、最終電解槽の直前の電
解槽での還元処理の影響を小さくするために炭素繊維ト
ウの滞留時間を低減させ、最終電解槽の槽長/直前の電
解槽の槽長比を1以上100以下、好ましくは10以上
50以下にするのが良い。
The number of electrolysis tanks is not limited as long as the reduction rate of the final electrolyzer is within the above range, but is not more than 10 tanks, preferably not more than 6 tanks, and furthermore, the surface inertness due to the reduction electrolysis treatment. In the case of two tanks which are not subjected to surface treatment, the surface treatment effect of the present invention is extremely preferable. In addition, the residence time of the carbon fiber tow is reduced to reduce the effect of the reduction treatment in the electrolytic cell immediately before the final electrolytic cell, and the ratio of the tank length of the final electrolytic cell to the cell length of the electrolytic cell immediately before is set to 1 or more. Below, it is good to be 10 or more and 50 or less.

【0032】表面処理に際しての炭素繊維トウの形状
は、単位幅当たりのフィラメント数が5000フィラメ
ント/mm以下、好ましくは2000フィラメント/m
m以下がよい。5000フィラメント/mmを超えると
電解質の拡散が不十分になり単繊維間の接着力のバラツ
キが大きくなる可能性がある。
The shape of the carbon fiber tow during the surface treatment is such that the number of filaments per unit width is 5,000 filaments / mm or less, preferably 2,000 filaments / m2.
m or less is good. If it exceeds 5,000 filaments / mm, the diffusion of the electrolyte becomes insufficient, and the dispersion of the adhesive force between the single fibers may increase.

【0033】表面処理で用いる電解質に特に制限はない
が、硫酸、硝酸、塩酸、炭酸、硝酸アンモニウム、硝酸
水素アンモニウム、リン酸2水素アンモニウム、リン酸
水素2アンモニウムなどの酸や、水酸化ナトリウム、水
酸化カリウム、水酸化バリウムなどの水酸化物、炭酸ナ
トリウム、炭酸水素ナトリウム、リン酸ナトリウム、リ
ン酸カリウム等の無機塩、マレイン酸ナトリウム、酢酸
ナトリウム、酢酸カリウム、安息香酸ナトリウム等の有
機塩、または、アンモニア、炭酸アンモニウム、炭酸水
素アンモニウムなどのアルカリを単独または2種類以上
の混合物を用いることができる。
There are no particular restrictions on the electrolyte used in the surface treatment, but acids such as sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, ammonium nitrate, ammonium hydrogen nitrate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, sodium hydroxide and water Potassium oxide, hydroxides such as barium hydroxide, inorganic salts such as sodium carbonate, sodium hydrogen carbonate, sodium phosphate and potassium phosphate, organic salts such as sodium maleate, sodium acetate, potassium acetate and sodium benzoate, or , Ammonia, ammonium carbonate, ammonium bicarbonate and the like can be used alone or as a mixture of two or more.

【0034】最終電解槽での酸化電気量は被表面処理炭
素繊維トウの炭化度に合わせて最適化することが好まし
く、総電気量は5〜1000クーロン/g(炭素繊維ト
ウ1g当たりのクーロン数)、さらには10〜500ク
ーロン/gの範囲にするのが好ましい。1000クーロ
ン/gを超えると炭素繊維自体の基質強度が低下するこ
とがある。
The amount of electricity oxidized in the final electrolytic cell is preferably optimized according to the degree of carbonization of the surface-treated carbon fiber tow, and the total amount of electricity is 5 to 1000 coulombs / g (the number of coulombs per gram of carbon fiber tow). ), And more preferably in the range of 10 to 500 coulomb / g. If it exceeds 1,000 coulombs / g, the substrate strength of the carbon fiber itself may decrease.

【0035】炭素繊維トウに供給する周期的な電流の波
形は、還元率が前述の範囲になる条件であれば特に限定
しない。通常は矩形波、三角波、正弦波が使用できる。
炭化度の高い場合、酸化過電流を瞬時に流すと黒鉛構造
の破壊が起こりやすく繊維表面が活性化し易く特に好ま
しい。
The waveform of the periodic current supplied to the carbon fiber tow is not particularly limited as long as the condition is such that the reduction ratio is in the above-mentioned range. Normally, a square wave, a triangle wave, and a sine wave can be used.
When the degree of carbonization is high, it is particularly preferable that instantaneous flow of an oxidizing overcurrent causes breakage of the graphite structure and the fiber surface is easily activated.

【0036】炭素繊維トウに供給する電流波形の周期
は、10kHz以上5Hz以下、好ましくは、500H
z以上10Hz以下が好ましい。周期が10kHz未満
であると、陽極酸化および陰極還元が進まず、高い接着
力が得られないことがある。また周期が5Hzを超える
と電解液が拡散によって炭素繊維トウ内部まで入らず、
炭素繊維トウ内外の電解表面処理が不均一になる場合が
ある。
The cycle of the current waveform supplied to the carbon fiber tow is 10 kHz or more and 5 Hz or less, preferably 500 H
It is preferably from z to 10 Hz. If the period is less than 10 kHz, anodic oxidation and cathodic reduction do not proceed, and a high adhesive strength may not be obtained. If the period exceeds 5 Hz, the electrolyte does not enter the carbon fiber tow due to diffusion,
Electrolytic surface treatment inside and outside the carbon fiber tow may be uneven.

【0037】1回の陽極酸化に要する時間、いわゆる陽
極酸化時間は2μ秒以上2秒以下、好ましくは50μ秒
以上0.1秒以下、さらに好ましくは1ミリ秒以上50
ミリ秒以下が良い。陽極酸化時間が2μ秒より短いと1
回で充分な酸化がなされないまま、還元されるために生
成官能基量が少なく高い接着力が得られないことがあ
る。また陽極酸化時間が2秒を超えると陽極酸化が局所
的に進みすぎるためによる強度低下を引き起こし、かつ
単繊維の接着力のバラツキが大きくなり、結果的に安定
した複合材料特性が得られないことがある。
The time required for one anodic oxidation, so-called anodic oxidation time, is 2 μsec or more and 2 sec or less, preferably 50 μsec or more and 0.1 sec or less, more preferably 1 msec or more and 50 sec or less.
A millisecond or less is good. If the anodic oxidation time is shorter than 2 μs, 1
Since the reduction is performed without sufficient oxidation in a single pass, the amount of the generated functional groups is small and a high adhesive strength may not be obtained in some cases. In addition, if the anodic oxidation time exceeds 2 seconds, the anodic oxidation locally progresses excessively, causing a decrease in strength, and a variation in the adhesive strength of the single fiber increases, and as a result, stable composite material characteristics cannot be obtained. There is.

【0038】また、1回の陰極還元に要する時間、いわ
ゆる陰極還元時間は2μ秒以上2秒以下、好ましくは5
0μ秒以上0.1秒以下、さらに好ましくは1ミリ秒以
上50ミリ秒以下が良い。陰極還元時間が2μ秒より短
いと充分な還元がなされずに局所的な陽極酸化が進むた
め、炭素繊維トウの接着力のバラツキが大きくなりがち
である。また陰極酸化時間が5秒を超えると繊維表面全
体が不活性になり、かつ全体的な官能基量が低くなるた
め、十分な接着力が得られないことがある。
The time required for one cathodic reduction, that is, the so-called cathodic reduction time is 2 μsec or more and 2 sec or less, preferably 5 μsec or less.
The time is preferably from 0 μsec to 0.1 sec, more preferably from 1 ms to 50 ms. If the cathodic reduction time is shorter than 2 μs, sufficient anodic oxidation proceeds without sufficient reduction, and the dispersion of the adhesive strength of the carbon fiber tow tends to increase. On the other hand, if the cathodic oxidation time exceeds 5 seconds, the entire fiber surface becomes inactive and the total amount of functional groups becomes low, so that sufficient adhesive strength may not be obtained.

【0039】本発明において、表面処理に用いる装置、
いわゆる電解処理装置は電解液を介して印加する装置で
あれば特に限定しないが、電解液を炭素繊維トウの下方
から噴出させることによって印加するのが好ましく、処
理槽数は2槽以上20槽以下、好ましくは設備コストの
面から10槽以下が良い。電解液の噴出量は、1mm/
秒以上20mm/秒以下が好ましい。1mm/秒未満で
あると噴出による炭素繊維トウへの電解液の流入が不足
し、パルス電解時に単繊維間の表面処理にムラが生じる
場合がある。20mm/秒を超えると炭素繊維トウの低
強度の場合にアライメントが乱れ、単繊維切れが生じ強
度低下する可能性がある。
In the present invention, an apparatus used for surface treatment,
The so-called electrolytic treatment apparatus is not particularly limited as long as the apparatus is applied through the electrolytic solution. However, it is preferable to apply the electrolytic solution by ejecting the electrolytic solution from below the carbon fiber tow. It is preferably 10 tanks or less from the viewpoint of equipment cost. The ejection amount of the electrolyte is 1 mm /
It is preferably at least 20 seconds / second. If it is less than 1 mm / sec, the flow of the electrolytic solution into the carbon fiber tow by the ejection is insufficient, and the surface treatment between the single fibers may be uneven during pulse electrolysis. If it exceeds 20 mm / sec, the alignment may be disturbed in the case of low strength of the carbon fiber tow, and a single fiber may be broken to lower the strength.

【0040】かかる表面処理が施された炭素繊維トウ
に、必要に応じてサイジング剤を付与する。サイジング
剤としては、複合材料に用いるマトリックス樹脂に合わ
せて選択することが好ましく、例えばエポキシ樹脂、ポ
リウレタン樹脂、ポリエステル樹脂、ポリイミド樹脂、
イソシアネート化合物、界面活性剤等を単独であるいは
それらの2種類以上を混合して用いることができる。サ
イジング剤を炭素繊維トウへ付与するに際しては、サイ
ジング剤をその溶媒に溶解した溶液またはその分散媒に
分散した分散液、いわゆるサイジング液に浸漬して後乾
燥して行うのが一般的である。炭素繊維トウにおける単
繊維間のサイジング剤付着量のムラを押さえるために
は、拡幅された状態、例えば前記したような表面処理に
際しての形状に拡幅された状態の炭素繊維トウをサイジ
ング液に浸漬するのが好ましい。
A sizing agent is applied to the carbon fiber tow subjected to the surface treatment as required. As the sizing agent, it is preferable to select according to the matrix resin used for the composite material, for example, epoxy resin, polyurethane resin, polyester resin, polyimide resin,
An isocyanate compound, a surfactant and the like can be used alone or as a mixture of two or more thereof. In applying the sizing agent to the carbon fiber tow, it is general that the sizing agent is immersed in a solution in which the sizing agent is dissolved in the solvent or a dispersion liquid in which the sizing agent is dispersed, that is, a so-called sizing solution, and then dried. In order to suppress unevenness in the amount of sizing agent attached between the single fibers in the carbon fiber tow, the carbon fiber tow in a widened state, for example, in a state widened to a shape at the time of the surface treatment as described above, is immersed in a sizing liquid. Is preferred.

【0041】[0041]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0042】まず、本発明に用いた個々の特性値の測定
法を説明する。
First, a method for measuring individual characteristic values used in the present invention will be described.

【0043】ストランド強度、弾性率は、次の手順によ
り求めた。JIS−R−7601の樹脂含浸ストランド
試験法に準じ測定した。樹脂処方としてユニオンカーバ
イド社製ベークライト(登録商標)ERL4221/3
フッ化ホウ素モノエチルアミン/アセトン=100/3
/4(重量部)を用い、常圧、130℃、30分で硬化
した。ストランド10本を測定し、その平均値を用い
た。
The strand strength and elastic modulus were determined by the following procedures. It was measured according to the resin impregnated strand test method of JIS-R-7601. Bakelite (registered trademark) ERL42221 / 3 manufactured by Union Carbide Co., Ltd.
Boron fluoride monoethylamine / acetone = 100/3
/ 4 (parts by weight), and cured at 130 ° C. for 30 minutes under normal pressure. Ten strands were measured, and the average value was used.

【0044】複合材料特性は次のようにして測定した。
まず、複合材料特性評価用樹脂を、特公平4−8005
4号公報開示の実施例1に従って次のように調整した。
すなわち、油化シェルエポキシ社製エピコート1001
を3.5kg(35重量部)、油化シェルエポキシ社製
エピコート828を2.5kg(25重量部)と大日本
インキ化学工業社製エピクロンN740を3.0kg
(30重量部)、油化シェルエポキシ社製エピコート1
52を1.5kg(15重量部)および電気化学工業社
製デンカホルマール#20を0.8kg(8重量部)と
ジクロロフェニルジメチルウレア0.5kg(5重量
部)を添加し、30分間撹拌して樹脂組成物を得た。該
樹脂の最低粘度は20cpsであった。これを離型紙に
コーティングして樹脂フィルムとしたものを用いた。
The composite material properties were measured as follows.
First, a resin for evaluating composite material properties was prepared by using Japanese Patent Publication No. Hei 4-8005.
The adjustment was performed as follows according to Example 1 disclosed in Japanese Unexamined Patent Publication No. 4 (Kokai) No.
That is, Epicoat 1001 manufactured by Yuka Shell Epoxy Co., Ltd.
3.5 kg (35 parts by weight), 2.5 kg (25 parts by weight) of Epicoat 828 manufactured by Yuka Shell Epoxy, and 3.0 kg of Epicron N740 manufactured by Dainippon Ink and Chemicals, Inc.
(30 parts by weight), Yuko Shell Epoxy Epicoat 1
52, 1.5 kg (15 parts by weight), 0.8 kg (8 parts by weight) of Denka Formal # 20 manufactured by Denki Kagaku Kogyo Co., Ltd. and 0.5 kg (5 parts by weight) of dichlorophenyldimethylurea were added, followed by stirring for 30 minutes. A resin composition was obtained. The minimum viscosity of the resin was 20 cps. This was coated on release paper to form a resin film.

【0045】複合材料試験片は以下のようにして作成し
た。まず、円周約2.7mの鋼製ドラムに炭素繊維と組
み合わせる樹脂をシリコン塗布ペーパー上にコーティン
グした樹脂フィルムを巻き、次に該樹脂フィルム上にク
リールから引き出した炭素繊維をトラバースを介して巻
き取り、配列して、さらにその繊維の上から前記樹脂フ
ィルムを再度かぶせて後、加圧ロールで回転加圧して樹
脂を繊維内に含浸せしめ、巾300mm、長さ2.7m
の一方向プリプレグを作製する。
The composite test piece was prepared as follows. First, a resin film coated with a resin to be combined with carbon fiber on a silicon-coated paper is wound around a steel drum having a circumference of about 2.7 m, and then the carbon fiber pulled out of the creel is wound on the resin film via a traverse. After taking and arranging, the resin film is covered again on the fiber, and then the resin is impregnated into the fiber by rotating and pressing with a pressure roll, and the width is 300 mm and the length is 2.7 m.
To prepare a unidirectional prepreg.

【0046】このとき、繊維間への樹脂含浸を良くする
ためにドラムは60〜70℃に加熱し、またプリプレグ
の繊維目付はドラムの回転数とトラバースの送り速度を
調節することによって繊維目付約200g/m2、樹脂
量約35重量%のプリプレグを作製した。
At this time, the drum is heated to 60 to 70 ° C. in order to improve the resin impregnation between the fibers, and the fiber weight of the prepreg is adjusted by adjusting the rotation speed of the drum and the feed speed of the traverse. A prepreg having 200 g / m 2 and a resin amount of about 35% by weight was prepared.

【0047】このように作製したプリプレグ裁断し、層
間剪断強度(以下、ILSSと称す)および疲労負荷後
のILSSはプリプレグを一方向に積層し、オートクレ
ーブを用いて、3kgf/cm2・Gの加圧下、135
℃、2時間の硬化条件で加熱硬化して、それぞれ厚み約
2mmの一方向積層板を作製した。
The prepreg prepared as described above was cut, the interlaminar shear strength (hereinafter, referred to as ILSS), and the ILSS after fatigue loading, the prepregs were laminated in one direction, and applied with an autoclave at 3 kgf / cm 2 · G. Reduction 135
The resultant was cured by heating under a curing condition of 2 ° C. for 2 hours to produce a unidirectional laminate having a thickness of about 2 mm.

【0048】ILSS用試験片は巾6.5mm、長さ1
4mmとし、測定は通常の3点曲げ試験治具を用いて支
持スパンを試験片肉厚の4倍に設定し、クロスヘッド速
度1.0mm/minで測定した。8本測定しその平均
値を求めた。
The test piece for ILSS is 6.5 mm in width and 1 in length.
The measurement was performed at a crosshead speed of 1.0 mm / min with a support span set to four times the thickness of the test piece using an ordinary three-point bending test jig. Eight measurements were made and the average was determined.

【0049】疲労負荷用試験片は巾6.5mm、長さ2
27mmとし、該試験片の両端に厚さ約1.2mm、長
さ50mmのGFRP製のタブを接着し、最大破壊応力
の80%から8%の間の負荷を、正弦波形で周期5Hz
で加えた。10の6乗回負荷した後、疲労負荷後のIL
SS用試験片巾6.5mm、長さ14mmを切り出し、
測定は通常の3点曲げ試験治具を用いて支持スパンを試
験片肉厚の4倍に設定し、クロスヘッド速度1.0mm
/minで測定した。8本測定しその平均値を求めた。
The test piece for fatigue load was 6.5 mm in width and 2 in length.
A GFRP tab having a thickness of about 1.2 mm and a length of 50 mm was adhered to both ends of the test piece, and a load of 80% to 8% of the maximum breaking stress was applied at a frequency of 5 Hz in a sinusoidal waveform.
Added in. IL after loading 10 6 times, after fatigue loading
Cut out the test piece width 6.5mm and length 14mm for SS,
The measurement was performed using a normal three-point bending test jig, setting the support span to four times the thickness of the test piece, and setting the crosshead speed to 1.0 mm.
/ Min. Eight measurements were made and the average was determined.

【0050】(実施例1)アクリロニトリル(AN)9
9.4モル%とメタクリル酸0.6モル%からなる共重
合体を用いて、乾湿式紡糸方法により単糸デニール0.
7d、フィラメント数18000のアクリル繊維を得
た。得られた繊維束を耐炎化処理後、最高温度2400
℃で炭化炉で焼成して炭素繊維トウを得た。この炭素繊
維トウはストランド強度5.0GPa、弾性率430G
Paであった。この炭素繊維トウを図1に示した電解処
理装置(第2槽と第1槽の長さ比は20)を用いて次の
条件で連続的に表面処理を行って表面処理炭素繊維トウ
を得た。電解液の噴出量は10mm/秒、電解槽入り繊
維束の幅は1000フィラメント/mmに拡幅した。パ
ルス電源(高砂製作所製BWS60−5)を使用して、
第2槽の電流波形として図3に示す矩形波、周波数10
0Hzを発生させた。電解液溶液は、硫酸水溶液(0.
1モル/リットル)で、酸化処理量は100クーロン/
g、還元処理量は20クーロン/g、還元率=0.17
で処理した。陽極酸化時間は10m秒、陰極還元時間は
10m秒、電解液への浸漬時間は1秒に設定した。酸化
物の脱離は認められなかった。
Example 1 Acrylonitrile (AN) 9
Using a copolymer consisting of 9.4 mol% and 0.6 mol% of methacrylic acid, a single yarn denier of 0.1% was obtained by a dry-wet spinning method.
7d, an acrylic fiber having 18,000 filaments was obtained. After the obtained fiber bundle is subjected to a flame-proof treatment, the maximum temperature is 2400.
The carbon fiber tow was obtained by firing in a carbonization furnace at ℃. This carbon fiber tow has a strand strength of 5.0 GPa and an elastic modulus of 430 G
Pa. This carbon fiber tow is subjected to surface treatment continuously under the following conditions using the electrolytic treatment apparatus (the length ratio of the second tank and the first tank is 20) shown in FIG. 1 to obtain a surface-treated carbon fiber tow. Was. The ejection amount of the electrolytic solution was 10 mm / sec, and the width of the fiber bundle in the electrolytic tank was increased to 1,000 filaments / mm. Using a pulse power supply (BWS60-5 manufactured by Takasago Seisakusho),
As a current waveform of the second tank, a rectangular wave shown in FIG.
0 Hz was generated. The electrolyte solution is a sulfuric acid aqueous solution (0.
1 mol / liter), and the oxidation treatment amount is 100 coulombs / liter.
g, reduction amount: 20 coulomb / g, reduction ratio = 0.17
Processed. The anodic oxidation time was set to 10 ms, the cathodic reduction time was set to 10 ms, and the immersion time in the electrolyte was set to 1 second. No oxide desorption was observed.

【0051】得られた表面処理炭素繊維トウは、O/C
=0.05、平均界面剪断強度55MPa、単繊維間の
接着力のバラツキ24%、単繊維内の接着力のバラツキ
15%、ストランド強度5.0GPa、ストランド弾性
率430GPaであり、この炭素繊維トウを用いた複合
材料は、ILSS84GPa(CV値0.7%)、疲労
負荷後の層間剪断強度80MPa(CV値1.2%)で
あった。
The obtained surface-treated carbon fiber tow is made of O / C
= 0.05, average interfacial shear strength 55 MPa, variation in adhesive strength between single fibers 24%, variation in adhesive strength within single fibers 15%, strand strength 5.0 GPa, strand elastic modulus 430 GPa. The composite material using was ILSS84GPa (CV value 0.7%) and interlayer shear strength after fatigue loading of 80 MPa (CV value 1.2%).

【0052】(実施例2)第2槽の電流波形を図4に示
す波形に変更した以外は実施例1と同様にして表面処理
炭素繊維トウを得た。得られた表面処理炭素繊維トウ
は、O/C=0.08、平均界面剪断強度56MPa、
単繊維間の接着力のバラツキ24%、単繊維内の接着力
のバラツキ16%、ストランド強度5.0GPaであ
り、この炭素繊維トウを用いた複合材料は、ILSS8
6GPa(CV値0.6%)であった。
Example 2 A surface-treated carbon fiber tow was obtained in the same manner as in Example 1 except that the current waveform in the second tank was changed to the waveform shown in FIG. The resulting surface-treated carbon fiber tow has an O / C = 0.08, an average interfacial shear strength of 56 MPa,
The variation in the adhesive strength between the single fibers was 24%, the variation in the adhesive strength within the single fibers was 16%, and the strand strength was 5.0 GPa. The composite material using this carbon fiber tow was ILSS8.
It was 6 GPa (CV value 0.6%).

【0053】(実施例3)酸化処理量は50クーロン/
g、還元処理量は5クーロン/g、還元率=0.09で
処理した以外は実施例1と同様にして表面処理炭素繊維
トウを得た。得られた表面処理炭素繊維トウは、O/C
=0.07、平均界面剪断強度52MPa、単繊維間の
接着力のバラツキ27%、単繊維内の接着力のバラツキ
18%、ストランド強度5.1GPaであり、この炭素
繊維トウを用いた複合材料は、ILSS81GPa(C
V値1.2%)であった。
(Example 3) The oxidation treatment amount was 50 coulombs /
g, the amount of reduction treatment was 5 coulombs / g, and a surface-treated carbon fiber tow was obtained in the same manner as in Example 1 except that the treatment was performed at a reduction ratio of 0.09. The resulting surface-treated carbon fiber tow is O / C
= 0.07, average interfacial shear strength 52 MPa, variation in adhesive strength between single fibers 27%, variation in adhesive strength within single fibers 18%, strand strength 5.1 GPa, composite material using this carbon fiber tow Is ILSS81GPa (C
(V value: 1.2%).

【0054】(実施例4)還元量が1クーロン/g、還
元率=0.01とした以外は実施例1と同様にして表面
処理炭素繊維トウを得た。得られた表面処理炭素繊維ト
ウは、O/C=0.08、平均界面剪断強度51MP
a、単繊維間の接着力のバラツキ29%、単繊維内の接
着力のバラツキ20%、ストランド強度4.8GPaで
あり、この炭素繊維トウを用いた複合材料は、ILSS
80GPa(CV値1.2%)であった。
Example 4 A surface-treated carbon fiber tow was obtained in the same manner as in Example 1 except that the reduction amount was 1 coulomb / g and the reduction ratio was 0.01. The resulting surface-treated carbon fiber tow has an O / C = 0.08 and an average interfacial shear strength of 51MP.
a, the dispersion of the adhesion between the single fibers was 29%, the dispersion of the adhesion within the single fiber was 20%, and the strand strength was 4.8 GPa. The composite material using the carbon fiber tow was ILSS
It was 80 GPa (CV value 1.2%).

【0055】(比較例1)図2の電解装置を使用した以
外は実施例1と同様にして表面処理炭素繊維トウを得
た。得られた表面処理炭素繊維トウは、O/C=0.1
0、平均界面剪断強度49MPa、単繊維間の接着力の
バラツキ36%、単繊維内の接着力のバラツキ24%、
ストランド強度4.5GPaであり、この炭素繊維トウ
を用いた複合材料は、ILSS77GPa(CV値1.
8%)であった。
Comparative Example 1 A surface-treated carbon fiber tow was obtained in the same manner as in Example 1 except that the electrolytic apparatus shown in FIG. 2 was used. The obtained surface-treated carbon fiber tow has O / C = 0.1
0, average interfacial shear strength 49 MPa, variation in adhesive strength between single fibers 36%, variation in adhesive strength within single fibers 24%,
The strand strength is 4.5 GPa, and the composite material using this carbon fiber tow is ILSS77 GPa (CV value 1.
8%).

【0056】(比較例2)還元量を0クーロン/gとし
た以外は、実施例1と同様にして表面処理炭素繊維トウ
を得た。得られた表面処理炭素繊維トウは、O/C=
0.08、平均界面剪断強度51MPa、単繊維間の接
着力のバラツキ32%、単繊維内の接着力のバラツキ2
0%、ストランド強度4.9GPaであり、この炭素繊
維トウを用いた複合材料は、ILSS79GPa(CV
値1.6%)であった。
Comparative Example 2 A surface-treated carbon fiber tow was obtained in the same manner as in Example 1 except that the amount of reduction was 0 coulomb / g. The resulting surface-treated carbon fiber tow has an O / C =
0.08, average interfacial shear strength 51 MPa, variation in adhesion between single fibers 32%, variation in adhesion within single fibers 2
0% and a strand strength of 4.9 GPa. The composite material using this carbon fiber tow is ILSS79 GPa (CV
Value 1.6%).

【0057】(実施例5)アクリロニトリル(AN)9
9.4モル%とメタクリル酸0.6モル%からなる共重
合体を用いて、乾湿式紡糸方法により単糸デニール1.
0d、フィラメント数24000のアクリル繊維を得
た。得られた繊維束を耐炎化処理後、最高温度1300
℃で炭化炉で焼成して炭素繊維トウを得た。この炭素繊
維トウはストランド強度5.1GPa、弾性率230G
Paであった。この炭素繊維トウを図1に示した電解処
理装置を用いて次の条件で連続的に表面処理を行って表
面処理炭素繊維トウを得た。電解槽入り繊維束の幅は、
2000フィラメント/mmに拡幅した。電流波形とし
て図3に示す矩形波、周波数50Hzを発生させた。電
解液溶液は、硫酸水溶液(0.1モル/リットル)で、
酸化処理量は10クーロン/g、還元処理量は2クーロ
ン/g、還元率=0.17で処理した。陽極酸化時間は
20m秒、陰極還元時間は20m秒であった。電解液へ
の浸漬時間は1秒であった。
Example 5 Acrylonitrile (AN) 9
Using a copolymer consisting of 9.4 mol% and 0.6 mol% of methacrylic acid, single yarn denier 1.
An acrylic fiber having 0d and a filament number of 24,000 was obtained. After the obtained fiber bundle is subjected to the flame-proof treatment, the maximum temperature is 1300.
The carbon fiber tow was obtained by firing in a carbonization furnace at ℃. This carbon fiber tow has a strand strength of 5.1 GPa and an elastic modulus of 230 G
Pa. This carbon fiber tow was continuously subjected to surface treatment using the electrolytic treatment apparatus shown in FIG. 1 under the following conditions to obtain a surface-treated carbon fiber tow. The width of the fiber bundle in the electrolytic cell is
The width was increased to 2000 filaments / mm. As a current waveform, a rectangular wave shown in FIG. 3 and a frequency of 50 Hz were generated. The electrolyte solution is a sulfuric acid aqueous solution (0.1 mol / L),
The oxidation treatment amount was 10 coulombs / g, the reduction treatment amount was 2 coulombs / g, and the reduction rate was 0.17. The anodic oxidation time was 20 ms and the cathodic reduction time was 20 ms. The immersion time in the electrolyte was 1 second.

【0058】得られた表面処理炭素繊維トウは、O/C
=0.10、平均界面剪断強度62MPa、単繊維間の
接着力のバラツキ24%、単繊維内の接着力のバラツキ
17%、ストランド強度5.2GPa、ストランド弾性
率230GPaであり、この炭素繊維トウを用いた複合
材料は、ILSS90GPa(CV値0.5%)、疲労
負荷後のILSS84MPa(CV値1.3%)であっ
た。
The obtained surface-treated carbon fiber tow is made of O / C
= 0.10, average interfacial shear strength of 62 MPa, variation in adhesive strength between single fibers of 24%, variation in adhesive strength within single fibers of 17%, strand strength of 5.2 GPa and strand elastic modulus of 230 GPa. The composite material using was ILSS90GPa (CV value 0.5%) and ILSS84MPa (CV value 1.3%) after fatigue loading.

【0059】(実施例6)電解液の噴出量を0.8mm
/秒、電解槽入り繊維束の幅を6000フィラメント/
mmに変更した以外は、実施例5と同様にして表面処理
炭素繊維トウを得た。得られた表面処理炭素繊維トウ
は、O/C=0.08、平均界面剪断強度60MPa、
単繊維間の接着力のバラツキ29%、単繊維内の接着力
のバラツキ21%、ストランド強度5.1GPaであ
り、この炭素繊維トウを用いた複合材料は、ILSS8
9GPa(CV値1.0%)であった。
(Example 6) The ejection amount of the electrolyte was 0.8 mm
/ Sec, the width of the fiber bundle in the electrolytic cell is 6000 filaments /
A surface-treated carbon fiber tow was obtained in the same manner as in Example 5, except that the thickness was changed to mm. The resulting surface-treated carbon fiber tow has an O / C = 0.08, an average interfacial shear strength of 60 MPa,
The adhesive strength between single fibers was 29%, the adhesive strength within single fibers was 21%, and the strand strength was 5.1 GPa. The composite material using this carbon fiber tow was ILSS8.
It was 9 GPa (CV value 1.0%).

【0060】(実施例7)第2槽の電流波形を図5に示
すものに変更した以外は、実施例1と同様にして炭素繊
維トウを得た。得られた表面処理炭素繊維トウは、O/
C=0.07、平均界面剪断強度58MPa、単繊維間
の接着力のバラツキ23%、単繊維内の接着力のバラツ
キ15%、ストランド強度5.1GPaであり、この炭
素繊維トウを用いた複合材料は、ILSS82GPa
(CV値1.0%)であった。
Example 7 A carbon fiber tow was obtained in the same manner as in Example 1 except that the current waveform in the second tank was changed to that shown in FIG. The resulting surface-treated carbon fiber tow is O /
C = 0.07, average interfacial shear strength 58 MPa, variation in adhesive strength between single fibers 23%, variation in adhesive strength within single fibers 15%, strand strength 5.1 GPa. Composite using this carbon fiber tow The material is ILSS82GPa
(CV value: 1.0%).

【0061】[0061]

【発明の効果】本発明により、10000フィラメント
以上の単繊維で構成された単繊維の接着力のバラツキが
小さい炭素繊維トウを得ることが可能となり、かかる炭
素繊維トウを用いることにより信頼性の高い複合材料が
得られる。
According to the present invention, it is possible to obtain a carbon fiber tow having a small variation in the adhesive force of a single fiber composed of a single fiber having 10,000 filaments or more, and by using such a carbon fiber tow, a high reliability can be obtained. A composite material is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた電解処理装置の側面図である。FIG. 1 is a side view of an electrolytic processing apparatus used in an example.

【図2】比較例で用いた電解処理装置の側面図である。FIG. 2 is a side view of the electrolytic processing apparatus used in the comparative example.

【図3】本発明において好適に用いられるパルス給電の
電流波形の一例である。
FIG. 3 is an example of a pulse-feeding current waveform suitably used in the present invention.

【図4】本発明において好適に用いられるパルス給電の
電流波形の一例である。
FIG. 4 is an example of a pulse-feed current waveform suitably used in the present invention.

【図5】本発明において好適に用いられるパルス給電の
電流波形の一例である。
FIG. 5 is an example of a pulse-feeding current waveform suitably used in the present invention.

【符号の説明】[Explanation of symbols]

1:炭素繊維トウ 2:パルス電源発生装置 3:電極板 4:電解液 5:電極ロール 1: carbon fiber tow 2: pulse power generator 3: electrode plate 4: electrolyte 5: electrode roll

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単繊維本数が10000フィラメント以上
の炭素繊維トウであって、X線光電子分光法により測定
される表面酸素濃度O/Cが0.02〜0.2であり、
単繊維間の接着力のバラツキが30%以下であることを
特徴とする炭素繊維トウ。
1. A carbon fiber tow having a single fiber count of 10,000 filaments or more, wherein the surface oxygen concentration O / C measured by X-ray photoelectron spectroscopy is 0.02 to 0.2,
A carbon fiber tow wherein the variation in the adhesive strength between the single fibers is 30% or less.
【請求項2】前駆体繊維を焼成して、単繊維本数が10
000フィラメント以上である炭素繊維トウを得、その
後電解質溶液を介した給電により、該炭素繊維トウに対
して、下式で定義される還元率が0.001〜0.5と
なるよう陽極酸化と陰極還元を周期的に繰り返して表面
処理することを特徴とする炭素繊維トウの製造方法。 還元率=還元電気量/(酸化電気量+還元電気量)
2. The precursor fiber is fired, and the number of single fibers is 10
A carbon fiber tow of 2,000 filaments or more is obtained, and thereafter, anodization is performed such that a reduction rate defined by the following formula is 0.001 to 0.5 with respect to the carbon fiber tow by power supply through an electrolyte solution. A method for producing a carbon fiber tow, wherein a surface treatment is performed by periodically repeating cathodic reduction. Reduction rate = reduction electricity amount / (oxidation electricity amount + reduction electricity amount)
JP7605397A 1997-03-27 1997-03-27 Carbon fiber tow and its production Pending JPH10266066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7605397A JPH10266066A (en) 1997-03-27 1997-03-27 Carbon fiber tow and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7605397A JPH10266066A (en) 1997-03-27 1997-03-27 Carbon fiber tow and its production

Publications (1)

Publication Number Publication Date
JPH10266066A true JPH10266066A (en) 1998-10-06

Family

ID=13594048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7605397A Pending JPH10266066A (en) 1997-03-27 1997-03-27 Carbon fiber tow and its production

Country Status (1)

Country Link
JP (1) JPH10266066A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114578A (en) * 2007-11-06 2009-05-28 Toho Tenax Co Ltd Carbon fiber strand and process for producing the same
JP2011132632A (en) * 2009-12-24 2011-07-07 Mitsubishi Rayon Co Ltd Carbon fiber bundle and manufacturing method thereof
JP2012102439A (en) * 2010-11-12 2012-05-31 Toho Tenax Co Ltd Surface treatment method of carbon fiber
KR101383379B1 (en) * 2013-01-25 2014-04-08 주식회사 효성 Surface treatment method of carbon fiber of large tow
US20150132573A1 (en) * 2013-11-08 2015-05-14 Goodrich Corporation Systems and methods for controlling carbon tow width
JP2015531425A (en) * 2012-10-15 2015-11-02 東レ株式会社 High modulus fiber reinforced polymer composite
EP2960361B1 (en) * 2013-02-19 2018-05-30 Ocean University of China Oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber and preparation method thereof
CN108883587A (en) * 2017-02-08 2018-11-23 东丽先端素材株式会社 The manufacturing method and equipment of carbon fiber sheets moulding compound
CN113914095A (en) * 2021-11-25 2022-01-11 北京化工大学 Preparation method of PAN-based high-strength high-model carbon fiber with improved interface performance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114578A (en) * 2007-11-06 2009-05-28 Toho Tenax Co Ltd Carbon fiber strand and process for producing the same
JP2011132632A (en) * 2009-12-24 2011-07-07 Mitsubishi Rayon Co Ltd Carbon fiber bundle and manufacturing method thereof
JP2012102439A (en) * 2010-11-12 2012-05-31 Toho Tenax Co Ltd Surface treatment method of carbon fiber
JP2015531425A (en) * 2012-10-15 2015-11-02 東レ株式会社 High modulus fiber reinforced polymer composite
KR101383379B1 (en) * 2013-01-25 2014-04-08 주식회사 효성 Surface treatment method of carbon fiber of large tow
EP2960361B1 (en) * 2013-02-19 2018-05-30 Ocean University of China Oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber and preparation method thereof
US20150132573A1 (en) * 2013-11-08 2015-05-14 Goodrich Corporation Systems and methods for controlling carbon tow width
US10260174B2 (en) * 2013-11-08 2019-04-16 Goodrich Corporation Systems and methods for controlling carbon tow width
CN108883587A (en) * 2017-02-08 2018-11-23 东丽先端素材株式会社 The manufacturing method and equipment of carbon fiber sheets moulding compound
CN108883587B (en) * 2017-02-08 2020-12-18 东丽先端素材株式会社 Method and equipment for manufacturing carbon fiber sheet molding compound
CN113914095A (en) * 2021-11-25 2022-01-11 北京化工大学 Preparation method of PAN-based high-strength high-model carbon fiber with improved interface performance

Similar Documents

Publication Publication Date Title
JP3656864B2 (en) Carbon fiber, method for producing the same, and prepreg using the carbon fiber
US4704196A (en) Process for surface treatment of carbon fiber
EP2208813B1 (en) Carbon fiber strand and process for producing the same
JP3003513B2 (en) Carbon fiber and method for producing the same
JPH10266066A (en) Carbon fiber tow and its production
JP2530767B2 (en) Carbon fiber and manufacturing method thereof
JPS585288B2 (en) Carbon fiber surface electrolytic treatment method and its electrolytic cell
JP3003521B2 (en) Carbon fiber and method for producing the same
JP4023226B2 (en) Carbon fiber bundle processing method
JP3755255B2 (en) Carbon fiber and method for producing the same
JP5202183B2 (en) Surface porous carbon fiber, precursor fiber and production method thereof
JPH08296124A (en) Non-circular cross section carbon fiber and carbon fiber-reinforced composite material
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JPS60239521A (en) Acryl-based carbon fiber bundle exhibiting excellent composite property, and its manufacture
JP2910275B2 (en) Surface treatment method for carbon fiber
KR890005015B1 (en) Surface treatment method of carbon fiber
JP2008248424A (en) Method of multistage electrolytic treatment of carbon fiber
JP2002194626A (en) Carbon fiber, carbon fiber-reinforced composite material, and method for producing carbon fiber
JP3012885B2 (en) Method for producing surface-modified carbon fiber
JPH0284527A (en) Treatment of carbon fiber
JP3880101B2 (en) Carbon fiber and method for producing the same
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
JPH11124743A (en) Carbon fiber and carbon fiber-reinforced composite material
JP2008248427A (en) Method for surface electrolytic treatment of carbon fiber