JP6664194B2 - Coal heating prediction management system - Google Patents

Coal heating prediction management system Download PDF

Info

Publication number
JP6664194B2
JP6664194B2 JP2015221725A JP2015221725A JP6664194B2 JP 6664194 B2 JP6664194 B2 JP 6664194B2 JP 2015221725 A JP2015221725 A JP 2015221725A JP 2015221725 A JP2015221725 A JP 2015221725A JP 6664194 B2 JP6664194 B2 JP 6664194B2
Authority
JP
Japan
Prior art keywords
coal
temperature
temperature rise
analysis
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015221725A
Other languages
Japanese (ja)
Other versions
JP2017090286A (en
Inventor
昭洋 田中
昭洋 田中
藤田 昌弘
昌弘 藤田
大助 大森
大助 大森
高橋 克巳
克巳 高橋
隆政 伊藤
隆政 伊藤
原栄 崔
原栄 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Transport Machinery Co Ltd
Original Assignee
IHI Corp
IHI Transport Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Transport Machinery Co Ltd filed Critical IHI Corp
Priority to JP2015221725A priority Critical patent/JP6664194B2/en
Publication of JP2017090286A publication Critical patent/JP2017090286A/en
Application granted granted Critical
Publication of JP6664194B2 publication Critical patent/JP6664194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、石炭昇温予測管理システムに関するものである。   The present invention relates to a coal temperature rise prediction management system.

近年、日本国内の発電用の石炭として、以前から使用されている高品位炭の価格が急騰していることを受け、瀝青炭や亜瀝青炭等の低品位炭を導入する動きが活発化している。   In recent years, as the price of high-grade coal that has been used for a long time as coal for power generation in Japan has soared, movement to introduce low-grade coal such as bituminous coal and sub-bituminous coal has been activated.

一般に、石炭は、野積みされる貯炭施設或いはサイロを用いた貯炭施設に貯蔵されるが、いずれの貯炭施設においても貯炭期間が長くなると、自然発火が発生する。   Generally, coal is stored in an open storage facility or a storage facility using silos. In any of the storage facilities, if the storage period becomes long, spontaneous ignition occurs.

従来、自然発火を回避するための石炭の貯炭期間は経験値から決められているのが一般的であるが、前記低品位炭は自然発火しやすいため、前記高品位炭の場合以上に貯炭施設の自然発火発生防止対策を強化する必要がある。   Conventionally, the coal storage period for avoiding spontaneous ignition is generally determined based on empirical values.However, since the low-grade coal easily ignites spontaneously, the coal storage facility is more than the case of the high-grade coal. It is necessary to strengthen the measures to prevent spontaneous combustion in Japan.

前記貯炭施設の自然発火発生防止対策としては、例えば、自然発火を感知できるようにガス検知器を設置したり、或いは昇温防止剤を使用したりすることが行われ、更に、貯蔵された石炭に予め散水して冷却するといった措置も講じられており、多くの研究がなされている。   As measures to prevent spontaneous ignition of the coal storage facility, for example, installing a gas detector so as to detect spontaneous ignition or using an anti-heating agent is performed. Measures such as watering and cooling have been taken in advance, and many studies have been made.

尚、低品位炭の自然発火と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。   In addition, there exists patent document 1 as an example which shows the general technical level relevant to the spontaneous ignition of low-grade coal.

特開2014−126541号公報JP 2014-126541 A

しかしながら、低品位炭の貯炭期間を経験値から決めようとすると、新しい炭種の石炭に対しては適切な管理温度を設定することができず、貯炭期間を正しく求めることが困難となっていた。   However, when trying to determine the storage period of low-grade coal from empirical values, it was not possible to set an appropriate management temperature for coal of a new coal type, making it difficult to correctly determine the storage period. .

又、ガス検知器の設置や昇温防止剤の使用は、多大な費用と手間が掛かると共に、特に昇温防止剤は石炭の品質低下につながる可能性もあり、好ましい対策であるとは言えなかった。   In addition, the installation of a gas detector and the use of a temperature-raising inhibitor are enormous costs and labor, and in particular, the temperature-raising inhibitor may lead to a decrease in the quality of coal, and cannot be said to be a preferable measure. Was.

一方、同じ炭種の石炭であっても、貯蔵量、外気温度、野積み或いはサイロといった貯蔵形態により、石炭の昇温速度は大幅に変化することがある。例えば、同じ炭種の石炭を貯蔵するとしても、ある貯炭施設では発火するが、他の貯炭施設では発火しない場合もある。しかも、自然発火は、その現象が起こるまでに長時間(数日〜数十日)を要し、再現性が乏しく、実測によって自然発火が発生する時間を求めても、そのデータを有効活用することはできなかった。   On the other hand, even with coal of the same coal type, the rate of temperature rise of the coal may greatly change depending on the storage amount, the outside air temperature, the storage mode such as open storage or silo. For example, even if coal of the same coal type is stored, a fire may occur in one storage facility but not in another. In addition, spontaneous ignition takes a long time (several days to several tens of days) until the phenomenon occurs, has poor reproducibility, and effectively uses the data even when the time required for spontaneous ignition to be determined by actual measurement. I couldn't do that.

又、現時点で自然発火防止対策として行われている、貯炭施設での散水による石炭の冷却といった一律的な処置は、石炭の炭種及び貯蔵形態に合わせた管理であるとは言えず、改善の余地が残されていた。   In addition, uniform measures, such as cooling of coal by sprinkling water at coal storage facilities, which are currently being taken as measures to prevent spontaneous combustion, cannot be said to be management that is tailored to the type of coal and the form of storage of coal. Room was left.

本発明は、上記従来の問題点に鑑みてなしたもので、貯蔵中の石炭の炭種及び貯蔵形態に合わせて自然発火を未然に防ぐよう管理を適切に行い得る石炭昇温予測管理システムを提供しようとするものである。   The present invention has been made in view of the above-mentioned conventional problems, and provides a coal temperature rise prediction management system capable of appropriately performing management so as to prevent spontaneous ignition in advance according to the coal type and storage form of coal being stored. It is something to offer.

本発明は、貯炭施設に貯蔵される石炭の物性を計測する石炭分析装置と、
該石炭分析装置で計測された前記石炭の物性及び前記貯炭施設の情報に基づき数値解析を行って前記石炭の昇温特性を求める石炭昇温シミュレーション装置とを備え、
該石炭昇温シミュレーション装置で求められた前記石炭の昇温特性をシミュレーション請負業者から前記貯炭施設の貯蔵管理者にフィードバックするよう構成し
前記石炭分析装置は、
貯蔵される石炭を分級して試料とした粉状炭が供給されて該粉状炭から低温酸化反応速度を計測する第一分析ユニットと、
貯蔵される石炭を塊状に加工して試料とした塊状炭が供給されて該塊状炭から比熱、含水率を計測する第二分析ユニットと、
貯蔵される石炭を塊状に加工して試料とした塊状炭が供給されて該塊状炭から熱伝導率を計測する第三分析ユニットと
を備えたことを特徴とする石炭昇温予測管理システムにかかるものである。
The present invention is a coal analyzer for measuring the physical properties of coal stored in a coal storage facility,
A coal temperature rise simulation device for performing a numerical analysis based on the physical properties of the coal measured by the coal analysis device and information on the coal storage facility to obtain a temperature rise characteristic of the coal,
The temperature rise characteristic of the coal determined by the coal temperature rise simulation device is configured to be fed back from a simulation contractor to a storage manager of the coal storage facility ,
The coal analyzer,
A first analysis unit for supplying powdered coal as a sample by classifying the stored coal and measuring a low-temperature oxidation reaction rate from the powdered coal,
A second analysis unit for measuring the specific heat and water content from the bulk coal supplied with the bulk coal as a sample by processing the stored coal into a bulk,
A third analysis unit for processing the stored coal into a lump and supplying a lump coal as a sample and measuring the thermal conductivity from the lump coal;
The present invention relates to a coal temperature rise prediction management system characterized by comprising:

前記貯炭施設の情報は、外気温度及び石炭内部温度の少なくとも一方と、石炭層の形状と、貯炭量とであっても良い。   The information of the coal storage facility may be at least one of the outside air temperature and the coal internal temperature, the shape of the coal seam, and the amount of stored coal.

前記石炭昇温シミュレーション装置は、前記低温酸化反応速度と、前記比熱と、前記含水率と、前記熱伝導率と、前記外気温度及び石炭内部温度の少なくとも一方とが入力条件を示す情報として入力され、前記石炭層の形状と、前記貯炭量とが石炭の解析領域を示す情報として入力されても良い。   In the coal heating simulation apparatus, the low-temperature oxidation reaction rate, the specific heat, the water content, the thermal conductivity, and at least one of the outside air temperature and the coal internal temperature are input as information indicating input conditions. The shape of the coal seam and the amount of stored coal may be input as information indicating a coal analysis area.

前記石炭昇温シミュレーション装置は、前記入力条件を示す情報と、前記解析領域を示す情報とを、ガス流動、化学反応、伝熱を考慮した計算流体力学モデルで数値解析し、解析結果として、貯炭温度と、酸素濃度と、含水率と、空気流速と、圧力とを求め、時間経過の反復計算を行うことにより、前記石炭の昇温特性を導き出しても良い。   The coal heating simulation apparatus numerically analyzes the information indicating the input condition and the information indicating the analysis region with a computational fluid dynamics model in consideration of gas flow, chemical reaction, and heat transfer, and as an analysis result, stores coal. The temperature rise characteristics of the coal may be derived by calculating temperature, oxygen concentration, water content, air flow rate, and pressure, and repeatedly calculating the elapsed time.

前記石炭分析装置と石炭昇温シミュレーション装置は無線接続されても良い。   The coal analyzer and the coal heating simulator may be wirelessly connected.

本発明の石炭昇温予測管理システムによれば、貯蔵中の石炭の炭種及び貯蔵形態に合わせて自然発火を未然に防ぐよう管理を適切に行い得るという優れた効果を奏し得る。   ADVANTAGE OF THE INVENTION According to the coal temperature rise prediction management system of this invention, the outstanding effect that management can be appropriately performed so that spontaneous ignition is prevented beforehand according to the coal type and storage form of the coal under storage can be produced.

本発明の石炭昇温予測管理システムの実施例を示す全体概要構成図である。1 is an overall schematic configuration diagram showing an embodiment of a coal temperature rise prediction management system of the present invention. 本発明の石炭昇温予測管理システムの実施例における石炭分析装置を示す図である。It is a figure showing a coal analysis device in an example of a coal heating prediction management system of the present invention. 本発明の石炭昇温予測管理システムの実施例における第一分析ユニットで計測される温度と酸素消費量との関係を示す線図である。FIG. 4 is a diagram illustrating a relationship between a temperature measured by a first analysis unit and an oxygen consumption in the embodiment of the coal temperature rise prediction management system of the present invention. (a)は本発明の石炭昇温予測管理システムの実施例における第二分析ユニットで計測される温度と熱量との関係を示す線図、(b)は本発明の石炭昇温予測管理システムの実施例における第二分析ユニットで計測される時間と試料温度及び試料重量との関係を示す線図である。(A) is a diagram showing the relationship between the temperature measured by the second analysis unit and the amount of heat in the embodiment of the coal heating prediction management system of the present invention, and (b) is a diagram of the coal heating prediction management system of the present invention. FIG. 5 is a diagram illustrating a relationship between a time measured by a second analysis unit, a sample temperature, and a sample weight in an example. 本発明の石炭昇温予測管理システムの実施例における第三分析ユニットで計測される時間と低温部温度及び高温部温度との関係を示す線図である。It is a diagram which shows the relationship between the time measured by the 3rd analysis unit and the low temperature part temperature and high temperature part temperature in the Example of the coal temperature rise prediction management system of this invention. 本発明の石炭昇温予測管理システムの実施例を示す解析フロー図である。It is an analysis flow figure showing an example of a coal temperature rise prediction management system of the present invention. 本発明の石炭昇温予測管理システムの実施例における石炭層の形状を示す図であって、(a)は石炭層の形状が凸型となっている一例を示す図、(b)は石炭層の形状が凹型となっている一例を示す図である。It is a figure which shows the shape of the coal layer in the Example of the coal temperature rise prediction management system of this invention, (a) is a figure which shows an example in which the shape of a coal layer is convex, (b) is a coal layer FIG. 4 is a diagram showing an example in which the shape of a circle is concave. 本発明の石炭昇温予測管理システムの実施例を実証するために製作した貯炭試験サイロにおける貯蔵日数と管理温度との関係を実測値と数値解析結果で比較する形で示した線図である。FIG. 3 is a diagram showing the relationship between the storage days and the control temperature in a coal storage test silo manufactured to verify the embodiment of the coal temperature rise prediction management system of the present invention in the form of comparison between measured values and numerical analysis results. 本発明の石炭昇温予測管理システムの実施例を実証するために製作した貯炭試験サイロにおける石炭の温度分布を実測値と数値解析結果で比較する形で示した温度分布図である。FIG. 4 is a temperature distribution diagram showing the temperature distribution of coal in a coal storage test silo manufactured for the purpose of verifying the embodiment of the coal temperature rise prediction management system of the present invention, by comparing measured values with numerical analysis results.

以下、本発明の実施の形態を添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図9は本発明の石炭昇温予測管理システムの実施例である。   1 to 9 show an embodiment of the coal temperature rise prediction management system of the present invention.

本実施例の場合、図1に示す如く、貯炭施設に貯蔵される石炭の物性を計測する石炭分析装置1と、該石炭分析装置1で計測された前記石炭の物性及び前記貯炭施設の情報に基づき数値解析を行って前記石炭の昇温特性を求める石炭昇温シミュレーション装置2とを備えている。そして、前記石炭昇温シミュレーション装置2で求められた前記石炭の昇温特性をシミュレーション請負業者(シミュレーション請負業者側のコンピュータを含む)から前記貯炭施設の貯蔵管理者(貯蔵管理者側のコンピュータを含む)にフィードバックするよう構成した点を特徴としている。尚、前記貯蔵管理者は、貯炭施設を有する依頼元としての発電会社等である。又、前記貯蔵管理者へフィードバックされる石炭の昇温特性の内容は、貯炭期間と温度の関係が分かるグラフ(図8参照)や推奨管理温度の情報である。   In the case of the present embodiment, as shown in FIG. 1, a coal analyzer 1 for measuring physical properties of coal stored in a coal storage facility, and information on the physical properties of the coal measured by the coal analyzer 1 and the information on the coal storage facility. A coal temperature rise simulation device 2 for performing a numerical analysis based on the temperature rise characteristics of the coal. Then, the temperature rise characteristics of the coal obtained by the coal temperature rise simulation device 2 are converted from a simulation contractor (including a computer of the simulation contractor) to a storage manager of the coal storage facility (including a computer of the storage manager). ) To provide feedback. The storage manager is a power generation company or the like as a requestor having a coal storage facility. The contents of the temperature rise characteristics of the coal fed back to the storage manager are a graph (see FIG. 8) showing the relationship between the coal storage period and the temperature, and information on the recommended management temperature.

前記石炭分析装置1は、図2に示す如く、第一分析ユニット10と、第二分析ユニット20と、第三分析ユニット30とを備えている。   As shown in FIG. 2, the coal analyzer 1 includes a first analysis unit 10, a second analysis unit 20, and a third analysis unit 30.

前記第一分析ユニット10は、ヒータ11が内蔵されて断熱材12で囲まれ且つ昇温速度を制御自在な第一加熱炉13と、粉状炭が充填され且つ前記第一加熱炉13の内部にセットされる筒状の反応容器14と、該反応容器14の内部に充填された粉状炭に対して空気を流通させる空気流通装置15と、該空気流通装置15によって前記粉状炭に対し流通させた空気中の酸素濃度を計測する酸素センサ16とを備えている。前記第一分析ユニット10においては、内部に粉状炭が充填された反応容器14を第一加熱炉13にセットし、空気流通装置15から反応容器14の内部に充填された粉状炭に対して空気を流通させつつ、ヒータ11により一定な昇温速度で反応容器14の温度を上昇させ、粉状炭を通過した空気中の酸素濃度を酸素センサ16で計測することにより、低温酸化反応速度を求めるようになっている。因みに、温度と酸素消費量との関係は、例えば、図3に示すようになり、この関係から活性化エネルギー項と定数項等を求めることができる。尚、前記粉状炭は、貯炭施設に貯蔵される石炭を分級して試料としたものである。   The first analysis unit 10 includes a first heating furnace 13 having a built-in heater 11 and being surrounded by a heat insulating material 12 and having a controllable heating rate, A tubular reaction vessel 14 set in the reaction vessel 14, an air circulating device 15 for circulating air to the pulverized coal filled in the reaction vessel 14, An oxygen sensor 16 for measuring the oxygen concentration in the circulated air. In the first analysis unit 10, the reaction vessel 14 filled with pulverized coal is set in the first heating furnace 13, and the pulverized coal filled inside the reaction vessel 14 is supplied from the air circulation device 15. The temperature of the reaction vessel 14 is raised at a constant rate by the heater 11 while flowing air through the heater 11, and the oxygen concentration in the air that has passed through the pulverized coal is measured by the oxygen sensor 16. Is to be asked. Incidentally, the relationship between the temperature and the oxygen consumption is, for example, as shown in FIG. 3, from which the activation energy term and the constant term can be obtained. The pulverized coal is a sample obtained by classifying coal stored in a coal storage facility.

前記第二分析ユニット20は、ヒータ21が内蔵されて断熱材22で囲まれ且つ昇温速度を制御自在な第二加熱炉23と、該第二加熱炉23のヒータ21に電源24から供給される電力量を計測する電力量計25と、前記第二加熱炉23の内部にセットされる塊状炭の温度を計測する塊状炭温度計26と、前記塊状炭の重量を計測する重量計27とを備えている。前記重量計27としては、ロードセルや天秤等を用いることができる。前記第二分析ユニット20においては、塊状炭を第二加熱炉23にセットし、ヒータ21により塊状炭に熱を与えて温度を上昇させ、電力量計25で計測した電力量に基づき塊状炭に与えた熱量Qを求めるようになっている。更に、この時の塊状炭の重量を重量計27で計測して質量mを求めると共に、塊状炭の温度変化Δtを塊状炭温度計26で計測し、比熱Cを
C=Q/(m×Δt) …(1)
但し、Q:熱量[J]
m:質量[g](重量から換算)
Δt:温度変化[K]
より求めるようになっている。ここで、温度と熱量は、例えば、図4(a)に示す如く、線形関係を有する。前記比熱Cの測定後、塊状炭の温度を100℃以上に昇温させると水分が蒸発し、例えば、図4(b)に示す如く、時間の経過と共に試料としての塊状炭の温度が上昇するのに対して、該塊状炭の重量は減少していくため、昇温後の塊状炭の重量変化から、含水率を求めるようになっている。尚、前記塊状炭は、貯炭施設に貯蔵される石炭を塊状に加工して試料としたものであって、塊状炭の大きさは、およそ30〜50mm程度としてある。
The second analysis unit 20 includes a second heating furnace 23 having a built-in heater 21 and surrounded by a heat insulating material 22 and having a controllable heating rate. The heater 21 of the second heating furnace 23 is supplied from a power source 24. A watt hour meter 25 for measuring the amount of electric power, a lump coal thermometer 26 for measuring the temperature of the lump coal set inside the second heating furnace 23, and a weigh scale 27 for measuring the weight of the lump coal. It has. As the weighing scale 27, a load cell, a balance, or the like can be used. In the second analysis unit 20, the lump coal is set in the second heating furnace 23, heat is applied to the lump coal by the heater 21 to increase the temperature, and the lump coal is converted into lump coal based on the electric energy measured by the watt hour meter 25. The given amount of heat Q is obtained. Further, at this time, the weight of the lump coal is measured by the weighing scale 27 to obtain the mass m, and the temperature change Δt of the lump coal is measured by the lump coal thermometer 26, and the specific heat C is calculated as C = Q / (m × Δt …… (1)
However, Q: calorie [J]
m: mass [g] (converted from weight)
Δt: temperature change [K]
It is becoming more demanding. Here, the temperature and the amount of heat have, for example, a linear relationship as shown in FIG. After the measurement of the specific heat C, when the temperature of the lump coal is raised to 100 ° C. or higher, moisture evaporates, and, for example, as shown in FIG. 4B, the temperature of the lump coal as a sample increases with time. On the other hand, since the weight of the lump coal decreases, the moisture content is determined from the change in weight of the lump coal after the temperature rise. The lump coal is obtained by processing coal stored in a coal storage facility into lump and making it into a sample, and the size of the lump coal is about 30 to 50 mm.

前記第三分析ユニット30は、加熱板31が内蔵されて断熱材32で囲まれ且つ昇温速度を制御自在な第三加熱炉33を備えている。更に、前記第三加熱炉33の加熱板31に電源34から供給される電力量を計測する電力量計35と、前記第三加熱炉33の内部に上面側を外部に露出させてセットされる塊状炭の底面側(前記加熱板31に面する側)の高温部温度Tを計測する高温部温度計36と、前記第三加熱炉33の内部にセットされる塊状炭の上面側(外部に露出する側)の低温部温度Tを計測する低温部温度計37とを備えている。前記第三分析ユニット30においては、断面積Sが一定になり且つ長さ(高さ)がLとなるように加工した塊状炭を第三加熱炉33の内部に上面側を外部に露出させてセットし、加熱板31により塊状炭の底面側を加熱し、上面側は開放し、図5に示す如く、塊状炭の底面側の高温部温度Tが所定温度に到達した後に一定となるよう電力量を調節し、電力量計35で計測した電力量に基づき塊状炭に与えた熱流量qを求めるようになっている。更に、この時の塊状炭の温度差ΔT(=T−T)を高温部温度計36及び低温部温度計37で計測し、定常状態の熱伝導率λを
λ=(q/S)/(ΔT/L) …(2)
但し、q:熱流量[W]
S:断面積[m
ΔT:温度差[K]
L:長さ[m]
より求めるようになっている。
The third analysis unit 30 includes a third heating furnace 33 which has a built-in heating plate 31, is surrounded by a heat insulating material 32, and has a controllable heating rate. Further, a watt-hour meter 35 for measuring the amount of power supplied from the power supply 34 to the heating plate 31 of the third heating furnace 33 is set inside the third heating furnace 33 with its upper surface exposed to the outside. the bottom side of the lumped carbonaceous high-temperature portion temperature T and the high-temperature portion temperature gauge 36 H to measure, the third upper side of the lumped carbonaceous that is set inside the heating furnace 33 (the side facing the heating plate 31) (external and a low-temperature portion temperature meter 37 for measuring the low-temperature portion temperature T C on the side) to be exposed to. In the third analysis unit 30, lump coal processed so that the cross-sectional area S is constant and the length (height) is L is exposed inside the third heating furnace 33 on the upper surface side. set by the heating plate 31 heats the bottom side of the lumped carbonaceous, top side open, as shown in FIG. 5, so that the high-temperature portion temperature T H of the bottom side of the lumped carbonaceous becomes constant after reaching a predetermined temperature The amount of power is adjusted, and the heat flow q given to the lump coal is obtained based on the amount of power measured by the watt-hour meter 35. Furthermore, to measure the temperature difference ΔT of lumped carbonaceous at this time (= T H -T C) at a high temperature portion temperature gauge 36 and the low temperature portion thermometer 37, the thermal conductivity of the steady state λ λ = (q / S) / (ΔT / L) (2)
Here, q: heat flow [W]
S: sectional area [m 2 ]
ΔT: temperature difference [K]
L: Length [m]
It is becoming more demanding.

前記貯炭施設の情報は、図6に示す如く、外気温度及び石炭内部温度の少なくとも一方と、石炭層の形状と、貯炭量としてある。前記石炭層の形状は、例えば、図7(a)に示す如く、凸型、或いは図7(b)に示す如く、凹型となる。図7には貯炭施設がサイロ50である場合を示しており、該サイロ50の上部は開放され、その底部には石炭を払い出すための開口が形成されているため、石炭の温度上昇に伴う自然対流により、前記サイロ50の底部から空気が流入し、貯蔵される石炭より放出されるガスを含んだ空気が前記サイロ50の上部の空きスペースを通過して上端から外部へ流出するようになっている。   As shown in FIG. 6, the information on the coal storage facility includes at least one of the outside air temperature and the coal internal temperature, the shape of the coal seam, and the amount of stored coal. The shape of the coal layer is, for example, a convex shape as shown in FIG. 7A, or a concave shape as shown in FIG. 7B. FIG. 7 shows a case where the coal storage facility is a silo 50. The upper portion of the silo 50 is open, and an opening for discharging coal is formed at the bottom thereof. Due to natural convection, air flows in from the bottom of the silo 50, and air containing gas released from the stored coal passes through an empty space above the silo 50 and flows out from the upper end to the outside. ing.

前記石炭昇温シミュレーション装置2は、図6に示す如く、前記低温酸化反応速度と、前記比熱と、前記含水率と、前記熱伝導率と、前記外気温度及び石炭内部温度の少なくとも一方とが入力条件を示す情報として入力され、前記石炭層の形状と、前記貯炭量とが石炭の解析領域を示す情報として入力されるようになっている。   As shown in FIG. 6, the coal heating simulation apparatus 2 receives the low-temperature oxidation reaction rate, the specific heat, the water content, the thermal conductivity, and at least one of the outside air temperature and the coal internal temperature. Information indicating conditions is input, and the shape of the coal seam and the amount of stored coal are input as information indicating an analysis area of coal.

更に、前記石炭昇温シミュレーション装置2は、図6に示す如く、前記入力条件を示す情報と、前記解析領域を示す情報とを、ガス流動、化学反応、伝熱を考慮した計算流体力学(CFD:Computational Fluid Dynamics)モデルで数値解析し、解析結果として、貯炭温度、酸素濃度、含水率、空気流速、圧力を求め、時間経過の反復計算を行うことにより、前記石炭の昇温特性を導き出すようになっている。   Further, as shown in FIG. 6, the coal heating simulation apparatus 2 compares the information indicating the input conditions and the information indicating the analysis area with a computational fluid dynamics (CFD) in consideration of gas flow, chemical reaction, and heat transfer. : Computational Fluid Dynamics) Numerical analysis with a model, the coal storage temperature, oxygen concentration, water content, air flow rate, and pressure are obtained as analysis results, and the temperature rise characteristics of the coal are derived by repeatedly calculating the passage of time. It has become.

前記石炭分析装置1と石炭昇温シミュレーション装置2は無線接続されている。但し、前記石炭分析装置1からの解析結果を石炭昇温シミュレーション装置2のシミュレーションに使用できれば良いため、前記石炭分析装置1と石炭昇温シミュレーション装置2を必ずしも無線接続する必要はない。   The coal analyzer 1 and the coal heating simulator 2 are wirelessly connected. However, since it is sufficient that the analysis result from the coal analysis device 1 can be used for the simulation of the coal heating simulation device 2, the coal analysis device 1 and the coal heating simulation device 2 do not necessarily need to be wirelessly connected.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

先ず、貯炭施設に貯蔵される石炭の物性を石炭分析装置1で計測する。   First, the physical properties of coal stored in a coal storage facility are measured by the coal analyzer 1.

前記石炭分析装置1の第一分析ユニット10の反応容器14には、貯炭施設に貯蔵される石炭を分級して試料とした粉状炭が充填され、該粉状炭が充填された反応容器14が第一加熱炉13の内部にセットされる。前記第一分析ユニット10においては、内部に粉状炭が充填された反応容器14が第一加熱炉13にセットされた後、空気流通装置15から反応容器14の内部に充填された粉状炭に対して空気が流通される。空気が流通された状態で、ヒータ11により反応容器14が加熱され、一定な昇温速度で反応容器14の温度が上昇し、粉状炭を通過した空気中の酸素濃度が酸素センサ16で計測される。この時、温度と酸素消費量との関係は、例えば、図3に示すようになり、この関係から低温酸化反応速度が求められる。   The reaction vessel 14 of the first analysis unit 10 of the coal analyzer 1 is filled with pulverized coal which is a sample obtained by classifying coal stored in a coal storage facility, and the reaction vessel 14 filled with the pulverized coal. Is set inside the first heating furnace 13. In the first analysis unit 10, after the reaction vessel 14 filled with pulverized coal is set in the first heating furnace 13, the pulverized coal filled inside the reaction vessel 14 is supplied from the air circulation device 15. Air is circulated. In a state where air is circulated, the reaction vessel 14 is heated by the heater 11, the temperature of the reaction vessel 14 rises at a constant temperature rising rate, and the oxygen concentration in the air that has passed through the pulverized coal is measured by the oxygen sensor 16. Is done. At this time, the relationship between the temperature and the oxygen consumption is, for example, as shown in FIG. 3, and the low-temperature oxidation reaction rate is obtained from this relationship.

前記石炭分析装置1の第二分析ユニット20の第二加熱炉23には、貯炭施設に貯蔵される石炭を塊状に加工して試料とした塊状炭がセットされる。前記第二分析ユニット20においては、ヒータ21により塊状炭が加熱されて温度上昇し、電力量計25で計測した電力量に基づき塊状炭に与えた熱量Qが求められる。この時の塊状炭の重量が重量計27で計測されて質量mが求められると共に、塊状炭の温度変化Δtが塊状炭温度計26で計測される。ここで、温度と熱量は、例えば、図4(a)に示す如く、線形関係を有しており、塊状炭の比熱Cが前記数式(1)(C=Q/(m×Δt))より求められる。更に、前記比熱Cの測定後、塊状炭の温度を100℃以上に昇温させると水分が蒸発し、例えば、図4(b)に示す如く、時間の経過と共に試料としての塊状炭の温度が上昇するのに対して、該塊状炭の重量は減少していくため、昇温後の塊状炭の重量変化から、含水率が求められる。   In the second heating furnace 23 of the second analysis unit 20 of the coal analyzer 1, a lump of coal, which is a sample obtained by processing coal stored in a coal storage facility into lump, is set. In the second analysis unit 20, the lump coal is heated by the heater 21 and rises in temperature. The amount of heat Q given to the lump coal is calculated based on the amount of power measured by the watt hour meter 25. At this time, the weight of the lump coal is measured by the weigh scale 27 to obtain the mass m, and the temperature change Δt of the lump coal is measured by the lump coal thermometer 26. Here, the temperature and the amount of heat have, for example, a linear relationship as shown in FIG. 4A, and the specific heat C of the lump coal is calculated from the above equation (1) (C = Q / (m × Δt)). Desired. Further, after the measurement of the specific heat C, when the temperature of the lump coal is raised to 100 ° C. or higher, the water evaporates. For example, as shown in FIG. Since the weight of the lump coal decreases while it rises, the water content is determined from the weight change of the lump coal after the temperature rise.

前記石炭分析装置1の第三分析ユニット30の第三加熱炉33には、断面積Sが一定になり且つ長さ(高さ)がLとなるように加工した塊状炭を第三加熱炉33の内部に上面側を外部に露出させてセットする。前記第三分析ユニット30においては、加熱板31により塊状炭の底面側が加熱され、上面側は開放されており、図5に示す如く、塊状炭の底面側の温度(高温部温度T)が所定温度に到達した後に一定となるよう電力量が調節され、電力量計35で計測した電力量に基づき塊状炭に与えた熱流量qが求められる。この時の塊状炭の温度差ΔT(=T−T)が高温部温度計36及び低温部温度計37で計測され、定常状態の熱伝導率λが前記数式(2)(λ=(q/S)/(ΔT/L))より求められる。 In the third heating furnace 33 of the third analysis unit 30 of the coal analysis apparatus 1, lump coal processed to have a constant cross-sectional area S and a length (height) L is set to the third heating furnace 33. Set it with the top side exposed to the outside inside. In the third analysis unit 30, the bottom side of the lump coal is heated by the heating plate 31, and the upper side is open. As shown in FIG. 5, the temperature of the bottom side of the lump coal (high-temperature portion temperature TH ) is reduced. After reaching the predetermined temperature, the electric energy is adjusted so as to be constant, and the heat flow q given to the lump coal is obtained based on the electric energy measured by the electric energy meter 35. Temperature difference ΔT of lumped carbonaceous at this time (= T H -T C) is measured at a high temperature portion temperature gauge 36 and the low temperature portion temperature gauge 37, the thermal conductivity of the steady-state lambda is the equation (2) (λ = ( q / S) / (ΔT / L)).

前記石炭分析装置1から、前記低温酸化反応速度と、前記比熱と、前記含水率と、前記熱伝導率とが石炭の物性として出力される。   The coal analyzer 1 outputs the low-temperature oxidation reaction rate, the specific heat, the water content, and the thermal conductivity as physical properties of the coal.

一方、前記貯炭施設の情報として、図6に示す如く、外気温度及び石炭内部温度の少なくとも一方が計測されると共に、石炭層の形状が、図7(a)に示す如く、凸型であるか、或いは図7(b)に示す如く、凹型であるかが確認され、更に、貯炭量が計測される。尚、図7に示す貯炭施設としてのサイロ50の場合、該サイロ50の上部は開放され、その底部には石炭を払い出すための開口が形成されているため、石炭の温度上昇に伴う自然対流により、前記サイロ50の底部から空気が流入し、貯蔵される石炭より放出されるガスを含んだ空気が前記サイロ50の上部の空きスペースを通過して上端から流出する。   On the other hand, as shown in FIG. 6, at least one of the outside air temperature and the coal internal temperature is measured as the information of the coal storage facility, and the shape of the coal layer is convex as shown in FIG. Alternatively, as shown in FIG. 7 (b), it is confirmed whether or not it is concave, and further, the amount of stored coal is measured. In addition, in the case of the silo 50 as a coal storage facility shown in FIG. 7, the upper part of the silo 50 is open, and an opening for discharging coal is formed at the bottom, so that natural convection due to a rise in the temperature of coal is caused. Accordingly, air flows in from the bottom of the silo 50, and air containing gas released from the stored coal passes through an empty space above the silo 50 and flows out from the upper end.

そして、図6に示す如く、前記低温酸化反応速度と、前記比熱と、前記含水率と、前記熱伝導率と、前記外気温度及び石炭内部温度の少なくとも一方とが入力条件を示す情報として、前記石炭分析装置1と無線接続された石炭昇温シミュレーション装置2へ入力されると共に、前記石炭層の形状と、前記貯炭量とが解析領域を示す情報として前記石炭昇温シミュレーション装置2へ入力される。   Then, as shown in FIG. 6, the low-temperature oxidation reaction rate, the specific heat, the water content, the thermal conductivity, and at least one of the outside air temperature and the coal internal temperature are information indicating input conditions, While being input to the coal heating simulation device 2 wirelessly connected to the coal analysis device 1, the shape of the coal layer and the amount of stored coal are input to the coal heating simulation device 2 as information indicating an analysis area. .

前記石炭昇温シミュレーション装置2においては、図6に示す如く、前記入力条件を示す情報と、前記解析領域を示す情報とが、ガス流動、化学反応、伝熱を考慮した計算流体力学モデルで数値解析され、解析結果として、貯炭温度、酸素濃度、含水率、空気流速、圧力が求められ、時間経過の反復計算を行うことにより、石炭の昇温特性が導き出される。   In the coal heating simulation apparatus 2, as shown in FIG. 6, the information indicating the input condition and the information indicating the analysis area are numerically expressed by a computational fluid dynamics model in consideration of gas flow, chemical reaction, and heat transfer. The temperature is analyzed, and as a result of the analysis, the coal storage temperature, oxygen concentration, water content, air flow rate, and pressure are obtained, and the temperature rise characteristics of the coal are derived by repeatedly calculating the elapsed time.

前記石炭昇温シミュレーション装置2で求められた前記石炭の昇温特性は、図1に示す如く、シミュレーション請負業者から前記貯炭施設の貯蔵管理者にフィードバックされる。   As shown in FIG. 1, the temperature rise characteristics of the coal obtained by the coal temperature rise simulation device 2 are fed back from a simulation contractor to a storage manager of the coal storage facility.

前記貯炭施設の貯蔵管理者は、シミュレーション請負業者からフィードバックされた前記石炭の昇温特性(例えば、貯炭期間と温度の関係が分かるグラフ(図8参照)や推奨管理温度の情報)に基づき、石炭の管理を行うことができる。   The storage manager of the coal storage facility, based on the temperature rise characteristics of the coal (for example, a graph showing the relationship between the coal storage period and the temperature (see FIG. 8) and information on the recommended management temperature) fed back from the simulation contractor, Can be managed.

因みに、本発明者等は、本実施例を実証するために120ton規模の貯炭試験サイロを製作し、該貯炭試験サイロにおける貯蔵日数と管理温度との関係を実測値と数値解析結果で比較する実験を行った。この実験結果は、図8に示すようになり、数値解析結果が実測値と略一致していることが確認された。図8に示す例の場合、貯蔵日数が125日で、貯蔵される石炭の温度が管理温度(例えば、60[℃])に達することが数値解析結果から割り出されており、実測値との誤差もほとんどないことが分かる。   Incidentally, the present inventors manufactured a 120-ton scale coal storage test silo to demonstrate this example, and compared the relationship between the storage days and the control temperature in the coal storage test silo with measured values and numerical analysis results. Was done. The experimental results are as shown in FIG. 8, and it was confirmed that the numerical analysis results substantially coincided with the actually measured values. In the case of the example shown in FIG. 8, it is determined from the numerical analysis result that the number of storage days is 125 days and the temperature of the stored coal reaches the control temperature (for example, 60 [° C.]). It can be seen that there is almost no error.

又、前記貯炭試験サイロの石炭の温度分布を実測値と数値解析結果で比較する実験を行ったところ、45日後と50日後では、図9に示すようになり、数値解析結果が実測値と略一致していることが確認された。   Further, when an experiment was performed to compare the temperature distribution of coal in the coal storage test silo with the actually measured values and the numerical analysis results, as shown in FIG. 9 after 45 days and 50 days, the numerical analysis results were substantially the same as the actually measured values. It was confirmed that they matched.

即ち、本実施例の場合、低品位炭の貯炭期間を経験値から決めるのとは異なり、新しい炭種の石炭に対しても適切な管理温度を設定することができ、貯炭期間を正しく求めることが可能となる。   That is, in the case of the present embodiment, unlike the case of determining the coal storage period of low-rank coal from empirical values, it is possible to set an appropriate management temperature for coal of a new coal type, and to determine the coal storage period correctly. Becomes possible.

又、前記貯炭施設の自然発火発生防止対策として、自然発火を感知できるようにガス検知器を設置したり、或いは昇温防止剤を使用したりしなくて済み、多大な費用と手間が掛からなくなると共に、昇温防止剤の使用による石炭の品質低下も避けることが可能となる。   Also, as a measure for preventing the occurrence of spontaneous ignition of the coal storage facility, it is not necessary to install a gas detector so as to detect spontaneous ignition or to use an anti-heating agent, so that a great deal of cost and labor are not required. At the same time, it is possible to avoid a decrease in the quality of coal due to the use of the temperature rise inhibitor.

一方、同じ炭種の石炭であっても、貯蔵量、外気温度、野積み或いはサイロといった貯蔵形態により、石炭の昇温速度は大幅に変化することがあるが、本実施例の場合、石炭昇温シミュレーション装置2で求められた石炭の昇温特性は、信頼性が高く、そのデータを有効活用することができる。   On the other hand, even with coal of the same coal type, the rate of temperature rise of the coal may vary greatly depending on the storage amount, the outside air temperature, open storage or silo storage mode. The temperature rise characteristics of the coal determined by the temperature simulation device 2 are highly reliable, and the data can be effectively used.

又、現時点で自然発火防止対策として行われている、貯炭施設での散水による石炭の冷却といった一律的な処置とは異なり、石炭の炭種及び貯蔵形態に合わせた管理を行う上で非常に有効となる。   It is very effective in managing coal according to coal type and storage mode, unlike the current measures taken to prevent spontaneous ignition, such as cooling of coal by watering at coal storage facilities. Becomes

尚、本実施例の場合、図7や図9には、貯炭施設としてのサイロに貯蔵される石炭を示しているが、貯炭施設が石炭を野積みしている場合にも適用できることは言うまでもない。   In the case of the present embodiment, the coal stored in the silo as the coal storage facility is shown in FIGS. 7 and 9, but it is needless to say that the present invention can be applied to a case where the coal storage facility is stacking coal. .

こうして、貯蔵中の石炭の炭種及び貯蔵形態に合わせて自然発火を未然に防ぐよう管理を適切に行い得る。   In this way, management can be appropriately performed so as to prevent spontaneous ignition in accordance with the type of coal and the storage form of the coal being stored.

そして、前記石炭分析装置1は、貯蔵される石炭を分級して試料とした粉状炭が供給されて該粉状炭から低温酸化反応速度を計測する第一分析ユニット10と、貯蔵される石炭を塊状に加工して試料とした塊状炭が供給されて該塊状炭から比熱、含水率を計測する第二分析ユニット20と、貯蔵される石炭を塊状に加工して試料とした塊状炭が供給されて該塊状炭から熱伝導率を計測する第三分析ユニット30とを備えている。これにより、貯炭施設に貯蔵される石炭の物性を精度良く且つ効率良く計測することができる。   The coal analysis apparatus 1 is provided with a first analysis unit 10 for supplying powdered coal as a sample by classifying the stored coal and measuring a low-temperature oxidation reaction rate from the powdered coal, and a stored coal. Is processed into a lump and a lump of coal is supplied as a sample, and the second analysis unit 20 for measuring specific heat and water content from the lump of coal, and lump of coal is sampled by processing the stored coal into lump is supplied. And a third analysis unit 30 for measuring thermal conductivity from the lump coal. Thereby, the physical properties of the coal stored in the coal storage facility can be accurately and efficiently measured.

又、前記貯炭施設の情報は、外気温度及び石炭内部温度の少なくとも一方と、石炭層の形状と、貯炭量としてある。これにより、石炭の昇温特性を求める上で影響の大きい要因を的確に把握し、信頼性を高めることができる。   The information on the coal storage facility includes at least one of the outside air temperature and the coal internal temperature, the shape of the coal seam, and the amount of stored coal. This makes it possible to accurately grasp the factors that have a large effect in obtaining the temperature rise characteristics of the coal, thereby improving reliability.

又、前記石炭昇温シミュレーション装置2は、前記低温酸化反応速度と、前記比熱と、前記含水率と、前記熱伝導率と、前記外気温度及び石炭内部温度の少なくとも一方とが入力条件を示す情報として入力され、前記石炭層の形状と、前記貯炭量とが石炭の解析領域を示す情報として入力される。これにより、入力条件と解析領域とがそれぞれ明確化され、シミュレーションの精度向上に役立つ。   Further, the coal temperature raising simulation apparatus 2 is configured to provide information indicating that the low-temperature oxidation reaction rate, the specific heat, the water content, the thermal conductivity, and at least one of the outside air temperature and the coal internal temperature indicate input conditions. And the shape of the coal seam and the amount of stored coal are input as information indicating an analysis area of coal. This clarifies the input conditions and the analysis area, respectively, and helps to improve the accuracy of the simulation.

又、前記石炭昇温シミュレーション装置2は、前記入力条件を示す情報と、前記解析領域を示す情報とを、ガス流動、化学反応、伝熱を考慮した計算流体力学モデルで数値解析し、解析結果として、貯炭温度と、酸素濃度と、含水率と、空気流速と、圧力とを求め、時間経過の反復計算を行うことにより、前記石炭の昇温特性を導き出すようになっている。これにより、実測値と比較しても、その誤差が最小限に抑えられた石炭の昇温特性を求めることができ、石炭の自然発火防止にきわめて有効となる。   Further, the coal heating simulation apparatus 2 numerically analyzes the information indicating the input conditions and the information indicating the analysis region using a computational fluid dynamics model in consideration of gas flow, chemical reaction, and heat transfer, and analyzes the results. The temperature rise characteristics of the coal are derived by calculating the coal storage temperature, oxygen concentration, water content, air flow rate, and pressure, and repeatedly calculating the elapsed time. As a result, even when compared with the actually measured values, it is possible to obtain the temperature rise characteristics of the coal with the error being minimized, which is extremely effective in preventing spontaneous ignition of the coal.

更に又、前記石炭分析装置1と石炭昇温シミュレーション装置2は無線接続されているため、貯炭施設が遠隔地にあっても、シミュレーション請負業者は、依頼元である貯蔵管理者から提供される試料に基づく石炭の物性を容易に収集してデータ蓄積することができる。   Furthermore, since the coal analysis device 1 and the coal temperature raising simulation device 2 are wirelessly connected, even if the coal storage facility is located at a remote location, the simulation contractor can use the sample provided by the storage manager as the requester. It is possible to easily collect the physical properties of coal based on and accumulate data.

尚、本発明の石炭昇温予測管理システムは、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the coal temperature rise prediction management system of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

1 石炭分析装置
2 石炭昇温シミュレーション装置
10 第一分析ユニット
20 第二分析ユニット
30 第三分析ユニット
DESCRIPTION OF SYMBOLS 1 Coal analyzer 2 Coal heating simulation device 10 First analysis unit 20 Second analysis unit 30 Third analysis unit

Claims (5)

貯炭施設に貯蔵される石炭の物性を計測する石炭分析装置と、
該石炭分析装置で計測された前記石炭の物性及び前記貯炭施設の情報に基づき数値解析を行って前記石炭の昇温特性を求める石炭昇温シミュレーション装置とを備え、
該石炭昇温シミュレーション装置で求められた前記石炭の昇温特性をシミュレーション請負業者から前記貯炭施設の貯蔵管理者にフィードバックするよう構成し
前記石炭分析装置は、
貯蔵される石炭を分級して試料とした粉状炭が供給されて該粉状炭から低温酸化反応速度を計測する第一分析ユニットと、
貯蔵される石炭を塊状に加工して試料とした塊状炭が供給されて該塊状炭から比熱、含水率を計測する第二分析ユニットと、
貯蔵される石炭を塊状に加工して試料とした塊状炭が供給されて該塊状炭から熱伝導率を計測する第三分析ユニットと
を備えたことを特徴とする石炭昇温予測管理システム。
A coal analyzer that measures the physical properties of coal stored in the coal storage facility,
A coal temperature rise simulation device for performing a numerical analysis based on the physical properties of the coal measured by the coal analysis device and information on the coal storage facility to obtain a temperature rise characteristic of the coal,
The temperature rise characteristic of the coal determined by the coal temperature rise simulation device is configured to be fed back from a simulation contractor to a storage manager of the coal storage facility ,
The coal analyzer,
A first analysis unit for supplying powdered coal as a sample by classifying the stored coal and measuring a low-temperature oxidation reaction rate from the powdered coal,
A second analysis unit for measuring the specific heat and water content from the bulk coal supplied with the bulk coal as a sample by processing the stored coal into a bulk,
A third analysis unit for processing the stored coal into a lump and supplying a lump coal as a sample and measuring the thermal conductivity from the lump coal;
Coal heating prediction management system characterized by comprising a.
前記貯炭施設の情報は、外気温度及び石炭内部温度の少なくとも一方と、石炭層の形状と、貯炭量とである請求項記載の石炭昇温予測管理システム。 The coal storage facility information includes at least one of the outside air temperature and coal internal temperature, the shape of the coal layer, coal storage amount and the coal heating prediction management system of claim 1, wherein in at. 前記石炭昇温シミュレーション装置は、前記低温酸化反応速度と、前記比熱と、前記含水率と、前記熱伝導率と、前記外気温度及び石炭内部温度の少なくとも一方とが入力条件を示す情報として入力され、前記石炭層の形状と、前記貯炭量とが石炭の解析領域を示す情報として入力される請求項記載の石炭昇温予測管理システム。 In the coal heating simulation apparatus, the low-temperature oxidation reaction rate, the specific heat, the water content, the thermal conductivity, and at least one of the outside air temperature and the coal internal temperature are input as information indicating input conditions. The coal temperature rise prediction management system according to claim 2 , wherein the shape of the coal seam and the amount of stored coal are input as information indicating an analysis area of coal. 前記石炭昇温シミュレーション装置は、前記入力条件を示す情報と、前記解析領域を示す情報とを、ガス流動、化学反応、伝熱を考慮した計算流体力学モデルで数値解析し、解析結果として、貯炭温度と、酸素濃度と、含水率と、空気流速と、圧力とを求め、時間経過の反復計算を行うことにより、前記石炭の昇温特性を導き出す請求項記載の石炭昇温予測管理システム。 The coal heating simulation apparatus numerically analyzes the information indicating the input condition and the information indicating the analysis region with a computational fluid dynamics model in consideration of gas flow, chemical reaction, and heat transfer, and as an analysis result, stores coal. The coal temperature rise prediction management system according to claim 3 , wherein the temperature, oxygen concentration, water content, air flow rate, and pressure are obtained, and the temperature rise characteristic of the coal is derived by repeatedly calculating the passage of time. 前記石炭分析装置と石炭昇温シミュレーション装置は無線接続されている請求項1〜の何れか一項に記載の石炭昇温予測管理システム。 The coal temperature rise prediction management system according to any one of claims 1 to 4 , wherein the coal analysis device and the coal temperature rise simulation device are wirelessly connected.
JP2015221725A 2015-11-12 2015-11-12 Coal heating prediction management system Active JP6664194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015221725A JP6664194B2 (en) 2015-11-12 2015-11-12 Coal heating prediction management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015221725A JP6664194B2 (en) 2015-11-12 2015-11-12 Coal heating prediction management system

Publications (2)

Publication Number Publication Date
JP2017090286A JP2017090286A (en) 2017-05-25
JP6664194B2 true JP6664194B2 (en) 2020-03-13

Family

ID=58771532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015221725A Active JP6664194B2 (en) 2015-11-12 2015-11-12 Coal heating prediction management system

Country Status (1)

Country Link
JP (1) JP6664194B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594785B2 (en) * 2016-02-02 2019-10-23 千代田化工建設株式会社 Coal storage monitoring system and coal storage monitoring method
KR101972672B1 (en) * 2017-12-13 2019-04-25 (주) 피플아이 A structure safety analysis for cooling ball of coal stockpile consifering material and temperature
CN109490362B (en) * 2018-12-28 2024-02-27 西安科技大学 Oil bath type coal spontaneous combustion oxidation experimental system capable of truly simulating underground environment
JP7463881B2 (en) 2020-06-24 2024-04-09 中国電力株式会社 Coal management device and coal management method
CN115078458A (en) 2022-07-19 2022-09-20 中国矿业大学 Coal low-temperature oxidation micro-calorimetric accurate determination method based on phase change reference

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140633A (en) * 1981-07-24 1983-08-20 Central Res Inst Of Electric Power Ind Method for monitoring spontaneous combustion of coal
JPS58142981A (en) * 1982-02-19 1983-08-25 Sumitomo Metal Ind Ltd Control of coal stored in yard
JPH01113629A (en) * 1987-10-28 1989-05-02 Electric Power Dev Co Ltd Method for predicting time of spontaneous firing of deposited coal
JP2008143646A (en) * 2006-12-08 2008-06-26 Mitsubishi Heavy Ind Ltd Transportation management method and system for flammable solid material
JP5004607B2 (en) * 2007-02-09 2012-08-22 中国電力株式会社 Coal condition management system in thermal power plant.
JP2011007698A (en) * 2009-06-26 2011-01-13 Idemitsu Kosan Co Ltd Method of measuring temperature distribution of stored coal, method of preventing spontaneous combustion in stored coal, and temperature distribution measuring system of stored coal
JP6270494B2 (en) * 2014-01-15 2018-01-31 株式会社神戸製鋼所 Method for predicting spontaneous combustion of coal

Also Published As

Publication number Publication date
JP2017090286A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6664194B2 (en) Coal heating prediction management system
US10608269B2 (en) Temperature measuring method
Jun et al. Thermocouples with built-in self-testing
CN102597754A (en) Hydrogen chlorine level detector
Hofer et al. Investigating wall-to-bed heat transfer in view of a continuous temperature swing adsorption process
Kang et al. Transient hot-wire experimental system for measuring the effective thermal conductivity of a ceramic breeder pebble bed
CN107917929A (en) A kind of parallel hot line heat conduction coefficient tester of high accuracy unstable state and its test method
CN104198524A (en) System and method for measuring equivalent heat conductivity coefficient
US6572263B1 (en) Dry calorimeter
CN102253076A (en) Apparatus and method for testing thermal insulated and flame retardant material
JP2013104675A (en) Device, method and program for detecting water level of spent fuel storage pool
CN113188684B (en) Distributed optical fiber performance testing device for monitoring temperature of external floating roof storage tank
Xu et al. Modeling of a power compensated adiabatic reaction system for temperature control design and simulation analyses
Bedarkar et al. Measurement of thermal conductivity along the radial direction in a vertical cylindrical packed bed
JP6765798B2 (en) Calorimeter
Korchagina et al. A comparative analysis of the technical and metrological characteristics of bomb calorimeters used in Russia
JP6557581B2 (en) Coal analyzer
Kurzeja et al. Accurate measurements of the gross calorific value of methane by the renewed GERG calorimeter
Zhu et al. Thermal properties measurement of cut tobacco based on TPS method and thermal conductivity model
CN208254662U (en) A kind of heating furnace board briquette detection system
JP2018128399A (en) Solid fuel firing estimation method
Barbés et al. Thermal conductivity measurement of liquids by means of a microcalorimeter
CN203455299U (en) Heat-flux-type differential scanning calorimeter
CN208505485U (en) A kind of surface temperature measurement instrument
CN108709653A (en) A kind of heating furnace board briquette detection method and terminal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6664194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250