JP2018128399A - Solid fuel firing estimation method - Google Patents

Solid fuel firing estimation method Download PDF

Info

Publication number
JP2018128399A
JP2018128399A JP2017022619A JP2017022619A JP2018128399A JP 2018128399 A JP2018128399 A JP 2018128399A JP 2017022619 A JP2017022619 A JP 2017022619A JP 2017022619 A JP2017022619 A JP 2017022619A JP 2018128399 A JP2018128399 A JP 2018128399A
Authority
JP
Japan
Prior art keywords
solid fuel
temperature
coal
heat generation
deposited powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017022619A
Other languages
Japanese (ja)
Inventor
朗 中嶋
Akira Nakajima
朗 中嶋
哲正 山口
Tetsumasa Yamaguchi
哲正 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2017022619A priority Critical patent/JP2018128399A/en
Publication of JP2018128399A publication Critical patent/JP2018128399A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solid fuel firing estimation method for estimating a solid fuel flammability inside a pulverizer or the like by estimating an exothermal event of the deposited powder of a solid fuel.SOLUTION: An estimation method of flammability of deposited powder of a solid fuel predicts a heat generation of the deposited powder by differentiating and numerically solving a heat conduction equation (1) of the following non-steady three-dimensional orthogonal coordinate system (x, y, z) representing a heat generation state of the deposited powder of the solid fuel using a heat generation rate obtained from an analysis of a temperature rise rate of a spontaneous ignition estimation test relevant to the solid fuel and a thermophysical property value of the solid fuel. [Numeral 1](In this case, λ is thermal conductivity [J/m/s/K], Cp is specific heat [j/Kg/K], ρ is bulk density [kg/m], T is absolute temperature, and Q is heat generation [W/m] per unit volume)SELECTED DRAWING: None

Description

本発明は、粉砕機内等の石炭等の固体燃料の発火性を評価する固体燃料発火性評価方法に関する。   The present invention relates to a solid fuel ignitability evaluation method for evaluating the ignitability of a solid fuel such as coal in a pulverizer or the like.

国内の微粉炭火力発電所において、コスト削減およびエネルギーセキュリティの確保の観点から、低品位炭の利用拡大が進んでいるが、これらの低品位炭のうち、亜瀝青炭、褐炭の中には発熱性が高いと考えられている石炭が含まれる。   In Japan's pulverized coal-fired power plants, the use of low-grade coal is expanding from the viewpoint of cost reduction and ensuring energy security. Among these low-grade coals, sub-bituminous coal and lignite coal are exothermic. The coal is considered to be high.

ここで、発電所では、高い燃焼効率を得るため、石炭を粉砕機で微粉砕するとともに、加熱空気を用いて、石炭中の水分を乾燥させているが、低品位炭を粉砕する際に、粉砕機の内部での石炭の発火が懸念されている。   Here, in the power plant, in order to obtain high combustion efficiency, the coal is finely pulverized with a pulverizer, and the moisture in the coal is dried using heated air, but when pulverizing the low-grade coal, There is concern about the ignition of coal inside the grinder.

粉砕機内での石炭の発火は、粉砕機内に局所的に堆積した石炭(微粉炭)が蓄熱し、発火することが主な原因であると考えられている。粉砕機内での石炭の発火が発生すると、装置の点検と復旧のために、プラントの計画外のプラント停止が長期にわたる可能性がある。   It is thought that the main cause of the ignition of coal in the pulverizer is that the coal (pulverized coal) locally accumulated in the pulverizer accumulates heat and ignites. When coal fires in the crusher, unplanned plant shutdowns can occur for long periods of time due to equipment inspection and recovery.

粉砕機内での石炭の発火を未然に防止するためには、発火の危険性を事前に予測し、発火の危険性が高いと判断される石炭は、粉砕機の運用方法の変更や、発火の危険性の低い石炭との混炭などによって、発火の危険性を低減させる運用を図ることが重要である。   In order to prevent the ignition of coal in the pulverizer, the risk of ignition is predicted in advance, and coal that is judged to be highly ignited can be changed in the operation method of the pulverizer, It is important to operate in a manner that reduces the risk of ignition by mixing coal with low-risk coal.

しかしながら、石炭の発火に至る堆積量と雰囲気温度の関係など、粉砕機内で石炭が発火する詳細な条件は明らかにされておらず、粉砕機内での石炭の発火の評価の方法も確立されていないのが現状である。   However, the detailed conditions for the ignition of coal in the pulverizer, such as the relationship between the amount of deposits that lead to the ignition of coal and the ambient temperature, have not been clarified, and the method for evaluating the ignition of coal in the pulverizer has not been established. is the current situation.

ところで、石炭の発熱に関する研究は、これまでにも基礎的、実用的な研究が数多くなされており、その評価法についても数多くある。   By the way, there have been many basic and practical studies on the heat generation of coal, and there are also many evaluation methods.

例えば、自然発火評価手法として、島津製作所製の自然発火評価試験装置(Spontaneous Ignition Tester−2、以下、SIT−2とする)がある。この装置は、試料を充填した反応器を恒温槽に設置し、空気を流通させ、恒温槽の温度を、試料の温度に追従するように、恒温槽を制御して試料温度を監視する試験法である(特許文献1参照)。   For example, as a spontaneous ignition evaluation method, there is a spontaneous ignition evaluation test device (Spontaneous Ignition Tester-2, hereinafter referred to as SIT-2) manufactured by Shimadzu Corporation. This equipment is a test method in which a reactor filled with a sample is installed in a thermostat, air is circulated, and the temperature of the thermostat is controlled by the thermostat so as to follow the temperature of the sample. (See Patent Document 1).

この試験法は、国内では、石炭の発火性を評価するのによく用いられる方法であるが、堆積粉体塊が断熱状態に置かれており、粉砕機内の石炭の状態と異なるため、この結果をそのまま発熱現象の評価に適用することは難しい。   This test method is often used in Japan to evaluate the ignitability of coal, but the result is that the accumulated powder lump is kept in an adiabatic state and is different from the state of coal in the crusher. It is difficult to apply to the evaluation of exothermic phenomenon as it is.

その他の自然発火評価手法としては、自己発熱性評価試験装置(Wire Basket法、以下、WB法とする)がある。この試験の方法は、試料を充填した1辺25mmもしくは100mmのメッシュ状の立方体容器を恒温槽内に懸架し、槽内の温度を所定の温度に保持し、所定の時間内の発火の有無を評価し、その結果によって、試料の発熱性を判定する方法である。また、WB法を対象とした、簡易計算モデルが検討されている。1次元直交座標系の熱伝導方程式を解くことで、堆積物の温度上昇を計算により求めることができる(非特許文献1参照)。   As another spontaneous ignition evaluation method, there is a self-heating evaluation test apparatus (Wire Base method, hereinafter referred to as WB method). In this test method, a cubic container with a side of 25 mm or 100 mm filled with a sample is suspended in a constant temperature bath, the temperature in the bath is maintained at a predetermined temperature, and the presence or absence of ignition within a predetermined time is checked. This is a method of evaluating and determining the exothermic property of the sample based on the result. In addition, a simple calculation model for the WB method has been studied. By solving the heat conduction equation of the one-dimensional orthogonal coordinate system, the temperature rise of the deposit can be obtained by calculation (see Non-Patent Document 1).

この方法は、堆積物からの放熱の影響が考慮されているが、評価の対象とする温度域が、粉砕機内の雰囲気とは異なっている。また、1次元直交座標系における計算は、精度に課題があると考えられ、その評価結果をそのまま粉砕機内の石炭の発熱現象の評価に適用することは難しい。   In this method, the influence of heat radiation from the deposit is taken into consideration, but the temperature range to be evaluated is different from the atmosphere in the pulverizer. In addition, it is considered that the calculation in the one-dimensional orthogonal coordinate system has a problem in accuracy, and it is difficult to apply the evaluation result as it is to the evaluation of the exothermic phenomenon of coal in the pulverizer.

粉砕機の出口のガス中のCO、COの濃度を測定し、発火の予兆があるときには、発熱性が低いとされる石炭の供給量を増やすようにする粉砕機内の発火防止方法が提案されている(特許文献2参照)。しかしながら、この方法では、粉砕機内の雰囲気ガスの連続分析を行う必要があり、既存設備に対して導入する場合には設備投資が必要になるという問題がある。 A method for preventing ignition in a pulverizer has been proposed in which the concentration of CO and CO 2 in the gas at the outlet of the pulverizer is measured, and when there is a sign of ignition, the supply amount of coal, which is considered to be low in heat generation, is increased. (See Patent Document 2). However, in this method, it is necessary to perform continuous analysis of the atmospheric gas in the pulverizer, and there is a problem that capital investment is required when it is introduced into existing equipment.

また、粉砕機の出口のガス中のCOの濃度を測定し、発火の予兆があるときには、熱風の熱量を低下させるとともに、石炭の供給量を減少させる石炭粉砕方法が提案されている(特許文献3参照)。しかしながら、この方法を実現するためには、粉砕機内の雰囲気ガスの連続分析を行う必要があり、既存設備に対して導入する場合には設備投資が必要になるという問題がある。   Also, a coal pulverization method has been proposed in which the concentration of CO in the gas at the outlet of the pulverizer is measured and when there is a sign of ignition, the amount of hot air is reduced and the amount of coal supplied is reduced (Patent Literature). 3). However, in order to realize this method, it is necessary to perform continuous analysis of the atmospheric gas in the pulverizer, and there is a problem that capital investment is required when introducing the existing equipment.

特許3511787号公報Japanese Patent No. 3511787 特許5385853号公報Japanese Patent No. 5385853 特許5710149号公報Japanese Patent No. 5710149

清水芳忠他、廃棄物の蓄熱発火危険性と危険性予測(1)、神奈川産業技術センター研究報告No.16、2010Yoshitada Shimizu et al., Thermal Storage Fire Risk and Prediction of Waste (1), Kanagawa Industrial Technology Center Research Report No. 16, 2010

本発明は、上記従来技術に鑑み、粉砕機内等の石炭等の固体燃料の発熱現象の評価し、粉砕機内等での固体燃料発火性を評価する固体燃料発火性評価方法を提供することを目的とする。   An object of the present invention is to provide a solid fuel ignitability evaluation method that evaluates the exothermic phenomenon of solid fuel such as coal in a pulverizer and the like and evaluates the solid fuel ignitability in the pulverizer and the like in view of the above-described conventional technology. And

上記目的を達成する本発明の態様は、固体燃料の堆積粉体塊の発火性を評価する方法であって、前記固体燃料に関する自然発火評価試験の昇温速度の解析から得られた発熱速度と、前記固体燃料の熱物性値とを用いて、前記固体燃料の堆積粉体塊の発熱状態を表す下記非定常3次元直交座標系(x,y,z)の熱伝導方程式(1)を差分化して数値的に解くことで、前記堆積粉体塊の発熱を予測する、ことを特徴とする固体燃料発火性評価方法にある。   An aspect of the present invention that achieves the above object is a method for evaluating the ignitability of a deposited powder lump of solid fuel, the heat generation rate obtained from the analysis of the temperature rise rate of the spontaneous ignition evaluation test for the solid fuel, Using the thermophysical property value of the solid fuel, the difference in the heat conduction equation (1) in the following unsteady three-dimensional orthogonal coordinate system (x, y, z) representing the heat generation state of the solid powder deposited powder mass The solid fuel ignitability evaluation method is characterized by predicting heat generation of the deposited powder lump by numerically solving and numerically solving.

Figure 2018128399
Figure 2018128399

(ここで、λは熱伝導率[J/m/s/K]、Cpは比熱[J/kg/K]、ρはかさ密度[kg/m3]、Tは絶対温度[K]、Qは単位体積あたりの発熱量[W/m3]である) (Where λ is the thermal conductivity [J / m / s / K], Cp is the specific heat [J / kg / K], ρ is the bulk density [kg / m 3 ], T is the absolute temperature [K], Q Is the calorific value [W / m 3 ] per unit volume)

かかる態様では、固体燃料に関する自然発火評価試験の昇温速度の解析から得られた発熱速度と、固体燃料の熱物性値とを用いて、固体燃料の堆積粉体塊の発熱状態を表す非定常3次元直交座標系(x,y,z)の熱伝導方程式を差分化して数値的に解くことで、堆積粉体塊の発熱を簡単に予測することができる。   In such an embodiment, the heat generation rate obtained from the analysis of the temperature rise rate in the spontaneous ignition evaluation test for the solid fuel and the thermal property value of the solid fuel are used to represent the heat generation state of the solid powder deposited powder mass. The heat generation equation of the three-dimensional orthogonal coordinate system (x, y, z) can be differentiated and numerically solved to easily predict the heat generation of the deposited powder mass.

前記熱伝導方程式(1)を、差分法により差分化して差分式を得、前記堆積粉体塊についての、各熱物性データ(λ、Cp、ρ)、発熱速度データ、温度の初期条件、境界条件を与え、各要素に対する温度変化を繰り返し計算することで、任意の時間後の前記堆積粉体塊の温度分布を求める。   The heat conduction equation (1) is differentiated by a difference method to obtain a difference equation, and each thermal physical property data (λ, Cp, ρ), heat generation rate data, initial temperature condition, boundary for the deposited powder mass Conditions are given, and the temperature distribution of the deposited powder mass after an arbitrary time is obtained by repeatedly calculating the temperature change for each element.

ここで、差分化(差分法)とは、微分を時間もしくは空間の有限差の割り算に置き換えることであり、差分近似を行うことで、微分方程式を四則演算で解くことができるようになる。差分法には、陽解法、陰解法などがあるが、以下の実施例においては、陽解法を用いた場合を説明する。   Here, the difference (difference method) is to replace differentiation with division of a finite difference in time or space, and by performing difference approximation, the differential equation can be solved by four arithmetic operations. The difference method includes an explicit solution method and an implicit solution method. In the following embodiments, a case where an explicit solution method is used will be described.

陽解法によると、下記差分式(2)を得る。前記堆積粉体塊についての、各熱物性データ(λ、Cp、ρ)、発熱速度データ、温度の初期条件、境界条件を与え、各要素に対する温度変化を繰り返し計算することで、任意の時間後の前記堆積粉体塊の温度分布を求めることができる。   According to the explicit method, the following differential equation (2) is obtained. By giving each thermophysical property data (λ, Cp, ρ), heat generation rate data, temperature initial condition, boundary condition for the deposited powder mass, and repeatedly calculating the temperature change for each element, any time later The temperature distribution of the deposited powder mass can be obtained.

Figure 2018128399
Figure 2018128399

(ここで、x方向はΔxごと、y方向はΔyごと、z方向はΔzごとに要素分割し、格子点の番号をそれぞれ、i、j、kで表している。時間刻みをΔtとして、その番号はpで表している。また、α=λ/ρCp とする。) (Here, the x direction is divided by Δx, the y direction is divided by Δy, the z direction is divided by Δz, and the lattice point numbers are represented by i, j, and k, respectively. (The number is represented by p, and α = λ / ρCp.)

なお、前記発熱速度データは、自然発火評価試験装置(Spontaneous Ignition Tester-2)等の固体試料の自然発火評価試験法を用いた昇温速度の解析により得られるものである。   The heat generation rate data is obtained by analyzing the temperature rise rate using a spontaneous ignition evaluation test method for a solid sample such as a spontaneous ignition evaluation tester (Spontaneous Ignition Tester-2).

SIT−2は断熱法に分類される自然発火評価試験法である。断熱法とは、試料を充填した容器を断熱させた恒温槽内に置き、空気または酸素ガス雰囲気で試料の温度を監視し、試料の温度に伴い、恒温槽温度を追従させる方法である。断熱法による試験法には、SIT-2の他にはARC(Accelerating Rate Calorimeter)が挙げられる。   SIT-2 is a spontaneous ignition evaluation test method classified as an adiabatic method. The adiabatic method is a method in which a container filled with a sample is placed in a thermostatic chamber that is insulated, the temperature of the sample is monitored in an air or oxygen gas atmosphere, and the temperature of the thermostatic chamber follows the temperature of the sample. In addition to SIT-2, ARC (Accelerating Rate Calorimeter) can be cited as a test method using the adiabatic method.

発熱速度データは、昇温速度の解析を行う固体試料の自然発火評価試験法であれば、何れの方法を採用してもよく、断熱法の他には、熱量測定法、等温熱量測定法がある。   Any method may be adopted as long as the exothermic rate data is a spontaneous ignition evaluation test method for a solid sample for analyzing the rate of temperature increase. There is.

熱量測定法とは、測定する試料と基準物質の温度を、ある一定のプログラムに従って変化させ、両者の温度差(ΔT)が0になるように、基準物質側、または、測定試料側に熱を供給し、試料物質の温度に対して、出入りした熱量を測定する手法である。熱量測定法による試験法としては、DSC(Differential Scanning Calorimeter)、C80が挙げられる。   The calorimetric method is to change the temperature of the sample to be measured and the reference material according to a certain program, and heat the reference material side or the measurement sample side so that the temperature difference (ΔT) between the two becomes zero. This is a method for measuring the amount of heat that enters and exits the sample material. Examples of the test method based on calorimetry include DSC (Differential Scanning Calorimeter) and C80.

等温熱量測定法とは、精密に温度制御された恒温油層の内部に試料を充填し、そこで発生した微小熱量が外部へ熱伝達する量を熱素子で計測することにより、微少な熱量を計測する方法である。等温熱量測定法による試験法としては、TAM(Thermal Activity Monitor)が挙げられる。   Isothermal calorimetry is a method of measuring minute heat by filling a sample inside a thermostatic oil layer with precisely controlled temperature and measuring the amount of heat generated by the heat generated outside with a thermal element. It is a method to do. An example of a test method based on the isothermal calorimetry is TAM (Thermal Activity Monitor).

本発明によれば、固体燃料の堆積粉体塊の発熱現象の評価し、粉砕機内等での固体燃料の発火性を簡単に評価することができる固体燃料の堆積粉体塊発火性評価方法を提供することができる。   According to the present invention, there is provided a method for evaluating the solid fuel deposited powder lump ignitability, which can evaluate the exothermic phenomenon of the solid fuel accumulated powder lump and easily evaluate the solid fuel ignitability in a pulverizer or the like. Can be provided.

実施形態で用いたSIT−2の概略構成を示す図である。It is a figure which shows schematic structure of SIT-2 used by embodiment. SIT−2での試験結果を示す図である。It is a figure which shows the test result in SIT-2. A炭のアレニウスプロットを示す図である。It is a figure which shows the Arrhenius plot of A charcoal. 堆積粉体塊の中心の温度履歴を示す図である。It is a figure which shows the temperature history of the center of a deposit powder lump. 堆積粉体塊の大きさと発火限界雰囲気温度との関係を示す図である。It is a figure which shows the relationship between the magnitude | size of a deposit powder lump, and an ignition limit atmospheric temperature. 各石炭の堆積粉体塊の大きさと発火限界雰囲気温度との関係を示す図である。It is a figure which shows the relationship between the magnitude | size of the deposit powder lump of each coal, and an ignition limit atmospheric temperature.

以下、本発明の実施形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明では、石炭等の固体燃料の堆積粉体塊の発火性を評価するために、まず、固体燃料として石炭を代表としてその堆積粉体塊の発熱状態を表す下記非定常3次元直交座標系(x,y,z)の熱伝導方程式(1)とした。   In the present invention, in order to evaluate the ignitability of a deposited powder lump of solid fuel such as coal, first, the following unsteady three-dimensional orthogonal coordinate system representing the heat generation state of the deposited powder lump represented by coal as a solid fuel. The heat conduction equation (1) of (x, y, z) was used.

Figure 2018128399
Figure 2018128399

(ここで、λは熱伝導率[J/m/s/K]、Cpは比熱[J/kg/K]、ρはかさ密度[kg/m3]、Tは絶対温度[K]、Qは単位体積あたりの発熱量[W/m3]である) (Where λ is the thermal conductivity [J / m / s / K], Cp is the specific heat [J / kg / K], ρ is the bulk density [kg / m 3 ], T is the absolute temperature [K], Q Is the calorific value [W / m 3 ] per unit volume)

微粉炭堆積物の発熱を評価するためには、石炭の発熱反応、伝熱、堆積物内のガス流動、拡散、石炭中の水分の蒸発などによる影響を考慮する必要があるが、上記式(1)は、石炭堆積内部での温度上昇が、石炭の酸化による発熱と、伝熱による放熱とによって決定するものとして求めたものである。   In order to evaluate the exothermic heat of pulverized coal deposits, it is necessary to consider the effects of exothermic reaction of coal, heat transfer, gas flow in the sediment, diffusion, evaporation of moisture in the coal, etc. In 1), the temperature rise inside the coal pile is determined by the heat generation due to the oxidation of the coal and the heat release due to the heat transfer.

本発明の解析対象となる系は比較的小さく、かつ、WB法では、ガス流動や水分蒸発による影響は小さいと考え、堆積物内の酸素濃度は空気と同じ21%であると仮定した。また、かかる熱伝導方程式は、WB法の堆積粉体塊の内部温度分布を解くため、非定常3次元直交座標系(x,y,z)とした。   The system to be analyzed in the present invention is relatively small, and in the WB method, the influence of gas flow and moisture evaporation is considered to be small, and the oxygen concentration in the deposit is assumed to be 21%, which is the same as air. The heat conduction equation is an unsteady three-dimensional orthogonal coordinate system (x, y, z) in order to solve the internal temperature distribution of the deposited powder mass by the WB method.

そして、本発明では、これを差分化して数値的に解くことで、前記堆積粉体塊の発熱を予測する。   In the present invention, this is differentiated and numerically solved to predict the heat generation of the deposited powder lump.

ここで、酸化発熱速度がアレニウス型の式で表せるとすると、単位体積あたりの発熱量は式(1−1)で示されるので、式(1−2)は以下の式となる。   Here, assuming that the oxidation heat generation rate can be expressed by an Arrhenius type equation, the calorific value per unit volume is expressed by equation (1-1), so equation (1-2) becomes the following equation.

Figure 2018128399
Figure 2018128399

ここで、
A:定数(頻度因子)[J/m/s]
Ea:活性化エネルギー[J/mol]
R:気体定数[8.314J/K/mol]
T:石炭の温度[K]
である。
here,
A: Constant (frequency factor) [J / m 3 / s]
Ea: activation energy [J / mol]
R: Gas constant [8.314 J / K / mol]
T: Coal temperature [K]
It is.

堆積粉体塊の発熱を計算するためにこの偏微分方程式を差分化して数値的に解く手法を用いる。3次元直交座標系で、x方向はΔxごと、y方向はΔyごと、z方向はΔzごとに等間隔に要素分割して格子点の番号をそれぞれ、i,j,kで表す。時間をΔtごとに刻み、その番号はpで表す。式(1)を陽解法により差分化すると以下の差分式が得られる。   In order to calculate the heat generation of the deposited powder mass, a method is used in which the partial differential equation is differentiated and numerically solved. In a three-dimensional orthogonal coordinate system, the x direction is divided by Δx, the y direction is divided by Δy, and the z direction is divided into elements at equal intervals for each Δz, and the lattice point numbers are represented by i, j, and k, respectively. Time is ticked at every Δt, and the number is expressed by p. When the equation (1) is differentiated by the explicit method, the following difference equation is obtained.

Figure 2018128399
Figure 2018128399

ただし、   However,

Figure 2018128399
とした。
Figure 2018128399
It was.

堆積粉体塊の形状はWB法と条件を合わせるために立方体とし、一辺の大きさをLとした。また、計算する領域は、堆積粉体塊の物性が均一で、堆積粉体塊の周囲の温度条件が一定の条件として、立方体の各辺の半分の領域(1辺がL/2の立方体)について計算を行うこととし、各辺をn個に分割する。この場合、各計算格子の長さは、   The shape of the deposited powder mass was a cube to match the conditions with the WB method, and the size of one side was L. In addition, the area to be calculated is a half area of each side of the cube (a cube with one side being L / 2), assuming that the physical properties of the deposited powder lump are uniform and the temperature conditions around the accumulated powder lump are constant. Suppose that each side is divided into n. In this case, the length of each calculation grid is

Figure 2018128399
となる。
Figure 2018128399
It becomes.

堆積粉体塊の温度の初期条件は、計算条件として与える雰囲気温度に等しいとする。   It is assumed that the initial condition of the temperature of the deposited powder mass is equal to the ambient temperature given as the calculation condition.

壁面の境界条件として、壁面の温度も雰囲気温度に等しいとした。また、計算領域の堆積粉体塊の中心での境界条件は、以下となる。   As the boundary condition of the wall surface, the temperature of the wall surface is assumed to be equal to the ambient temperature. Further, the boundary condition at the center of the accumulated powder lump in the calculation area is as follows.

Figure 2018128399
Figure 2018128399

上述の計算の手法、温度の初期条件、境界条件の考えに基づき、任意の時間後の堆積粉体塊の温度分布を求めることができる。   Based on the calculation method, the initial temperature condition, and the boundary condition, the temperature distribution of the deposited powder mass after an arbitrary time can be obtained.

以下、実施例に基づいてさらに本発明を詳細に説明する。なお、ここでの検討には亜瀝青炭であるA炭と瀝青炭であるB炭を用いた。   Hereinafter, the present invention will be described in more detail based on examples. In this case, coal A as sub-bituminous coal and coal B as bituminous coal were used.

(実施例1)
まず、A炭を対象に堆積粉体塊の発熱による温度上昇を本発明の手法により求めることとした。計算に用いたパラメータを表1に示す。かさ密度はWB法で堆積粉体塊の発熱性を測定した際の実績値である。比熱はDSC法(示差走査熱量計DSC Q100 TA instruments社製)により、熱伝導率は熱線法(迅速熱伝導率計QTM500 京都電子工業株式会社製)により、測定した。見かけの活性化エネルギー、頻度因子は、下記に示すSIT−2の解析結果(表2)を用いた。
Example 1
First, the temperature rise due to the heat generation of the accumulated powder lump was determined for the coal A by the method of the present invention. Table 1 shows the parameters used for the calculation. The bulk density is an actual value when the exothermic property of the deposited powder mass is measured by the WB method. Specific heat was measured by a DSC method (differential scanning calorimeter DSC Q100 manufactured by TA instruments), and thermal conductivity was measured by a hot wire method (rapid thermal conductivity meter QTM500 manufactured by Kyoto Electronics Industry Co., Ltd.). As the apparent activation energy and frequency factor, the SIT-2 analysis results shown below (Table 2) were used.

Figure 2018128399
Figure 2018128399

(SIT−2による解析)
自然発火評価試験装置(Spontaneous Ignition Tester−2、以下、SIT−2とする)を発熱速度の検討に用いた。
(Analysis with SIT-2)
A spontaneous ignition evaluation test apparatus (Spontaneous Ignition Tester-2, hereinafter referred to as SIT-2) was used for examining the heat generation rate.

試験装置概要を図1に示す。かかる装置は、オーブン31内に反応器32を設け、反応器32内部に円筒状の試験容器33を配置され、試験容器33内部に試料S1を充填できるようになっている。反応器32の下部にはガス供給管34が設けられ、試験容器33の上方に連通する排気管35から換気されるようになっている。   An outline of the test apparatus is shown in FIG. In such an apparatus, a reactor 32 is provided in an oven 31, a cylindrical test container 33 is disposed inside the reactor 32, and the sample S 1 can be filled inside the test container 33. A gas supply pipe 34 is provided at the lower part of the reactor 32, and is ventilated from an exhaust pipe 35 communicating with the upper side of the test container 33.

また、反応器32の周囲には、断熱制御用ヒータ36が設けられ、温度調節器37により温度調節されるようになっている。温度調節器37には、反応器32内及び試験容器33内にそれぞれ設けられた熱電対38、39からのデータを取得する増幅器40が接続されている。   An adiabatic control heater 36 is provided around the reactor 32, and the temperature is adjusted by a temperature controller 37. An amplifier 40 that acquires data from thermocouples 38 and 39 provided in the reactor 32 and the test vessel 33 is connected to the temperature controller 37.

さらに、オーブン31の下部には、ヒータ41及び温度調節器42が設けられ、オーブン31内に設けた温度センサ43及び初期温度設定器44により、オーブン31内の初期温度が設定されるようになっている。また、ヒータ41の下方には、ファン45が設けられている。   Further, a heater 41 and a temperature controller 42 are provided in the lower part of the oven 31, and an initial temperature in the oven 31 is set by a temperature sensor 43 and an initial temperature setting device 44 provided in the oven 31. ing. A fan 45 is provided below the heater 41.

試験条件は、試験容器33の充填試料量を約800mgとし、反応器32に窒素ガスを2.2ml/minで供給し、反応器32内の石炭試料の温度が安定したら供給ガスを窒素から空気に切り替える方法とし、試料の温度が250℃に達した段階で試験終了とした。   The test conditions are such that the amount of the filled sample in the test vessel 33 is about 800 mg, nitrogen gas is supplied to the reactor 32 at 2.2 ml / min, and when the temperature of the coal sample in the reactor 32 is stabilized, the supply gas is changed from nitrogen to air. The test was terminated when the sample temperature reached 250 ° C.

微粉炭火力発電所で石炭を粉砕する際に、高水分炭は、水分の少ない瀝青炭と比べて、粉砕機入口温度が高温であり、石炭の水分含有量に応じて粉砕機入口温度は高くなる。しかし、この乾燥空気の温度は、石炭中の水分の蒸発潜熱によって、粉砕機内への流入直後に下がるために、粉砕機内部温度は、炭種によらず同程度であり、粉砕機出口温度に漸近することを把握している。粉砕機出口温度は、実機では、70℃〜80℃程度で運用されることが多いために、ここでのSIT−2での試験開始温度は、粉砕機内部温度と同等の条件である80℃として検討した。この試験結果を図2に示す。   When pulverizing coal at a pulverized coal-fired power plant, high-moisture coal has a higher pulverizer inlet temperature and higher pulverizer inlet temperature depending on the moisture content of the coal than bituminous coal with less moisture . However, since the temperature of this dry air decreases immediately after flowing into the pulverizer due to the latent heat of vaporization of the water in the coal, the internal temperature of the pulverizer is the same regardless of the type of coal, and the pulverizer outlet temperature is the same. Knowing asymptotics. Since the crusher outlet temperature is often operated at about 70 ° C. to 80 ° C. in actual machines, the test start temperature in SIT-2 here is 80 ° C., which is the same condition as the crusher internal temperature. As discussed. The test results are shown in FIG.

A炭とB炭は24時間以内に250℃までの発熱を生じた。   Coal A and Coal B generated an exotherm to 250 ° C. within 24 hours.

次に、以下の解析により、石炭酸化反応の速度定数として、見かけの活性化エネルギー、頻度因子を求めた。   Next, the apparent activation energy and frequency factor were obtained as the rate constant of the coal oxidation reaction by the following analysis.

石炭堆積内部での温度上昇は石炭の酸化による発熱と伝熱による放熱によって決定する。このとき、円柱座標系の伝熱の基礎方程式は以下の式となる。   The temperature rise inside the coal deposit is determined by the heat generated by the oxidation of the coal and the heat released by the heat transfer. At this time, the basic equation of heat transfer in the cylindrical coordinate system is as follows.

Figure 2018128399
Figure 2018128399

ここで、
ρ:石炭の密度[kg/m3]
Cp:石炭の比熱[J/kg/K]
λ:熱伝導率[J/m/s/K]
Q :単位体積あたりの発熱量[W/m3]
である。
here,
ρ: Coal density [kg / m 3 ]
Cp: Specific heat of coal [J / kg / K]
λ: Thermal conductivity [J / m / s / K]
Q: Calorific value per unit volume [W / m 3 ]
It is.

なお、右辺第1項は円筒座標系における熱伝導項、右辺第2項は発熱項を示している。さらに、酸化発熱速度がアレニウス型の式で表せるとすると、単位体積あたりの発熱量は以下で示される。   The first term on the right side represents the heat conduction term in the cylindrical coordinate system, and the second term on the right side represents the heat generation term. Further, assuming that the oxidation heat generation rate can be expressed by an Arrhenius type equation, the heat generation amount per unit volume is expressed as follows.

Figure 2018128399
Figure 2018128399

ここで、
A:定数(頻度因子)[J/m3/s]
Ea:活性化エネルギー[J/mol]
R:気体定数[8.314J/K/mol]
T:石炭の温度[K]
である。
here,
A: Constant (frequency factor) [J / m 3 / s]
Ea: Activation energy [J / mol]
R: Gas constant [8.314J / K / mol]
T: Coal temperature [K]
It is.

従って、式(11)は以下の式(13)となる。   Therefore, Expression (11) becomes the following Expression (13).

Figure 2018128399
Figure 2018128399

SIT−2試験法の原理から、内部と外部の温度は同じ温度になるため、   From the principle of SIT-2 test method, the internal and external temperatures are the same,

Figure 2018128399
である。
Figure 2018128399
It is.

石炭内部を下部から上部へ空気が流れるが、その上部、下部の温度差はなく、θ方向にも温度差はないとすると、   Air flows inside the coal from the bottom to the top, but there is no temperature difference between the top and bottom, and there is no temperature difference in the θ direction.

Figure 2018128399
となる。そのため、式(13)は、右辺は発熱項のみの式になり、次式のように表すことができる。
Figure 2018128399
It becomes. Therefore, the expression (13) is an expression having only a heat generation term on the right side, and can be expressed as the following expression.

Figure 2018128399
Figure 2018128399

次に、図2の結果を用いて、各温度での上昇速度を求め、その対数を温度の逆数に対してプロットした(アレニウスプロット)。その結果を図3に示す。   Next, using the results shown in FIG. 2, the rate of increase at each temperature was determined, and the logarithm thereof was plotted against the reciprocal of the temperature (Arrhenius plot). The result is shown in FIG.

図3に見られる通り、昇温の傾向について3つの段階にわけて評価できる。80℃から120℃までの第1の酸化領域(領域(1))と、120℃から200℃までの第2の酸化領域(領域(2))、200℃以上の高温では、酸素不足となり、酸素供給律速の段階(領域(3))となる。   As can be seen in FIG. 3, the temperature rise tendency can be evaluated in three stages. At the first oxidation region (region (1)) from 80 ° C. to 120 ° C. and the second oxidation region (region (2)) from 120 ° C. to 200 ° C. The oxygen supply rate is limited (region (3)).

第1の酸化領域と、第2の酸化領域では、Log(dT/dt)に対して1/Tは直線性を有する。各々直線性が異なり、酸化反応が異なっていると考えられた。   In the first oxidized region and the second oxidized region, 1 / T is linear with respect to Log (dT / dt). It was considered that the linearity was different and the oxidation reaction was different.

このアレニウスプロットから、各温度領域における反応の見かけの活性化エネルギーと頻度因子が計算できる。その結果を表2に示す。   From this Arrhenius plot, the apparent activation energy and frequency factor of the reaction in each temperature region can be calculated. The results are shown in Table 2.

Figure 2018128399
Figure 2018128399

堆積粉体塊1辺の大きさ100mm立方体に対して、下記表3の計算条件で実施した。図4に雰囲気温度が110℃、100℃の場合における堆積粉体塊中心温度の経時変化の計算結果を点線で示す。また、比較のため同図に、比較例としたWB法での110℃、100℃の雰囲気温度の場合における試料温度の経時変化の実測値(実験値)を実線で示す。開始時間(0分)はWB法における実測値においても堆積粉体塊の中心の温度が雰囲気温度に達した段階として示している。   It implemented on the calculation conditions of the following Table 3 with respect to the 100-mm-sized cube of the one side of the accumulation powder lump. FIG. 4 shows the calculation result of the time-dependent change of the deposited powder lump center temperature when the ambient temperature is 110 ° C. and 100 ° C., as a dotted line. For comparison, the solid line shows the actual measurement value (experimental value) of the change in sample temperature over time in the case of the atmospheric temperature of 110 ° C. and 100 ° C. in the WB method as a comparative example. The start time (0 minutes) is shown as a stage where the temperature of the center of the deposited powder mass reaches the ambient temperature even in the actual measurement value in the WB method.

計算結果において雰囲気温度が110℃の条件では、時間の経過に従い内部温度が加速的に上昇した。一方、100℃の計算条件では24時間経過時において、計算結果は一定温度への収束を示した。実験値と比較すると、発熱を生じる場合に250℃までの昇温にかかる時間に差異があり、また、内部温度が収束する場合もその温度に差異はあるが、同様の温度上昇の傾向を示した。   In the calculation results, when the ambient temperature was 110 ° C., the internal temperature increased at an accelerated rate as time passed. On the other hand, under the calculation condition of 100 ° C., the calculation result showed convergence to a constant temperature after 24 hours. Compared with the experimental values, there is a difference in the time taken to raise the temperature to 250 ° C when heat is generated, and there is a difference in the temperature even when the internal temperature converges. It was.

Figure 2018128399
Figure 2018128399

次に、以下の方法によって堆積粉体塊の大きさと発火限界雰囲気温度の関係を計算によって求めた。各々の堆積粉体塊の条件における24時間経過時の計算結果において、堆積粉体塊の中心の温度が初期条件の温度よりも60℃以上の発熱を生じるときを発火と判定し、60℃以上の発熱を生じないときを発火しないと判定する。堆積粉体塊の1辺を15mm〜200mmまで変化させて、各堆積量の条件において発火と判断される下限の雰囲気温度、すなわち、発火限界雰囲気温度を求めた。   Next, the relationship between the size of the deposited powder mass and the ignition limit ambient temperature was calculated by the following method. In the calculation results when 24 hours have elapsed under the conditions of each deposited powder lump, when the temperature at the center of the accumulated powder lump generates heat of 60 ° C. or higher than the temperature of the initial condition, it is determined as ignition, and 60 ° C. or higher. It is determined not to ignite when no heat is generated. One side of the deposited powder mass was changed from 15 mm to 200 mm, and the lower limit atmospheric temperature at which the ignition was judged under the conditions of each deposition amount, that is, the ignition limit ambient temperature was obtained.

図5にA炭における堆積粉体塊の大きさと発火限界雰囲気温度の関係の計算結果を実線で示す。なお、同図に比較例のWB法における発火の有無の実績値(実験値)(〇:発火、×:未発火)を併せて示す。計算結果およびWB法における実績値の双方において、堆積粉体塊が大きくなるほど発火限界雰囲気温度は低くなった。このことから、粉砕機内の発火を防止するためには、粉砕機内の微粉炭の堆積量を少なくすることが重要と考えられる。なお、WB法による実験と同様に、数値解析においても堆積粉体塊が大きくなると、250℃までの昇温に要する時間が長くなることを確認した。さらに、計算結果からは、堆積粉体塊の1辺がある大きさ以上になると粉砕機の内部温度と同等の雰囲気温度80℃でも発火し得ることが予想された。   FIG. 5 shows the calculation result of the relationship between the size of the deposited powder lump in the coal A and the ignition limit ambient temperature with a solid line. In addition, the same figure also shows the actual value (experimental value) of the presence or absence of ignition in the WB method of the comparative example (◯: ignition, x: not ignited). In both the calculation result and the actual value in the WB method, the ignition limit ambient temperature became lower as the accumulated powder lump became larger. Therefore, in order to prevent ignition in the pulverizer, it is considered important to reduce the amount of pulverized coal deposited in the pulverizer. In addition, as in the experiment by the WB method, it was confirmed in numerical analysis that the time required for the temperature rise to 250 ° C. increases as the size of the deposited powder lump increases. Furthermore, from the calculation results, it was predicted that if one side of the accumulated powder lump exceeds a certain size, it could be ignited even at an atmospheric temperature of 80 ° C., which is equivalent to the internal temperature of the pulverizer.

WB法による実験値と計算値の発火限界雰囲気温度の比較において、立方体の1辺の大きさが100mmの場合、計算値では約100℃であり、実験値は100℃と110℃の間にあるため両者の結果の差異は小さい。一方、立方体の1辺が25mmの場合では、計算値では約220℃であるが実験値では140℃と150℃の間にあり、両者の結果の違いは大きかった。この結果の違いは、式(1)について酸素の拡散や水分蒸発の影響を考慮していないことに起因する可能性があり、計算の精度をさらに高めるには、これらの影響因子も今後考慮する必要があると考えられる。   In comparison of the ignition limit atmosphere temperature between the experimental value and the calculated value by the WB method, when the size of one side of the cube is 100 mm, the calculated value is about 100 ° C., and the experimental value is between 100 ° C. and 110 ° C. Therefore, the difference between the two results is small. On the other hand, when one side of the cube was 25 mm, the calculated value was about 220 ° C., but the experimental value was between 140 ° C. and 150 ° C., and the difference between the results was large. The difference in the results may be attributed to the fact that the influence of oxygen diffusion and water evaporation is not taken into consideration in Equation (1). To further increase the accuracy of the calculation, these influencing factors will be considered in the future. It is considered necessary.

さらに、瀝青炭B炭についても、堆積量と発火限界雰囲気温度の関係を亜瀝青炭A炭と同様に計算により求めた。かさ密度(ρ)はWB法において充填した石炭量から計算し、発熱速度データ(Ea, A’)は、前述のSIT−2の解析により求めた値(表2)を用いた。比熱(Cp)、熱伝導率(λ)は、炭種の違いによる差は小さいと考え、亜瀝青炭A炭と同じ値(表1)を用いた。   Further, for bituminous coal B coal, the relationship between the deposition amount and the ignition limit ambient temperature was obtained by calculation in the same manner as for subbituminous coal A coal. The bulk density (ρ) was calculated from the amount of coal filled in the WB method, and the heat generation rate data (Ea, A ′) used was the value (Table 2) obtained by the analysis of SIT-2 described above. The specific heat (Cp) and the thermal conductivity (λ) were considered to have little difference due to the difference in the coal type, and the same values (Table 1) as those of sub-bituminous coal A were used.

計算結果による各石炭の堆積粉体塊の大きさと発火限界雰囲気温度の関係を図6に示す。堆積粉体塊の大きさが1辺100mm立方体での計算結果を比較すると、発火限界雰囲気温度は、亜瀝青炭A炭の方が低い。また、粉砕機内の雰囲気温度と同等の雰囲気温度80℃で発火する堆積粉体塊の大きさを比較すると、亜瀝青炭A炭の方が小さい。よって、亜瀝青炭A炭の方が少ない堆積量で発火することになるので、瀝青炭B炭より粉砕機内での発火の危険性が高い石炭と判断される。   FIG. 6 shows the relationship between the size of the deposited powder lump of each coal and the ignition limit ambient temperature based on the calculation result. Comparing the calculation results when the size of the deposited powder lump is a cube with a side of 100 mm, the ignition limit atmosphere temperature is lower for sub-bituminous coal A coal. Further, when comparing the size of the deposited powder mass that ignites at an atmospheric temperature of 80 ° C., which is equivalent to the atmospheric temperature in the pulverizer, sub-bituminous coal A coal is smaller. Therefore, sub-bituminous coal A coal is ignited with a smaller deposition amount, and therefore, it is determined that coal has a higher risk of ignition in the pulverizer than bituminous coal B coal.

発電所でこの発明を応用する場合には、例えば、以下の方法での利用が考えられる。発電所で受入予定の石炭に対し、本発明を適用し、粉砕機内での石炭の発火の危険度に応じて、数値化やランク付けをする。発火性が高いと判断される石炭は発電所に受入をしない。もしくは、発火性の高い石炭は、発火性の低い石炭と混炭して運用することによって、粉砕機内の石炭の発火を防止できる。または、発火性の高い石炭は、粉砕機出口温度を下げる運用を図ることで、粉砕機内の石炭の発火を防止することができる。粉砕機出口温度を下げることは、通常の運用と比べて、石炭の乾燥効率が下がり、その結果、ボイラでの燃焼効率は下がることになるが、発火の危険度を効率的に下げることに比べて、その影響は小さいと考えられる。   When the present invention is applied at a power plant, for example, the following method can be considered. The present invention is applied to coal that is scheduled to be received at a power plant, and it is digitized and ranked according to the risk of ignition of coal in the crusher. Coal that is judged to be highly ignitable will not be accepted by the power plant. Alternatively, coal with high ignitability can be prevented from igniting coal in the pulverizer by operating with coal having low ignitability. Or coal with high ignitability can prevent ignition of coal in a crusher by aiming at operation which lowers a crusher exit temperature. Lowering the pulverizer outlet temperature reduces the drying efficiency of coal compared to normal operation, resulting in lower combustion efficiency in the boiler, but lowering the risk of ignition efficiently. Therefore, the effect is considered to be small.

すなわち、本発明を利用することで、上述の通り、粉砕機内の石炭の発火災害を未然に防止できる。また、低品位炭の効率的な運用が図れるので、低品位炭の導入拡大、それに伴う燃料調達コスト削減に寄与することができる。   That is, by using the present invention, as described above, it is possible to prevent a coal fire disaster in the pulverizer. In addition, since efficient operation of low-grade coal can be achieved, it is possible to contribute to the expansion of the introduction of low-grade coal and the accompanying fuel procurement cost reduction.

発電所においては、石炭の他に、バイオマス燃料や汚泥炭化燃料等の固体燃料を混焼して利用することがあるが、その場合においても本発明は適用できる。また、実施例において説明した粉砕機内の発火に限らず、貯炭場や、バイオマス貯蔵場などでの固体燃料の堆積粉体塊の発熱予測にも本発明は適用できる。   In power plants, solid fuels such as biomass fuels and sludge carbonized fuels may be mixed and used in addition to coal, but the present invention can also be applied to such cases. Further, the present invention can be applied not only to the ignition in the pulverizer described in the embodiment, but also to the prediction of heat generation of the accumulated powder lump of the solid fuel in the coal storage place, the biomass storage place, or the like.

本発明は、例えば、微粉炭火力発電所などの発電所、又は、原料石炭を粉砕して原料とする各種ボイラを運用する施設において、有用に用いることができ、発火の危険性を低減することができる。   The present invention can be usefully used, for example, in a power plant such as a pulverized coal thermal power plant, or in a facility that operates various boilers that use raw coal as a raw material to reduce the risk of ignition. Can do.

31 オーブン
32 反応器
33 試験容器
34 ガス供給管
35 排気管
36 断熱制御用ヒータ
37 温度調節器
38、39 熱電対
40 増幅器
41 ヒータ
42 温度調節器
43 温度センサ
44 初期温度設定器
45 ファン
S1 試料

31 Oven 32 Reactor 33 Test vessel 34 Gas supply pipe 35 Exhaust pipe 36 Heat insulation heater 37 Temperature controller 38, 39 Thermocouple 40 Amplifier 41 Heater 42 Temperature controller 43 Temperature sensor 44 Initial temperature setter 45 Fan S1 Sample

Claims (3)

固体燃料の堆積粉体塊の発火性を評価する方法であって、
前記固体燃料に関する自然発火評価試験の昇温速度の解析から得られた発熱速度と、前記固体燃料の熱物性値とを用いて、前記固体燃料の堆積粉体塊の発熱状態を表す下記非定常3次元直交座標系(x,y,z)の熱伝導方程式(1)を差分化して数値的に解くことで、前記堆積粉体塊の発熱を予測する、ことを特徴とする固体燃料発火性評価方法。
Figure 2018128399
(ここで、λは熱伝導率[J/m/s/K]、Cpは比熱[J/kg/K]、ρはかさ密度[kg/m3]、Tは絶対温度[K]、Qは単位体積あたりの発熱量[W/m3]である)
A method for evaluating the ignitability of a solid powder deposit powder mass,
Using the heat generation rate obtained from the analysis of the rate of temperature rise in the spontaneous ignition evaluation test for the solid fuel and the thermophysical property value of the solid fuel, Solid fuel ignitability characterized by predicting heat generation of the deposited powder mass by differentiating and numerically solving the heat conduction equation (1) of a three-dimensional orthogonal coordinate system (x, y, z) Evaluation method.
Figure 2018128399
(Where λ is the thermal conductivity [J / m / s / K], Cp is the specific heat [J / kg / K], ρ is the bulk density [kg / m 3 ], T is the absolute temperature [K], Q Is the calorific value [W / m 3 ] per unit volume)
前記熱伝導方程式(1)を、差分法により差分化して差分式を得て、前記堆積粉体塊についての、各熱物性データ(λ、Cp、ρ)、発熱速度データ、温度の初期条件、境界条件を与え、各要素に対する温度変化を繰り返し計算することで、任意の時間後の前記堆積粉体塊の温度分布を求める、ことを特徴とする請求項1記載の固体燃料発火性評価方法。   The heat conduction equation (1) is differentiated by a difference method to obtain a difference equation, and each thermophysical property data (λ, Cp, ρ), heat generation rate data, initial temperature condition for the deposited powder mass, 2. The solid fuel ignitability evaluation method according to claim 1, wherein a temperature distribution of the deposited powder lump after an arbitrary time is obtained by giving boundary conditions and repeatedly calculating a temperature change for each element. 前記発熱速度データは、自然発火評価試験装置(Spontaneous Ignition Tester-2)に代表される固体燃料の自然発火評価試験法を用いた昇温速度の解析により得られるものである、ことを特徴とする請求項2記載の固体燃料発火性評価方法。
The heat generation rate data is obtained by analyzing a temperature rising rate using a spontaneous ignition evaluation test method of solid fuel represented by a spontaneous ignition evaluation test device (Spontaneous Ignition Tester-2). The solid fuel ignitability evaluation method according to claim 2.
JP2017022619A 2017-02-09 2017-02-09 Solid fuel firing estimation method Pending JP2018128399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017022619A JP2018128399A (en) 2017-02-09 2017-02-09 Solid fuel firing estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017022619A JP2018128399A (en) 2017-02-09 2017-02-09 Solid fuel firing estimation method

Publications (1)

Publication Number Publication Date
JP2018128399A true JP2018128399A (en) 2018-08-16

Family

ID=63172820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017022619A Pending JP2018128399A (en) 2017-02-09 2017-02-09 Solid fuel firing estimation method

Country Status (1)

Country Link
JP (1) JP2018128399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201196A (en) * 2019-06-12 2020-12-17 株式会社島津製作所 Spontaneous combustion testing device
CN112326731A (en) * 2020-10-21 2021-02-05 北京航空航天大学 Combustion heat release rate measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010064A (en) * 1996-06-19 1998-01-16 Constec:Kk Method of inspecting mortar sprayed slope
JPH11344456A (en) * 1998-06-02 1999-12-14 Ishikawajima Harima Heavy Ind Co Ltd Device and method for evaluating spontaneously ignitability of pulverized coal
JP2012234918A (en) * 2011-04-28 2012-11-29 Semiconductor Components Industries Llc Method for predicting wiring breakdown area due to current in semiconductor apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010064A (en) * 1996-06-19 1998-01-16 Constec:Kk Method of inspecting mortar sprayed slope
JPH11344456A (en) * 1998-06-02 1999-12-14 Ishikawajima Harima Heavy Ind Co Ltd Device and method for evaluating spontaneously ignitability of pulverized coal
JP2012234918A (en) * 2011-04-28 2012-11-29 Semiconductor Components Industries Llc Method for predicting wiring breakdown area due to current in semiconductor apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
清水 芳忠: "廃棄物の蓄熱発火危険性と危険性予測(1)", 神奈川県産業技術センター研究報告, JPN6020037511, 2010, pages 34 - 38, ISSN: 0004477964 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201196A (en) * 2019-06-12 2020-12-17 株式会社島津製作所 Spontaneous combustion testing device
JP7363116B2 (en) 2019-06-12 2023-10-18 株式会社島津製作所 Spontaneous ignition test device
CN112326731A (en) * 2020-10-21 2021-02-05 北京航空航天大学 Combustion heat release rate measuring method

Similar Documents

Publication Publication Date Title
Wu et al. Experimental investigation on the self-ignition behaviour of coal dust accumulations in oxy-fuel combustion system
Guo et al. Determination of effective thermal conductivity and specific heat capacity of wood pellets
Mehrabian et al. Multi-physics modelling of packed bed biomass combustion
Tremel et al. Gasification kinetics during entrained flow gasification–Part III: Modelling and optimisation of entrained flow gasifiers
Sun et al. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed
Mahmoudi et al. Modeling of the biomass combustion on a forward acting grate using XDEM
Restuccia et al. Experimental measurement of particle size effects on the self-heating ignition of biomass piles: Homogeneous samples of dust and pellets
Mahmoudi et al. Numerical modeling of self-heating and self-ignition in a packed-bed of biomass using XDEM
Wu et al. Theoretical and numerical study on ignition behaviour of coal dust layers on a hot surface with corrected kinetic parameters
Cavagnol et al. Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale
Wu et al. Spontaneous ignition behaviour of coal dust accumulations: A comparison of extrapolation methods from lab-scale to industrial-scale
Khodaei et al. A CFD-based comparative analysis of drying in various single biomass particles
Miccio On the integration between fluidized bed and Stirling engine for micro-generation
Sun et al. Effect of ash content on the combustion process of simulated MSW in the fixed bed
JP2018128399A (en) Solid fuel firing estimation method
Dasappa et al. Wood-char gasification: experiments and analysis on single particles and packed beds
Chen On basket heating methods for obtaining exothermic reactivity of solid materials: The extent and impact of the departure of the crossing-point temperature from the oven temperature
JP6664194B2 (en) Coal heating prediction management system
El-Sayed et al. An experimental study of combustion and emissions of wheat straw pellets in high-temperature air flows
Li et al. Characteristics of fluidisation behaviour in a pressurised bubbling fluidised bed
Mahmoudi Prediction of heat-up, drying and gasification of fixed and moving beds by the Discrete Particle Method (DPM)
Schwarzer et al. Self-heating and thermal runaway of biomass–Lab-scale experiments and modeling for conditions resembling power plant mills
Kijo-Kleczkowska Analysis of cyclic combustion of the coal-water suspension
Borah et al. Devolatilization of coals of northeastern India in inert atmosphere and in air under fluidized bed conditions
Shanmukharadhya et al. Effect of fuel moisture on combustion in a bagasse fired furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210407