JPS58140633A - Method for monitoring spontaneous combustion of coal - Google Patents

Method for monitoring spontaneous combustion of coal

Info

Publication number
JPS58140633A
JPS58140633A JP11597281A JP11597281A JPS58140633A JP S58140633 A JPS58140633 A JP S58140633A JP 11597281 A JP11597281 A JP 11597281A JP 11597281 A JP11597281 A JP 11597281A JP S58140633 A JPS58140633 A JP S58140633A
Authority
JP
Japan
Prior art keywords
temperature
coal
moisture
circuit
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11597281A
Other languages
Japanese (ja)
Other versions
JPH0138259B2 (en
Inventor
Kazuo Koyata
小谷田 一男
Tetsuo Ono
哲夫 小野
Masaaki Orimoto
正明 織本
Tatsujiro Shimizu
清水 達二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Central Research Institute of Electric Power Industry
Original Assignee
Electric Power Development Co Ltd
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Central Research Institute of Electric Power Industry filed Critical Electric Power Development Co Ltd
Priority to JP11597281A priority Critical patent/JPS58140633A/en
Publication of JPS58140633A publication Critical patent/JPS58140633A/en
Publication of JPH0138259B2 publication Critical patent/JPH0138259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To prevent previously and surely spontaneous combustion, by finding a high temperature part by measuring the surface temperature of a coal stock pile and detecting the temperature and moisture with a temperature detector and moisture detector inserted into said part. CONSTITUTION:The side face of a coal stock pile 1 is photographed by an infrared TV image pickup device 2 on a steel tower 3 and a photographed signal processed digitally through a processing circuit 7 and a transmitting circuit 8 is modulated by a carrier-frequency f1 to transmit from an antenna 4. This signal is received by an antenna 6 of an observatory 5 and the surface temperature distribution of the pile 1 is displayed on a TV receiver by demodulating through reception circuit and a signal processing circuit. The detected signal of the temperature and moisture modulated by frequencies f2 and f3 from antennas 17 and 26 of a temperature sensor 12 and a humidity sensor 21 inserted into a high temperature part of the pile 1 is received by the antenna 6 of the observatory 5 and is recorded on an automatic recorder and also, it is applied to an alarm circuit. Thus, spontaneous combustion is prevented previously.

Description

【発明の詳細な説明】 本発明は石炭の自然発火監視方法に関するものである。[Detailed description of the invention] The present invention relates to a method for monitoring spontaneous combustion of coal.

近年における石油の供給不安にもとづき、従来主として
用いられている石油焚火力発電所に代って、石炭焚火力
発電所が見直されつつあり、既にその一部は建設を終了
して稼動を開始している。
Due to concerns about oil supply in recent years, coal-fired power plants are being reconsidered in place of the oil-fired power plants that have traditionally been used, and some of them have already completed construction and begun operation. ing.

ところでこの場合使用される石炭としては価額二が安価
であり供給が安定している中国、南アフリカ、豪州など
の海外炭が多く使用されているが、その輸入コストの低
下などから1回の輸入扱い量は極めて多く、従ってまた
貯炭量も50〜50万トンと従来のそれの2〜5倍にも
及ぶ大きなものとなる。
By the way, the coal used in this case is often imported from countries such as China, South Africa, and Australia, where the price is cheap and the supply is stable, but due to lower import costs, it is treated as a single import. The amount of coal stored is extremely large, and therefore the amount of stored coal is 500,000 to 500,000 tons, which is two to five times that of conventional coal.

このためその積み付け、払出しの省力化、効率化などか
ら、従来のブルドーザに代って揚運炭機   ゛のよう
な大形機械が採用され始めているが、このような機械積
み貯炭では、ブルドーザによる方法のような圧縮積みが
出来ず、空気流通間隙の太きい自然積貯炭とならざるを
得ない。その結果空気中の含酸素による酸化によって石
炭は自己発熱し、これにもとづく貯炭内部の温度−ヒ昇
により自然発火を生ずる機会が圧縮積みに比して太きい
。そこでこの自然発火の可能性を監視するための方法と
して、例えば熱電対温度センサ、半導体温度センサを貯
炭パイル中に無作意に挿入して、温度の上昇箇所を直接
測定する方法が提案されている。しかし自然積みされた
貯炭パイルの大きは、前記したような扱い量の増大から
従来見られなかった大規模なもの、例えば幅45m、長
さ90m、高さ16m(炭量的20,000トンの場合
)以上の厖大なものとなる。一方高温発生部は全体の大
きさに比べて小さいものであるのは勿論、風向風速など
の気象条件によって移動する。従って数10本にも及ぶ
多数の温度センサーを用い、しかもセンサー相互の間隔
と狭くして測定しない限り、適確な高温発生部の位置を
検出することが困難である。
For this reason, large machines such as coal unloading machines have begun to be adopted in place of conventional bulldozers in order to save labor and improve efficiency in loading and unloading coal. It is not possible to compress the coal as in the conventional method, and natural coal storage with large air circulation gaps is required. As a result, the coal self-heats due to oxidation due to oxygen content in the air, and the chance of spontaneous ignition due to the rise in temperature inside the coal storage due to this is greater than in compressed stacking. Therefore, as a method to monitor the possibility of spontaneous combustion, a method has been proposed in which, for example, thermocouple temperature sensors or semiconductor temperature sensors are randomly inserted into coal storage piles to directly measure points where the temperature is rising. There is. However, the size of natural coal storage piles is unprecedented due to the increase in handling volume as described above, for example, 45 m wide, 90 m long, and 16 m high (20,000 tons of coal). case) becomes even bigger. On the other hand, the high temperature generating part is not only small compared to the overall size, but also moves depending on weather conditions such as wind direction and wind speed. Therefore, it is difficult to accurately detect the position of a high temperature generating part unless a large number of temperature sensors (up to several dozen) are used and the distance between the sensors is narrowed.

またこの方法では貯炭パイルが払い出しによって取り崩
されるのに合せて温度センサーの撤収を行わなければな
らないばかりか、新しい貯炭パイルが形成される毎に多
数の温度センサーの挿込みを行う極めて煩雑しかも時間
を要する作業を必要とし、温度センサの数も多いことか
らそのデータ処理も煩雑である。その結果この方法は試
験時に適用可能であっても、作業性や経済性の面から到
底適用できない方法である。従って現在においては貯炭
パイルの取扱い作業者の肉眼監視によるものなど、従来
の経験と感に頼った方法により自然Sl火を事前に予測
して、散水による高温部の冷却を行うなどの、原始的と
も云える方法が依然として採用されている状態であり、
その改善が強く要望されている。
Furthermore, with this method, not only do the temperature sensors have to be removed when the coal storage pile is taken down by discharging, but also it is extremely complicated and time-consuming to insert a large number of temperature sensors each time a new coal storage pile is formed. Since there are many temperature sensors, the data processing is also complicated. As a result, even if this method is applicable during testing, it cannot be applied in terms of workability or economy. Therefore, at present, primitive methods such as visual monitoring by workers handling coal storage piles and other methods that rely on experience and intuition are used to predict natural sludge fires in advance and cool high-temperature areas with water sprinkling. The method that can be said to be
There is a strong demand for improvement.

本発明は上記の如き大規模な貯炭パイルの場合にも、簡
単かつ適確に高′温部を検出して自然発火を未然にかつ
確実に防止しつる自然発火の監視方法を提供し、上記し
た強い要望に応えたものである。次に図面を用いてその
詳細を説明するっ最近における技術の発達は、赤外カメ
ラ更にはこれと放射温度計などとの併用により、各種物
体の表面温度を05℃程度の温度間隔のもとて画像とし
て鮮明に表示でき、しかもその等温部分を色別は処理し
て温度分布の測定を容易とすることが可能となった。
The present invention provides a method for monitoring spontaneous combustion, which can easily and accurately detect high-temperature areas to prevent spontaneous combustion even in the case of large-scale coal storage piles such as those described above. This was in response to strong demand. Next, we will explain the details using drawings.The recent development of technology uses an infrared camera and a radiation thermometer to measure the surface temperature of various objects at temperature intervals of about 0.5°C. It has become possible to clearly display the image as an image, and to process the isothermal portions according to color, making it easier to measure the temperature distribution.

本発明は実験的研究の結果、この技術を応用することに
より、貯炭パイル表面の温度分布の監視を適確に行いう
ることを明かにし、これによって貯炭パイルの自然発火
となりうる高温発生部を画面から確実に把握したのち、
温度センナを把握された高温部分内に挿込むことにより
、前記したように多数の温度センサーを用いることなく
迅速かつ確実【C内部温度を測定でき、これにもとづき
散水による高温部の冷却による予防措置などを適確にと
りうろことを着想したものである。
As a result of experimental research, the present invention has revealed that by applying this technology, it is possible to accurately monitor the temperature distribution on the surface of a coal storage pile. After fully understanding from
By inserting a temperature sensor into a detected high-temperature area, the internal temperature can be measured quickly and reliably without using multiple temperature sensors as described above, and based on this, preventive measures can be taken by cooling the high-temperature area with water spray. It was inspired by the concept of scales.

一方本発明者の研究2・こよれば自然発火前の貯炭パイ
ル内の高温部の温度曲線は、矛1図に示すように石炭の
低温酸化+/cもとづく温度り昇期Aと発熱と熱放散が
平衡した一定温度保持期間とからなっており、この一定
温度保持期において何等かの原因により、発熱と熱放散
の平衡柔性が崩れることによって、自然発火に至ること
が明らかにされた。また一方実験によって自然発火に至
らしめた貯炭パイルを切崩しながらパイル内部を観察す
ると、自然発火を生じたと思われる部分は非常によく乾
燥している。しかも一般に屋内外における貯炭パイルの
発火までの一定温度保持期間の長さ全比較測定すると、
雨水のかからな(A屋内貯炭パイルの方が屋外のそれに
比べて短かいことが確認され、これから気象条件例えば
気温、湿度、風向、風速、更には酸化発熱によって生r
る水分の乾燥など、貯炭パイル内部の水分の状態、例え
ばこの分野で湿分と称している石炭表面の付着水分、ま
たこの分野で水分と称している石炭細孔内の包蔵水分(
固有水分)など、堆積石炭中に含まれる全水分の状態が
自然発火の直接の原因となることが明らかにされた。即
ち雨水などによる水分の補給のないま\熱放散が続くと
、貯炭パイル内部の乾燥となって内部の水分が少なくな
り、水分の蒸発源として熱放散されていた酸化熱が蓄積
されて、急激な温度の上昇を招いて自然発火となるもの
であって、例えば発火の条件は炭種によっても異なるが
、付着水分が1%以下或いは全水分が5%以下、温度が
80〜90’C以上である。
On the other hand, according to research 2 of the present inventor, the temperature curve of the high temperature part in the coal storage pile before spontaneous ignition is as shown in Figure 1. It consists of a period of constant temperature maintenance during which radiation is balanced, and it has been revealed that during this period of constant temperature maintenance, the equilibrium flexibility of heat generation and heat dissipation is disrupted for some reason, leading to spontaneous combustion. On the other hand, when we cut down a coal pile that had spontaneously ignited in an experiment and observed the inside of the pile, we found that the area where the spontaneous ignition occurred was extremely dry. Moreover, when comparing and measuring the length of the constant temperature maintenance period until ignition of coal storage piles indoors and outdoors,
Rainwater (A) It has been confirmed that indoor coal storage piles are shorter than outdoor ones.
The state of the moisture inside the coal storage pile, such as drying of the moisture in the coal storage pile, for example, the adhering moisture on the coal surface, which is referred to as moisture in this field, and the contained moisture in the coal pores, which is referred to as moisture in this field.
It has been revealed that the state of total moisture contained in deposited coal (intrinsic moisture) is a direct cause of spontaneous combustion. In other words, if heat dissipation continues without moisture being replenished by rainwater, etc., the inside of the coal storage pile will dry out and the moisture content will decrease, and the oxidation heat that was dissipated as a source of moisture will accumulate, causing rapid The ignition conditions vary depending on the type of coal, but for example, the adhering moisture is 1% or less, the total moisture is 5% or less, and the temperature is 80 to 90°C or more. It is.

本発明は以上から前記した温度分布を示す画r象により
確認された高温部の温度センサによる測定と、水分セン
サによる水分の測定例えば堆積石炭粒相互の空隙内の空
気中の湿度から、堆積石炭内の水分を求める水分ヒンサ
による石炭の水分状態の測定を併用することにより、更
に適確な自然発火の予測監視を行いうることを着想して
なされたものである。
From the above, the present invention is capable of measuring the temperature of the high-temperature area confirmed by the image showing the temperature distribution described above, and measuring the moisture content of the accumulated coal using a moisture sensor. This idea was created based on the idea that spontaneous combustion could be predicted and monitored more accurately by using a moisture sensor to measure the moisture state of coal.

第2図は本発明の一実施例図を示す貯炭場の斜視図、矛
5図(α1(b)fc)は測定回路を示すブロック系統
図で、このうち(cL1図は温度分布の測定系統図、(
b)は観測所の測定系統図、(C)は温度および水分セ
ンサによる測定系統図である。矛2図において(1)は
貯炭パイル、(2)は赤外線テレビ撮r象機、(3)は
その設置鉄塔であって、貯炭パイルの側面とよい条件で
撮影できるようにその高さ位置が選定される。
Figure 2 is a perspective view of a coal storage yard showing an embodiment of the present invention, Figure 5 (α1(b)fc) is a block system diagram showing a measurement circuit, of which figure (cL1) is a temperature distribution measurement system. figure,(
b) is a measurement system diagram at the observation station, and (C) is a measurement system diagram using temperature and moisture sensors. In Figure 2, (1) is the coal storage pile, (2) is the infrared television camera, and (3) is the installed steel tower, whose height position is set so that it can be photographed under good conditions with the side of the coal storage pile. Selected.

(4)はアンテナ、(5)は観測所、(6)はアンテナ
であって、赤タシ線テレビ撮像1!1F2)は、才5図
(α)に示すように撮1象信号の処理回路(7)と、送
信回路(8)を備え、例えばデジタル処理された撮像腎
号ヲ1.の搬送周波数で変調してアンテナ(4)より送
信するっまた観測所(5)には16図(b)に示すよう
に受信回路(9)と信号処理回路(1す、およびテレビ
受像@(11)f:備え、アンテナ(6)により受信し
た撮像信号の変調波を復調したのち信号処理回路(10
)に加えて、周知の色別データ処理を行い、テレビ受f
ii機(11)に貯炭パイル表面の温度分布を、色別し
た画鐵として表示する。矛2図に戻って(12)はテレ
ビ受像機の画面によって確認された高温部に挿込まれる
温度センサ、例えば半導体温度センサで1,1−3図(
C)のように長い保護管(16)の先端に温度検出用半
導体部(4)と、例えはアナログ−デジタルデータ変換
回路(15)、送信回路(16)およびアンテナ(17
)とを備え、半導体部(4)の温度出力をf2の搬送周
波数出力で変換して送信する。一方観測所(5)は第5
図(b) Ic示すように温度センサ(12)からの搬
送周波数f2の送信波を受信したのち、備えた受信回路
(18)により復調したのち、データ変換回路(19)
によりアナログ化して自記記録計(20)に加え、高温
部の温度を刻々と表示する。 (21)は水分センサ例
えば静電容量型の水分センサで、温度センサ(12)と
共に高温部に挿入される。そしてこの水分センサは16
図(C,)のように先端に空気取入穴(22α)を有す
る長い保護管(22)の先端に位置されたセンサ部(2
3)と、データ変換回路(24)、送信回路(25)お
よび送信アンテナ(26)とを備えて、堆積石炭の空隙
内の湿度を測定し、これを変換回路(2りにより全水分
に換算したのち出力を例えばアナログ−デジタル変換し
て、周波数!、の搬送波により変調された送信波を送信
する。一方観測所(5)は受信回路(27)と、その出
力を例えばデジタル−アナログ変換する信号変換回路(
28)と、自記記録計(29)および警報回路(30)
と備える。そして回路(28)によりアナログ化された
全水分出力を自記記録計(29)に連続記録させ、また
前記温度出力と共に警報回路(30)に加えて、前記し
たように測定された温度が例えば90℃以上全水分5%
以下となったとき、これを検出して警報を発して、散水
、払出し、積替えなどの予防措置の実行が直ちに可能と
なるようにする。
(4) is the antenna, (5) is the observatory, (6) is the antenna, and red line television imaging 1!1F2) is the processing circuit for the imaging signal as shown in Figure 5 (α). (7) and a transmitting circuit (8), for example, a digitally processed imaging kidney signal 1. As shown in Figure 16(b), the observation station (5) has a receiving circuit (9), a signal processing circuit (1), and a television receiving @( 11) f: Demodulates the modulated wave of the imaging signal received by the antenna (6) and then demodulates the signal processing circuit (10
), in addition to the well-known color-based data processing, TV reception
The temperature distribution on the surface of the coal storage pile is displayed on the machine II (11) as color-coded thumbnails. Returning to Figure 2, (12) is a temperature sensor inserted into a high temperature area confirmed by the screen of a television receiver, such as a semiconductor temperature sensor in Figures 1, 1-3 (
As shown in C), at the tip of a long protection tube (16), there is a temperature detection semiconductor part (4), an analog-to-digital data conversion circuit (15), a transmission circuit (16) and an antenna (17).
), and converts the temperature output of the semiconductor section (4) using the carrier frequency output of f2 and transmits it. On the other hand, observation station (5) is the fifth
As shown in Figure (b) Ic, after receiving the transmission wave of carrier frequency f2 from the temperature sensor (12), it is demodulated by the receiving circuit (18) provided, and then the data conversion circuit (19)
It is converted into an analog recorder (20), and the temperature of the high-temperature part is displayed every moment. Reference numeral (21) is a moisture sensor, for example, a capacitance type moisture sensor, which is inserted into the high temperature section together with the temperature sensor (12). And this moisture sensor is 16
As shown in Figure (C,), the sensor part (2
3), a data conversion circuit (24), a transmission circuit (25), and a transmission antenna (26) to measure the humidity in the voids of the deposited coal and convert it to total moisture using a conversion circuit (2). Thereafter, the output is converted, for example, from analog to digital, and a transmission wave modulated by a carrier wave of frequency ! is transmitted.Meanwhile, the observatory (5) is connected to a receiving circuit (27), and the output is converted from digital to analog, for example. Signal conversion circuit (
28), self-recording recorder (29) and alarm circuit (30)
Be prepared. Then, the total moisture output analogized by the circuit (28) is continuously recorded in the self-recording recorder (29), and is added to the alarm circuit (30) together with the temperature output, so that the temperature measured as described above is, for example, 90. ℃ or more total moisture 5%
When the following conditions occur, it will be detected and an alarm will be issued so that preventive measures such as watering, unloading, transshipment, etc. can be taken immediately.

このようにすれば画像により検出された高温部にのみ温
度センサを挿込めばよいので、従来のように多数の温度
センサを用いることなく、迅速しかも確実に貯炭パイル
内部の高温部の温度を検出して、自然発火の監視を行う
ことができる。また水分センサを同時に挿込み石炭の水
分の状態を測定することにより、自然発火の監視を更に
適確に行うことができ、しかもその測定は温度センサ、
水分センサの挿込み後、記録計或いはプリンタなどによ
って自動的に表示することができるので、少ない労力で
確実な監視を行って、効果的に自然発火を阻止できる。
In this way, it is only necessary to insert the temperature sensor into the high-temperature area detected by the image, so the temperature of the high-temperature area inside the coal storage pile can be quickly and reliably detected without using multiple temperature sensors as in the past. Spontaneous combustion can be monitored. In addition, by simultaneously inserting a moisture sensor and measuring the moisture status of the coal, spontaneous combustion can be monitored more accurately.
After the moisture sensor is inserted, it can be automatically displayed using a recorder or printer, so that reliable monitoring can be performed with little effort and spontaneous combustion can be effectively prevented.

以上本発明を貯炭パイルが1箇の場合について説明した
が、複数筒ある場合にはテレビ撮r象機の台数を増し、
例えば切換回路を用い各テレビ撮像機の出力を画像表示
することによって実現できる。
The present invention has been described above for the case where there is one coal storage pile, but when there are multiple coal storage piles, the number of TV cameras is increased,
For example, this can be realized by displaying the output of each television imager as an image using a switching circuit.

また貯炭パイルの数が増し、温度センサ、水分センサの
数が増したときには、観測所側に切換信号の送信回路を
設け、温度水分センサ側にはその受信回路を設けて1.
順次各七ンサを切換え操作して、順次記録表示させるこ
ともできる。また観測所側にテレビ撮像機のフォーカス
制御信号送信回路を設け、またテレビ撮像機側にはその
受は回路を設けて、高温部の確認を容易とするため高温
部付近を拡大して撮像することができるなどの各種の変
形が可能である。また以上では赤外線による温度分布測
定を示したが周知の放射温度計による方法、これと赤外
線による方法などを併用することができる。
Also, when the number of coal storage piles increases and the number of temperature sensors and moisture sensors increases, a switching signal transmission circuit is provided on the observation station side, and a receiving circuit is provided on the temperature and moisture sensor side.1.
It is also possible to sequentially record and display each of the seven sensors. In addition, a focus control signal transmission circuit for the TV camera is installed on the observatory side, and a receiver circuit is installed on the TV camera side to enlarge and image the vicinity of the high temperature area to make it easier to confirm the high temperature area. Various modifications are possible, such as: Furthermore, although temperature distribution measurement using infrared rays has been described above, a method using a well-known radiation thermometer, a method using infrared rays, and the like can be used in combination.

第4図は実験によって得られたテレビ受像機による貯炭
パイルの温度分布を示す図で、図では黒白で示し、しか
も縮尺して示しであるため稍不鮮明であるが、テレビ受
像機の実尺で観察した場合には、確実に白で示されたT
によって高温部を確認することができた。また挿入セン
サの数を従来のようにセンサのみで監視する場合の数1
/10以下とすることができ、作業性において経済性に
おいて有利であることが確認された。
Figure 4 is a diagram showing the temperature distribution of a coal storage pile as measured by a television receiver obtained through an experiment.It is shown in black and white in the figure, and is a little unclear because it is scaled, but the actual scale of the television receiver is shown in Figure 4. If you observe it, you will definitely see the T shown in white.
We were able to confirm the high temperature area. In addition, the number of inserted sensors is 1 when monitoring only with sensors as in the past.
/10 or less, which was confirmed to be advantageous in terms of workability and economy.

以上の説明から明らかなように、本発明によれば貯炭パ
イルにおける石炭の自然発火を簡単しかも確実に監視し
て、予防対策を講じ得られるもので、1回の取扱い量が
多い輸入炭の管理に貢献するものである。
As is clear from the above explanation, according to the present invention, spontaneous combustion of coal in coal storage piles can be easily and reliably monitored and preventive measures can be taken to manage imported coal, which is handled in large quantities at one time. It contributes to

【図面の簡単な説明】[Brief explanation of the drawing]

1−1図は堆積石炭内部の温度曲線の一例を示す図1,
1−2図および矛6図は本発明の一実施例を示す貯炭場
の斜視図、および測定回路を示すブロック系統図、矛4
図は貯炭パイル表面の温度分布を示すテレビ画像の撮影
図である。 (1)・・・貯炭パイル、 (2)・・・赤外線テレビ
撮像機、(3)・・・鉄塔、 (4)・・・アンテナ、
 (5)・・・観測所、(6)・・・アンテナ、 (7
)・・・処理回路、 (8)・・・送信i路、(9)・
・・受信回路、  (10)・・・信号処理回路、  
(11)・・・テレビ受像機、  (12)・・・温度
センサ、  (13)・・・保護管、  (14)・・
・半導体センサ部、  (15)・・・データ変換回路
、  (16)・・・送信回路、  (17)・・・ア
ンテナ、(18)・・・受信回路、  (19)・・・
データ変換回路、(20)・・・記録計、  (21)
・・・湿度センサ、  (22)・・・保護管、  (
23)・・・セ/す部、  (24)・・・データ変換
回路、 (25)送信回路、 (26)・・・アンテナ
、(27)・・・受信回路、  (28)・・・信号変
換回路、(29)・・・自記記録計、 (30)・・・
警報回路。 特許出願人  財団法人 電力中央研究所外1名 代理人弁理士大塚 学
Figure 1-1 shows an example of the temperature curve inside the deposited coal.
Figures 1-2 and 6 are a perspective view of a coal storage yard showing one embodiment of the present invention, and a block system diagram showing a measuring circuit.
The figure is a photographed television image showing the temperature distribution on the surface of a coal storage pile. (1)... Coal storage pile, (2)... Infrared television imager, (3)... Steel tower, (4)... Antenna,
(5)...observation station, (6)...antenna, (7
)...Processing circuit, (8)...Transmission i path, (9)...
...reception circuit, (10) ...signal processing circuit,
(11)...Television receiver, (12)...Temperature sensor, (13)...Protection tube, (14)...
・Semiconductor sensor section, (15)...Data conversion circuit, (16)...Transmission circuit, (17)...Antenna, (18)...Reception circuit, (19)...
Data conversion circuit, (20)...Recorder, (21)
...humidity sensor, (22) ...protection tube, (
23)...Central section, (24)...Data conversion circuit, (25) Transmission circuit, (26)...Antenna, (27)...Reception circuit, (28)...Signal Conversion circuit, (29)... Self-recording recorder, (30)...
Alarm circuit. Patent applicant: Manabu Otsuka, patent attorney and one person outside the Central Research Institute of Electric Power Industry

Claims (2)

【特許請求の範囲】[Claims] (1)貯炭パイルの表面温度分布を測定して高温部を求
め、ここに温度検出器を挿入して温度検出を行い、これ
から自然発火を監視することを特徴とする石炭の自然発
火監視方法。
(1) A method for monitoring spontaneous ignition of coal, which is characterized by measuring the surface temperature distribution of a coal storage pile to find a high temperature area, inserting a temperature detector there to detect the temperature, and monitoring spontaneous ignition from this point.
(2)貯炭パイルの表面温度分布を測定して高温部を求
め、ここに温度検出器および水分検出器を挿入し7て、
両者から自然発火を監視することを特徴とする石炭の自
然発火監視方法。
(2) Measure the surface temperature distribution of the coal storage pile to find the high temperature area, insert a temperature detector and a moisture detector there,
A coal spontaneous combustion monitoring method characterized by monitoring spontaneous combustion from both sides.
JP11597281A 1981-07-24 1981-07-24 Method for monitoring spontaneous combustion of coal Granted JPS58140633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11597281A JPS58140633A (en) 1981-07-24 1981-07-24 Method for monitoring spontaneous combustion of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11597281A JPS58140633A (en) 1981-07-24 1981-07-24 Method for monitoring spontaneous combustion of coal

Publications (2)

Publication Number Publication Date
JPS58140633A true JPS58140633A (en) 1983-08-20
JPH0138259B2 JPH0138259B2 (en) 1989-08-11

Family

ID=14675683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11597281A Granted JPS58140633A (en) 1981-07-24 1981-07-24 Method for monitoring spontaneous combustion of coal

Country Status (1)

Country Link
JP (1) JPS58140633A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161505A (en) * 1984-02-01 1985-08-23 Mitsubishi Electric Corp Measurement of film thickness
JPS60129664U (en) * 1984-02-10 1985-08-30 石川島播磨重工業株式会社 Pulverized coal spontaneous ignition prevention device
JPS60252249A (en) * 1984-05-29 1985-12-12 Idemitsu Kosan Co Ltd Automatic measuring instrument for moisture and flash point
JPH08285801A (en) * 1995-04-14 1996-11-01 Mitsubishi Heavy Ind Ltd Method and apparatus for predicting spontaneous ignition of coal
JP2003215078A (en) * 2002-01-23 2003-07-30 Kansai Coke & Chem Co Ltd Method of testing heat build-up of coal
WO2014173208A1 (en) * 2013-04-23 2014-10-30 湖南三德科技股份有限公司 Adiabatic autoignition testing device
CN104634815A (en) * 2013-11-14 2015-05-20 辽宁工程技术大学 Method for simulating spontaneous combustion of coal stacks
CN106501310A (en) * 2016-10-25 2017-03-15 中国矿业大学(北京) Based on the oxidization of remained coal intensification simulation experiment method that goaf air parameter is surveyed
JP2017090286A (en) * 2015-11-12 2017-05-25 Ihi運搬機械株式会社 Coal temperature rising prediction management system
JP2018025407A (en) * 2016-08-08 2018-02-15 富士通株式会社 Heat detector, heat detection method, and heat detection program
CN107941852A (en) * 2017-11-14 2018-04-20 中国矿业大学 The synchronous contrast measurement system and assay method of a kind of coal spontaneous combustion diverse characteristics parameter
CN108362564A (en) * 2018-01-16 2018-08-03 西安科技大学 The big mine pressure coal and rock breakage of simulation High-geotemperature uses experimental system and its method certainly
CN108798649A (en) * 2018-04-18 2018-11-13 中国矿业大学 It is a kind of for spontaneous combustionof coal temperature sensing with boring temperature measuring equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863772A (en) * 1971-12-06 1973-09-04
JPS55110925A (en) * 1979-02-20 1980-08-27 Nippon Abionikusu Kk Thermal ray camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863772A (en) * 1971-12-06 1973-09-04
JPS55110925A (en) * 1979-02-20 1980-08-27 Nippon Abionikusu Kk Thermal ray camera

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161505A (en) * 1984-02-01 1985-08-23 Mitsubishi Electric Corp Measurement of film thickness
JPS60129664U (en) * 1984-02-10 1985-08-30 石川島播磨重工業株式会社 Pulverized coal spontaneous ignition prevention device
JPH0333003Y2 (en) * 1984-02-10 1991-07-12
JPS60252249A (en) * 1984-05-29 1985-12-12 Idemitsu Kosan Co Ltd Automatic measuring instrument for moisture and flash point
JPH08285801A (en) * 1995-04-14 1996-11-01 Mitsubishi Heavy Ind Ltd Method and apparatus for predicting spontaneous ignition of coal
JP2003215078A (en) * 2002-01-23 2003-07-30 Kansai Coke & Chem Co Ltd Method of testing heat build-up of coal
WO2014173208A1 (en) * 2013-04-23 2014-10-30 湖南三德科技股份有限公司 Adiabatic autoignition testing device
CN104634815A (en) * 2013-11-14 2015-05-20 辽宁工程技术大学 Method for simulating spontaneous combustion of coal stacks
JP2017090286A (en) * 2015-11-12 2017-05-25 Ihi運搬機械株式会社 Coal temperature rising prediction management system
JP2018025407A (en) * 2016-08-08 2018-02-15 富士通株式会社 Heat detector, heat detection method, and heat detection program
CN106501310A (en) * 2016-10-25 2017-03-15 中国矿业大学(北京) Based on the oxidization of remained coal intensification simulation experiment method that goaf air parameter is surveyed
CN106501310B (en) * 2016-10-25 2019-02-12 中国矿业大学(北京) Oxidization of remained coal heating simulation experiment method based on the actual measurement of goaf air parameter
CN107941852A (en) * 2017-11-14 2018-04-20 中国矿业大学 The synchronous contrast measurement system and assay method of a kind of coal spontaneous combustion diverse characteristics parameter
CN107941852B (en) * 2017-11-14 2019-06-14 中国矿业大学 A kind of the synchronous contrast measurement system and measuring method of coal spontaneous combustion diverse characteristics parameter
CN108362564A (en) * 2018-01-16 2018-08-03 西安科技大学 The big mine pressure coal and rock breakage of simulation High-geotemperature uses experimental system and its method certainly
CN108362564B (en) * 2018-01-16 2020-07-07 西安科技大学 Experimental system and method for simulating high-ground-temperature large-ore-pressure coal rock mass damage spontaneous combustion
CN108798649A (en) * 2018-04-18 2018-11-13 中国矿业大学 It is a kind of for spontaneous combustionof coal temperature sensing with boring temperature measuring equipment

Also Published As

Publication number Publication date
JPH0138259B2 (en) 1989-08-11

Similar Documents

Publication Publication Date Title
JPS58140633A (en) Method for monitoring spontaneous combustion of coal
CN101661658A (en) Infrared image detection alarm device
CN101834989B (en) Helicopter electric power inspection real-time data acquisition and storage system
CN104931144A (en) Coal-fired power plant coal conveyor belt temperature remote monitoring system
CN110769194B (en) Heat source monitoring and identifying method and system based on double-light fusion
CN101719300A (en) Fire early-warning system with intelligent video and method for determining alarm parameters thereof
KR20130051838A (en) Coal stockpile volume monitoring system based on fusion technology and method thereof
JP5560179B2 (en) Method for measuring temperature inside stored coal, method for preventing spontaneous ignition of stored coal, and temperature measuring system inside stored coal
CN208621098U (en) A kind of temperature and humidity remote supervision system of converter station earthing pole
CN102622845A (en) Background interference elimination device and elimination method based on forest flash point de-disturbance point positioning device
EP0046058A3 (en) Web monitoring apparatus
CN110569776A (en) method for screening faults of power transmission and distribution line after typhoon disaster
CN213241424U (en) Coal fired power plant coal storage monitoring and alarming system based on 5G communication
CN103910181B (en) Longitudinal rupture of adhesive tape based on infrared vision detection method for early warning
Deshpande et al. Forest monitoring system using sensors, wireless communication and image processing
CN211506535U (en) Transmission line shaft tower system of patrolling and examining based on two-dimensional code
WO2022030229A1 (en) Management system, management device, management method, and management program
CN211015828U (en) Biomass power station storage yard conflagration early warning device
CN2373783Y (en) Telethermometer for contact temperature
KR20010016734A (en) System for measuring snowfall
CN205691234U (en) A kind of high-power diesel engine surface temperature test device
CN103247139A (en) All-weather monitoring system for forest fire prevention
CN216349144U (en) Industrial internet temperature measurement alarm device
CN108171920A (en) Fire behavior harvester and system
CN203232538U (en) Infrared imaging-based forest fire-prevention monitoring system