JP6659225B2 - Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel - Google Patents

Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel Download PDF

Info

Publication number
JP6659225B2
JP6659225B2 JP2015049980A JP2015049980A JP6659225B2 JP 6659225 B2 JP6659225 B2 JP 6659225B2 JP 2015049980 A JP2015049980 A JP 2015049980A JP 2015049980 A JP2015049980 A JP 2015049980A JP 6659225 B2 JP6659225 B2 JP 6659225B2
Authority
JP
Japan
Prior art keywords
water
water level
pressure vessel
reactor pressure
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015049980A
Other languages
Japanese (ja)
Other versions
JP2016170047A (en
Inventor
誠悟 佐藤
誠悟 佐藤
裕行 竹内
裕行 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015049980A priority Critical patent/JP6659225B2/en
Publication of JP2016170047A publication Critical patent/JP2016170047A/en
Application granted granted Critical
Publication of JP6659225B2 publication Critical patent/JP6659225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明の実施形態は、原子炉圧力容器内の水位の時間的変化を推定する原子炉圧力容器内水位推定装置および原子炉圧力容器内水位推定方法に関する。   An embodiment of the present invention relates to a reactor pressure vessel water level estimation device and a reactor pressure vessel water level estimation method for estimating a temporal change of a water level in a reactor pressure vessel.

一般に,沸騰水型原子炉(BWR)における原子炉水位計測方法としては、差圧を利用して水位を計測する技術が用いられている。この方法は、原子炉圧力容器の上部および下部に計測用ノズルを設け、上部側は気相部に連通し下部側は液相部に連通する差圧計で差圧を計測することによって水位を計測するものである。この場合、上部側計測ノズルから差圧計に至るラインには凝縮槽を設け蒸気を凝縮させ差圧計までの計装配管を凝縮水で満たすことにより計装配管内水位変動事象を回避し、実水位の変動による下部側ノズル部の圧力変化により差圧の変化を得て原子炉水位変化を測定している。   Generally, as a method of measuring a reactor water level in a boiling water reactor (BWR), a technique of measuring a water level using a differential pressure is used. This method measures the water level by measuring the differential pressure with a differential pressure gauge that connects the gas phase to the upper part and the liquid part to the lower part by providing measurement nozzles at the upper and lower parts of the reactor pressure vessel. Is what you do. In this case, a condensation tank is provided in the line from the upper measurement nozzle to the differential pressure gauge to condense steam, and the instrumentation pipe to the differential pressure gauge is filled with condensed water to avoid a water level fluctuation event in the instrumentation pipe, and to reduce the actual water level. The change in the reactor water level is measured by obtaining the change in the differential pressure by the change in the pressure of the lower nozzle due to the fluctuation.

特開平10−274554号公報JP-A-10-274554

原子炉水位、すなわち原子炉圧力容器内の水位は、原子炉施設の安全運転に直接関係するプロセス量であり、常時監視が求められる。原子炉施設の苛酷事故時においては、上述した差圧計の故障や、減圧時の沸騰による凝縮槽内の水の蒸発等で水位の計測ができなくなり、原子炉水位を監視できない状況に陥る可能性がある。実際に、重大事故時に、凝縮槽内の水の蒸発によって差圧式水位計が計測不能になり、原子炉水位の監視ができなくなった例がある。   The reactor water level, that is, the water level in the reactor pressure vessel, is a process quantity directly related to the safe operation of the reactor facility, and must be constantly monitored. In the event of a severe accident at the reactor facility, the water level cannot be measured due to the failure of the differential pressure gauge mentioned above, or the evaporation of water in the condensing tank due to boiling during depressurization, and the reactor water level may not be monitored. There is. Actually, in a serious accident, there is an example in which the differential pressure type water gauge cannot be measured due to evaporation of water in the condensing tank, and the reactor water level cannot be monitored.

また,たとえば、日本国内においても、重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において当該パラメータを推定するために有効な情報を把握できる設備を設けなければならない、旨が定められている。このように、原子炉水位が計測できない場合に、代替パラメータによる推定手段を整備することが求められている。   Also, for example, in Japan, if it becomes difficult to measure parameters that need to be monitored in order to deal with a serious accident, etc., equipment that can grasp useful information for estimating the parameters will be provided. Must be established. As described above, when the reactor water level cannot be measured, it is required to provide an estimating means using alternative parameters.

よって、原子炉施設の事故時において、運転員は上述のように原子炉水位が測定できなくなった場合や、原子炉内への注水量に対して原子炉水位指示の上昇量が小さく原子炉圧力容器から水が漏れている疑いがある場合等には、原子炉水位以外の原子炉圧力、注水量、注水温度等のパラメータから原子炉水位の推定を行う。しかし、緊急性を要する事故対応時おいて、運転員が時々刻々と変化する各パラメータを収集し手計算により水位を算出することは困難を伴う。   Therefore, in the event of an accident at the reactor facility, the operator may not be able to measure the reactor water level as described above, or the reactor water level indication may not increase as much as the amount of water injected into the reactor. When there is a suspicion that water is leaking from the vessel, the reactor water level is estimated from parameters other than the reactor water level, such as reactor pressure, water injection amount, and water injection temperature. However, it is difficult for the operator to collect the parameters that change every moment and calculate the water level manually by hand in response to an emergency requiring an emergency.

本発明の実施形態はこのような事情を考慮してなされたものであり、水位計による水位測定とは別に、原子炉水位の監視を可能とすることを目的とする。   An embodiment of the present invention has been made in consideration of such circumstances, and has an object to enable monitoring of a reactor water level separately from water level measurement by a water level gauge.

上述の目的を達成するため、本実施形態は、炉心を収納して注水が流入し蒸気が発生する原子炉圧力容器に設けられた圧力計による圧力測定値、前記注水を導く注水配管に設けられた温度計による温度測定値および流量計による体積流量測定値それぞれの出力に基づいて、前記原子炉圧力容器の冷却水の水位の時間的変化を推定する原子炉圧力容器内水位推定装置であって、原子炉停止系動作信号を受けて以降の時間について前記炉心から発生する崩壊熱Qを決定する崩壊熱決定部と、前記注水の温度の測定値に基づいて前記注水の密度ρinおよびエンタルピHinを決定する注水状態量決定部と、前記注水の体積流量測定値Ginと前記密度ρinに基づいて注水質量流量Winを決定する注水流量決定部と、前記圧力計の測定値に基づいて前記原子炉圧力容器内の液相における保有水の飽和水エンタルピHf、飽和水密度ρs、および蒸発潜熱Hfgを決定する飽和状態量決定部と、前記崩壊熱Qと、前記注水質量流量Winと、前記エンタルピHinと、前記飽和水エンタルピHfおよび前記蒸発潜熱Hfgとから蒸気発生量Wgを算出する蒸気発生量算出部と、前記注水質量流量Win、前記蒸気発生量Wgおよび前記飽和水密度ρsとに基づいて前記原子炉圧力容器内の推定水位を決定する水位決定部と、を備えることを特徴とする。
In order to achieve the above-mentioned object, the present embodiment is provided in a water injection pipe for guiding a water pressure measured by a pressure gauge provided in a reactor pressure vessel in which a reactor core is housed and water is injected and steam is generated. A reactor pressure vessel water level estimating device for estimating a temporal change in the water level of the cooling water of the reactor pressure vessel based on outputs of a temperature measurement value by a thermometer and a volume flow measurement value by a flow meter. A decay heat determining unit that determines a decay heat Q generated from the core for a time after receiving the reactor stop system operation signal, and a density ρin and an enthalpy Hin of the water injection based on a measured value of the temperature of the water injection. a water injection state quantity determination unit determining a water injection flow rate determining unit for determining the injection mass flow Win based on the density ρin and the injection of the volume flow measurement Gin, based on a measured value of the pressure gauge The saturated water enthalpy Hf, the saturated water density ρs, and the latent heat of vaporization Hfg of the retained water in the liquid phase in the reactor pressure vessel, the decay heat Q, the injection mass flow rate Win, , said enthalpy Hin, the steam generation amount calculating unit that calculates the saturated water enthalpy Hf and the latent heat of vaporization Hfg Toka et steam generation amount Wg, the injection mass flow Win, the steam generation amount Wg and the saturated water density ρs And a water level determining unit that determines an estimated water level in the reactor pressure vessel based on the above.

また、本実施形態は、炉心を収納して注水が流入し蒸気が発生する原子炉圧力容器に設けられた圧力計による圧力測定値、前記注水を導く注水配管に設けられた温度計による温度測定値および流量計による体積流量測定値それぞれの出力に基づいて、前記原子炉圧力容器内の冷却水の水位の時間的変化を推定する原子炉圧力容器内水位推定方法であって、
崩壊熱決定部が、原子炉停止系動作信号を受けて以降の時間について前記炉心から発生する崩壊熱Qを決定する崩壊熱決定ステップと、注水状態量決定部が、前記注水の温度の測定値に基づいて前記注水の密度ρinおよびエンタルピHinを決定し、注水流量決定部が、前記注水の体積流量測定値Ginと前記密度ρinに基づいて注水質量流量Winを決定する注水状態量決定ステップと、飽和状態量決定部が、前記圧力計の測定値に基づいて前記原子炉圧力容器内の液相における保有水の飽和水エンタルピHf、飽和水密度ρs、および蒸発潜熱Hfgを決定する飽和状態量決定ステップと、蒸気発生量算出部が、前記崩壊熱Qと、前記注水質量流量Winと、前記エンタルピHinと、前記飽和水エンタルピHfおよび前記蒸発潜熱Hfgとから蒸気発生量Wgを算出する蒸気発生量算出ステップと、水位決定部が、前記注水質量流量Win、前記蒸気発生量Wgおよび前記飽和水密度ρsとに基づいて前記原子炉圧力容器内の推定水位を決定する水位決定ステップと、を有することを特徴とする。
Further, in the present embodiment, a pressure measurement value provided by a pressure gauge provided in a reactor pressure vessel in which a reactor core is housed and water is injected and steam is generated, and a temperature measurement is provided by a thermometer provided in a water injection pipe for guiding the water injection. A reactor pressure vessel water level estimation method for estimating a temporal change in the water level of the cooling water in the reactor pressure vessel based on the output of the measured value and the volume flow measurement value by the flow meter,
Decay heat determination unit, and the decay heat determining step of determining a decay heat Q generated from the core for the time after receiving the reactor shutdown system operation signal, injection state amount determining unit is a measurement of the temperature of the water injection wherein determining the density ρin and enthalpy Hin water injection, the water injection flow rate determining section, and a water injection state amount determining step of determining the injection mass flow Win based on the water injection volumetric flow measurements Gin and the density ρin based on, A saturated state quantity determining unit that determines a saturated water enthalpy Hf, a saturated water density ρs, and a latent heat of vaporization Hfg of the retained water in a liquid phase in the reactor pressure vessel based on the measurement value of the pressure gauge. Step, the steam generation amount calculation unit calculates the decay heat Q, the water injection mass flow rate Win, the enthalpy Hin, the saturated water enthalpy Hf, and the evaporation latent heat H. a steam generation amount calculating step of calculating the g Toka et steam generation amount Wg, the water level determination unit, the injection mass flow Win, the steam generation amount Wg and the saturated water density ρs and the reactor pressure vessel on the basis of the And a water level determining step of determining the estimated water level.

本発明の実施形態によれば、水位計による水位測定とは別に、原子炉水位の監視を可能とすることが可能となる。   According to the embodiment of the present invention, it becomes possible to monitor the reactor water level separately from the water level measurement by the water level meter.

第1の実施形態に係る原子炉圧力容器内水位推定装置を含む原子炉圧力容器まわりの構成を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a configuration around a reactor pressure vessel including a reactor pressure vessel water level estimation device according to a first embodiment. 第1の実施形態に係る原子炉圧力容器内水位推定装置の構成を示すブロック図である。It is a block diagram showing composition of a reactor pressure vessel water level estimating device concerning a 1st embodiment. 第1の実施形態に係る原子炉圧力容器内水位推定装置の崩壊熱決定部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a decay heat determination unit of the reactor pressure vessel water level estimation device according to the first embodiment. 第1の実施形態に係る原子炉圧力容器内水位推定装置の注水状態量決定部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a water injection state quantity determination unit of the reactor pressure vessel water level estimation device according to the first embodiment. 第1の実施形態に係る原子炉圧力容器内水位推定装置の飽和水状態決定部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a saturated water state determination unit of the reactor pressure vessel water level estimation device according to the first embodiment. 第1の実施形態に係る原子炉圧力容器内水位推定装置の蒸気発生量算出部および水位決定部の内容を示すブロック図である。It is a block diagram showing contents of a steam generation amount calculation part and a water level determination part of a reactor pressure vessel water level estimation device according to a first embodiment. 原子炉水位の計測値と推定値のトレンド表示の画面表示の例を示す図である。It is a figure showing an example of a screen display of a trend display of a measured value and an estimated value of a reactor water level. 原子炉水位の計測値に基づく推定値の補正の方法を説明するための概念的なグラフである。5 is a conceptual graph for explaining a method of correcting an estimated value based on a measured value of a reactor water level. 第1の実施形態に係る原子炉圧力容器内水位推定方法の手順を示すフロー図である。FIG. 3 is a flowchart illustrating a procedure of a method for estimating a water level in a reactor pressure vessel according to the first embodiment. 第2の実施形態に係る原子炉圧力容器内水位推定装置の構成を示すブロック図である。It is a block diagram showing composition of a reactor pressure vessel water level estimating device concerning a 2nd embodiment. 第3の実施形態に係る原子炉圧力容器内水位推定装置の構成を示すブロック図である。It is a block diagram showing composition of a reactor pressure vessel water level estimating device concerning a 3rd embodiment.

以下、図面を参照して、本発明の実施形態に係る原子炉圧力容器内水位推定装置および原子炉圧力容器内水位推定方法について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。   Hereinafter, a water level estimation device and a method for estimating a water level in a reactor pressure vessel according to an embodiment of the present invention will be described with reference to the drawings. Here, the same or similar parts are denoted by the same reference numerals, and redundant description will be omitted.

[第1の実施形態]
以下、BWRの原子炉施設を例にとって、本実施形態を説明する。図1は、第1の実施形態に係る原子炉圧力容器内水位推定装置を含む原子炉圧力容器まわりの構成を示す縦断面図である。炉心1を収納する原子炉圧力容器2が設けられ、原子炉圧力容器2の外側には、原子炉圧力容器2を収納する原子炉格納容器3が設けられている。
[First Embodiment]
Hereinafter, the present embodiment will be described using a BWR reactor facility as an example. FIG. 1 is a longitudinal sectional view showing a configuration around a reactor pressure vessel including a reactor pressure vessel water level estimation device according to the first embodiment. A reactor pressure vessel 2 containing the reactor core 1 is provided, and a reactor containment vessel 3 containing the reactor pressure vessel 2 is provided outside the reactor pressure vessel 2.

原子炉圧力容器2の内部には、冷却材5が内包されている。冷却材5は、液相部5aと気相部5bに分かれている。原子炉圧力容器2内の下部に液相部5aがあり、また、原子炉圧力容器2内の上部に気相部5bがある。   A coolant 5 is contained in the reactor pressure vessel 2. The coolant 5 is divided into a liquid phase part 5a and a gas phase part 5b. A liquid phase portion 5a is provided in a lower portion of the reactor pressure vessel 2, and a gas phase portion 5b is provided in an upper portion of the reactor pressure vessel 2.

液相部5aと気相部5bの界面である冷却材5の液面5cは、通常運転中は一定に保たれている。この液面5cのレベル、すなわち水位を監視するために、水位計4が設けられている。水位計4は、通常、差圧式である。原子炉圧力容器2内の液相部5aと水位計4は、原子炉格納容器3を気密に貫通する導圧管により接続されている。同様に、原子炉圧力容器2内の気相部5bと水位計4は、原子炉格納容器3を気密に貫通する導圧管により接続されている。気相部5bからの導圧管の原子炉格納容器3内の部分には凝縮槽4aが設けられており、導圧管内の凝縮水の高さを一定に保っている。水位計4は、原子炉格納容器3の外側の図示しない原子炉建屋内に設けられている。   The liquid surface 5c of the coolant 5 at the interface between the liquid phase portion 5a and the gas phase portion 5b is kept constant during normal operation. A water level gauge 4 is provided to monitor the level of the liquid level 5c, that is, the water level. The water level gauge 4 is usually of a differential pressure type. The liquid phase portion 5a in the reactor pressure vessel 2 and the water level gauge 4 are connected by a pressure guiding tube that penetrates the reactor containment vessel 3 in an airtight manner. Similarly, the gas phase portion 5 b in the reactor pressure vessel 2 and the water level gauge 4 are connected by a pressure guiding tube that passes through the containment vessel 3 in an airtight manner. A condensing tank 4a is provided in a portion of the pressure guiding tube from the gas phase part 5b inside the reactor containment vessel 3 to keep the height of the condensed water in the pressure guiding tube constant. The water level gauge 4 is provided inside a reactor building (not shown) outside the reactor containment vessel 3.

原子炉圧力容器2の気相部5bの圧力を測定するために、圧力計6が設けられている。圧力計6は、原子炉格納容器3の外側であって原子炉建屋内に設けられている。原子炉圧力容器2と圧力計6とは、原子炉格納容器3を気密に貫通する導圧管で接続されている。   A pressure gauge 6 is provided to measure the pressure of the gas phase portion 5b of the reactor pressure vessel 2. The pressure gauge 6 is provided outside the containment vessel 3 and inside the reactor building. The reactor pressure vessel 2 and the pressure gauge 6 are connected by a pressure guiding tube that penetrates the containment vessel 3 in an airtight manner.

原子炉圧力容器2には、注水管7が接続されている。原子炉圧力容器2内の冷却材が原子炉格納容器3内に放出されるような重大事故時には、たとえば原子炉建屋外の貯蔵タンク(図示せず)に貯蔵されていた冷却水が、注水配管7を経由して、原子炉圧力容器2内に、注入される。注水配管7には、たとえばフローノズルあるいはベンチュリなどの流量計測要素8aが設けられ、その差圧により流量計8が流量信号を出力する。また、注水配管7には、注水配管7内の冷却水の温度を計測するための温度計9が設けられている。流量計8および温度計9は原子炉格納容器3の外側に設けられている。   A water injection pipe 7 is connected to the reactor pressure vessel 2. In the event of a serious accident in which the coolant in the reactor pressure vessel 2 is discharged into the containment vessel 3, for example, the cooling water stored in a storage tank (not shown) outside the reactor building is replaced with a water injection pipe. The fuel is injected into the reactor pressure vessel 2 via. The water injection pipe 7 is provided with a flow rate measuring element 8a such as a flow nozzle or a venturi, and the flow meter 8 outputs a flow rate signal based on the differential pressure. Further, the water injection pipe 7 is provided with a thermometer 9 for measuring the temperature of the cooling water in the water injection pipe 7. The flow meter 8 and the thermometer 9 are provided outside the containment vessel 3.

また、原子炉圧力容器2には、蒸気配管10が設けられている。重大事故時には、たとえば、冷却水を圧送するポンプ(図示せず)の駆動用の蒸気タービン(図示せず)に供給する蒸気の経路となる。   The reactor pressure vessel 2 is provided with a steam pipe 10. At the time of a serious accident, for example, it becomes a steam path to be supplied to a steam turbine (not shown) for driving a pump (not shown) for pumping cooling water.

なお、原子炉圧力容器2には、図示しない冷却水供給用の配管が接続されており、通常の運転中には、原子炉圧力容器2内に冷却水を供給する経路となっている。冷却水供給用の配管は、給水管である。重大事故時には、この通常の冷却水供給用の配管からの冷却水の供給は停止される。   A pipe for supplying cooling water (not shown) is connected to the reactor pressure vessel 2, and serves as a path for supplying cooling water into the reactor pressure vessel 2 during normal operation. The piping for supplying the cooling water is a water supply pipe. At the time of a serious accident, the supply of the cooling water from the normal cooling water supply pipe is stopped.

また、原子炉圧力容器2には、図示しない冷却水流出用の配管が接続されており、通常の運転中には、原子炉圧力容器2内から冷却水が流出する経路となっている。冷却水流出用の配管は、BWRの場合は主蒸気管である。重大事故時には、この通常の冷却水流出用の配管からの冷却水の流出は停止される。   Further, a piping for outflow of cooling water (not shown) is connected to the reactor pressure vessel 2, and serves as a path through which cooling water flows out of the reactor pressure vessel 2 during normal operation. The piping for cooling water outflow is the main steam pipe in the case of BWR. At the time of a serious accident, the outflow of the cooling water from the ordinary cooling water outflow pipe is stopped.

したがって、事故時の状態においては、以上述べた通常の冷却水供給用の配管からの冷却水の供給、および通常の冷却水流出用の配管からの冷却水の流出は、考慮しなくてよい。   Therefore, in the state at the time of the accident, the supply of the cooling water from the normal cooling water supply pipe and the outflow of the cooling water from the normal cooling water outflow pipe need not be considered.

原子炉圧力容器内水位推定装置20は、圧力計6、流量計8、および温度計9からの出力を受け入れて、原子炉圧力容器2内の水位を推定する。また、原子炉圧力容器内水位推定装置20は、水位の推定結果を表示装置30に出力し、表示装置30は推定結果を表示する。   The reactor pressure vessel water level estimating device 20 receives the outputs from the pressure gauge 6, the flow meter 8, and the thermometer 9 and estimates the water level in the reactor pressure vessel 2. Further, the reactor pressure vessel water level estimation device 20 outputs the estimation result of the water level to the display device 30, and the display device 30 displays the estimation result.

図2は、第1の実施形態に係る原子炉圧力容器内水位推定装置20の構成を示すブロック図である。原子炉圧力容器内水位推定装置20は、崩壊熱決定部22、注水状態量決定部23、注水流量決定部24、飽和状態量決定部25、水位記憶部26、蒸気発生量算出部27、および水位決定部28を有する。   FIG. 2 is a block diagram showing the configuration of the reactor pressure vessel water level estimation device 20 according to the first embodiment. The reactor pressure vessel water level estimation device 20 includes a decay heat determination unit 22, a water injection state amount determination unit 23, a water injection flow rate determination unit 24, a saturation state amount determination unit 25, a water level storage unit 26, a steam generation amount calculation unit 27, and It has a water level determination unit 28.

図3は、原子炉圧力容器内水位推定装置20の崩壊熱決定部22の構成を示すブロック図である。崩壊熱決定部22は、クロック22aを内蔵し、図示しない原子炉停止系の動作信号である原子炉停止信号が発せられたことを意味する信号を受けて、原子炉が停止した時点からの時間をカウントする。また、崩壊熱決定部22は、原子炉停止後の時間と崩壊熱Qとを対応させる崩壊熱テーブル22bを有する。このように、崩壊熱決定部22は、原子炉停止信号を受けた後の、炉心燃料から発生される崩壊熱Qの値を決定する。   FIG. 3 is a block diagram showing a configuration of the decay heat determining unit 22 of the reactor pressure vessel water level estimation device 20. The decay heat determination unit 22 has a built-in clock 22a, and receives a signal indicating that a reactor stop signal, which is an operation signal of a reactor stop system (not shown), has been issued, and the time from the point when the reactor was shut down. Count. Further, the decay heat determination unit 22 has a decay heat table 22b that associates the time after the reactor shutdown with the decay heat Q. As described above, the decay heat determining unit 22 determines the value of the decay heat Q generated from the core fuel after receiving the reactor shutdown signal.

なお、原子炉停止系の動作信号である原子炉停止信号が発せられたことを意味する信号は、原子炉停止系の信号である必要はない。また、クロック22aをたとえば運転員が手動でスタートさせることでもよい。   The signal indicating that the reactor stop signal, which is the operation signal of the reactor stop system, has been issued, does not need to be the signal of the reactor stop system. Further, the clock 22a may be manually started by an operator, for example.

あるいは、原子炉停止後、相当の時間が経過している時点で、原子炉圧力容器内水位推定装置20を起動させようとする場合に、その時点の原子炉停止後の経過時間を入力してもよい。この場合は、それまでの原子炉停止後の過渡事象により原子炉圧力容器2内の冷却水のインベントリが通常運転状態から変化していることが考えられるが、この変化分を補正することにより、その後の水位を推定できる。この場合、代表的な事象について初期のインベントリの変化分を予め解析等により評価しておき原子炉圧力容器内水位推定装置20内のメモリに保存しておき、該当する事象についての値を取り出して補正に用いることができる。   Alternatively, when the water level estimating device 20 in the reactor pressure vessel is to be activated at a point in time when a considerable time has elapsed after the reactor shutdown, the elapsed time after the reactor shutdown at that time is input. Is also good. In this case, it is conceivable that the inventory of the cooling water in the reactor pressure vessel 2 has changed from the normal operation state due to the transient event after the reactor shutdown up to that time. By correcting this change, The subsequent water level can be estimated. In this case, the initial inventory change for the representative event is evaluated in advance by analysis or the like, and stored in the memory of the reactor pressure vessel water level estimating apparatus 20, and the value for the corresponding event is extracted. It can be used for correction.

図4は、原子炉圧力容器内水位推定装置20の注水状態量決定部23の構成を示すブロック図である。注水状態量決定部23は、圧縮水である注水の温度Tinの値に対する圧縮水の密度ρinの値を対応させる圧縮水密度テーブル23aと、温度の値に対する圧縮水のエンタルピHinの値を対応させる圧縮水エンタルピテーブル23bを有している。   FIG. 4 is a block diagram showing a configuration of the water injection state quantity determination unit 23 of the reactor pressure vessel water level estimation device 20. The water injection state quantity determination unit 23 associates the value of the compressed water density ρin with the value of the compressed water density ρin with respect to the value of the temperature Tin of the compressed water, and the value of the enthalpy Hin of the compressed water with respect to the temperature value. It has a compressed water enthalpy table 23b.

圧縮水については、圧力の影響は小さいので、たとえば、注水配管7内の冷却水を圧送するポンプ(図示せず)の出口側の圧力の値の場合の圧縮水の密度、エンタルピとしても、誤差は大きくない。注水状態量決定部23は、注水配管7に設けられた温度計9からの温度信号を受けて、注水の温度Tinに対して、圧縮水密度テーブル23aに基づいて注水配管7の内部を流れる冷却水の密度ρinを決定し、圧縮水エンタルピテーブル23bに基づいて注水配管7の内部を流れる冷却水のエンタルピHinを決定する。   Since the influence of the pressure on the compressed water is small, for example, the density and the enthalpy of the compressed water in the case of the pressure value on the outlet side of a pump (not shown) for pumping the cooling water in the water injection pipe 7 may be different. Is not big. Upon receiving a temperature signal from the thermometer 9 provided in the water injection pipe 7, the water injection state quantity determination unit 23 cools the inside of the water injection pipe 7 with respect to the water injection temperature Tin based on the compressed water density table 23a. The density ρin of the water is determined, and the enthalpy Hin of the cooling water flowing inside the water injection pipe 7 is determined based on the compressed water enthalpy table 23b.

注水流量決定部24は、注水配管7内の流量の計測用に設けられた流量計8からの流量信号を受けて、次の式(1)のように注水体積流量Ginを注水質量流量Winに変換する。注水質量流量Winへの変換は、注水状態量決定部23で決定された水の密度ρinを用いる。
Win=ρin・Gin …(1)
The water injection flow rate determination unit 24 receives the flow signal from the flow meter 8 provided for measuring the flow rate in the water injection pipe 7, and converts the water injection volume flow rate Gin into the water injection mass flow rate Win as in the following equation (1). Convert. The conversion to the water injection mass flow rate Win uses the water density ρin determined by the water injection state quantity determination unit 23.
Win = ρin · Gin (1)

図5は、原子炉圧力容器内水位推定装置20の飽和状態量決定部25の構成を示すブロック図である。飽和状態量決定部25は、飽和水密度テーブル25a、飽和水エンタルピテーブル25b、および飽和水蒸発潜熱テーブル25cを有する。   FIG. 5 is a block diagram showing the configuration of the saturated state quantity determination unit 25 of the reactor pressure vessel water level estimation device 20. The saturated state quantity determination unit 25 has a saturated water density table 25a, a saturated water enthalpy table 25b, and a saturated water evaporation latent heat table 25c.

飽和水密度テーブル25aは、飽和圧力Psに対する飽和水の密度ρsを対応させる。飽和水エンタルピテーブル25bは、飽和圧力Psに対する飽和水の飽和水エンタルピHfを対応させる。また、飽和水蒸発潜熱テーブル25cは、飽和圧力Psに対する蒸発潜熱Hfgを対応させる。   The saturated water density table 25a associates the saturated water density ρs with the saturation pressure Ps. The saturated water enthalpy table 25b associates the saturated water enthalpy Hf with the saturated pressure Ps. Further, the saturated water evaporation latent heat table 25c associates the evaporation latent heat Hfg with the saturation pressure Ps.

図6は、原子炉圧力容器内水位推定装置20の蒸気発生量算出部27および水位決定部28の内容を示すブロック図である。   FIG. 6 is a block diagram showing the contents of the steam generation amount calculation unit 27 and the water level determination unit 28 of the reactor pressure vessel water level estimation device 20.

蒸気発生量算出部27は、崩壊熱決定部22からの崩壊熱Q、注水状態量決定部23からの注水の密度ρinおよびエンタルピHin、注水流量決定部24からの注水質量流量Win、および飽和状態量決定部25からの飽和水の密度ρs、飽和水エンタルピHfおよび蒸発潜熱Hfgを入力として受け入れる。   The steam generation amount calculation unit 27 includes the decay heat Q from the decay heat determination unit 22, the density ρin and enthalpy Hin of water injection from the water injection state amount determination unit 23, the water injection mass flow rate Win from the water injection flow rate determination unit 24, and the saturated state. The density ρs of saturated water, the enthalpy of saturated water Hf, and the latent heat of vaporization Hfg from the amount determination unit 25 are received as inputs.

蒸気発生量算出部27は、これらの入力を用いて、次の式(2)に基づいて蒸気発生量Wgを算出する。
Wg=[Q−Win(Hf−Hin)]/Hfg …(2)
Using these inputs, the steam generation amount calculation unit 27 calculates the steam generation amount Wg based on the following equation (2).
Wg = [Q-Win (Hf-Hin)] / Hfg (2)

式(2)は、原子炉圧力容器2内に保有されている冷却水が、流入する注水と順次に完全混合するというモデルを想定した式となっている。厳密に言えば、原子炉圧力容器2内は、注水が流入する近辺はサブクールされた状態であり、完全混合とは仮想的な状態である。しかしながら、まずは、単純なモデルによって水位の変化を監視できることが重要である。また、後述する補正を行うことも含めて、その精度を向上させる手段は存在することから、単純なモデルを用いている。なお、サブクール領域と蒸発領域の2点モデルを用いることもできる。   Equation (2) is an equation assuming a model in which the cooling water held in the reactor pressure vessel 2 sequentially and completely mixes with the incoming water injection. Strictly speaking, the inside of the reactor pressure vessel 2 is in a subcooled state near the flow of the injected water, and the complete mixing is a virtual state. However, first of all, it is important to be able to monitor changes in water level with a simple model. In addition, a simple model is used because there is a means for improving the accuracy, including performing the correction described below. Note that a two-point model of a subcool region and an evaporation region can also be used.

水位決定部28は、水位算出部28a、体積水位換算テーブル28b、および補正部28cを有する。体積水位換算テーブル28bは、原子炉圧力容器2内の空間について、下側から水を充填する場合の、水に占有された体積と水位とを対応づけるテーブルである。なお、体積は、想定される最低レベルを基準としてそれ以上の高さについての体積でもよい。あるいは、運転基準水位を基準として、この水位より低い場合の体積を負の体積、高い場合の体積を正の体積としてもよい。   The water level determination unit 28 includes a water level calculation unit 28a, a volume water level conversion table 28b, and a correction unit 28c. The volume water level conversion table 28b is a table for associating the volume occupied by water with the water level when filling the space in the reactor pressure vessel 2 with water from below. In addition, the volume may be a volume for a height higher than the assumed minimum level. Alternatively, based on the operation reference water level, the volume when the water level is lower than this water level may be set as a negative volume, and the volume when the water level is higher than this water level may be set as a positive volume.

水位決定部28は、蒸気発生量算出部27からの蒸気発生量Wg、注水流量決定部24からの注水質量流量Win、および飽和状態量決定部25からの飽和水密度ρsを入力として受け入れる。水位算出部28aは、次の式(3)および式(4)に基づいて、原子炉圧力容器2内の飽和水の保有質量Mの時間Δt間の変化量を算出する。
dM/dt=Win−Wg …(3)
ΔM=(dM/dt)×Δt …(4)
The water level determination unit 28 receives as input the steam generation amount Wg from the steam generation amount calculation unit 27, the water injection mass flow rate Win from the water injection flow rate determination unit 24, and the saturated water density ρs from the saturation state amount determination unit 25. The water level calculator 28a calculates the amount of change of the mass M of the saturated water in the reactor pressure vessel 2 during the time Δt based on the following equations (3) and (4).
dM / dt = Win-Wg (3)
ΔM = (dM / dt) × Δt (4)

次に、水位算出部28aは、次の式(5)により飽和水の保有質量の変化分ΔMを保有体積の変化分に変換し、前回の飽和水の保有体積Vnに加えて、Δt経過後の新たな飽和水の保有体積Vn+1を算出する。
n+1=V+ΔM/ρs …(5)
Next, the water level calculation unit 28a converts the change amount ΔM of the retained mass of the saturated water into a change amount of the retained volume by the following equation (5), adds it to the previous retained volume Vn of the saturated water, and after Δt has elapsed. Of the new saturated water Vn + 1 is calculated.
V n + 1 = V n + ΔM / ρs (5)

次に、水位算出部28aは、次の式(6)により、すなわち、体積水位換算テーブル28bに基づいて、原子炉圧力容器2内の体積Vn+1に対応する原子炉圧力容器2内の水位の推定値を決定する。
L=L(V) …(6)
Next, the water level calculation unit 28a estimates the water level in the reactor pressure vessel 2 corresponding to the volume Vn + 1 in the reactor pressure vessel 2 by the following equation (6), that is, based on the volume water level conversion table 28b. Determine the value.
L = L (V) (6)

このように、本実施形態による原子炉圧力容器内水位推定装置20は、水位計4による水位測定とは独立して、原子炉圧力容器2内の水位を推定することができる。   As described above, the water level estimation device 20 in the reactor pressure vessel according to the present embodiment can estimate the water level in the reactor pressure vessel 2 independently of the water level measurement by the water level gauge 4.

図7は、原子炉水位の計測値と推定値のトレンド表示の画面表示の例を示す図である。表示装置30は、このようなトレンドを表示する。図7の表示の実線で示すのが推定値である。また、水位計4が健全で、水位信号を発信できる場合は、水位計4の信号に基づく水位計測値も、破線で示すように併せて表示することにより、水位計4の状態に異常が発生していないことを確認することができる。   FIG. 7 is a diagram showing an example of a screen display of a trend display of measured values and estimated values of the reactor water level. The display device 30 displays such a trend. The estimated value is indicated by a solid line in the display of FIG. In addition, when the water level gauge 4 is sound and can transmit a water level signal, an abnormality occurs in the state of the water level gauge 4 by displaying the water level measurement value based on the signal of the water level gauge 4 as shown by a broken line. You can be sure that you do not.

補正部28c(図6)は、水位決定部28の推定水位の決定結果と、水位記憶部26からの水位計4の測定結果のトレンドとを受け入れる。補正部28cは、外部から補正指令を受けた場合に、補正を行う。   The correction unit 28 c (FIG. 6) receives the determination result of the estimated water level by the water level determination unit 28 and the trend of the measurement result of the water level meter 4 from the water level storage unit 26. The correction unit 28c performs correction when receiving a correction command from outside.

図8は、原子炉水位の計測値に基づく推定値の補正の方法を説明するための概念的なグラフである。図8において、破線で示す曲線Aは、水位記憶部26からの水位計4の測定結果である。また、実線で示す曲線Bは、水位決定部28の推定水位の決定結果である。今、曲線Aにおいて特徴的な変化をする箇所が、A1およびA2の2箇所あるとする。同様に、曲線Bにおいて特徴的な変化をする箇所で、曲線AのA1およびA2に対応すると考えられる箇所が、B1およびB2の2箇所あるとする。このような個所は、原子炉圧力容器2内の断面積が急に変化する高さに対応している。   FIG. 8 is a conceptual graph for explaining a method of correcting the estimated value based on the measured value of the reactor water level. In FIG. 8, a curve A indicated by a broken line is a measurement result of the water level meter 4 from the water level storage unit 26. A curve B indicated by a solid line is a result of determining the estimated water level by the water level determination unit 28. Now, it is assumed that there are two places where the characteristic change occurs on the curve A, that is, A1 and A2. Similarly, it is assumed that there are two places, B1 and B2, which are considered to correspond to A1 and A2 of the curve A in the places where the characteristic changes in the curve B. Such a location corresponds to a height at which the cross-sectional area in the reactor pressure vessel 2 changes suddenly.

図8に示すように、それぞれの箇所における時間と水位をカッコ内の組合せで表現して、A1(tA1、LA1)、A2(tA2、LA2)、B1(tB1、LB1)、B2(tB2、LB2)であるとする。2点鎖線で示された点A1から点A2に向かうベクトルをベクトルAA、1点鎖線で示された点B1から点B2に向かうベクトルをベクトルBBとする。   As shown in FIG. 8, the time and water level at each location are represented by combinations in parentheses, and A1 (tA1, LA1), A2 (tA2, LA2), B1 (tB1, LB1), B2 (tB2, LB2). ). A vector from the point A1 indicated by the two-dot chain line to the point A2 is referred to as a vector AA, and a vector from the point B1 indicated by the chain line to the point B2 is referred to as a vector BB.

ベクトルAAとベクトルBBの方向と大きさが一致する場合、すなわち一方を平行移動して他方に重なる場合は、時間および水位が、それぞれずれているだけの場合である。この場合は、それぞれをシフトするように補正すれば、曲線Aと曲線Bは一致することになる。   When the directions and magnitudes of the vector AA and the vector BB match, that is, when one moves parallel and overlaps the other, it is a case where the time and the water level are only shifted from each other. In this case, the curve A and the curve B will coincide if they are corrected so as to be shifted.

両ベクトルの横軸すなわち時間軸の成分のみが異なり、ベクトルBBの横軸成分の方がベクトルAAの横軸成分より大きな場合は、推定水位の変化は、実水位の変化の傾向に合致しているが時間的に間延びした変化となっていることになる。この場合は、たとえば、体積水位換算テーブル28bの曲線を維持して、横軸の体積Vを小さな値とするか、縦軸を大きな値とするかなどにより、補正することができる。   If only the horizontal axis, that is, the time axis component of both vectors is different, and the horizontal axis component of the vector BB is larger than the horizontal axis component of the vector AA, the change in the estimated water level matches the tendency of the change in the actual water level. However, the change has been delayed over time. In this case, for example, while the curve of the volume water level conversion table 28b is maintained, the correction can be made by setting the horizontal axis V to a small value or the vertical axis to a large value.

両ベクトルの横軸すなわち時間軸の成分のみが異なる場合も、同様に、たとえば、体積水位換算テーブル28bの曲線を維持して、縦軸のスケールを変更することにより補正することができる。   Even when only the components of the horizontal axis, that is, the time axis of the two vectors are different, the correction can be made by changing the scale of the vertical axis while maintaining the curve of the volume water level conversion table 28b, for example.

以上のそれぞれのケースの組合せの場合は、スケールの変更とシフトを組み合わせることにより、補正することができる。   In the case of a combination of the above cases, correction can be made by combining a change in scale and a shift.

また、原子炉施設の事故時に限らず、通常の停止時において、水位計4の水位計測結果と原子炉圧力容器内水位推定装置20による水位推定結果とを表示しながら比較することにより、原子炉圧力容器内水位推定装置20の推定精度がどの程度であるかを把握することができる。あるいは、ずれが大きい場合に、その原因を把握して対策することにより、原子炉圧力容器内水位推定装置20の推定精度の向上を図ることができる。   In addition, not only at the time of an accident of the reactor facility, but also at the time of normal shutdown, the water level measurement result of the water level gauge 4 and the water level estimation result by the water level estimation device 20 in the reactor pressure vessel are displayed and compared with each other. It is possible to grasp the degree of estimation accuracy of the water level estimation device 20 in the pressure vessel. Alternatively, when the deviation is large, the cause of the deviation is grasped and countermeasures are taken, whereby the estimation accuracy of the reactor pressure vessel water level estimation device 20 can be improved.

図9は、第1の実施形態に係る原子炉圧力容器内水位推定方法の手順を示すフロー図である。まず、原子炉が停止した旨の信号が開始後、終了判定となるまで、Δtの時間間隔で以下のステップを繰り返す。   FIG. 9 is a flowchart showing the procedure of the method for estimating the water level in the reactor pressure vessel according to the first embodiment. First, after the signal indicating that the reactor has stopped is started, the following steps are repeated at time intervals of Δt until the termination is determined.

まず、崩壊熱決定部22が、時刻カウントを開始(ステップS01)し、その時点tの崩壊熱を決定する(ステップS02)。次に、温度計9からの注水の温度Tinの信号に基づいて、注水状態量決定部23が、注水の密度ρinおよび注水のエンタルピHinを決定する(ステップS03)。次に、注水体積流量Ginの計測値に基づいて、注水流量決定部24が注水質量流量Winを決定する(ステップS04)。また、飽和圧力Psに基づいて、飽和状態量決定部25が、飽和水の密度ρs、飽和水エンタルピHf、および蒸発潜熱Hfgを決定する(ステップS05)。   First, the decay heat determination unit 22 starts time counting (step S01), and determines the decay heat at that time point t (step S02). Next, based on the signal of the water temperature Tin from the thermometer 9, the water injection state quantity determining unit 23 determines the density ρin of the water injection and the enthalpy Hin of the water injection (Step S03). Next, the water injection flow rate determining unit 24 determines the water injection mass flow rate Win based on the measured value of the water injection volume flow rate Gin (step S04). Further, based on the saturation pressure Ps, the saturated state amount determination unit 25 determines the density ρs of the saturated water, the enthalpy of saturated water Hf, and the latent heat of evaporation Hfg (step S05).

ここで、ステップS04はステップS03の後である必要があるが、これらと、ステップS02と、ステップS05の3者間の互いの順序は問わない。   Here, step S04 needs to be after step S03, but the order of these, step S02, and step S05 among the three parties does not matter.

次に、蒸気発生量算出部27の水位算出部28aが、崩壊熱Q、注水質量流量Win、エンタルピHin、飽和水エンタルピHfおよび蒸発潜熱Hfgに基づいて、蒸気発生量Wgを算出する(ステップS06)。   Next, the water level calculation unit 28a of the steam generation amount calculation unit 27 calculates the steam generation amount Wg based on the decay heat Q, the water injection mass flow rate Win, the enthalpy Hin, the saturated water enthalpy Hf, and the latent heat of evaporation Hfg (step S06). ).

次に、水位決定部28が、蒸気発生量算出部27から蒸気発生量Wgを、注水流量決定部24から注水質量流量Winを、また飽和状態量決定部25から飽和水密度ρsを受け入れて、推定水位を決定する(ステップS20)。   Next, the water level determination unit 28 receives the steam generation amount Wg from the steam generation amount calculation unit 27, the water injection mass flow rate Win from the water injection flow rate determination unit 24, and the saturated water density ρs from the saturation state amount determination unit 25, The estimated water level is determined (Step S20).

具体的には、まず、注水質量流量Winおよび蒸気発生量Wgに基づいて、時間間隔Δtでの原子炉圧力容器2内の質量変化量ΔMを算出する(ステップS07)。これに基づいて原子炉圧力容器2内の水の体積Vを算出し(ステップS08)、体積Vから体積水位換算テーブルを用いて、原子炉圧力容器2内の水位Lの推定値を決定する(ステップS09)。   Specifically, first, the mass change amount ΔM in the reactor pressure vessel 2 at the time interval Δt is calculated based on the water injection mass flow rate Win and the steam generation amount Wg (step S07). Based on this, the volume V of the water in the reactor pressure vessel 2 is calculated (step S08), and the estimated value of the water level L in the reactor pressure vessel 2 is determined from the volume V using a volume level conversion table (step S08). Step S09).

この後、終了判定を行い(ステップS10)、終了でなければ(ステップS10 NO)、前回の時間がtであったところから、t+Δtのタイミングで、ステップS02を開始し、ステップS02以降を繰り返す。また、終了と判定されれば(ステップS10 YES)、終了する。なお、時間間隔Δtは、原子炉停止から時間が経過するにつれて、事象の変化が緩やかになるため、徐々に、長い時間間隔としてよい。   Thereafter, an end determination is made (step S10), and if not end (NO in step S10), step S02 is started at the timing of t + Δt from the point where the previous time was t, and steps S02 and thereafter are repeated. If it is determined that the processing is to be ended (YES in step S10), the processing ends. It should be noted that the time interval Δt may be gradually set to a long time interval since the change in the event becomes gradual as the time elapses after the reactor shutdown.

このように、本実施形態による原子炉圧力容器内水位推定方法によれば、水位計4による水位測定とは独立して、原子炉圧力容器2内の水位を推定することができる。   Thus, according to the method for estimating the water level in the reactor pressure vessel according to the present embodiment, the water level in the reactor pressure vessel 2 can be estimated independently of the water level measurement by the water level gauge 4.

以上のように、本実施形態に係る原子炉圧力容器内水位推定装置20およびに原子炉圧力容器内水位推定方法より、原子炉施設の事故時においても、運転員の負荷を軽減しながら、原子炉水位の監視が可能となる。   As described above, the reactor pressure vessel water level estimation device 20 and the reactor pressure vessel water level estimation method according to the present embodiment can reduce the load on the operator while reducing the load on the operator even during an accident at the reactor facility. Monitoring of the reactor water level becomes possible.

[第2の実施形態]
図10は、第2の実施形態に係る原子炉圧力容器内水位推定装置の構成を示すブロック図である。本実施形態は、第1の実施形態の変形である。本第2の実施形態は、何らかの原因で、原子炉圧力容器2からの漏えい量が把握可能な場合である。漏えい量が把握可能な場合としては、たとえば、サンプピットなど特定の箇所に漏えいし、その箇所に溜まった冷却水の水位が把握できる場合である。あるいは、流量計を有する配管部分を経由して系外に漏えいした場合である。
[Second embodiment]
FIG. 10 is a block diagram illustrating a configuration of a reactor pressure vessel water level estimation device according to the second embodiment. This embodiment is a modification of the first embodiment. The second embodiment is a case where the amount of leakage from the reactor pressure vessel 2 can be grasped for some reason. A case where the amount of leakage can be grasped is, for example, a case where the level of the cooling water leaked to a specific location such as a sump pit and accumulated at that location can be grasped. Alternatively, it is a case where the gas leaks out of the system via a pipe having a flow meter.

この場合、単位時間当たりの漏えい量をWとすると、水位決定部28の水位算出部28aは、第1の実施形態の式(3)に代えて、次の式(7)によりΔMを算出する。
dM/dt=( Win−Wg−W)/ρs …(7)
この結果、推定精度は更に向上する。
In this case, when the leakage amount per unit time is W L, the water level calculation section 28a of the water level determination unit 28, instead of the equation (3) of the first embodiment, calculates a ΔM by the following equation (7) I do.
dM / dt = (Win−Wg−W L ) / ρs (7)
As a result, the estimation accuracy is further improved.

[第3の実施形態]
図11は、第3の実施形態に係る原子炉圧力容器内水位推定装置の構成を示すブロック図である。本実施形態は、第1の実施形態の変形である。本第3の実施形態は、原子炉圧力容器内水位推定装置20の精度がある程度確保できる場合であり、かつ、水位計4が健全な場合である。本実施形態による原子炉圧力容器内水位推定装置20は、漏えい量推定部29をさらに有する。
[Third Embodiment]
FIG. 11 is a block diagram showing the configuration of the reactor pressure vessel water level estimation device according to the third embodiment. This embodiment is a modification of the first embodiment. The third embodiment is a case where the accuracy of the water level estimating device 20 in the reactor pressure vessel can be secured to some extent, and a case where the water level gauge 4 is sound. The water level estimation device 20 in the reactor pressure vessel according to the present embodiment further includes a leak amount estimation unit 29.

この場合、水位計4による測定結果が、原子炉圧力容器内水位推定装置20による推移の推定結果より必ず高い水位となる。したがって、漏えい量推定部29は、この差を漏えい量として算出することにより、漏えい量の推移が把握できる。   In this case, the measurement result by the water level gauge 4 always becomes higher than the estimation result of the transition by the water level estimation device 20 in the reactor pressure vessel. Therefore, the leakage amount estimation unit 29 can grasp the transition of the leakage amount by calculating this difference as the leakage amount.

[その他の実施形態]
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、加圧水型原子炉(PWR)のように、同じ軽水冷却型原子炉であれば、基本的に、実施形態と同様の装置あるいは方法により水位の推定が可能である。ただし、PWRは水位が計測されているのは加圧器であるため、較正の部分は適用できない場合がある。
[Other Embodiments]
Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. For example, in the case of the same light water-cooled reactor such as a pressurized water reactor (PWR), the water level can be basically estimated by the same device or method as in the embodiment. However, in the PWR, since the water level is measured at the pressurizer, the calibration part may not be applicable.

また、各実施形態の特徴を組み合わせてもよい。さらに、これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Further, the features of each embodiment may be combined. Further, these embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and equivalents thereof.

1…炉心、2…原子炉圧力容器、3…原子炉格納容器、4…水位計、4a…凝縮槽、5…冷却材、5a…液相部、5b…気相部、5c…液面、6…圧力計、7…注水配管、8…流量計、8a…流量計測要素、9…温度計、10…蒸気配管、20…原子炉圧力容器内水位推定装置、22…崩壊熱決定部、22a…クロック、22b…崩壊熱テーブル、23…注水状態量決定部、23a…圧縮水密度テーブル、23b…圧縮水エンタルピテーブル、24…注水流量決定部、25…飽和状態量決定部、25a…飽和水密度テーブル、25b…飽和水エンタルピテーブル、25c…飽和水蒸発潜熱テーブル、26…水位記憶部、27…蒸気発生量算出部、28…水位決定部、28a…水位算出部、28b…体積水位換算テーブル、28c…補正部、29…漏えい量推定部、30…表示装置   DESCRIPTION OF SYMBOLS 1 ... Core, 2 ... Reactor pressure vessel, 3 ... Reactor containment vessel, 4 ... Water level gauge, 4a ... Condenser tank, 5 ... Coolant, 5a ... Liquid phase part, 5b ... Gas phase part, 5c ... Liquid level, 6: Pressure gauge, 7: Water injection pipe, 8: Flow meter, 8a: Flow rate measuring element, 9: Thermometer, 10: Steam pipe, 20: Water level estimating device in reactor pressure vessel, 22: Decay heat determining unit, 22a ... Clock, 22b ... Decay heat table, 23 ... Water injection state quantity determination unit, 23a ... Compressed water density table, 23b ... Compressed water enthalpy table, 24 ... Water injection flow rate determination unit, 25 ... Saturation state amount determination unit, 25a ... Saturated water Density table, 25b: saturated water enthalpy table, 25c: saturated water evaporation latent heat table, 26: water level storage unit, 27: steam generation amount calculation unit, 28: water level determination unit, 28a: water level calculation unit, 28b: volume water level conversion table , 28c... Correction unit, 2 ... leakage amount estimating unit, 30 ... display unit

Claims (6)

炉心を収納して注水が流入し蒸気が発生する原子炉圧力容器に設けられた圧力計による圧力測定値、前記注水を導く注水配管に設けられた温度計による温度測定値および流量計による体積流量測定値それぞれの出力に基づいて、前記原子炉圧力容器の冷却水の水位の時間的変化を推定する原子炉圧力容器内水位推定装置であって、
原子炉停止系動作信号を受けて以降の時間について前記炉心から発生する崩壊熱Qを決定する崩壊熱決定部と、
前記注水の温度の測定値に基づいて前記注水の密度ρinおよびエンタルピHinを決定する注水状態量決定部と、
前記注水の体積流量測定値Ginと前記密度ρinに基づいて注水質量流量Winを決定する注水流量決定部と、
前記圧力計の測定値に基づいて前記原子炉圧力容器内の液相における保有水の飽和水エンタルピHf、飽和水密度ρs、および蒸発潜熱Hfgを決定する飽和状態量決定部と、
前記崩壊熱Qと、前記注水質量流量Winと、前記エンタルピHinと、前記飽和水エンタルピHfおよび前記蒸発潜熱Hfgとから蒸気発生量Wgを算出する蒸気発生量算出部と、
前記注水質量流量Win、前記蒸気発生量Wgおよび前記飽和水密度ρsとに基づいて前記原子炉圧力容器内の推定水位を決定する水位決定部と、
を備えることを特徴とする原子炉圧力容器内水位推定装置。
A pressure measurement value provided by a pressure gauge provided in a reactor pressure vessel in which water is injected and steam is generated by containing a reactor core, a temperature measurement value provided by a thermometer provided in a water supply pipe for guiding the water supply, and a volume flow rate provided by a flow meter Based on the output of each measurement value, a reactor pressure vessel water level estimating device for estimating a temporal change of the water level of the cooling water of the reactor pressure vessel,
A decay heat determining unit that determines a decay heat Q generated from the core for a time after receiving the reactor stop system operation signal;
A water injection state quantity determining unit that determines the density ρin and the enthalpy Hin of the water injection based on the measured value of the temperature of the water injection,
A water injection flow rate determining unit for determining the injection mass flow Win based on the density ρin and volume flow measurements Gin of the water injection,
A saturated state determining unit that determines a saturated water enthalpy Hf, a saturated water density ρs, and a latent heat of vaporization Hfg of the retained water in a liquid phase in the reactor pressure vessel based on the measurement value of the pressure gauge;
Wherein the decay heat Q, the an injection mass flow Win, and the enthalpy Hin, the steam generation amount calculating unit that calculates the saturated water enthalpy Hf and the latent heat of vaporization Hfg Toka et steam generation amount Wg,
A water level determination unit that determines an estimated water level in the reactor pressure vessel based on the water injection mass flow rate Win, the steam generation amount Wg, and the saturated water density ρs,
An apparatus for estimating a water level in a reactor pressure vessel, comprising:
前記蒸気発生量算出部は、前記蒸気発生量Wgを次の式により算出することを特徴とする請求項1に記載の原子炉圧力容器内水位推定装置。
Wg=[Q−Win(Hf−Hin)]/Hfg
The steam generation amount calculating unit, a reactor pressure vessel water level estimation apparatus according to pre Ki蒸 gas generation amount Wg to claim 1, characterized in that calculated by the following equation.
Wg = [Q-Win (Hf-Hin)] / Hfg
前記原子炉圧力容器内の水位を測定する水位計が健全な場合に、前記水位計による水位の時間的変化と前記推定水位の時間的変化の違いに基づいて、前記推定水位を補正する補正部をさらに備えることを特徴とする請求項1または請求項2に記載の原子炉圧力容器内水位推定装置。   When the water level gauge for measuring the water level in the reactor pressure vessel is sound, a correction unit that corrects the estimated water level based on a difference between a temporal change of the water level and a temporal change of the estimated water level by the water level meter. The apparatus for estimating a water level in a reactor pressure vessel according to claim 1 or 2, further comprising: 前記原子炉圧力容器内の水位を測定する水位計が健全な場合に、前記水位計による水位と前記推定水位との差に基づいて、前記原子炉圧力容器からの前記冷却水の漏えい量を推定する漏えい量推定部をさらに備えることを特徴とする請求項1ないし請求項3のいずれか一項に記載の原子炉圧力容器内水位推定装置。   When the water level gauge that measures the water level in the reactor pressure vessel is healthy, the amount of leakage of the cooling water from the reactor pressure vessel is estimated based on the difference between the water level measured by the water level gauge and the estimated water level. 4. The apparatus for estimating a water level in a reactor pressure vessel according to claim 1, further comprising a leak amount estimating unit that leaks. 炉心を収納して注水が流入し蒸気が発生する原子炉圧力容器に設けられた圧力計による圧力測定値、前記注水を導く注水配管に設けられた温度計による温度測定値および流量計による体積流量測定値それぞれの出力に基づいて、前記原子炉圧力容器内の冷却水の水位の時間的変化を推定する原子炉圧力容器内水位推定方法であって、
崩壊熱決定部が、原子炉停止系動作信号を受けて以降の時間について前記炉心から発生する崩壊熱Qを決定する崩壊熱決定ステップと、
注水状態量決定部が、前記注水の温度の測定値に基づいて前記注水の密度ρinおよびエンタルピHinを決定し、注水流量決定部が、前記注水の体積流量測定値Ginと前記密度ρinに基づいて注水質量流量Winを決定する注水状態量決定ステップと、
飽和状態量決定部が、前記圧力計の測定値に基づいて前記原子炉圧力容器内の液相における保有水の飽和水エンタルピHf、飽和水密度ρs、および蒸発潜熱Hfgを決定する飽和状態量決定ステップと、
蒸気発生量算出部が、前記崩壊熱Qと、前記注水質量流量Winと、前記エンタルピHinと、前記飽和水エンタルピHfおよび前記蒸発潜熱Hfgとから蒸気発生量Wgを算出する蒸気発生量算出ステップと、
水位決定部が、前記注水質量流量Win、前記蒸気発生量Wgおよび前記飽和水密度ρsとに基づいて前記原子炉圧力容器内の推定水位を決定する水位決定ステップと、
を有することを特徴とする原子炉圧力容器内水位推定方法。
A pressure measurement value provided by a pressure gauge provided in a reactor pressure vessel in which water is injected and steam is generated by containing a reactor core, a temperature measurement value provided by a thermometer provided in a water supply pipe for guiding the water supply, and a volume flow rate provided by a flow meter. A method of estimating a water level in a reactor pressure vessel for estimating a temporal change in a water level of the cooling water in the reactor pressure vessel based on the output of each measurement value,
A decay heat determination unit that determines a decay heat Q generated from the core for a time after receiving the reactor shutdown system operation signal;
Water injection state quantity determination unit, wherein determining the density ρin and enthalpy Hin water injection based on the measured value of the temperature of the water injection, water injection flow rate decision unit, based on the density ρin and the injection of the volume flow measurement Gin A water injection state quantity determining step of determining a water injection mass flow rate Win;
A saturated state quantity determining unit that determines a saturated water enthalpy Hf, a saturated water density ρs, and a latent heat of vaporization Hfg of the retained water in a liquid phase in the reactor pressure vessel based on the measurement value of the pressure gauge. Steps and
Steam generation amount calculating unit, wherein the decay heat Q, the an injection mass flow Win, and the enthalpy Hin, steam generation amount calculating step of calculating the saturated water enthalpy Hf and the latent heat of vaporization Hfg Toka et steam generation amount Wg When,
A water level determining step of determining an estimated water level in the reactor pressure vessel based on the water injection mass flow rate Win, the steam generation amount Wg, and the saturated water density ρs,
A method for estimating a water level in a reactor pressure vessel, comprising:
前記水位決定ステップは、
前記水位決定部が、前記注水質量流量Winおよび前記蒸気発生量Wgに基づいて、所定の時間間隔での前記原子炉圧力容器内の質量変化量ΔMを算出する質量変化量算出ステップと、
前記水位決定部が、前記質量変化量ΔMおよび前記飽和水密度ρsに基づいて前記原子炉圧力容器内の水の体積Vを算出する体積算出ステップと、
前記水位決定部が、前記体積から、体積水位換算テーブルを用いて、前記原子炉圧力容器内の水位の推定値を決定する推定水位決定ステップと、
を有することを特徴とする請求項5に記載の原子炉圧力容器内水位推定方法。
The water level determination step,
A mass change amount calculating step of calculating the mass change amount ΔM in the reactor pressure vessel at predetermined time intervals based on the water injection mass flow rate Win and the steam generation amount Wg,
A volume calculating step in which the water level determining unit calculates a volume V of water in the reactor pressure vessel based on the mass change amount ΔM and the saturated water density ρs;
An estimated water level determination step of determining the estimated value of the water level in the reactor pressure vessel from the volume V using a volume water level conversion table,
The method for estimating a water level in a reactor pressure vessel according to claim 5, wherein:
JP2015049980A 2015-03-12 2015-03-12 Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel Expired - Fee Related JP6659225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049980A JP6659225B2 (en) 2015-03-12 2015-03-12 Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049980A JP6659225B2 (en) 2015-03-12 2015-03-12 Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel

Publications (2)

Publication Number Publication Date
JP2016170047A JP2016170047A (en) 2016-09-23
JP6659225B2 true JP6659225B2 (en) 2020-03-04

Family

ID=56983545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049980A Expired - Fee Related JP6659225B2 (en) 2015-03-12 2015-03-12 Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel

Country Status (1)

Country Link
JP (1) JP6659225B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078448B1 (en) * 2018-01-16 2020-02-17 한국수력원자력 주식회사 Flooding Level Analysis Method of Reactor Building
CN109141567A (en) * 2018-08-03 2019-01-04 武汉路宝市政建设配套设施有限公司 A kind of meter box convenient for inquiry
CN109147971B (en) * 2018-08-14 2020-04-14 中广核核电运营有限公司 Verification method of nuclear power plant reactor core water level monitoring system
JP7237869B2 (en) * 2020-02-04 2023-03-13 株式会社東芝 Reactor water level measurement system and reactor water level measurement method
CN113239539B (en) * 2021-05-11 2023-11-03 杨磊 Whole plant outage accident process prediction method, system and computer readable storage medium
CN113432667A (en) * 2021-05-21 2021-09-24 中广核研究院有限公司 Liquid level measuring device and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330367A (en) * 1973-05-22 1982-05-18 Combustion Engineering, Inc. System and process for the control of a nuclear power system
FR2444995A1 (en) * 1978-12-20 1980-07-18 Framatome Sa METHOD FOR PROTECTING A NUCLEAR PRESSURE WATER REACTOR
JPS5658696A (en) * 1979-10-18 1981-05-21 Nippon Atomic Ind Group Co Nuclear reactor water level monitoring device
JPS5693015A (en) * 1979-12-27 1981-07-28 Hitachi Ltd Estimating device for water level in reactor
JPS5810696A (en) * 1981-07-13 1983-01-21 株式会社日立製作所 Decay heat estimating device
JPS60100795A (en) * 1983-11-08 1985-06-04 株式会社日立製作所 Method and device for predicting state of inside of reactor on accident of nuclear reactor
JPH0572377A (en) * 1991-09-12 1993-03-26 Toshiba Corp Displaying of plant status
JPH06331781A (en) * 1993-05-26 1994-12-02 Toshiba Corp Plant state display
JPH10274554A (en) * 1997-03-31 1998-10-13 Toshiba Corp Liquid level measuring device for pressure vessel
JP2004061277A (en) * 2002-07-29 2004-02-26 Toshiba Corp Device for monitoring operation of boiling water reactor

Also Published As

Publication number Publication date
JP2016170047A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6659225B2 (en) Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel
US10655606B2 (en) Blade load sensing system for a wind turbine
JP6607796B2 (en) Liquid level detection device for liquid supply equipment, liquid level detection method for liquid supply equipment, and liquid supply equipment provided with the liquid level detection device
Caruso et al. Experimental investigation on pure steam and steam-air mixture condensation inside tubes
JP2013130542A (en) Nuclear reactor state monitoring device and monitoring method thereof
JP5739320B2 (en) Sample liquid vaporization system, diagnostic system and diagnostic program
JP5291869B2 (en) Liquid level measuring system and method
CN106782704B (en) Measurement method, system and the nuclear-power reactor equipment of the pressure vessel water level of nuclear-power reactor
CN109147971A (en) The verification method of nuclear power plant's reactor core water level monitoring system
Pesetti et al. Experimental investigation of spiral tubes steam generator rupture scenarios in LIFUS5/Mod2 facility for ELFR
Shinder et al. Feasibility of an accurate dynamic standard for water flow
CN106441842A (en) Device for measuring high-temperature high-pressure micro steam leakage
KR101262272B1 (en) Apparatus for measuring air amount of engine oil and method using the same
CN110470364A (en) A kind of device and method of pVTt method volumetric standard volumetric calibration
JP2014041023A (en) Reactor water-level meter
JP6139175B2 (en) Reactivity temperature coefficient estimation apparatus and method
JP5916436B2 (en) Estimation device, degradation determination device, estimation method, and degradation determination method
JP6361630B2 (en) Correction apparatus and evaluation apparatus
US20120099690A1 (en) Device for measuring temperature coefficient of moderator and method for measuring temperature coefficient of moderator
JP3735458B2 (en) Core flow measurement device
JP5815100B2 (en) Reactor water level measurement system
JP2016223810A (en) Coolant liquid level estimation device, nuclear reactor monitoring device and coolant liquid level estimation method
CN107255555B (en) A kind of system and method measuring valve tiny leakage rate
Tezuka et al. Calibration tests of pulse-Doppler flow meter at national standard loops
JP2008232879A (en) Core coolant flow measuring instrument, and core coolant flow measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200206

R150 Certificate of patent or registration of utility model

Ref document number: 6659225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees