JP2016170047A - Reactor pressure vessel water level estimation device and reactor pressure vessel water level estimation method - Google Patents
Reactor pressure vessel water level estimation device and reactor pressure vessel water level estimation method Download PDFInfo
- Publication number
- JP2016170047A JP2016170047A JP2015049980A JP2015049980A JP2016170047A JP 2016170047 A JP2016170047 A JP 2016170047A JP 2015049980 A JP2015049980 A JP 2015049980A JP 2015049980 A JP2015049980 A JP 2015049980A JP 2016170047 A JP2016170047 A JP 2016170047A
- Authority
- JP
- Japan
- Prior art keywords
- water
- water level
- pressure vessel
- reactor pressure
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 348
- 238000000034 method Methods 0.000 title claims description 20
- 238000002347 injection Methods 0.000 claims abstract description 77
- 239000007924 injection Substances 0.000 claims abstract description 77
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 48
- 230000008859 change Effects 0.000 claims abstract description 24
- 238000001704 evaporation Methods 0.000 claims abstract description 15
- 230000008020 evaporation Effects 0.000 claims abstract description 15
- 230000002123 temporal effect Effects 0.000 claims abstract description 8
- 239000000498 cooling water Substances 0.000 claims description 25
- 238000005259 measurement Methods 0.000 claims description 19
- 238000012937 correction Methods 0.000 claims description 11
- 239000007791 liquid phase Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000002826 coolant Substances 0.000 claims description 7
- 230000000717 retained effect Effects 0.000 claims description 7
- 238000009834 vaporization Methods 0.000 claims description 4
- 230000008016 vaporization Effects 0.000 claims description 4
- 230000000116 mitigating effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 15
- 239000013598 vector Substances 0.000 description 10
- 239000012071 phase Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
本発明の実施形態は、原子炉圧力容器内の水位の時間的変化を推定する原子炉圧力容器内水位推定装置および原子炉圧力容器内水位推定方法に関する。 Embodiments described herein relate generally to a reactor pressure vessel water level estimation device and a reactor pressure vessel water level estimation method that estimate temporal changes in the water level in a reactor pressure vessel.
一般に,沸騰水型原子炉(BWR)における原子炉水位計測方法としては、差圧を利用して水位を計測する技術が用いられている。この方法は、原子炉圧力容器の上部および下部に計測用ノズルを設け、上部側は気相部に連通し下部側は液相部に連通する差圧計で差圧を計測することによって水位を計測するものである。この場合、上部側計測ノズルから差圧計に至るラインには凝縮槽を設け蒸気を凝縮させ差圧計までの計装配管を凝縮水で満たすことにより計装配管内水位変動事象を回避し、実水位の変動による下部側ノズル部の圧力変化により差圧の変化を得て原子炉水位変化を測定している。 Generally, as a method for measuring the reactor water level in a boiling water reactor (BWR), a technique for measuring the water level using a differential pressure is used. In this method, measuring nozzles are installed at the top and bottom of the reactor pressure vessel, and the water level is measured by measuring the differential pressure with a differential pressure gauge that communicates the upper side with the gas phase and the lower side with the liquid phase. To do. In this case, a condensing tank is provided in the line from the upper measurement nozzle to the differential pressure gauge to condense the steam and fill the instrumentation pipe to the differential pressure gauge with condensed water, thereby avoiding a water level fluctuation event in the instrumentation pipe. Reactor water level change is measured by obtaining the change in differential pressure by the pressure change in the lower nozzle part due to fluctuation.
原子炉水位、すなわち原子炉圧力容器内の水位は、原子炉施設の安全運転に直接関係するプロセス量であり、常時監視が求められる。原子炉施設の苛酷事故時においては、上述した差圧計の故障や、減圧時の沸騰による凝縮槽内の水の蒸発等で水位の計測ができなくなり、原子炉水位を監視できない状況に陥る可能性がある。実際に、重大事故時に、凝縮槽内の水の蒸発によって差圧式水位計が計測不能になり、原子炉水位の監視ができなくなった例がある。 The reactor water level, that is, the water level in the reactor pressure vessel, is a process quantity directly related to the safe operation of the reactor facility, and is constantly monitored. In the event of a severe accident at the reactor facility, the water level cannot be measured due to the above-mentioned failure of the differential pressure gauge or the evaporation of water in the condensing tank due to boiling during decompression, and the reactor water level may not be monitored. There is. In fact, there is an example where the differential water pressure gauge cannot be measured due to the evaporation of water in the condensing tank and the reactor water level cannot be monitored during a serious accident.
また,たとえば、日本国内においても、重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において当該パラメータを推定するために有効な情報を把握できる設備を設けなければならない、旨が定められている。このように、原子炉水位が計測できない場合に、代替パラメータによる推定手段を整備することが求められている。 Also, for example, in Japan, when it is difficult to measure a parameter that needs to be monitored in order to deal with a serious accident, etc., a facility that can grasp effective information for estimating the parameter is available. It is stipulated that it must be provided. Thus, when the reactor water level cannot be measured, it is required to provide an estimation means using alternative parameters.
よって、原子炉施設の事故時において、運転員は上述のように原子炉水位が測定できなくなった場合や、原子炉内への注水量に対して原子炉水位指示の上昇量が小さく原子炉圧力容器から水が漏れている疑いがある場合等には、原子炉水位以外の原子炉圧力、注水量、注水温度等のパラメータから原子炉水位の推定を行う。しかし、緊急性を要する事故対応時おいて、運転員が時々刻々と変化する各パラメータを収集し手計算により水位を算出することは困難を伴う。 Therefore, in the event of an accident at the reactor facility, the operator cannot measure the reactor water level as described above, or the increase in the reactor water level indication is small relative to the amount of water injected into the reactor. When there is a suspicion of water leaking from the vessel, the reactor water level is estimated from parameters such as reactor pressure, water injection volume, water injection temperature, etc. other than the reactor water level. However, it is difficult for the operator to collect the parameters that change from moment to moment and to calculate the water level by hand calculation when dealing with accidents that require urgency.
本発明の実施形態はこのような事情を考慮してなされたものであり、水位計による水位測定とは別に、原子炉水位の監視を可能とすることを目的とする。 The embodiment of the present invention has been made in consideration of such circumstances, and an object thereof is to enable monitoring of the reactor water level separately from the water level measurement by the water level gauge.
上述の目的を達成するため、本実施形態は、炉心を収納して注水が流入し蒸気が流出する原子炉圧力容器に設けられた圧力計による圧力測定値、前記注水を導く注水配管に設けられた温度計による温度測定値および流量計による体積流量測定値それぞれの出力に基づいて、前記原子炉圧力容器の冷却水の水位の時間的変化を推定する原子炉圧力容器内水位推定装置であって、原子炉停止系動作信号を受けて以降の時間について前記炉心から発生する崩壊熱Qを決定する崩壊熱決定部と、前記注水の温度の測定値に基づいて前記注水の密度ρinおよびエンタルピHinを決定する注水状態量決定部と、前記注水の体積流量測定値Vと密度ρinに基づいて注水質量流量Winを決定する注水流量決定部と、前記圧力計の測定値に基づいて前記原子炉圧力容器内の液相における保有水の飽和水エンタルピHf、飽和水密度ρs、および蒸発潜熱Hfgを決定する飽和状態量決定部と、前記崩壊熱Qと、前記注水質量流量Winと、前記エンタルピHinと、前記飽和水エンタルピHfおよび蒸発潜熱Hfgとから前記蒸気の蒸気発生量Wgを算出する蒸気発生量算出部と、前記注水質量流量Win、前記蒸気発生量Wgおよび前記飽和水密度ρsとに基づいて前記原子炉圧力容器内の推定水位を決定する水位決定部と、を備えることを特徴とする。 In order to achieve the above-mentioned object, the present embodiment is provided in a water injection pipe that guides the water injection, a pressure measurement value by a pressure gauge provided in a reactor pressure vessel in which a reactor core is housed and water injection flows in and steam flows out. A reactor pressure vessel water level estimation device for estimating a temporal change in the coolant level of the reactor pressure vessel based on outputs of a temperature measurement value by a thermometer and a volume flow rate measurement value by a flow meter, respectively. , A decay heat determining unit for determining decay heat Q generated from the core for a time after receiving a reactor shutdown system operation signal, and a density ρin and enthalpy Hin of the water injection based on a measured value of the water injection temperature. A water injection state quantity determining unit to determine, a water injection flow rate determining unit for determining a water injection mass flow rate Win based on the volumetric flow rate measurement value V and the density ρin of the water injection, and the raw material based on the measurement value of the pressure gauge. Saturated water quantity enthalpy Hf, saturated water density ρs, and saturation state quantity determination unit for determining latent heat of evaporation Hfg in the liquid phase in the reactor pressure vessel, the decay heat Q, the injected water mass flow rate Win, A steam generation amount calculation unit for calculating the steam generation amount Wg of the steam from the enthalpy Hin, the saturated water enthalpy Hf and the latent heat of evaporation Hfg, the water injection mass flow rate Win, the steam generation amount Wg and the saturated water density ρs; And a water level determination unit for determining an estimated water level in the reactor pressure vessel based on the above.
また、本実施形態は、炉心を収納して注水が流入し蒸気が流出する原子炉圧力容器に設けられた圧力計による圧力測定値、前記注水を導く注水配管に設けられた温度計による温度測定値および流量計による体積流量測定値それぞれの出力に基づいて、前記原子炉圧力容器内の冷却水の水位の時間的変化を推定する原子炉圧力容器内水位推定方法であって、崩壊熱決定部が、原子炉停止系動作信号を受けて以降の時間について前記炉心から発生する崩壊熱Qを決定する崩壊熱決定ステップと、注水状態量決定部が、前記注水の体積流量測定値Vと密度ρinに基づいて注水質量流量Winを決定する注水状態量決定ステップと、飽和状態量決定部が、前記圧力計の測定値に基づいて前記原子炉圧力容器内の液相における保有水の飽和水エンタルピHf、飽和水密度ρs、および蒸発潜熱Hfgを決定する飽和状態量決定ステップと、蒸気発生量算出部が、前記崩壊熱Qと、前記注水質量流量Winと、前記エンタルピHinと、前記飽和水エンタルピHfおよび蒸発潜熱Hfgとから前記蒸気の蒸気発生量Wgを算出する蒸気発生量算出ステップと、水位決定部が、前記注水質量流量Win、前記蒸気発生量Wgおよび前記飽和水密度ρsとに基づいて前記原子炉圧力容器内の推定水位を決定する水位決定ステップと、を有することを特徴とする。 In addition, the present embodiment is a pressure measurement value by a pressure gauge provided in a reactor pressure vessel in which a reactor core is accommodated and water injection flows and steam flows out, and temperature measurement by a thermometer provided in a water injection pipe for introducing the water injection. A reactor pressure vessel water level estimation method for estimating a temporal change in the level of cooling water in the reactor pressure vessel based on the output of each of the flow value and the volume flow rate measurement value by a flow meter, the decay heat determining unit However, the decay heat determination step for determining the decay heat Q generated from the core for the time after receiving the reactor shutdown system operation signal, and the water injection state quantity determination unit, the volumetric flow rate measurement value V and the density ρin of the water injection A water injection state quantity determination step for determining the water injection mass flow rate Win based on the flow rate, and a saturated state quantity determination unit that saturates the water stored in the liquid phase in the reactor pressure vessel based on the measured value of the pressure gauge. The saturated state quantity determining step for determining Hf, saturated water density ρs, and latent heat of vaporization Hfg, and the steam generation amount calculating unit, the decay heat Q, the injected water mass flow rate Win, the enthalpy Hin, and the saturated water enthalpy A steam generation amount calculating step for calculating the steam generation amount Wg of the steam from Hf and the latent heat of evaporation Hfg, and a water level determination unit based on the water injection mass flow rate Win, the steam generation amount Wg, and the saturated water density ρs. And a water level determining step for determining an estimated water level in the reactor pressure vessel.
本発明の実施形態によれば、水位計による水位測定とは別に、原子炉水位の監視を可能とすることが可能となる。 According to the embodiment of the present invention, it becomes possible to monitor the reactor water level separately from the water level measurement by the water level gauge.
以下、図面を参照して、本発明の実施形態に係る原子炉圧力容器内水位推定装置および原子炉圧力容器内水位推定方法について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。 Hereinafter, a reactor pressure vessel water level estimation device and a reactor pressure vessel water level estimation method according to an embodiment of the present invention will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.
[第1の実施形態]
以下、BWRの原子炉施設を例にとって、本実施形態を説明する。図1は、第1の実施形態に係る原子炉圧力容器内水位推定装置を含む原子炉圧力容器まわりの構成を示す縦断面図である。炉心1を収納する原子炉圧力容器2が設けられ、原子炉圧力容器2の外側には、原子炉圧力容器2を収納する原子炉格納容器3が設けられている。
[First Embodiment]
Hereinafter, the present embodiment will be described using a BWR reactor facility as an example. FIG. 1 is a longitudinal sectional view showing a configuration around a reactor pressure vessel including a reactor pressure vessel water level estimation device according to a first embodiment. A reactor pressure vessel 2 that houses the
原子炉圧力容器2の内部には、冷却材5が内包されている。冷却材5は、液相部5aと気相部5bに分かれている。原子炉圧力容器2内の下部に液相部5aがあり、また、原子炉圧力容器2内の上部に気相部5bがある。
A
液相部5aと気相部5bの界面である冷却材5の液面5cは、通常運転中は一定に保たれている。この液面5cのレベル、すなわち水位を監視するために、水位計4が設けられている。水位計4は、通常、差圧式である。原子炉圧力容器2内の液相部5aと水位計4は、原子炉格納容器3を気密に貫通する導圧管により接続されている。同様に、原子炉圧力容器2内の気相部5bと水位計4は、原子炉格納容器3を気密に貫通する導圧管により接続されている。気相部5bからの導圧管の原子炉格納容器3内の部分には凝縮槽4aが設けられており、導圧管内の凝縮水の高さを一定に保っている。水位計4は、原子炉格納容器3の外側の図示しない原子炉建屋内に設けられている。
The
原子炉圧力容器2の気相部5bの圧力を測定するために、圧力計6が設けられている。圧力計6は、原子炉格納容器3の外側であって原子炉建屋内に設けられている。原子炉圧力容器2と圧力計6とは、原子炉格納容器3を気密に貫通する導圧管で接続されている。
In order to measure the pressure in the
原子炉圧力容器2には、注水管7が接続されている。原子炉圧力容器2内の冷却材が原子炉格納容器3内に放出されるような重大事故時には、たとえば原子炉建屋外の貯蔵タンク(図示せず)に貯蔵されていた冷却水が、注水配管7を経由して、原子炉圧力容器2内に、注入される。注水配管7には、たとえばフローノズルあるいはベンチュリなどの流量計測要素8aが設けられ、その差圧により流量計8が流量信号を出力する。また、注水配管7には、注水配管7内の冷却水の温度を計測するための温度計9が設けられている。流量計8および温度計9は原子炉格納容器3の外側に設けられている。
A
また、原子炉圧力容器2には、蒸気配管10が設けられている。重大事故時には、たとえば、冷却水を圧送するポンプ(図示せず)の駆動用の蒸気タービン(図示せず)に供給する蒸気の経路となる。
The reactor pressure vessel 2 is provided with a
なお、原子炉圧力容器2には、図示しない冷却水供給用の配管が接続されており、通常の運転中には、原子炉圧力容器2内に冷却水を供給する経路となっている。冷却水供給用の配管は、給水管である。重大事故時には、この通常の冷却水供給用の配管からの冷却水の供給は停止される。 Note that a piping for supplying cooling water (not shown) is connected to the reactor pressure vessel 2 and serves as a path for supplying cooling water into the reactor pressure vessel 2 during normal operation. The cooling water supply pipe is a water supply pipe. At the time of a serious accident, the supply of cooling water from this normal cooling water supply pipe is stopped.
また、原子炉圧力容器2には、図示しない冷却水流出用の配管が接続されており、通常の運転中には、原子炉圧力容器2内から冷却水が流出する経路となっている。冷却水流出用の配管は、BWRの場合は主蒸気管である。重大事故時には、この通常の冷却水流出用の配管からの冷却水の流出は停止される。 Further, a piping for cooling water outflow (not shown) is connected to the reactor pressure vessel 2 and serves as a path through which cooling water flows out of the reactor pressure vessel 2 during normal operation. The piping for cooling water outflow is a main steam pipe in the case of BWR. At the time of a serious accident, the cooling water outflow from this normal cooling water outflow pipe is stopped.
したがって、事故時の状態においては、以上述べた通常の冷却水供給用の配管からの冷却水の供給、および通常の冷却水流出用の配管からの冷却水の流出は、考慮しなくてよい。 Therefore, in the state at the time of the accident, the supply of the cooling water from the normal cooling water supply pipe and the outflow of the cooling water from the normal cooling water outflow pipe need not be considered.
原子炉圧力容器内水位推定装置20は、圧力計6、流量計8、および温度計9からの出力を受け入れて、原子炉圧力容器2内の水位を推定する。また、原子炉圧力容器内水位推定装置20は、水位の推定結果を表示装置30に出力し、表示装置30は推定結果を表示する。
The reactor pressure vessel water
図2は、第1の実施形態に係る原子炉圧力容器内水位推定装置20の構成を示すブロック図である。原子炉圧力容器内水位推定装置20は、崩壊熱決定部22、注水状態量決定部23、注水流量決定部24、飽和状態量決定部25、水位記憶部26、蒸気発生量算出部27、および水位決定部28を有する。
FIG. 2 is a block diagram showing the configuration of the reactor pressure vessel water
図3は、原子炉圧力容器内水位推定装置20の崩壊熱決定部22の構成を示すブロック図である。崩壊熱決定部22は、クロック22aを内蔵し、図示しない原子炉停止系の動作信号である原子炉停止信号が発せられたことを意味する信号を受けて、原子炉が停止した時点からの時間をカウントする。また、崩壊熱決定部22は、原子炉停止後の時間と崩壊熱Qとを対応させる崩壊熱テーブル22bを有する。このように、崩壊熱決定部22は、原子炉停止信号を受けた後の、炉心燃料から発生される崩壊熱Qの値を決定する。
FIG. 3 is a block diagram showing a configuration of the decay
なお、原子炉停止系の動作信号である原子炉停止信号が発せられたことを意味する信号は、原子炉停止系の信号である必要はない。また、クロック22aをたとえば運転員が手動でスタートさせることでもよい。
Note that the signal indicating that the reactor shutdown signal, which is the operation signal of the reactor shutdown system, is not necessarily required to be the reactor shutdown system signal. The
あるいは、原子炉停止後、相当の時間が経過している時点で、原子炉圧力容器内水位推定装置20を起動させようとする場合に、その時点の原子炉停止後の経過時間を入力してもよい。この場合は、それまでの原子炉停止後の過渡事象により原子炉圧力容器2内の冷却水のインベントリが通常運転状態から変化していることが考えられるが、この変化分を補正することにより、その後の水位を推定できる。この場合、代表的な事象について初期のインベントリの変化分を予め解析等により評価しておき原子炉圧力容器内水位推定装置20内のメモリに保存しておき、該当する事象についての値を取り出して補正に用いることができる。
Alternatively, when the reactor pressure vessel water
図4は、原子炉圧力容器内水位推定装置20の注水状態量決定部23の構成を示すブロック図である。注水状態量決定部23は、圧縮水である注水の温度Tinの値に対する圧縮水の密度ρinの値を対応させる圧縮水密度テーブル23aと、温度の値に対する圧縮水のエンタルピHinの値を対応させる圧縮水エンタルピテーブル23bを有している。
FIG. 4 is a block diagram showing a configuration of the water injection state
圧縮水については、圧力の影響は小さいので、たとえば、注水配管7内の冷却水を圧送するポンプ(図示せず)の出口側の圧力の値の場合の圧縮水の密度、エンタルピとしても、誤差は大きくない。注水状態量決定部23は、注水配管7に設けられた温度計9からの温度信号を受けて、注水の温度Tinに対して、圧縮水密度テーブル23aに基づいて注水配管7の内部を流れる冷却水の密度ρinを決定し、圧縮水エンタルピテーブル23bに基づいて注水配管7の内部を流れる冷却水のエンタルピHinを決定する。
For compressed water, since the influence of pressure is small, for example, the density and enthalpy of compressed water in the case of the pressure value on the outlet side of a pump (not shown) that pumps cooling water in the
注水流量決定部24は、注水配管7内の流量の計測用に設けられた流量計8からの流量信号を受けて、次の式(1)のように注水体積流量Ginを注水質量流量Winに変換する。注水質量流量Winへの変換は、注水状態量決定部23で決定された水の密度ρinを用いる。
Win=ρin・Gin …(1)
The water injection flow
Win = ρin · Gin (1)
図5は、原子炉圧力容器内水位推定装置20の飽和状態量決定部25の構成を示すブロック図である。飽和状態量決定部25は、飽和水密度テーブル25a、飽和水エンタルピテーブル25b、および飽和水蒸発潜熱テーブル25cを有する。
FIG. 5 is a block diagram showing a configuration of the saturation state
飽和水密度テーブル25aは、飽和圧力Psに対する飽和水の密度ρsを対応させる。飽和水エンタルピテーブル25bは、飽和圧力Psに対する飽和水の飽和水エンタルピHfを対応させる。また、飽和水蒸発潜熱テーブル25cは、飽和圧力Psに対する蒸発潜熱Hfgを対応させる。 The saturated water density table 25a associates the saturated water density ρs with the saturation pressure Ps. The saturated water enthalpy table 25b makes the saturated water enthalpy Hf of the saturated water correspond to the saturation pressure Ps. The saturated water evaporation latent heat table 25c associates the evaporation latent heat Hfg with the saturation pressure Ps.
図6は、原子炉圧力容器内水位推定装置20の蒸気発生量算出部27および水位決定部28の内容を示すブロック図である。
FIG. 6 is a block diagram illustrating the contents of the steam generation
蒸気発生量算出部27は、崩壊熱決定部22からの崩壊熱Q、注水状態量決定部23からの注水の密度ρinおよびエンタルピHin、注水流量決定部24からの注水質量流量Win、および飽和状態量決定部25からの飽和水の密度ρs、飽和水エンタルピHfおよび蒸発潜熱Hfgを入力として受け入れる。
The steam generation
蒸気発生量算出部27は、これらの入力を用いて、次の式(2)に基づいて蒸気発生量Wgを算出する。
Wg=[Q−Win(Hf−Hin)]/Hfg …(2)
The steam generation
Wg = [Q−Win (Hf−Hin)] / Hfg (2)
式(2)は、原子炉圧力容器2内に保有されている冷却水が、流入する注水と順次に完全混合するというモデルを想定した式となっている。厳密に言えば、原子炉圧力容器2内は、注水が流入する近辺はサブクールされた状態であり、完全混合とは仮想的な状態である。しかしながら、まずは、単純なモデルによって水位の変化を監視できることが重要である。また、後述する補正を行うことも含めて、その精度を向上させる手段は存在することから、単純なモデルを用いている。なお、サブクール領域と蒸発領域の2点モデルを用いることもできる。 Expression (2) is an expression that assumes a model in which the cooling water retained in the reactor pressure vessel 2 is sequentially completely mixed with the incoming water injection. Strictly speaking, the inside of the reactor pressure vessel 2 is in a subcooled state in the vicinity of the water injection, and complete mixing is a virtual state. First of all, however, it is important to be able to monitor changes in the water level with a simple model. In addition, a simple model is used because there is a means for improving the accuracy including the correction described later. Note that a two-point model of a subcool region and an evaporation region can also be used.
水位決定部28は、水位算出部28a、体積水位換算テーブル28b、および補正部28cを有する。体積水位換算テーブル28bは、原子炉圧力容器2内の空間について、下側から水を充填する場合の、水に占有された体積と水位とを対応づけるテーブルである。なお、体積は、想定される最低レベルを基準としてそれ以上の高さについての体積でもよい。あるいは、運転基準水位を基準として、この水位より低い場合の体積を負の体積、高い場合の体積を正の体積としてもよい。
The water
水位決定部28は、蒸気発生量算出部27からの蒸気発生量Wg、注水流量決定部24からの注水質量流量Win、および飽和状態量決定部25からの飽和水密度ρsを入力として受け入れる。水位算出部28aは、次の式(3)および式(4)に基づいて、原子炉圧力容器2内の飽和水の保有質量Mの時間Δt間の変化量を算出する。
dM/dt=Win−Wg …(3)
ΔM=(dM/dt)×Δt …(4)
The water
dM / dt = Win−Wg (3)
ΔM = (dM / dt) × Δt (4)
次に、水位算出部28aは、次の式(5)により飽和水の保有質量の変化分ΔMを保有体積の変化分に変換し、前回の飽和水の保有体積Vnに加えて、Δt経過後の新たな飽和水の保有体積Vn+1を算出する。
Vn+1=Vn+ΔM/ρs …(5)
Next, the water
V n + 1 = V n + ΔM / ρs (5)
次に、水位算出部28aは、次の式(6)により、すなわち、体積水位換算テーブル28bに基づいて、原子炉圧力容器2内の体積Vn+1に対応する原子炉圧力容器2内の水位の推定値を決定する。
L=L(V) …(6)
Next, the water
L = L (V) (6)
このように、本実施形態による原子炉圧力容器内水位推定装置20は、水位計4による水位測定とは独立して、原子炉圧力容器2内の水位を推定することができる。
Thus, the reactor pressure vessel water
図7は、原子炉水位の計測値と推定値のトレンド表示の画面表示の例を示す図である。表示装置30は、このようなトレンドを表示する。図7の表示の実線で示すのが推定値である。また、水位計4が健全で、水位信号を発信できる場合は、水位計4の信号に基づく水位計測値も、破線で示すように併せて表示することにより、水位計4の状態に異常が発生していないことを確認することができる。
FIG. 7 is a diagram illustrating an example of a screen display of the trend display of the measured value and estimated value of the reactor water level. The
補正部28c(図6)は、水位決定部28の推定水位の決定結果と、水位記憶部26からの水位計4の測定結果のトレンドとを受け入れる。補正部28cは、外部から補正指令を受けた場合に、補正を行う。
The
図8は、原子炉水位の計測値に基づく推定値の補正の方法を説明するための概念的なグラフである。図8において、破線で示す曲線Aは、水位記憶部26からの水位計4の測定結果である。また、実線で示す曲線Bは、水位決定部28の推定水位の決定結果である。今、曲線Aにおいて特徴的な変化をする箇所が、A1およびA2の2箇所あるとする。同様に、曲線Bにおいて特徴的な変化をする箇所で、曲線AのA1およびA2に対応すると考えられる箇所が、B1およびB2の2箇所あるとする。このような個所は、原子炉圧力容器2内の断面積が急に変化する高さに対応している。
FIG. 8 is a conceptual graph for explaining a method of correcting the estimated value based on the measured value of the reactor water level. In FIG. 8, a curved line A indicated by a broken line is a measurement result of the water level meter 4 from the water
図8に示すように、それぞれの箇所における時間と水位をカッコ内の組合せで表現して、A1(tA1、LA1)、A2(tA2、LA2)、B1(tB1、LB1)、B2(tB2、LB2)であるとする。2点鎖線で示された点A1から点A2に向かうベクトルをベクトルAA、1点鎖線で示された点B1から点B2に向かうベクトルをベクトルBBとする。 As shown in FIG. 8, the time and water level at each location are expressed by combinations in parentheses, and A1 (tA1, LA1), A2 (tA2, LA2), B1 (tB1, LB1), B2 (tB2, LB2 ). A vector directed from the point A1 to the point A2 indicated by a two-dot chain line is a vector AA, and a vector directed from the point B1 to the point B2 indicated by a dashed-dotted line is a vector BB.
ベクトルAAとベクトルBBの方向と大きさが一致する場合、すなわち一方を平行移動して他方に重なる場合は、時間および水位が、それぞれずれているだけの場合である。この場合は、それぞれをシフトするように補正すれば、曲線Aと曲線Bは一致することになる。 When the directions and magnitudes of the vector AA and the vector BB coincide, that is, when one of them is translated and overlapped with the other, the time and the water level are only shifted. In this case, the curve A and the curve B match if they are corrected so as to shift each.
両ベクトルの横軸すなわち時間軸の成分のみが異なり、ベクトルBBの横軸成分の方がベクトルAAの横軸成分より大きな場合は、推定水位の変化は、実水位の変化の傾向に合致しているが時間的に間延びした変化となっていることになる。この場合は、たとえば、体積水位換算テーブル28bの曲線を維持して、横軸の体積Vを小さな値とするか、縦軸を大きな値とするかなどにより、補正することができる。 When only the horizontal axis component of both vectors, that is, the time axis component is different and the horizontal axis component of the vector BB is larger than the horizontal axis component of the vector AA, the change in the estimated water level matches the tendency of the change in the actual water level. However, this is a change that is delayed in time. In this case, for example, the curve of the volume / water level conversion table 28b can be maintained and the correction can be made by setting the volume V on the horizontal axis to a small value or the vertical axis to a large value.
両ベクトルの横軸すなわち時間軸の成分のみが異なる場合も、同様に、たとえば、体積水位換算テーブル28bの曲線を維持して、縦軸のスケールを変更することにより補正することができる。 Similarly, when only the horizontal axis, that is, the time axis component, of both vectors is different, for example, the curve of the volume water level conversion table 28b can be maintained and the scale of the vertical axis can be changed.
以上のそれぞれのケースの組合せの場合は、スケールの変更とシフトを組み合わせることにより、補正することができる。 In the case of the combination of the above cases, correction can be made by combining scale change and shift.
また、原子炉施設の事故時に限らず、通常の停止時において、水位計4の水位計測結果と原子炉圧力容器内水位推定装置20による水位推定結果とを表示しながら比較することにより、原子炉圧力容器内水位推定装置20の推定精度がどの程度であるかを把握することができる。あるいは、ずれが大きい場合に、その原因を把握して対策することにより、原子炉圧力容器内水位推定装置20の推定精度の向上を図ることができる。
Further, not only at the time of an accident at a nuclear reactor facility, but also during a normal shutdown, the water level measurement result of the water level gauge 4 and the water level estimation result by the water
図9は、第1の実施形態に係る原子炉圧力容器内水位推定方法の手順を示すフロー図である。まず、原子炉が停止した旨の信号が開始後、終了判定となるまで、Δtの時間間隔で以下のステップを繰り返す。 FIG. 9 is a flowchart showing the procedure of the method for estimating the water level in the reactor pressure vessel according to the first embodiment. First, the following steps are repeated at a time interval of Δt until the end determination is made after a signal indicating that the reactor has stopped is started.
まず、崩壊熱決定部22が、時刻カウントを開始(ステップS01)し、その時点tの崩壊熱を決定する(ステップS02)。次に、温度計9からの注水の温度Tinの信号に基づいて、注水状態量決定部23が、注水の密度ρinおよび注水のエンタルピHinを決定する(ステップS03)。次に、注水体積流量Ginの計測値に基づいて、注水流量決定部24が注水質量流量Winを決定する(ステップS04)。また、飽和圧力Psに基づいて、飽和状態量決定部25が、飽和水の密度ρs、飽和水エンタルピHf、および蒸発潜熱Hfgを決定する(ステップS05)。
First, the decay
ここで、ステップS04はステップS03の後である必要があるが、これらと、ステップS02と、ステップS05の3者間の互いの順序は問わない。 Here, step S04 needs to be after step S03, but the order of these, step S02, and step S05 is not limited.
次に、蒸気発生量算出部27の水位算出部28aが、崩壊熱Q、注水質量流量Win、エンタルピHin、飽和水エンタルピHfおよび蒸発潜熱Hfgに基づいて、蒸気発生量Wgを算出する(ステップS06)。
Next, the water
次に、水位決定部28が、蒸気発生量算出部27から蒸気発生量Wgを、注水流量決定部24から注水質量流量Winを、また飽和状態量決定部25から飽和水密度ρsを受け入れて、推定水位を決定する(ステップS20)。
Next, the water
具体的には、まず、注水質量流量Winおよび蒸気発生量Wgに基づいて、時間間隔Δtでの原子炉圧力容器2内の質量変化量ΔMを算出する(ステップS07)。これに基づいて原子炉圧力容器2内の水の体積Vを算出し(ステップS08)、体積Vから体積水位換算テーブルを用いて、原子炉圧力容器2内の水位Lの推定値を決定する(ステップS09)。 Specifically, first, the mass change amount ΔM in the reactor pressure vessel 2 at the time interval Δt is calculated based on the injected water mass flow rate Win and the steam generation amount Wg (step S07). Based on this, the volume V of water in the reactor pressure vessel 2 is calculated (step S08), and an estimated value of the water level L in the reactor pressure vessel 2 is determined from the volume V using a volume level conversion table (step S08). Step S09).
この後、終了判定を行い(ステップS10)、終了でなければ(ステップS10 NO)、前回の時間がtであったところから、t+Δtのタイミングで、ステップS02を開始し、ステップS02以降を繰り返す。また、終了と判定されれば(ステップS10 YES)、終了する。なお、時間間隔Δtは、原子炉停止から時間が経過するにつれて、事象の変化が緩やかになるため、徐々に、長い時間間隔としてよい。 Thereafter, an end determination is made (step S10), and if not ended (NO in step S10), step S02 is started at a timing of t + Δt from the previous time t, and step S02 and subsequent steps are repeated. Moreover, if it determines with complete | finishing (step S10 YES), it will complete | finish. Note that the time interval Δt may be a long time interval gradually because the change in the event becomes gradual as time elapses from the reactor shutdown.
このように、本実施形態による原子炉圧力容器内水位推定方法によれば、水位計4による水位測定とは独立して、原子炉圧力容器2内の水位を推定することができる。 Thus, according to the water level estimation method in the reactor pressure vessel according to the present embodiment, the water level in the reactor pressure vessel 2 can be estimated independently of the water level measurement by the water level gauge 4.
以上のように、本実施形態に係る原子炉圧力容器内水位推定装置20およびに原子炉圧力容器内水位推定方法より、原子炉施設の事故時においても、運転員の負荷を軽減しながら、原子炉水位の監視が可能となる。
As described above, the reactor pressure vessel water
[第2の実施形態]
図10は、第2の実施形態に係る原子炉圧力容器内水位推定装置の構成を示すブロック図である。本実施形態は、第1の実施形態の変形である。本第2の実施形態は、何らかの原因で、原子炉圧力容器2からの漏えい量が把握可能な場合である。漏えい量が把握可能な場合としては、たとえば、サンプピットなど特定の箇所に漏えいし、その箇所に溜まった冷却水の水位が把握できる場合である。あるいは、流量計を有する配管部分を経由して系外に漏えいした場合である。
[Second Embodiment]
FIG. 10 is a block diagram illustrating a configuration of a reactor pressure vessel water level estimation apparatus according to the second embodiment. This embodiment is a modification of the first embodiment. The second embodiment is a case where the leakage amount from the reactor pressure vessel 2 can be grasped for some reason. The case where the amount of leakage can be grasped is, for example, the case where the water level leaks to a specific location such as a sump pit and the water level of the cooling water accumulated at that location can be grasped. Or it is a case where it leaks out of the system via the piping part which has a flow meter.
この場合、単位時間当たりの漏えい量をWLとすると、水位決定部28の水位算出部28aは、第1の実施形態の式(3)に代えて、次の式(7)によりΔMを算出する。
dM/dt=( Win−Wg−WL)/ρs …(7)
この結果、推定精度は更に向上する。
In this case, when the leakage amount per unit time is W L, the water
dM / dt = (Win−Wg−W L ) / ρs (7)
As a result, the estimation accuracy is further improved.
[第3の実施形態]
図11は、第3の実施形態に係る原子炉圧力容器内水位推定装置の構成を示すブロック図である。本実施形態は、第1の実施形態の変形である。本第3の実施形態は、原子炉圧力容器内水位推定装置20の精度がある程度確保できる場合であり、かつ、水位計4が健全な場合である。本実施形態による原子炉圧力容器内水位推定装置20は、漏えい量推定部29をさらに有する。
[Third Embodiment]
FIG. 11 is a block diagram showing a configuration of a reactor pressure vessel water level estimation apparatus according to the third embodiment. This embodiment is a modification of the first embodiment. The third embodiment is a case where the accuracy of the water
この場合、水位計4による測定結果が、原子炉圧力容器内水位推定装置20による推移の推定結果より必ず高い水位となる。したがって、漏えい量推定部29は、この差を漏えい量として算出することにより、漏えい量の推移が把握できる。
In this case, the measurement result by the water level meter 4 is necessarily higher than the estimation result of the transition by the reactor pressure vessel water
[その他の実施形態]
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、加圧水型原子炉(PWR)のように、同じ軽水冷却型原子炉であれば、基本的に、実施形態と同様の装置あるいは方法により水位の推定が可能である。ただし、PWRは水位が計測されているのは加圧器であるため、較正の部分は適用できない場合がある。
[Other Embodiments]
As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. For example, if the same light water cooled nuclear reactor, such as a pressurized water reactor (PWR), the water level can be estimated basically by the same apparatus or method as in the embodiment. However, since the pressure level of the PWR is measured by the pressurizer, the calibration part may not be applicable.
また、各実施形態の特徴を組み合わせてもよい。さらに、これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Moreover, you may combine the characteristic of each embodiment. Furthermore, these embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
1…炉心、2…原子炉圧力容器、3…原子炉格納容器、4…水位計、4a…凝縮槽、5…冷却材、5a…液相部、5b…気相部、5c…液面、6…圧力計、7…注水配管、8…流量計、8a…流量計測要素、9…温度計、10…蒸気配管、20…原子炉圧力容器内水位推定装置、22…崩壊熱決定部、22a…クロック、22b…崩壊熱テーブル、23…注水状態量決定部、23a…圧縮水密度テーブル、23b…圧縮水エンタルピテーブル、24…注水流量決定部、25…飽和状態量決定部、25a…飽和水密度テーブル、25b…飽和水エンタルピテーブル、25c…飽和水蒸発潜熱テーブル、26…水位記憶部、27…蒸気発生量算出部、28…水位決定部、28a…水位算出部、28b…体積水位換算テーブル、28c…補正部、29…漏えい量推定部、30…表示装置
DESCRIPTION OF
Claims (6)
原子炉停止系動作信号を受けて以降の時間について前記炉心から発生する崩壊熱Qを決定する崩壊熱決定部と、
前記注水の温度の測定値に基づいて前記注水の密度ρinおよびエンタルピHinを決定する注水状態量決定部と、
前記注水の体積流量測定値Vと密度ρinに基づいて注水質量流量Winを決定する注水流量決定部と、
前記圧力計の測定値に基づいて前記原子炉圧力容器内の液相における保有水の飽和水エンタルピHf、飽和水密度ρs、および蒸発潜熱Hfgを決定する飽和状態量決定部と、
前記崩壊熱Qと、前記注水質量流量Winと、前記エンタルピHinと、前記飽和水エンタルピHfおよび蒸発潜熱Hfgとから前記蒸気の蒸気発生量Wgを算出する蒸気発生量算出部と、
前記注水質量流量Win、前記蒸気発生量Wgおよび前記飽和水密度ρsとに基づいて前記原子炉圧力容器内の推定水位を決定する水位決定部と、
を備えることを特徴とする原子炉圧力容器内水位推定装置。 Pressure measured by a pressure gauge installed in a reactor pressure vessel in which water is injected and steam flows out while containing the core, temperature measured by a thermometer installed in a water injection pipe for guiding the water injection, and volume flow by a flow meter A reactor pressure vessel water level estimation device that estimates temporal changes in the coolant level of the reactor pressure vessel based on the output of each measured value,
A decay heat determining unit for determining decay heat Q generated from the core for a time after receiving a reactor shutdown system operation signal;
A water injection state determination unit that determines the density ρin and enthalpy Hin of the water injection based on the measured value of the temperature of the water injection;
A water injection flow rate determining unit for determining a water injection mass flow rate Win based on the volumetric flow rate measurement value V and the density ρin of the water injection;
A saturated state quantity determining unit that determines the saturated water enthalpy Hf, the saturated water density ρs, and the latent heat of vaporization Hfg of the retained water in the liquid phase in the reactor pressure vessel based on the measured value of the pressure gauge;
A steam generation amount calculation unit for calculating the steam generation amount Wg of the steam from the decay heat Q, the injected water mass flow rate Win, the enthalpy Hin, the saturated water enthalpy Hf and the latent heat of evaporation Hfg;
A water level determination unit that determines an estimated water level in the reactor pressure vessel based on the water injection mass flow rate Win, the steam generation amount Wg, and the saturated water density ρs;
An apparatus for estimating a water level in a reactor pressure vessel, comprising:
Wg=[Q−Win(Hf−Hin)]/Hfg The said steam generation amount calculation part calculates the steam generation amount Wg of the said steam with the following formula | equation, The water level estimation apparatus in a reactor pressure vessel of Claim 1 characterized by the above-mentioned.
Wg = [Q-Win (Hf-Hin)] / Hfg
崩壊熱決定部が、原子炉停止系動作信号を受けて以降の時間について前記炉心から発生する崩壊熱Qを決定する崩壊熱決定ステップと、
注水状態量決定部が、前記注水の体積流量測定値Vと密度ρinに基づいて注水質量流量Winを決定する注水状態量決定ステップと、
飽和状態量決定部が、前記圧力計の測定値に基づいて前記原子炉圧力容器内の液相における保有水の飽和水エンタルピHf、飽和水密度ρs、および蒸発潜熱Hfgを決定する飽和状態量決定ステップと、
蒸気発生量算出部が、前記崩壊熱Qと、前記注水質量流量Winと、前記エンタルピHinと、前記飽和水エンタルピHfおよび蒸発潜熱Hfgとから前記蒸気の蒸気発生量Wgを算出する蒸気発生量算出ステップと、
水位決定部が、前記注水質量流量Win、前記蒸気発生量Wgおよび前記飽和水密度ρsとに基づいて前記原子炉圧力容器内の推定水位を決定する水位決定ステップと、
を有することを特徴とする原子炉圧力容器内水位推定方法。 Pressure measured by a pressure gauge installed in a reactor pressure vessel in which water is injected and steam flows out while containing the core, temperature measured by a thermometer installed in a water injection pipe for guiding the water injection, and volume flow by a flow meter A reactor pressure vessel water level estimation method for estimating a temporal change in the level of cooling water in the reactor pressure vessel based on the output of each measured value,
Decay heat determining unit determines decay heat Q generated from the core for a time after receiving a reactor shutdown system operation signal;
A water injection state quantity determining unit that determines a water injection mass flow rate Win based on the volume flow rate measurement value V and the density ρin of the water injection;
A saturated state quantity determination unit determines a saturated water enthalpy Hf, saturated water density ρs, and latent heat of evaporation Hfg of retained water in the liquid phase in the reactor pressure vessel based on a measurement value of the pressure gauge. Steps,
A steam generation amount calculation unit calculates a steam generation amount Wg of the steam from the decay heat Q, the water injection mass flow rate Win, the enthalpy Hin, the saturated water enthalpy Hf, and the latent heat of vaporization Hfg. Steps,
A water level determining step in which a water level determining unit determines an estimated water level in the reactor pressure vessel based on the injected water mass flow rate Win, the steam generation amount Wg, and the saturated water density ρs;
A method for estimating the water level in a reactor pressure vessel, comprising:
前記水位決定部が、前記注水質量流量Winおよび前記蒸気発生量Wgに基づいて、所定の時間間隔での前記原子炉圧力容器内の質量変化量ΔMを算出する質量変化量算出ステップと、
前記水位決定部が、前記質量変化量ΔMおよび前記飽和水密度ρsに基づいて前記原子炉圧力容器内の水の体積Vを算出する体積算出ステップと、
前記水位決定部が、前記体積から、体積水位換算テーブルを用いて、前記原子炉圧力容器内の水位の推定値を決定する推定水位決定ステップと、
を有することを特徴とする請求項5に記載の原子炉圧力容器内水位推定方法。 The water level determining step includes:
A mass change amount calculating step in which the water level determining unit calculates a mass change amount ΔM in the reactor pressure vessel at a predetermined time interval based on the injected water mass flow rate Win and the steam generation amount Wg;
A volume calculating step in which the water level determining unit calculates a volume V of water in the reactor pressure vessel based on the mass change amount ΔM and the saturated water density ρs;
The water level determining unit determines an estimated value of the water level in the reactor pressure vessel from the volume using a volume water level conversion table;
The method for estimating a water level in a reactor pressure vessel according to claim 5, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049980A JP6659225B2 (en) | 2015-03-12 | 2015-03-12 | Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049980A JP6659225B2 (en) | 2015-03-12 | 2015-03-12 | Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016170047A true JP2016170047A (en) | 2016-09-23 |
JP6659225B2 JP6659225B2 (en) | 2020-03-04 |
Family
ID=56983545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015049980A Expired - Fee Related JP6659225B2 (en) | 2015-03-12 | 2015-03-12 | Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6659225B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109147971A (en) * | 2018-08-14 | 2019-01-04 | 中广核核电运营有限公司 | The verification method of nuclear power plant's reactor core water level monitoring system |
CN109141567A (en) * | 2018-08-03 | 2019-01-04 | 武汉路宝市政建设配套设施有限公司 | A kind of meter box convenient for inquiry |
KR20190087188A (en) * | 2018-01-16 | 2019-07-24 | 한국수력원자력 주식회사 | Flooding Level Analysis Method of Reactor Building |
CN113239539A (en) * | 2021-05-11 | 2021-08-10 | 杨磊 | Method and system for predicting process of power failure accident of whole plant and computer readable storage medium |
JP2021124360A (en) * | 2020-02-04 | 2021-08-30 | 株式会社東芝 | Nuclear reactor water-level measurement system and nuclear reactor water-level measurement method |
CN113432667A (en) * | 2021-05-21 | 2021-09-24 | 中广核研究院有限公司 | Liquid level measuring device and method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658696A (en) * | 1979-10-18 | 1981-05-21 | Nippon Atomic Ind Group Co | Nuclear reactor water level monitoring device |
JPS5693015A (en) * | 1979-12-27 | 1981-07-28 | Hitachi Ltd | Estimating device for water level in reactor |
US4330367A (en) * | 1973-05-22 | 1982-05-18 | Combustion Engineering, Inc. | System and process for the control of a nuclear power system |
JPS5810696A (en) * | 1981-07-13 | 1983-01-21 | 株式会社日立製作所 | Decay heat estimating device |
JPS60100795A (en) * | 1983-11-08 | 1985-06-04 | 株式会社日立製作所 | Method and device for predicting state of inside of reactor on accident of nuclear reactor |
US4555382A (en) * | 1978-12-20 | 1985-11-26 | Framatome & Cie | Method of protection of a pressurized-water nuclear reactor |
JPH0572377A (en) * | 1991-09-12 | 1993-03-26 | Toshiba Corp | Displaying of plant status |
JPH06331781A (en) * | 1993-05-26 | 1994-12-02 | Toshiba Corp | Plant state display |
JPH10274554A (en) * | 1997-03-31 | 1998-10-13 | Toshiba Corp | Liquid level measuring device for pressure vessel |
JP2004061277A (en) * | 2002-07-29 | 2004-02-26 | Toshiba Corp | Device for monitoring operation of boiling water reactor |
-
2015
- 2015-03-12 JP JP2015049980A patent/JP6659225B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4330367A (en) * | 1973-05-22 | 1982-05-18 | Combustion Engineering, Inc. | System and process for the control of a nuclear power system |
US4555382A (en) * | 1978-12-20 | 1985-11-26 | Framatome & Cie | Method of protection of a pressurized-water nuclear reactor |
JPS5658696A (en) * | 1979-10-18 | 1981-05-21 | Nippon Atomic Ind Group Co | Nuclear reactor water level monitoring device |
JPS5693015A (en) * | 1979-12-27 | 1981-07-28 | Hitachi Ltd | Estimating device for water level in reactor |
JPS5810696A (en) * | 1981-07-13 | 1983-01-21 | 株式会社日立製作所 | Decay heat estimating device |
JPS60100795A (en) * | 1983-11-08 | 1985-06-04 | 株式会社日立製作所 | Method and device for predicting state of inside of reactor on accident of nuclear reactor |
JPH0572377A (en) * | 1991-09-12 | 1993-03-26 | Toshiba Corp | Displaying of plant status |
JPH06331781A (en) * | 1993-05-26 | 1994-12-02 | Toshiba Corp | Plant state display |
JPH10274554A (en) * | 1997-03-31 | 1998-10-13 | Toshiba Corp | Liquid level measuring device for pressure vessel |
JP2004061277A (en) * | 2002-07-29 | 2004-02-26 | Toshiba Corp | Device for monitoring operation of boiling water reactor |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190087188A (en) * | 2018-01-16 | 2019-07-24 | 한국수력원자력 주식회사 | Flooding Level Analysis Method of Reactor Building |
KR102078448B1 (en) * | 2018-01-16 | 2020-02-17 | 한국수력원자력 주식회사 | Flooding Level Analysis Method of Reactor Building |
CN109141567A (en) * | 2018-08-03 | 2019-01-04 | 武汉路宝市政建设配套设施有限公司 | A kind of meter box convenient for inquiry |
CN109147971A (en) * | 2018-08-14 | 2019-01-04 | 中广核核电运营有限公司 | The verification method of nuclear power plant's reactor core water level monitoring system |
CN109147971B (en) * | 2018-08-14 | 2020-04-14 | 中广核核电运营有限公司 | Verification method of nuclear power plant reactor core water level monitoring system |
JP2021124360A (en) * | 2020-02-04 | 2021-08-30 | 株式会社東芝 | Nuclear reactor water-level measurement system and nuclear reactor water-level measurement method |
JP7237869B2 (en) | 2020-02-04 | 2023-03-13 | 株式会社東芝 | Reactor water level measurement system and reactor water level measurement method |
CN113239539A (en) * | 2021-05-11 | 2021-08-10 | 杨磊 | Method and system for predicting process of power failure accident of whole plant and computer readable storage medium |
CN113239539B (en) * | 2021-05-11 | 2023-11-03 | 杨磊 | Whole plant outage accident process prediction method, system and computer readable storage medium |
CN113432667A (en) * | 2021-05-21 | 2021-09-24 | 中广核研究院有限公司 | Liquid level measuring device and method |
Also Published As
Publication number | Publication date |
---|---|
JP6659225B2 (en) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6659225B2 (en) | Apparatus for estimating water level in reactor pressure vessel and method for estimating water level in reactor pressure vessel | |
KR101494166B1 (en) | System for Leakage Rate of Containment Building | |
EP2801979B1 (en) | Atomic reactor state monitoring device and monitoring method thereof | |
JP6607796B2 (en) | Liquid level detection device for liquid supply equipment, liquid level detection method for liquid supply equipment, and liquid supply equipment provided with the liquid level detection device | |
CN105070332A (en) | Monitoring system for preventing leakage of main steam pipeline in nuclear power plant | |
CN111967130B (en) | Method for analyzing supercooling margin fixed value under accident condition of pressurized water reactor nuclear power plant | |
CN103871522A (en) | Pressurizer water level measurement method based on digitalization technology | |
JP6083535B2 (en) | Hydrogen filling device | |
Caruso et al. | Experimental investigation on pure steam and steam-air mixture condensation inside tubes | |
JPWO2021256418A5 (en) | ||
CN109147971B (en) | Verification method of nuclear power plant reactor core water level monitoring system | |
CN105547406A (en) | Measuring system and measuring method for water level of nuclear power plant steam generator | |
Mazed et al. | Experimental study of steam pressure suppression by condensation in a water tank at sub-atmospheric pressure | |
Pesetti et al. | Experimental investigation of spiral tubes steam generator rupture scenarios in LIFUS5/Mod2 facility for ELFR | |
JP2018136226A (en) | Device, method, and program for atomic reactor risk management | |
CN109342496B (en) | Low-temperature heat insulation performance measurement test method for vacuum conveying pipe | |
JP6139175B2 (en) | Reactivity temperature coefficient estimation apparatus and method | |
KR101813450B1 (en) | Calculation method to protect the core of the pressurized light water reactor protection system | |
EP2706329A2 (en) | Method and system for a spent fuel pool level measurement without electrical power | |
Puustinen et al. | BWR suppression pool studies with POOLEX and PPOOLEX test facilities at LUT | |
CN104332193A (en) | Steam-generator water-level measure method based on digitization technology | |
CN114334197A (en) | Primary loop water charge monitoring method and system in low operation mode | |
JP6117147B2 (en) | Reactor water level measuring device | |
JP5815100B2 (en) | Reactor water level measurement system | |
JP3735458B2 (en) | Core flow measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170906 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20171201 Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20171201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190917 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6659225 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |