JP2014041023A - Reactor water-level meter - Google Patents

Reactor water-level meter Download PDF

Info

Publication number
JP2014041023A
JP2014041023A JP2012182502A JP2012182502A JP2014041023A JP 2014041023 A JP2014041023 A JP 2014041023A JP 2012182502 A JP2012182502 A JP 2012182502A JP 2012182502 A JP2012182502 A JP 2012182502A JP 2014041023 A JP2014041023 A JP 2014041023A
Authority
JP
Japan
Prior art keywords
reactor
water level
optical fiber
liquid level
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012182502A
Other languages
Japanese (ja)
Other versions
JP6004834B2 (en
Inventor
Junichi Kumagai
純一 熊谷
Hirohisa Satomi
弘久 里見
Isao Miyaji
勇雄 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012182502A priority Critical patent/JP6004834B2/en
Publication of JP2014041023A publication Critical patent/JP2014041023A/en
Application granted granted Critical
Publication of JP6004834B2 publication Critical patent/JP6004834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a reactor water-level meter capable of measuring a water level without being influenced by variations in a reference water level in a reference level device.SOLUTION: A liquid level forming pipe portion 4 of a measurement pipe LP is connected to a gas phase part in a reactor pressure vessel (RPV) 1 and a liquid layer part at a bottom face of the RPV 1, and the liquid level forming pipe portion 4 is constituted so as to form a liquid level therein. By using an optical fiber temperature sensor 5, a temperature difference arising between the gas phase part and the liquid layer part in the liquid level forming pipe portion 4, and a height position at which the temperature difference is generated are detected. Then, on the basis of the detected height position, a water level of cooling water in the liquid level forming pipe portion 4 (that is, a water level of cooling water in the RPV 1) is calculated.

Description

本発明は、原子炉の水位を計測するための装置に関するものである。   The present invention relates to an apparatus for measuring the water level of a nuclear reactor.

沸騰水型原子炉における原子炉圧力容器の水位は、通常運転時に起こりうる運転条件の変化などに対し原子炉水位を適切な運転範囲に維持し監視する役割を持つ原子炉監視系における重要な監視パラメータである。原子炉圧力容器の水位は、気相部と液相部との圧力差により計測している。特に気相部が蒸気の場合は、原子炉圧力容器から導かれる蒸気を凝縮させ基準水位を形成する基準面器を設ける。そして、基準水位の水頭圧と、変動する原子炉水位側の圧力を伝える原子炉水位の水頭圧との差圧を差圧検出器による連続測定することによって原子炉圧力容器の水位を計測している(特許文献1参照)。   Reactor pressure vessel water level in boiling water reactors is an important monitoring in the reactor monitoring system that plays a role in maintaining and monitoring the reactor water level within an appropriate operating range against changes in operating conditions that may occur during normal operation. It is a parameter. The water level in the reactor pressure vessel is measured by the pressure difference between the gas phase portion and the liquid phase portion. In particular, when the gas phase portion is steam, a reference surface unit is provided for condensing the steam guided from the reactor pressure vessel to form a reference water level. Then, the water level in the reactor pressure vessel is measured by continuously measuring the differential pressure between the head water pressure at the reference water level and the water head pressure at the reactor water level that conveys the pressure on the fluctuating reactor water level side using a differential pressure detector. (See Patent Document 1).

特開昭59−178320号公報JP 59-178320 A

上述した沸騰水型原子炉の原子炉圧力容器の水位計測では、基準面器で基準水位を形成する必要がある。しかし、基準水位が変動するなどして正確な水位を計測できないおそれがある。   In the water level measurement of the reactor pressure vessel of the boiling water reactor described above, it is necessary to form a reference water level with a reference surface device. However, there is a possibility that the accurate water level cannot be measured because the reference water level fluctuates.

本発明による原子炉水位計は、原子炉圧力容器内の気相部に接続された上部配管部と、原子炉圧力容器の底面で液層部に接続された下部配管部と、上部配管部と下部配管部の間を接続して内部に液面を形成する液面形成配管部と、液面形成配管部の内部で液面形成配管部の上部から下部まで配設される光ファイバを有する光ファイバ温度センサと、光ファイバに入射するパルス光の光源と、光ファイバ内で発生する散乱光を検知し、検知した散乱光に基づいて光ファイバの任意の位置における温度を検出する温度検出部と、温度検出部で検出した光ファイバの任意の位置における温度に基づいて、液面形成配管部における気相部と液層部との温度差が生じる位置を液面の位置として算出する液面位置算出部と、液面位置算出部で算出した液面の位置に基づいて、原子炉圧力容器内の冷却水の水位の情報に変換して出力する水位情報出力部とを備えることを特徴とする。   A reactor water level gauge according to the present invention includes an upper piping connected to a gas phase portion in a reactor pressure vessel, a lower piping connected to a liquid layer at the bottom of the reactor pressure vessel, an upper piping, Light having a liquid level forming pipe part that connects between the lower pipe parts to form a liquid level inside, and an optical fiber that is arranged from the upper part to the lower part of the liquid level forming pipe part inside the liquid level forming pipe part A fiber temperature sensor, a light source of pulsed light incident on the optical fiber, a temperature detection unit that detects scattered light generated in the optical fiber, and detects a temperature at an arbitrary position of the optical fiber based on the detected scattered light; The liquid level position that calculates the position where the temperature difference between the gas phase part and the liquid layer part in the liquid level forming pipe part occurs as the liquid level position based on the temperature at the arbitrary position of the optical fiber detected by the temperature detection part Liquid level calculated by the calculation unit and the liquid level position calculation unit Based on the position, characterized in that it comprises a water level information output section for converting the level information of the cooling water in the reactor pressure vessel.

本発明によれば、基準面器における基準水位の変動などの影響を受けずに水位を計測できる。   According to the present invention, the water level can be measured without being affected by the fluctuation of the reference water level in the reference surface device.

本発明に係る原子炉水位計の第1の実施形態を示す模式図Schematic diagram showing a first embodiment of a reactor water level gauge according to the present invention 光ファイバ温度センサを用いた温度計測原理を示す図Diagram showing temperature measurement principle using optical fiber temperature sensor 本発明に係る原子炉水位計の第2の実施形態を示す模式図The schematic diagram which shows 2nd Embodiment of the reactor water level meter which concerns on this invention 本発明に係る原子炉水位計の第3の実施形態を示す模式図The schematic diagram which shows 3rd Embodiment of the reactor water level meter which concerns on this invention 本発明に係る原子炉水位計の第4の実施形態を示す模式図The schematic diagram which shows 4th Embodiment of the reactor water level meter which concerns on this invention

−−−第1の実施の形態−−−
図1,2を参照して、本発明による原子炉水位計の第1の実施の形態を説明する。本実施の形態では、本発明による原子炉水位計が沸騰水型原子炉(BWR)に適用された場合の例について説明する。図1は、本実施の形態の原子炉水位計を用いた原子炉圧力容器(RPV)の水位計測に係る模式図である。なお、図1では、沸騰水型原子炉の各構成のうち、原子炉圧力容器の水位計測に関する構成を主に記載し、他の構成についての記載を省略している。本実施の形態の沸騰水型原子炉は、原子炉格納容器10の内部に原子炉圧力容器1が格納されている。
--- First embodiment ---
A first embodiment of a reactor water level meter according to the present invention will be described with reference to FIGS. In the present embodiment, an example in which the reactor water level meter according to the present invention is applied to a boiling water reactor (BWR) will be described. FIG. 1 is a schematic diagram relating to water level measurement of a reactor pressure vessel (RPV) using the reactor water level meter of the present embodiment. In addition, in FIG. 1, the structure regarding the water level measurement of a reactor pressure vessel is mainly described among each structure of a boiling water reactor, and the description about the other structure is abbreviate | omitted. In the boiling water reactor according to the present embodiment, a reactor pressure vessel 1 is stored inside a reactor containment vessel 10.

原子炉圧力容器1の内部には、不図示の炉心シュラウドが設置されている。以下の説明では、原子炉圧力容器をRPVと称する。炉心シュラウド内には、複数の燃料集合体が装荷された不図示の炉心が配設されている。不図示の気水分離器および蒸気乾燥器は、RPV1内で炉心の上方に配設されている。RPV1内には、所定量の冷却水が存在している。RPV1内の冷却水は、ジェットポンプ等によって不図示の炉心の下方から炉心に供給される。   A reactor core shroud (not shown) is installed inside the reactor pressure vessel 1. In the following description, the reactor pressure vessel is referred to as RPV. A core (not shown) loaded with a plurality of fuel assemblies is disposed in the core shroud. A steam / water separator and a steam dryer (not shown) are disposed in the RPV 1 above the core. A predetermined amount of cooling water is present in the RPV 1. The cooling water in the RPV 1 is supplied to the core from below the core (not shown) by a jet pump or the like.

冷却水は、炉心を通過する際に加熱されて水および蒸気を含む気液二相流となる。不図示の気水分離器は気液二相流を蒸気と水に分離する。分離された蒸気は、更に不図示の蒸気乾燥器で湿分を除去されて不図示の蒸気タービンの駆動源として用いられる。蒸気タービンから排出された蒸気は、不図示の復水器で凝縮されて水となる。この凝縮水は、給水として再びRPV1内に供給される。気水分離器および蒸気乾燥器で分離された水は、RPV1内で落下して冷却水となる。   The cooling water is heated when passing through the core and becomes a gas-liquid two-phase flow containing water and steam. A gas-water separator (not shown) separates the gas-liquid two-phase flow into steam and water. The separated steam is further dehumidified by a steam dryer (not shown) and used as a drive source for a steam turbine (not shown). The steam discharged from the steam turbine is condensed into water by a condenser (not shown). This condensed water is supplied again into the RPV 1 as feed water. The water separated by the steam separator and the steam dryer falls in the RPV 1 and becomes cooling water.

本実施の形態の原子炉水位計100は、計測配管LPと、光ファイバ温度センサ5と、処理装置9とを備えている。計測配管LPは、液面形成配管部4と、上部配管部2と、下部配管部3とを有する。液面形成配管部4は、原子炉格納容器10の内部に設けられた鉛直方向に延在する配管である。上部配管部2は、液面形成配管部4の上部とRPV1の気相部とを接続する配管である。下部配管部3は、液面形成配管部4の下部とRPV1の液層部とを接続する配管である。なお、下部配管部3は、図1に示すように、RPV1の底面に接続される。   The reactor water level meter 100 according to the present embodiment includes a measurement pipe LP, an optical fiber temperature sensor 5, and a processing device 9. The measurement pipe LP has a liquid level forming pipe part 4, an upper pipe part 2, and a lower pipe part 3. The liquid level forming pipe portion 4 is a pipe provided in the reactor containment vessel 10 and extending in the vertical direction. The upper piping part 2 is a pipe that connects the upper part of the liquid level forming piping part 4 and the gas phase part of the RPV 1. The lower piping part 3 is a pipe that connects the lower part of the liquid surface forming piping part 4 and the liquid layer part of the RPV 1. In addition, the lower piping part 3 is connected to the bottom face of RPV1, as shown in FIG.

このように構成される計測配管LPでは、RPV1内の冷却水の一部が流れ込んで、液面形成配管部4の内部に液面(気相部と液層部との境界)が形成される。液面形成配管部4の液面の高さ位置、すなわち液面形成配管部4内部の冷却水の水位は、RPV1内の水位と連動する。したがって、液面形成配管部4における冷却水の水位を計測することで、RPV1内の水位を推定(すなわち、RPV1内の水位を計測)できる。そこで、本実施の形態の原子炉水位計100では、光ファイバ温度センサ5を用いて液面形成配管部4における気相部と液層部との間で生じる温度差と、温度差が生じた高さ位置を検出する。そして、検出した高さ位置から、液面形成配管部4内部の冷却水の水位(すなわち、RPV1内の冷却水の水位)を算出する。なお、光ファイバ温度センサ5を用いた温度計測原理については後述する。   In the measurement pipe LP configured as described above, a part of the cooling water in the RPV 1 flows and a liquid level (boundary between the gas phase part and the liquid layer part) is formed inside the liquid level forming pipe part 4. . The height position of the liquid level of the liquid level forming pipe part 4, that is, the water level of the cooling water inside the liquid level forming pipe part 4 is linked with the water level in the RPV 1. Therefore, the water level in the RPV 1 can be estimated (that is, the water level in the RPV 1 can be measured) by measuring the water level of the cooling water in the liquid level forming pipe part 4. Therefore, in the reactor water level meter 100 of the present embodiment, the temperature difference generated between the gas phase part and the liquid layer part in the liquid level forming pipe part 4 using the optical fiber temperature sensor 5 is caused. Detect height position. And the water level (namely, the water level of the cooling water in RPV1) inside the liquid level formation piping part 4 is calculated from the detected height position. The temperature measurement principle using the optical fiber temperature sensor 5 will be described later.

具体的には、液面形成配管部4内部の上部から下部まで光ファイバ温度センサ5を配設する。光ファイバ温度センサ5に用いられる光ファイバは、耐放射線特性が優れたものが望ましい。光ファイバ温度センサ5は、原子炉格納容器10に設けられた計装ペネトレーション6を介して、原子炉格納容器10の外部に設けられた処理装置9に接続されている。処理装置9には、光源7と検出部8とが設けられている。光源7では、光ファイバ温度センサ5に入射するパルス光を発生する。   Specifically, the optical fiber temperature sensor 5 is disposed from the upper part to the lower part inside the liquid level forming pipe part 4. The optical fiber used for the optical fiber temperature sensor 5 is preferably excellent in radiation resistance. The optical fiber temperature sensor 5 is connected to a processing device 9 provided outside the reactor containment vessel 10 via an instrumentation penetration 6 provided in the reactor containment vessel 10. The processing device 9 is provided with a light source 7 and a detection unit 8. The light source 7 generates pulsed light that enters the optical fiber temperature sensor 5.

検出部8では、光源7が発生したパルス光による光ファイバ温度センサ5の内部の散乱光を検知して光ファイバ温度センサ5の任意の位置における温度を計測する。このようにして検出部8では、光ファイバ温度センサ5の温度分布の情報が得られる。そして検出部8では、得られた温度分布の情報に基づいて、液面形成配管部4における気相部と液層部との温度差が生じる位置(すなわち液面形成配管部4内部の冷却水の水位)を算出する。検出部8は、算出結果をRPV1内の冷却水の水位の情報に変換して外部に出力する。   The detection unit 8 detects the scattered light inside the optical fiber temperature sensor 5 by the pulsed light generated by the light source 7 and measures the temperature at an arbitrary position of the optical fiber temperature sensor 5. In this way, the detection unit 8 can obtain information on the temperature distribution of the optical fiber temperature sensor 5. Then, in the detection unit 8, based on the obtained temperature distribution information, a position where a temperature difference occurs between the gas phase part and the liquid layer part in the liquid level forming pipe part 4 (that is, cooling water inside the liquid level forming pipe part 4). Water level). The detection unit 8 converts the calculation result into information on the water level of the cooling water in the RPV 1 and outputs the information to the outside.

図2は、光ファイバ温度センサ5を用いた温度計測原理を説明するための図である。処理装置9に備えられた光源7によりパルス光を入射すると、入射したパルス光が光ファイバ(すなわち光ファイバ温度センサ5)の各部でごく僅かに散乱する。その散乱光の一部が後方散乱光として光ファイバの光を入射した端部(入射端)に戻ってくる。この後方散乱光の遅延時間(光パルスを入射してから後方散乱光が入射端に戻ってくるまでの時間)は、散乱光が発生した位置から入射端までの光ファイバの距離に依存する。また、この後方散乱光に含まれるラマン散乱光の強度は、散乱を起こした位置における光ファイバの温度に依存する。   FIG. 2 is a diagram for explaining the temperature measurement principle using the optical fiber temperature sensor 5. When pulsed light is incident by the light source 7 provided in the processing device 9, the incident pulsed light is scattered very slightly at each part of the optical fiber (that is, the optical fiber temperature sensor 5). Part of the scattered light returns to the end (incident end) where the light from the optical fiber is incident as backscattered light. The delay time of the backscattered light (the time from when the light pulse is incident until the backscattered light returns to the incident end) depends on the distance of the optical fiber from the position where the scattered light is generated to the incident end. Further, the intensity of the Raman scattered light included in the back scattered light depends on the temperature of the optical fiber at the position where the scattering occurs.

したがって、光ファイバにおける光の伝搬速度(既知)と、後方散乱光の遅延時間からラマン散乱光の発生位置を算出できる。また、後方散乱光に含まれるラマン散乱光の強度に基づいて、散乱を起こした位置における光ファイバの温度を算出できる。そこで、本実施の形態の検出部8では、後方散乱光を検知し、検知したラマン散乱光の遅延時間および強度に基づいて光ファイバ温度センサ5の任意の位置における温度を計測(算出)する。   Therefore, the generation position of the Raman scattered light can be calculated from the propagation speed (known) of the light in the optical fiber and the delay time of the back scattered light. Further, the temperature of the optical fiber at the position where the scattering has occurred can be calculated based on the intensity of the Raman scattered light included in the backscattered light. Therefore, the detection unit 8 of the present embodiment detects backscattered light and measures (calculates) the temperature at an arbitrary position of the optical fiber temperature sensor 5 based on the delay time and intensity of the detected Raman scattered light.

上述した第1の実施の形態の原子炉水位計100では、次の作用効果を奏する。
(1) RPV1に接続した計測配管LPの液面形成配管部4に液面を形成させるように構成した。そして、液面形成配管部4に形成された液面の高さ位置を光ファイバ温度センサ5によって検出するように構成した。これにより、RPV1の水位を気相部と液相部との圧力差を検出しなくてもよくなるため、基準水位を形成する基準面器が必須でなくなる。したがって、基準水位が変動するなどしてRPV1内の正確な水位が計測できなくなるおそれを排除でき、沸騰水型原子炉の運転管理に貢献できる。
The reactor water level meter 100 of the first embodiment described above has the following operational effects.
(1) The liquid level was formed in the liquid level forming pipe part 4 of the measurement pipe LP connected to the RPV 1. And the height position of the liquid level formed in the liquid level formation piping part 4 was comprised so that the optical fiber temperature sensor 5 might detect. This eliminates the need to detect the pressure difference between the gas phase portion and the liquid phase portion of the RPV 1 water level, so that a reference plane for forming the reference water level is not essential. Therefore, it is possible to eliminate the possibility that the accurate water level in the RPV 1 cannot be measured due to fluctuations in the reference water level, and can contribute to the operation management of the boiling water reactor.

(2) 液面形成配管部4に形成された液面の高さ位置の検出に光ファイバ温度センサ5を用いるように構成した。これにより、放射線量が高い原子炉格納容器10の内部に耐放射線特性が低い電子回路を設ける必要がないため、水位計測の信頼性を向上できる。 (2) The optical fiber temperature sensor 5 is used to detect the height position of the liquid level formed in the liquid level forming pipe section 4. Thereby, since it is not necessary to provide an electronic circuit with low radiation resistance characteristics inside the reactor containment vessel 10 having a high radiation dose, the reliability of water level measurement can be improved.

(3) 原子炉格納容器10の内部に計測配管LPを設けるように構成した。これにより、RPV1の冷却水が原子炉格納容器10の外部に漏洩する可能性を低減でき、沸騰水型原子炉のフェイルセーフに貢献できる。 (3) The measurement pipe LP is provided inside the reactor containment vessel 10. Thereby, the possibility that the cooling water of the RPV 1 leaks to the outside of the reactor containment vessel 10 can be reduced, and it can contribute to the fail-safety of the boiling water reactor.

(4) 下部配管部3をRPV1の底面に接続することにより、下部配管部3をRPV1の側面に接続する場合に比べて、RPV1の水位の計測下限を下げることができる。これにより、RPV1の水位がRPV1の底面近傍まで低下してしまうような万が一の場合であっても、RPV1の水位を計測できる。 (4) By connecting the lower piping part 3 to the bottom surface of the RPV 1, it is possible to lower the measurement lower limit of the water level of the RPV 1 as compared with the case where the lower piping part 3 is connected to the side surface of the RPV 1. Thereby, even if it is a case where the water level of RPV1 falls to the bottom face vicinity of RPV1, it is possible to measure the water level of RPV1.

−−−第2の実施の形態−−−
図3を参照して、本発明による原子炉水位計の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、液面形成配管部4を原子炉格納容器10の外部に設けた点で、第1の実施の形態と異なる。
--- Second Embodiment ---
With reference to FIG. 3, a second embodiment of a reactor water level gauge according to the present invention will be described. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment. The present embodiment is different from the first embodiment mainly in that the liquid level forming pipe section 4 is provided outside the reactor containment vessel 10.

図3は、本実施の形態の原子炉水位計100を用いたRPV1の水位計測に係る模式図である。なお、図3では、沸騰水型原子炉の各構成のうち、RPV1の水位計測に関する構成を主に記載し、他の構成についての記載を省略している。本実施の形態の原子炉水位計100では、原子炉格納容器10に設けられた計装ペネトレーション6を介して、計測配管LPの上部配管部2および下部配管部3を原子炉格納容器10の外部に導く。そして、原子炉格納容器10の外部で上部配管部2および下部配管部3を液面形成配管部4に接続する。   FIG. 3 is a schematic diagram related to RPV1 water level measurement using the reactor water level gauge 100 of the present embodiment. In addition, in FIG. 3, the structure regarding the water level measurement of RPV1 is mainly described among each structure of a boiling water reactor, and the description about the other structure is abbreviate | omitted. In the reactor water level meter 100 of the present embodiment, the upper piping portion 2 and the lower piping portion 3 of the measurement piping LP are connected to the outside of the reactor containment vessel 10 through the instrumentation penetration 6 provided in the reactor containment vessel 10. Lead to. Then, the upper piping section 2 and the lower piping section 3 are connected to the liquid level forming piping section 4 outside the reactor containment vessel 10.

第1の実施の形態で述べたように、光ファイバ温度センサ5を用いることで原子炉格納容器10の内部に耐放射線特性が低い電子回路を設ける必要はない。しかし、光ファイバ温度センサ5として耐放射線特性で優れた光ファイバを用いていても、光ファイバの被爆量は少ないことが望ましい。したがって、本実施の形態のように、液面形成配管部4を原子炉格納容器10の外部に設けることで、光ファイバ温度センサ5の被爆量を低減できるので、光ファイバ温度センサ5の耐久性を向上できる。これにより、水位計測の信頼性を向上でき、沸騰水型原子炉の運転管理に貢献できる。   As described in the first embodiment, the use of the optical fiber temperature sensor 5 eliminates the need to provide an electronic circuit with low radiation resistance characteristics inside the reactor containment vessel 10. However, even if an optical fiber excellent in radiation resistance is used as the optical fiber temperature sensor 5, it is desirable that the exposure amount of the optical fiber is small. Therefore, the amount of exposure of the optical fiber temperature sensor 5 can be reduced by providing the liquid level forming pipe portion 4 outside the reactor containment vessel 10 as in the present embodiment, so that the durability of the optical fiber temperature sensor 5 can be reduced. Can be improved. Thereby, the reliability of water level measurement can be improved and it can contribute to the operation management of a boiling water reactor.

また、光ファイバ温度センサ5の耐久性の向上により、光ファイバ温度センサ5の点検頻度や交換頻度を低減でき、メンテナンス費用を削減できる。さらに、液面形成配管部4を原子炉格納容器10の外部に設けたことで、人や機械による液面形成配管部4や光ファイバ温度センサ5の監視が可能となり、メンテナンス性が向上する。   Further, by improving the durability of the optical fiber temperature sensor 5, the inspection frequency and replacement frequency of the optical fiber temperature sensor 5 can be reduced, and the maintenance cost can be reduced. Furthermore, by providing the liquid level forming pipe part 4 outside the reactor containment vessel 10, it becomes possible to monitor the liquid level forming pipe part 4 and the optical fiber temperature sensor 5 by a person or a machine, and the maintainability is improved.

−−−第3の実施の形態−−−
図4を参照して、本発明による原子炉水位計の第3の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態の原子炉水位計100では、主に、基準水位の水頭圧と原子炉水位の水頭圧との差圧に基づく従来技術の原子炉水位計と、光ファイバ温度センサ5を用いたRPV1の水位計測装置(原子炉水位計100)とを併設する点で、第1の実施の形態と異なる。
--- Third embodiment ---
A third embodiment of a reactor water level meter according to the present invention will be described with reference to FIG. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment. In the reactor water level meter 100 of the present embodiment, a conventional reactor water level meter based on the differential pressure between the water head pressure at the reference water level and the water head pressure at the reactor water level and the optical fiber temperature sensor 5 are mainly used. It differs from the first embodiment in that an RPV1 water level measuring device (reactor water level meter 100) is also provided.

図4は、本実施の形態のRPV1の水位計測に係る模式図である。なお、図4では、沸騰水型原子炉の各構成のうち、RPV1の水位計測に関する構成を主に記載し、他の構成についての記載を省略している。本実施の形態の原子炉格納容器10の内部には、さらに基準面器11が設けられている。また、原子炉格納容器10の外部には、さらに差圧式水位計測装置12が設けられている。基準面器11および差圧式水位計測装置12による従来技術の原子炉水位計は公知であるので、詳細な説明を省略する。   FIG. 4 is a schematic diagram relating to the water level measurement of the RPV 1 of the present embodiment. In FIG. 4, among the configurations of the boiling water reactor, the configuration related to the water level measurement of the RPV 1 is mainly described, and the description of the other configurations is omitted. A reference plane 11 is further provided inside the reactor containment vessel 10 of the present embodiment. Further, a differential pressure type water level measuring device 12 is further provided outside the reactor containment vessel 10. Since a conventional reactor water level meter using the reference surface unit 11 and the differential pressure type water level measuring device 12 is known, detailed description thereof will be omitted.

本実施の形態では、従来技術の原子炉水位計のバックアップ装置として光ファイバ温度センサ5を用いた原子炉水位計100を設ける。本実施の形態の原子炉水位計100では、上部配管部2によって、液面形成配管部4の上部と基準面器11の気相部とを接続する。これにより、液面形成配管部4の上部は、基準面器11の気相部を介してRPV1の気相部に接続される。   In the present embodiment, a reactor water level meter 100 using an optical fiber temperature sensor 5 is provided as a backup device for a conventional reactor water level meter. In the reactor water level gauge 100 of the present embodiment, the upper pipe part 2 connects the upper part of the liquid level forming pipe part 4 and the gas phase part of the reference surface unit 11. Thereby, the upper part of the liquid level forming pipe part 4 is connected to the gas phase part of the RPV 1 through the gas phase part of the reference surface unit 11.

このように構成することにより、簡単な構成によって従来技術のRPV1の水位計測装置のバックアップ装置を設けることができ、沸騰水型原子炉の運転管理に貢献できる。   By comprising in this way, the backup apparatus of the water level measuring apparatus of RPV1 of a prior art can be provided by simple structure, and it can contribute to operation management of a boiling water reactor.

−−−第4の実施の形態−−−
図5を参照して、本発明による原子炉水位計の第4の実施の形態を説明する。以下の説明では、第3の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第3の実施の形態と同じである。本実施の形態では、主に、液面形成配管部4を原子炉格納容器10の外部に設けた点で、第3の実施の形態と異なる。
--- Fourth embodiment ---
A fourth embodiment of a reactor water level gauge according to the present invention will be described with reference to FIG. In the following description, the same components as those in the third embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the third embodiment. The present embodiment is different from the third embodiment mainly in that the liquid level forming pipe section 4 is provided outside the reactor containment vessel 10.

図5は、本実施の形態のRPV1の水位計測に係る模式図である。なお、図5では、沸騰水型原子炉の各構成のうち、原子炉圧力容器の水位計測に関する構成を主に記載し、他の構成についての記載を省略している。本実施の形態の原子炉水位計100では、原子炉格納容器10に設けられた計装ペネトレーション6を介して、計測配管LPの上部配管部2および下部配管部3を原子炉格納容器10の外部に導く。そして、原子炉格納容器10の外部で上部配管部2および下部配管部3を液面形成配管部4に接続する。   FIG. 5 is a schematic diagram relating to the water level measurement of the RPV 1 of the present embodiment. In FIG. 5, among the configurations of the boiling water reactor, the configuration related to the water level measurement of the reactor pressure vessel is mainly described, and the description of the other configurations is omitted. In the reactor water level meter 100 of the present embodiment, the upper piping portion 2 and the lower piping portion 3 of the measurement piping LP are connected to the outside of the reactor containment vessel 10 through the instrumentation penetration 6 provided in the reactor containment vessel 10. Lead to. Then, the upper piping section 2 and the lower piping section 3 are connected to the liquid level forming piping section 4 outside the reactor containment vessel 10.

第2の実施の形態でも述べたように、光ファイバ温度センサ5として耐放射線特性で優れた光ファイバを用いていても、光ファイバの被爆量は少ないことが望ましい。したがって、本実施の形態のように、液面形成配管部4を原子炉格納容器10の外部に設けることで、光ファイバ温度センサ5の被爆量を低減できるので、光ファイバ温度センサ5の耐久性を向上できる。これにより、バックアップ装置としての原子炉水位計100の信頼性を向上でき、沸騰水型原子炉の運転管理に貢献できる。   As described in the second embodiment, even if an optical fiber having excellent radiation resistance is used as the optical fiber temperature sensor 5, it is desirable that the amount of exposure of the optical fiber is small. Therefore, the amount of exposure of the optical fiber temperature sensor 5 can be reduced by providing the liquid level forming pipe portion 4 outside the reactor containment vessel 10 as in the present embodiment, so that the durability of the optical fiber temperature sensor 5 can be reduced. Can be improved. Thereby, the reliability of the reactor water level meter 100 as a backup device can be improved, and it can contribute to the operation management of a boiling water reactor.

なお、上述の説明では、従来技術のRPV1の水位計測装置を設けた場合には、液面形成配管部4の上部が基準面器11の気相部を介してRPV1の気相部に接続されるように構成しているが、本発明はこれに限定されない。たとえば、基準面器11の有無に関わらず、上部配管部2によって液面形成配管部4の上部とRPV1の気相部とを直接接続するように構成してもよい。   In the above description, when the RPV 1 water level measuring device of the prior art is provided, the upper part of the liquid level forming pipe part 4 is connected to the gas phase part of the RPV 1 through the gas phase part of the reference surface unit 11. However, the present invention is not limited to this. For example, regardless of the presence or absence of the reference plane device 11, the upper pipe part 2 may be configured to directly connect the upper part of the liquid level forming pipe part 4 and the gas phase part of the RPV 1.

以上で説明した各実施の形態および変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されない。   Each embodiment and modification described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired.

本発明は、上述した実施の形態のものに何ら限定されず、原子炉圧力容器内の気相部に接続された上部配管部と、原子炉圧力容器の底面で液層部に接続された下部配管部と、上部配管部と下部配管部の間を接続して内部に液面を形成する液面形成配管部と、液面形成配管部の内部で液面形成配管部の上部から下部まで配設される光ファイバを有する光ファイバ温度センサと、光ファイバに入射するパルス光の光源と、光ファイバ内で発生する散乱光を検知し、検知した散乱光に基づいて光ファイバの任意の位置における温度を検出する温度検出部と、温度検出部で検出した光ファイバの任意の位置における温度に基づいて、液面形成配管部における気相部と液層部との温度差が生じる位置を液面の位置として算出する液面位置算出部と、液面位置算出部で算出した液面の位置に基づいて、原子炉圧力容器内の冷却水の水位の情報に変換して出力する水位情報出力部とを備えることを特徴とする各種構造の原子炉水位計を含むものである。   The present invention is not limited to the above-described embodiment, and the upper pipe connected to the gas phase part in the reactor pressure vessel and the lower part connected to the liquid layer part at the bottom of the reactor pressure vessel The pipe part, the liquid level forming pipe part that connects the upper pipe part and the lower pipe part to form a liquid level inside, and the liquid level forming pipe part are arranged from the top to the bottom of the liquid level forming pipe part. An optical fiber temperature sensor having an optical fiber installed, a light source of pulsed light incident on the optical fiber, and scattered light generated in the optical fiber are detected, and at any position of the optical fiber based on the detected scattered light Based on the temperature at the arbitrary position of the optical fiber detected by the temperature detection unit that detects the temperature and the temperature detection unit, the position where the temperature difference between the gas phase part and the liquid layer part in the liquid level forming pipe part occurs A liquid level position calculation unit that calculates the position of A water level information output unit for converting and outputting the water level information of the cooling water in the reactor pressure vessel based on the position of the liquid level calculated by the device calculation unit. It includes the total.

1 原子炉圧力容器(RPV) 2 上部配管部
3 下部配管部 4 液面形成配管部
5 光ファイバ温度センサ 6 計装ペネトレーション
7 光源 8 検出部
9 処理装置 10 原子炉格納容器
11 基準面器 12 差圧式水位計測装置
100 原子炉水位計 LP 計測配管
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel (RPV) 2 Upper piping part 3 Lower piping part 4 Liquid level formation piping part 5 Optical fiber temperature sensor 6 Instrumentation penetration 7 Light source 8 Detection part 9 Processing apparatus 10 Reactor containment vessel 11 Reference surface unit 12 Difference Pressure type water level measuring device 100 Reactor water level meter LP Measuring pipe

Claims (4)

原子炉圧力容器内の気相部に接続された上部配管部と、
前記原子炉圧力容器の底面で液層部に接続された下部配管部と、
前記上部配管部と前記下部配管部の間を接続して内部に液面を形成する液面形成配管部と、
前記液面形成配管部の内部で前記液面形成配管部の上部から下部まで配設される光ファイバを有する光ファイバ温度センサと、
前記光ファイバに入射するパルス光の光源と、
前記光ファイバ内で発生する散乱光を検知し、検知した散乱光に基づいて前記光ファイバの任意の位置における温度を検出する温度検出部と、
前記温度検出部で検出した前記光ファイバの任意の位置における温度に基づいて、液面形成配管部における気相部と液層部との温度差が生じる位置を前記液面の位置として算出する液面位置算出部と、
前記液面位置算出部で算出した前記液面の位置に基づいて、前記原子炉圧力容器内の冷却水の水位の情報に変換して出力する水位情報出力部とを備えることを特徴とする原子炉水位計。
An upper piping connected to the gas phase in the reactor pressure vessel;
A lower piping connected to the liquid layer at the bottom of the reactor pressure vessel;
A liquid level forming pipe part that connects between the upper pipe part and the lower pipe part to form a liquid level inside;
An optical fiber temperature sensor having an optical fiber disposed from the upper part to the lower part of the liquid level forming pipe part inside the liquid level forming pipe part;
A light source of pulsed light incident on the optical fiber;
A temperature detector that detects scattered light generated in the optical fiber and detects a temperature at an arbitrary position of the optical fiber based on the detected scattered light;
Based on the temperature at the arbitrary position of the optical fiber detected by the temperature detection unit, a liquid that calculates the position where the temperature difference between the gas phase part and the liquid layer part in the liquid level forming pipe part occurs as the position of the liquid level A surface position calculation unit;
A water level information output unit that converts the level of the coolant level in the reactor pressure vessel based on the position of the liquid level calculated by the level level calculation unit and outputs the information. Reactor water level gauge.
請求項1に記載の原子炉水位計において、
前記原子炉圧力容器の気相部から導かれる蒸気を凝縮させて基準水位を形成する基準面器と、
前記基準面器で形成された基準水位の水頭圧と、前記原子炉圧力容器の液層部の水頭圧との差圧に基づいて、前記原子炉圧力容器内の冷却水の水位の情報を出力する差圧式原子炉水位計とをさらに備え、
前記上部配管部は、前記基準面器の気相部に接続されることで、前記基準面器の気相部を介して前記原子炉圧力容器内の気相部に接続されることを特徴とする原子炉水位計。
Reactor water level gauge according to claim 1,
A reference surface unit that forms a reference water level by condensing steam introduced from a gas phase portion of the reactor pressure vessel;
Outputs the water level information of the cooling water in the reactor pressure vessel based on the pressure difference between the head pressure at the reference water level formed by the reference plane and the head pressure at the liquid layer of the reactor pressure vessel. And a differential pressure reactor water level meter
The upper piping part is connected to the gas phase part in the reactor pressure vessel through the gas phase part of the reference surface unit by being connected to the gas phase part of the reference surface unit. Reactor water level meter.
請求項1または請求項2に記載の原子炉水位計において、
前記液面形成部は、原子炉格納容器の内部に配設されていることを特徴とする原子炉水位計。
In the reactor water level meter according to claim 1 or 2,
The reactor water level meter, wherein the liquid level forming part is disposed inside a reactor containment vessel.
請求項1または請求項2に記載の原子炉水位計において、
前記液面形成部は、原子炉格納容器の外部に配設されていることを特徴とする原子炉水位計。
In the reactor water level meter according to claim 1 or 2,
A reactor water level gauge, wherein the liquid level forming part is disposed outside a reactor containment vessel.
JP2012182502A 2012-08-21 2012-08-21 Reactor water level gauge Active JP6004834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182502A JP6004834B2 (en) 2012-08-21 2012-08-21 Reactor water level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182502A JP6004834B2 (en) 2012-08-21 2012-08-21 Reactor water level gauge

Publications (2)

Publication Number Publication Date
JP2014041023A true JP2014041023A (en) 2014-03-06
JP6004834B2 JP6004834B2 (en) 2016-10-12

Family

ID=50393398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182502A Active JP6004834B2 (en) 2012-08-21 2012-08-21 Reactor water level gauge

Country Status (1)

Country Link
JP (1) JP6004834B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194420A (en) * 2015-03-31 2016-11-17 株式会社関電工 Atomic reactor water level measuring method in emergency, apparatus for the same, and method of pouring water into atomic reactor
WO2017021458A1 (en) 2015-08-03 2017-02-09 Areva Np Device for measuring liquid level by means of optical reflectometry, structure comprising such a device and corresponding measuring method
JP2017032402A (en) * 2015-07-31 2017-02-09 オリエントブレイン株式会社 Water level detection device
CN111366214A (en) * 2020-04-24 2020-07-03 河南神马尼龙化工有限责任公司 Device for measuring liquid level of catalyst suspension aqueous solution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646429A (en) * 1979-09-25 1981-04-27 Toshiba Corp Liquid level detecting device of reactor
JPS6193986A (en) * 1984-10-13 1986-05-12 株式会社日立製作所 Emergency decompression device for nuclear reactor
JPH05288590A (en) * 1992-04-13 1993-11-02 Toshiba Corp Nuclear reactor water level measuring device
JPH05296812A (en) * 1992-04-20 1993-11-12 Hitachi Ltd Optical-cable liquid-level gauge
JP2011180052A (en) * 2010-03-03 2011-09-15 Toshiba Corp Reactor water-level meter and method of measuring reactor water level

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646429A (en) * 1979-09-25 1981-04-27 Toshiba Corp Liquid level detecting device of reactor
JPS6193986A (en) * 1984-10-13 1986-05-12 株式会社日立製作所 Emergency decompression device for nuclear reactor
JPH05288590A (en) * 1992-04-13 1993-11-02 Toshiba Corp Nuclear reactor water level measuring device
JPH05296812A (en) * 1992-04-20 1993-11-12 Hitachi Ltd Optical-cable liquid-level gauge
JP2011180052A (en) * 2010-03-03 2011-09-15 Toshiba Corp Reactor water-level meter and method of measuring reactor water level

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194420A (en) * 2015-03-31 2016-11-17 株式会社関電工 Atomic reactor water level measuring method in emergency, apparatus for the same, and method of pouring water into atomic reactor
JP2017032402A (en) * 2015-07-31 2017-02-09 オリエントブレイン株式会社 Water level detection device
WO2017021458A1 (en) 2015-08-03 2017-02-09 Areva Np Device for measuring liquid level by means of optical reflectometry, structure comprising such a device and corresponding measuring method
CN111366214A (en) * 2020-04-24 2020-07-03 河南神马尼龙化工有限责任公司 Device for measuring liquid level of catalyst suspension aqueous solution
CN111366214B (en) * 2020-04-24 2021-06-15 河南神马尼龙化工有限责任公司 Device for measuring liquid level of catalyst suspension aqueous solution

Also Published As

Publication number Publication date
JP6004834B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6004834B2 (en) Reactor water level gauge
JP5677274B2 (en) Reactor water level measurement system
JP5980500B2 (en) Reactor water level gauge
KR102150741B1 (en) Method of validating nuclear reactor in-vessel detector output signals
Thie Core motion monitoring
JP2013108810A5 (en)
JP5291869B2 (en) Liquid level measuring system and method
JP2007064635A (en) Monitoring device and monitoring method for nuclear reactor state
US5475720A (en) Non-condensable gas tolerant condensing chamber
US5365555A (en) Water level measurement system
CN111727352B (en) Method for evaluating fouling of heat exchanger
US20150027663A1 (en) Instrumented Steam Generator Anti-Vibration Bar
JP2014206519A5 (en)
JP5815100B2 (en) Reactor water level measurement system
KR100991689B1 (en) Diagnosis for Quantitative Flow Hole Blockage Rate of Steam Generator Using Wide Range Level Measurements and Thermal Hydraulic Instability Analysis
JP2016194421A (en) Atomic reactor water level measuring method in emergency, and apparatus therefor
JP2006349577A (en) Flow measuring device of nuclear reactor
JP5398501B2 (en) Reactor
Morii Hydraulic flow tests of APWR reactor internals for safety analysis
JP7237869B2 (en) Reactor water level measurement system and reactor water level measurement method
JP7344745B2 (en) Subcriticality measurement device and subcriticality measurement method
JP2945907B1 (en) Core flow monitoring system
JP2016161519A (en) Nuclear reactor monitoring system and nuclear power plant, and method for monitoring the nuclear reactor
KR100905372B1 (en) Free interface?s fluctuation measurement apparatus in heat exchanger of fast reactor and method using the same
JP2007101537A (en) Improved online steam flow velocity measurement device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6004834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150