JP5980500B2 - Reactor water level gauge - Google Patents

Reactor water level gauge Download PDF

Info

Publication number
JP5980500B2
JP5980500B2 JP2011272610A JP2011272610A JP5980500B2 JP 5980500 B2 JP5980500 B2 JP 5980500B2 JP 2011272610 A JP2011272610 A JP 2011272610A JP 2011272610 A JP2011272610 A JP 2011272610A JP 5980500 B2 JP5980500 B2 JP 5980500B2
Authority
JP
Japan
Prior art keywords
cooling water
water level
reactor
core
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011272610A
Other languages
Japanese (ja)
Other versions
JP2013124883A (en
Inventor
篤 伏見
篤 伏見
有田 節男
節男 有田
昌基 金田
昌基 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011272610A priority Critical patent/JP5980500B2/en
Publication of JP2013124883A publication Critical patent/JP2013124883A/en
Application granted granted Critical
Publication of JP5980500B2 publication Critical patent/JP5980500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、沸騰水型原子炉の冷却水の水位を計測する水位計に係り、特に、原子炉内に設置した冷却水検出器により直接水位を計測する原子炉水位計に関する。   The present invention relates to a water level meter that measures the level of cooling water in a boiling water reactor, and more particularly to a reactor water level meter that directly measures the water level with a cooling water detector installed in the reactor.

沸騰水型原子炉では、給水配管から原子炉内に供給する冷却水を炉心燃料内の核反応で生じる発熱により蒸発させ、発生した蒸気を主蒸気配管からタービンへ導くことによりタービンおよび発電機を回転させて発電する。このとき、原子炉内の炉心上部には、冷却水と蒸気の境界である水位が形成される。炉心上部には、蒸気と冷却水を分離するために気水分離器や蒸気乾燥器が配置されており、分離性能を確保するために適切な位置で水位が一定となるよう監視制御される。さらに、冷却水喪失などの事故時においては、炉心が冷却水から露出して除熱が不十分とならないよう、水位が監視され、水位に応じた安全機能が作動する仕組みとなっている。   In a boiling water reactor, the cooling water supplied from the feed water pipe to the reactor is evaporated by the heat generated by the nuclear reaction in the core fuel, and the generated steam is led from the main steam pipe to the turbine, so that the turbine and the generator are Rotate to generate electricity. At this time, a water level that is a boundary between cooling water and steam is formed in the upper part of the core in the nuclear reactor. In the upper part of the core, a steam separator and a steam dryer are arranged to separate the steam and the cooling water, and the water level is monitored and controlled at an appropriate position to ensure the separation performance. Furthermore, in the event of an accident such as loss of cooling water, the water level is monitored and the safety function is activated according to the water level so that the core is not exposed from the cooling water and heat removal is not insufficient.

従来、沸騰水型原子炉における水位は、基準高さ水柱からの圧力と炉内水位に応じた圧力とが計装配管により炉外の差圧伝送器に導かれ、この差圧伝送器から出力される差圧信号に基づいて計測されている。計測に使用される計装配管および差圧伝送器は、用途に応じて複数種類備えられている。例えば、冷却水と蒸気の分離性能を高く保つために狭い範囲を精密に監視する通常運転用の水位計の他に、過渡時や事故時に安全機能を作動するために広範囲をカバーする水位計が設置されている。   Conventionally, the water level in a boiling water reactor is that the pressure from the reference height water column and the pressure corresponding to the water level in the reactor are led to the differential pressure transmitter outside the reactor by instrumentation piping, and output from this differential pressure transmitter. It is measured based on the differential pressure signal. A plurality of types of instrumentation pipes and differential pressure transmitters used for measurement are provided depending on the application. For example, in addition to the normal level water level meter that closely monitors a narrow range in order to keep the cooling water and steam separation performance high, there is a water level meter that covers a wide range to operate the safety function during a transient or accident. is set up.

一方、水位計測の応答性改善やダイバーシティ確保の観点から、原子炉水位を直接炉内で検出する方法が検討されている。   On the other hand, from the viewpoint of improving water level measurement responsiveness and ensuring diversity, methods for detecting the reactor water level directly in the reactor have been studied.

特許文献1には、沸騰水型原子炉の中性子検出用配管の中にシース熱電対を組み込み、水面より上部と下部で温度差を生じることを利用して水面の位置を検知する原子炉炉心の監視装置が開示されている。   In Patent Document 1, a sheath thermocouple is incorporated in a neutron detection pipe of a boiling water reactor, and a reactor core that detects the position of the water surface by using a temperature difference between the upper and lower surfaces of the water surface is disclosed. A monitoring device is disclosed.

また、特許文献2には、同軸状に構成した電熱発熱体の周囲に同心円状に熱電対を配置し、電熱発熱体に流れる電流の磁場影響を受けにくくした原子炉内水位検知計が開示されている。   Patent Document 2 discloses a water level detector in the reactor in which thermocouples are arranged concentrically around a coaxially configured electrothermal heating element and are less susceptible to the magnetic field effect of the current flowing through the electrothermal heating element. ing.

特開昭59−112290号公報JP 59-112290 A 特開平3−188327号公報Japanese Patent Laid-Open No. 3-188327

原子炉内の水位を全範囲に渡って計測することは、事故時を含むあらゆる状況に対応するために重要である。炉心下部の水位計測も、万一、炉心損傷が発生した場合のために備える必要がある。   Measuring the water level in the reactor over the entire range is important to cope with all situations including accidents. It is necessary to prepare the water level measurement at the bottom of the core in case the core is damaged.

上述したように、原子炉内の水位を直接計測する発明が開示されているが、沸騰水型原子炉の炉心下部の水位計測に適用するには以下に示すような課題がある。まず、原子炉内に直接水位検出器を配置する際に、圧力容器底部への貫通口の追加を回避することである。炉心下部の水位を計測するためには、炉心やその他の炉内構造物と干渉しないよう炉底部から炉内へ水位計を挿入する必要があるが、そのためには炉底部に貫通口を設ける必要がある。貫通口の追加は冷却材が漏えいする可能性を増すこと、および炉底部の検査やメンテナンスを増大することから望ましくない。   As described above, the invention for directly measuring the water level in the nuclear reactor has been disclosed, but there are the following problems when applied to the measurement of the water level in the lower part of the core of the boiling water reactor. First, it is to avoid adding a through-hole to the bottom of the pressure vessel when placing the water level detector directly in the reactor. In order to measure the water level at the bottom of the core, it is necessary to insert a water level gauge from the bottom of the reactor into the reactor so that it does not interfere with the core and other reactor internal structures. There is. The addition of through holes is undesirable because it increases the possibility of coolant leakage and increases inspection and maintenance of the furnace bottom.

特許文献1に開示された原子炉炉心の監視装置及び特許文献2に開示された原子炉内水位検知計を用いれば、従来の中性子検出用配管を利用できるため、新たな貫通口を設けることなく水位検出器を炉内に挿入することができるが、このままでは、原子炉水位が炉心下部まで低下した場合、中性子検出用配管内の水位は炉心下部の水位と一致しない。これは、中性子検出用配管は、炉心下端から圧力容器底部までの間に配設された炉内計装ハウジングおよび炉内計装案内管に挿入されており、炉心下部まで水位が低下してもこれらに残る冷却水が炉心下端より低下しないため、この中に挿入されている中性子検出用配管内の水位も炉心下端より低下しないことによる。   If the reactor core monitoring device disclosed in Patent Document 1 and the reactor water level detector disclosed in Patent Document 2 are used, the conventional neutron detection pipe can be used, so that a new through hole is not provided. Although the water level detector can be inserted into the reactor, if the reactor water level drops to the lower part of the core, the water level in the neutron detection pipe does not match the water level at the lower part of the core. This is because the neutron detection pipe is inserted into the in-core instrument housing and the in-core instrument guide pipe arranged between the lower end of the core and the bottom of the pressure vessel. This is because the remaining cooling water does not drop from the lower end of the core, and therefore the water level in the neutron detection pipe inserted therein does not drop from the lower end of the core.

従来、中性子検出配管には冷却水を導入するための貫通口が設けられ、中性子検出配管内が冷却水で満たされる構造になっているが、貫通口は炉心付近に設けられているため、配管内の水位を炉心下部の水位と一致させることができない。すなわち、残る課題は、炉内の冷却水水位が炉心下部まで低下した場合に、中性子検出用配管内の水位を冷却水水位と一致させる仕組みを設ける必要がある。   Conventionally, the neutron detection pipe is provided with a through-hole for introducing cooling water, and the neutron detection pipe is filled with cooling water, but the through-hole is provided in the vicinity of the reactor core. The water level inside cannot be matched with the water level below the core. That is, the remaining problem is to provide a mechanism for matching the water level in the neutron detection pipe with the cooling water level when the cooling water level in the reactor drops to the lower part of the core.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、原子炉圧力容器の炉底部に貫通口を追加することなく、炉心下部の水位を炉内で直接計測する原子炉水位計を提供することにあり、特に、水位が低い場合にも直接水位を計測することができる原子炉水位計を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to directly adjust the water level at the bottom of the core in the reactor without adding a through-hole to the bottom of the reactor pressure vessel. It is to provide a reactor water level meter that can measure, and in particular, to provide a reactor water level meter that can directly measure the water level even when the water level is low.

前記目的を達成すべく、本発明に係る原子炉水位計は、沸騰水型原子炉の圧力容器内部の冷却水の水位を計測する原子炉水位計であって、前記圧力容器底部に容器壁面を貫通して固定した炉内計装ハウジングと、該炉内計装ハウジングに挿入され中性子検出器を格納する中性子検出用配管と、該中性子検出用配管の内部であって炉心下端よりも下部の複数高さ位置に配置された複数の冷却水検出器と、該冷却水検出器を配置した複数高さ位置よりも下部位置において前記炉内計装ハウジングおよび前記中性子検出用配管の双方に設けた冷却水の貫通口と、前記貫通口よりも下方で前記複数の冷却水検出器のケーブルと前記中性子検出器の信号ケーブルが挿入されている前記中性子検出用配管の下方開口を封止する止水手段と、を備え、前記中性子検出用配管は、前記炉内計装ハウジング内に、該炉内計装ハウジングとの間から冷却水が漏水するのを防止するように挿入され、前記貫通口は、前記中性子検出用配管の内部と前記圧力容器の内部とを連通することを特徴としている。 In order to achieve the above object, a reactor water level meter according to the present invention is a reactor water level meter for measuring the level of cooling water inside a pressure vessel of a boiling water reactor, and a vessel wall surface is provided at the bottom of the pressure vessel. and penetrating the furnace instrumentation housing and fixed, the neutron detection pipe that stores inserted into the furnace in the instrumentation housing neutron detector, lower than the core the lower end an internal of the neutron detection pipe A plurality of cooling water detectors arranged at a plurality of height positions, and provided in both the in-core instrument housing and the neutron detection pipe at a position below the plurality of height positions where the cooling water detectors are arranged. A coolant stop for sealing a cooling water through-hole, and a lower opening of the neutron detection pipe into which the plurality of cooling water detector cables and the neutron detector signal cable are inserted below the through-hole. and means, wherein the in The child detection pipe is inserted into the in-core instrument housing so as to prevent cooling water from leaking from between the in-core instrument housing, and the through-hole is connected to the neutron detection pipe. It is characterized in that the inside communicates with the inside of the pressure vessel .

前記のごとく構成された本発明の原子炉水位計は、原子炉圧力容器の底部の容器壁面に貫通して固定された炉内計装ハウジング内に、中性子検出用配管が挿入され、その配管内部の複数高さ位置に配置された複数の冷却水検出器で、圧力容器内の冷却水の水位を計測することができる。また、冷却水検出器を配置した複数高さ位置よりも下部位置において、炉内計装ハウジングおよび中性子検出用配管の双方に冷却水を導く貫通口を設けたので、炉内の冷却水水位が炉心下部まで低下した場合でも、冷却水が貫通口を通して導かれるため、中性子検出用配管内の水位と低下した原子炉内の水位が一致し、直接、水位を正確に計測することができる。   In the reactor water level meter of the present invention configured as described above, a neutron detection pipe is inserted into an in-reactor instrumentation housing that is fixed through the vessel wall surface at the bottom of the reactor pressure vessel. The cooling water level in the pressure vessel can be measured with a plurality of cooling water detectors arranged at a plurality of height positions. In addition, since a through-hole that leads cooling water to both the in-core instrument housing and the neutron detection piping is provided at a position lower than the plurality of height positions where the cooling water detectors are arranged, the cooling water level in the furnace Even when the temperature falls to the lower part of the core, the cooling water is guided through the through-hole, so that the water level in the neutron detection pipe matches the lowered water level in the reactor, and the water level can be measured directly and accurately.

本発明によれば、沸騰水型原子炉の炉心下部に水位が低下した場合にも、原子炉水位を直接炉内で検出することが可能となり、水位計測の応答性改善やダイバーシティ確保が可能となる。また、炉心下部での温度分布測定が可能となることから、万一、炉心が損傷した場合における炉心状態の把握に利用することが可能となる。   According to the present invention, even when the water level drops below the core of the boiling water reactor, it becomes possible to detect the reactor water level directly in the reactor, and it is possible to improve the water level measurement response and ensure diversity. Become. In addition, since temperature distribution measurement at the lower part of the core is possible, it can be used for grasping the core state when the core is damaged.

本発明に係る原子炉水位計の第1実施形態のシステム構成を示す概念図。The conceptual diagram which shows the system configuration | structure of 1st Embodiment of the reactor water level meter which concerns on this invention. (a)は図1の炉心の横断面図、(b)は(a)の要部詳細図。(A) is a cross-sectional view of the core of FIG. 1, (b) is a detail view of the main part of (a). 冷却水検出器の第1実施例の要部縦断面図。The principal part longitudinal cross-sectional view of 1st Example of a cooling water detector. 冷却水検出器の第2実施例の要部縦断面図。The principal part longitudinal cross-sectional view of 2nd Example of a cooling water detector. 冷却水検出器の第3実施例の要部縦断面図。The principal part longitudinal cross-sectional view of 3rd Example of a cooling water detector. 本発明に係る原子炉水位計の第2実施形態のシステム構成を示す概念図。The conceptual diagram which shows the system configuration | structure of 2nd Embodiment of the reactor water level meter which concerns on this invention.

以下、本発明に係る原子炉水位計の第1実施形態を図面に基づき詳細に説明する。図1は、本実施形態に係る原子炉水位計のシステム構成を示した概念図、図2(a)は、図1の炉心の横断面図、図2(b)は、図2(a)の要部詳細図である。   Hereinafter, a first embodiment of a reactor water level gauge according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a conceptual diagram showing a system configuration of a reactor water level meter according to this embodiment, FIG. 2A is a cross-sectional view of the core of FIG. 1, and FIG. 2B is FIG. FIG.

図1,2において、原子炉水位計の冷却水検出器14は、原子炉圧力容器1の内部に直接設置される。炉心2は、周囲をシュラウド5で取り囲まれており、炉心下端部に設置された炉心支持盤7と上端に設置された上部格子板8の間には図示しない燃料集合体が多数設置されている。シュラウド5の上部はシュラウド上蓋6が取り付けられており、シュラウド上蓋6の上部には、冷却水と蒸気を分離するための気水分離器3、蒸気乾燥器4が設置されている。   1 and 2, the coolant level detector 14 of the reactor water level meter is directly installed inside the reactor pressure vessel 1. The core 2 is surrounded by a shroud 5, and a large number of fuel assemblies (not shown) are installed between the core support plate 7 installed at the lower end of the core and the upper lattice plate 8 installed at the upper end. . A shroud upper lid 6 is attached to the upper portion of the shroud 5, and an air-water separator 3 and a steam dryer 4 for separating cooling water and steam are installed on the upper portion of the shroud upper lid 6.

図2は図1の炉心2の水平方向の横断面図を示しており、多数の燃料集合体33が垂直に配列され、炉心支持盤7と上部格子板8との間に支持されている。燃料集合体33の内部には図示していない多数の燃料棒が収納されている。炉心2内部には、中性子検出用配管11が、多数の燃料集合体33の隙間に設置されている。図2の例では、炉心2を貫通するように43本の中性子検出用配管11が4つの燃料集合体毎に縦横に配置されている。原子炉圧力容器1は中性子検出用配管11を挿入するために、底部の容器壁面を垂直に貫通して固定した多数の炉内計装ハウジング9を備えている。   FIG. 2 is a horizontal cross-sectional view of the core 2 of FIG. 1, and a large number of fuel assemblies 33 are vertically arranged and supported between the core support plate 7 and the upper lattice plate 8. A large number of fuel rods (not shown) are accommodated in the fuel assembly 33. Inside the core 2, neutron detection pipes 11 are installed in gaps between a number of fuel assemblies 33. In the example of FIG. 2, 43 neutron detection pipes 11 are arranged vertically and horizontally for every four fuel assemblies so as to penetrate the core 2. In order to insert the neutron detection pipe 11, the nuclear reactor pressure vessel 1 is provided with a number of in-core instrument housings 9 that are vertically penetrated and fixed to the bottom vessel wall surface.

中性子検出用配管11は、原子炉圧力容器1の下部に直接溶接された炉内計装ハウジング9と、炉内計装ハウジング上部と炉心支持盤7との間に取り付けられた炉内計装案内管10に挿入され、その上端が上部格子板8に固定されている。中性子検出用配管11の内部には、中性子検出器12、走査型中性子検出器用案内管13および冷却水検出器14を内蔵した金属被覆ケーブル15が格納されている。冷却水検出器14を内蔵した金属被覆ケーブル15は、図示した全ての中性子検出用配管11に挿入することもできるが、図2に例を示したように、圧力容器内の水位分布がある程度考慮できるように10本程度に挿入することでも良い。   The neutron detection pipe 11 includes an in-core instrument housing 9 welded directly to the lower part of the reactor pressure vessel 1, and an in-core instrument guide attached between the upper in-core instrument housing and the core support board 7. The upper end of the tube 10 is fixed to the upper lattice plate 8. Inside the neutron detection pipe 11, a metal-coated cable 15 containing a neutron detector 12, a scanning neutron detector guide tube 13, and a cooling water detector 14 is stored. The metal-coated cable 15 incorporating the cooling water detector 14 can be inserted into all the neutron detection pipes 11 shown in the figure, but as shown in the example of FIG. 2, the water level distribution in the pressure vessel is considered to some extent. It may be inserted into about 10 so that it can be done.

本実施形態では、左側の中性子検出用配管11Aの内部には2つの冷却水検出器14a、14bが配置され、右側の中性子検出用配管11Bの内部には3つの冷却水検出器14c、14d、14eが配置されている。そして、右側の冷却水検出器14cが1番高い位置に配置され、左側の冷却水検出器14aが2番目に高い位置に配置され、右側の冷却水検出器14dが3番目に高い位置、すなわち、中間位置に配置され、左側の冷却水検出器14bが4番目に高い位置、すなわち、下から2番目に配置され、右側の冷却水検出器14eが1番低い位置に配置されている。そして、5つの冷却水検出器はそれぞれ等間隔に配置されている。なお、上方の間隔を大きくし、下方に向けて間隔を小さくする等、適宜設定することができる。   In the present embodiment, two cooling water detectors 14a and 14b are arranged inside the left neutron detection pipe 11A, and three cooling water detectors 14c, 14d, 14e is arranged. The right cooling water detector 14c is arranged at the highest position, the left cooling water detector 14a is arranged at the second highest position, and the right cooling water detector 14d is at the third highest position, that is, The left cooling water detector 14b is disposed at the fourth highest position, that is, the second cooling water detector 14b from the bottom, and the right cooling water detector 14e is disposed at the lowest position. The five coolant detectors are arranged at equal intervals. Note that the upper interval can be set appropriately, such as increasing the interval and decreasing the interval downward.

中性子検出用配管11は、炉内計装案内管10および炉内計装ハウジングを通じて原子炉圧力容器1の下部を貫通しており、この中性子検出用配管11の下端からは中性子検出器12の信号ケーブル、走査型中性子検出器案内管13の端部、および金属被覆ケーブル15の端部が引き出されている。金属被覆ケーブル15にはコネクタ16が取り付けられており、このコネクタに多芯ケーブル17の一端が接続され、他端が信号処理装置21に接続されている。   The neutron detection pipe 11 passes through the lower part of the reactor pressure vessel 1 through the in-core instrumentation guide tube 10 and the in-core instrument housing, and a signal from the neutron detector 12 is transmitted from the lower end of the neutron detection pipe 11. The cable, the end of the scanning neutron detector guide tube 13, and the end of the metal-coated cable 15 are drawn out. A connector 16 is attached to the metal-coated cable 15, one end of the multi-core cable 17 is connected to the connector, and the other end is connected to the signal processing device 21.

炉内計装ハウジング9および中性子検出用配管11の双方には、炉心下部において冷却水を導くための貫通口18および19が冷却水検出器14よりも低い位置に備えられている。また、中性子検出用配管11には、炉心上部にも同様の貫通口20が備えられている。貫通口18と貫通口19とは、原子炉圧力容器1の底面から同じ高さ位置に形成され、図1の例では、貫通口18より直径の大きい貫通口19が同心円状に形成されている。また、左側の中性子検出用配管11Aの貫通口18,19より、右側の中性子検出用配管11Bの貫通口18,19の方が容器1の底面が低いため、低い位置に形成されている。このため、中性子検出用配管11内には、下方の貫通口18,19を通して圧力容器1内の冷却水22が導かれるように構成されている。   Both the in-core instrument housing 9 and the neutron detection pipe 11 are provided with through-holes 18 and 19 for guiding the cooling water in the lower part of the core at a position lower than the cooling water detector 14. The neutron detection pipe 11 is also provided with a similar through-hole 20 at the upper part of the core. The through hole 18 and the through hole 19 are formed at the same height position from the bottom surface of the reactor pressure vessel 1, and in the example of FIG. 1, the through hole 19 having a diameter larger than the through hole 18 is formed concentrically. . Further, the through holes 18 and 19 of the right neutron detection pipe 11B are formed at lower positions than the through holes 18 and 19 of the left neutron detection pipe 11A because the bottom surface of the container 1 is lower. For this reason, the cooling water 22 in the pressure vessel 1 is guided into the neutron detection pipe 11 through the lower through holes 18 and 19.

炉内計装ハウジング9は上下開口筒状に形成され、その内部には、前記のように方開口から中性子検出用配管11が挿入されている。そして、炉内計装ハウジング9の下端部は中性子検出用配管11の外周に密着して、ハウジング内部に冷却水22が侵入しても漏水しない構成となっている。また、中性子検出用配管11には、その下方開口から中性子検出器12と引出し線、走査型中性子検出器案内管13及び金属被覆ケーブル15が挿入され、止水栓23で封止されており、冷却水22が外部に漏水しない構成となっている。 Furnace instrumentation housing 9 is formed into a cylindrical shape the upper and lower openings, the inside, neutron detection pipe 11 from above lateral openings so that the are inserted. The lower end portion of the in-core instrument housing 9 is in close contact with the outer periphery of the neutron detection pipe 11 so that water does not leak even if the cooling water 22 enters the housing. Further, a neutron detector 12 and a lead wire, a scanning neutron detector guide tube 13 and a metal-coated cable 15 are inserted into the neutron detection pipe 11 from its lower opening, and sealed with a water stopcock 23, The cooling water 22 does not leak to the outside.

次に、本実施形態の原子炉水位計の動作を説明する。原子炉圧力容器1内の冷却水22は、通常、炉心2を覆い、炉心から発生する熱を吸収してその一部が蒸気となる。蒸気を含む冷却水は気水分離器3および蒸気乾燥器4で蒸気と冷却水が分離され、炉心上部において水位が形成され、図示しない通常運転用の水位計により水位が監視制御される。一方、本実施形態のシステムは、炉心損傷を伴うような事故が万一発生し、炉心下部まで冷却水22の水位が低下するような場合に使用する。   Next, the operation of the reactor water level meter of this embodiment will be described. The cooling water 22 in the reactor pressure vessel 1 usually covers the core 2 and absorbs heat generated from the core, and a part thereof becomes steam. Steam and cooling water containing steam are separated from steam and cooling water by the steam separator 3 and the steam dryer 4, a water level is formed in the upper part of the core, and the water level is monitored and controlled by a water level gauge for normal operation (not shown). On the other hand, the system of the present embodiment is used when an accident involving core damage occurs and the water level of the cooling water 22 decreases to the lower part of the core.

本実施形態によれば、冷却水22の水位が炉心下部まで低下した場合でも、炉心下部において炉内計装ハウジング9および中性子検出用配管11に備えられた貫通口18、19および炉心上部で中性子検出用配管11に備えられた貫通口20により、中性子検出用配管11内に炉内と同じ高さの水位が形成された状態で配管内の上部と下部の圧力が均衡する。中性子検出用配管11内に設置した冷却水検出器14は、それぞれの検出器周囲の冷却水有無を検出する。   According to the present embodiment, even when the water level of the cooling water 22 is lowered to the lower part of the core, the neutrons are formed at the through holes 18 and 19 provided in the in-core instrument housing 9 and the neutron detection pipe 11 and the upper part of the core in the lower part of the core. Due to the through-hole 20 provided in the detection pipe 11, the upper and lower pressures in the pipe are balanced in a state where the water level of the same height as that in the furnace is formed in the neutron detection pipe 11. The cooling water detector 14 installed in the neutron detection pipe 11 detects the presence or absence of cooling water around each detector.

例えば、図1に示す高さに水位がある場合、中性子検出用配管11A内部の冷却水検出器14aの周囲には冷却水が無いため、Low信号が出力される。一方、14bの周囲には冷却水があるため、High信号が出力される。同様に、中性子検出用配管11B内部の冷却水検出器14c、14d、14eから出力される信号は、それぞれLow、Low、Highとなる。これら出力信号は、金属被覆ケーブル15および多芯ケーブル17を介して信号処理装置21に送信される。信号処理装置21には、各検出器の設置高さを予め記憶してあり、それぞれの高さでの冷却水有無から原子炉内の水位を検知し、結果を出力する。   For example, when there is a water level at the height shown in FIG. 1, since there is no cooling water around the cooling water detector 14a inside the neutron detection pipe 11A, a Low signal is output. On the other hand, since there is cooling water around 14b, a High signal is output. Similarly, the signals output from the coolant detectors 14c, 14d, and 14e inside the neutron detection pipe 11B are Low, Low, and High, respectively. These output signals are transmitted to the signal processing device 21 via the metal-coated cable 15 and the multicore cable 17. The signal processing device 21 stores in advance the installation height of each detector, detects the water level in the reactor from the presence or absence of cooling water at each height, and outputs the result.

本実施形態では、2つの中性子検出用配管11Aおよび11Bで冷却水検出器14a、14b、14c、14d、14eの高さを変えてあるため、14bと14dの間に水位があることが検知される。信号処理装置21では、14bと14dの中間点の高さを現在の水位として出力する。同様に、3つ以上の中性子検出用配管11に、それぞれ異なる高さ位置に複数の冷却水検出器14を設置することで、1つの中性子検出用配管11に設置する冷却水検出器14の個数を増やさずに、より精度の高い水位計を実現できる。すなわち、コネクタ16や多芯ケーブル17の芯数に制限されることなく、精度を向上することができる。また、本実施形態では、図2に示すように、43本の中性子検出用配管11のうちの10本の中性子検出用配管に冷却水検出器14を挿入しているため、炉心が損傷した場合に炉心株での温度分布を測定することができ、炉心状態を正確に把握することができる。   In this embodiment, since the heights of the cooling water detectors 14a, 14b, 14c, 14d, and 14e are changed in the two neutron detection pipes 11A and 11B, it is detected that there is a water level between 14b and 14d. The The signal processing device 21 outputs the height of the midpoint between 14b and 14d as the current water level. Similarly, the number of cooling water detectors 14 installed in one neutron detection pipe 11 by installing a plurality of cooling water detectors 14 at three or more different height positions in three or more neutron detection pipes 11. A more accurate water level gauge can be realized without increasing the value. That is, the accuracy can be improved without being limited by the number of cores of the connector 16 and the multicore cable 17. Moreover, in this embodiment, as shown in FIG. 2, since the cooling water detector 14 is inserted into 10 neutron detection pipes among the 43 neutron detection pipes 11, the reactor core is damaged. In addition, the temperature distribution in the core stock can be measured, and the core state can be accurately grasped.

図3は、冷却水検出器14の第1の実施例を示したものである。金属被覆ケーブル15の内部にはセラミック絶縁体24が充てんされており、複数の高さ位置(図3では3箇所)に冷却水検出器14A,14B,14Cが設置されている。各冷却水検出器14A〜14Cは、熱電対25とこれに熱的に接触する(電気的には絶縁)金属製発熱部26で構成される。炉心下部に設置された冷却水検出器14A〜14Cは、炉心などからのガンマ線を金属製発熱部26が吸収して発熱する。このとき、冷却水検出器14A〜14Cの周囲に冷却水22が存在すれば、金属製発熱部26は冷却水22に近い温度となるが、周囲が蒸気相であれば、より高い温度を示す。これら温度の比較により、信号処理装置21において、周囲に冷却水がある場合の温度と無い場合の温度に分離し、水位を検知する。   FIG. 3 shows a first embodiment of the cooling water detector 14. The metal sheathed cable 15 is filled with a ceramic insulator 24, and cooling water detectors 14A, 14B, and 14C are installed at a plurality of height positions (three locations in FIG. 3). Each of the cooling water detectors 14 </ b> A to 14 </ b> C includes a thermocouple 25 and a metal heat generating portion 26 that is in thermal contact with the thermocouple 25 (electrically insulated). The cooling water detectors 14A to 14C installed at the lower part of the core generate heat by the gamma rays from the core or the like being absorbed by the metal heating part 26. At this time, if the cooling water 22 exists around the cooling water detectors 14 </ b> A to 14 </ b> C, the metal heat generating portion 26 has a temperature close to the cooling water 22. . By comparing these temperatures, the signal processing device 21 separates the temperature when there is cooling water around and the temperature when there is no cooling water, and detects the water level.

図4は、冷却水検出器14の第2の実施例を示したものである。図3の構成に加えて、炉内計装ハウジング9および中性子検出用配管11に備えられた貫通口18、19の下部に基準となる温度を計測するための冷却水検出器14Dを追加している。図4の構成によれば、貫通口18、19よりも低い位置に原子炉水位が下降しても、炉内計装ハウジング9および中性子検出用配管11の内部には貫通口18、19の高さまで冷却水が残る。そこで、貫通口18、19よりも低い位置に設置した冷却水検出器14Dの応答とその他の冷却水検出器14A〜14Cの応答とを比較することにより、水位検出の精度および信頼性を向上できる。   FIG. 4 shows a second embodiment of the cooling water detector 14. In addition to the configuration of FIG. 3, a cooling water detector 14D for measuring a reference temperature is added below the through holes 18 and 19 provided in the in-core instrument housing 9 and the neutron detection pipe 11. Yes. According to the configuration of FIG. 4, even if the reactor water level is lowered to a position lower than the through holes 18 and 19, the inside of the in-core instrument housing 9 and the neutron detection pipe 11 have a high level of the through holes 18 and 19. Cooling water remains. Therefore, the accuracy and reliability of water level detection can be improved by comparing the response of the cooling water detector 14D installed at a position lower than the through holes 18 and 19 with the response of the other cooling water detectors 14A to 14C. .

例えば、図3に示したように、冷却水検出器14が全て貫通口18、19よりも高い位置にある場合、原子炉の水位が貫通口18、19付近以下に低下すると、全ての冷却水検出器14A〜14Cの周囲に冷却水が無くなり、複数高さ位置にある冷却水検出器14の温度に大きな差異がなくなる。この場合、水位が全ての冷却水検出器14A〜14Cの上部にあるのか、下部にあるのか、あるいは検出器自体に不具合を生じているのかを容易に判別することが難しくなる。その結果、過去の水位トレンドデータと組み合わせた判別や、過去に水位が明確に判別できた時点での温度との比較などが必要となり、判別方法が複雑化する。   For example, as shown in FIG. 3, when all the coolant detectors 14 are located higher than the through holes 18 and 19, when the water level of the reactor falls below the vicinity of the through holes 18 and 19, There is no cooling water around the detectors 14A to 14C, and there is no significant difference in the temperature of the cooling water detectors 14 at a plurality of height positions. In this case, it is difficult to easily determine whether the water level is above or below all of the cooling water detectors 14A to 14C, or whether the detector itself is defective. As a result, discrimination combined with past water level trend data, comparison with temperature at the time when the water level could be clearly discriminated in the past, and the like become necessary, and the discrimination method becomes complicated.

一方、図4の例では、貫通口18、19よりも下部にある冷却水検出器14Dの検出する温度は確実に周囲に冷却水がある場合の温度であり、この温度と貫通口18、19よりも上部にある冷却水検出器14A〜14Cの熱電対25の温度とを比較することにより、貫通口18、19付近以下に水位が低下した場合にも、容易に水位が貫通口18、19付近以下に低下したことを判別できる。   On the other hand, in the example of FIG. 4, the temperature detected by the cooling water detector 14 </ b> D below the through-holes 18 and 19 is a temperature when there is surely surrounding cooling water. By comparing the temperature of the thermocouples 25 of the cooling water detectors 14A to 14C at the upper part, even when the water level drops below the vicinity of the through holes 18 and 19, the water level can be easily changed. It can be determined that the voltage has dropped below the vicinity.

図5は、冷却水検出器14の第3の実施例を示したものである。図3の構成に加えて、冷却水検出器14A〜14Cには熱電対25に近接して電熱線27が追加されている。水位を検出する際に、図示しない信号処理装置21に内蔵された電源により、電熱線27に電流を印加し、金属製発熱部26を一定量発熱させる。この発熱により、冷却水検出器14A〜14Cの周囲に冷却水22がある場合と無い場合の温度差を検知する。図3の例に比べて、炉心等からの放射線が少ない場合でも安定して温度差を生じることができ信頼性が向上する。   FIG. 5 shows a third embodiment of the cooling water detector 14. In addition to the configuration of FIG. 3, a heating wire 27 is added to the cooling water detectors 14 </ b> A to 14 </ b> C in the vicinity of the thermocouple 25. When the water level is detected, a current is applied to the heating wire 27 by a power source built in the signal processing device 21 (not shown) to cause the metal heat generating portion 26 to generate a certain amount of heat. Due to this heat generation, a temperature difference between when the cooling water detectors 14A to 14C are present and when there is no cooling water 22 is detected. Compared with the example of FIG. 3, even when the radiation from the core or the like is small, a temperature difference can be generated stably and the reliability is improved.

つぎに、本発明に係る原子炉水位計の第2実施形態について説明する。図6は、本実施形態の原子炉水位計のシステム構成を示した概念図である。図1に示した第1実施形態の構成と同様に、金属被覆ケーブル15内に設置された原子炉水位計の冷却水検出器14は、炉心2内に設置された中性子検出用配管11の内部に、中性子検出器12、走査型中性子検出器用案内管13とともに格納されている。中性子検出用配管11は、炉内計装案内管10および炉内計装ハウジング9を通じて原子炉圧力容器1の下部を貫通しており、この中性子検出用配管11の下端から金属被覆ケーブル15の端部が引き出され、端部にコネクタ16が取り付けられている。このコネクタ16に多芯ケーブル17の一端が接続され、他端が信号処理装置21に接続されている。炉内計装ハウジング9および中性子検出用配管11には、炉心下部において冷却水を導くための貫通口18および19が冷却水検出器14よりも低い位置に備えられている。また、中性子検出用配管11には、炉心上部にも同様の貫通口20が備えられている。   Next, a second embodiment of the reactor water level meter according to the present invention will be described. FIG. 6 is a conceptual diagram showing the system configuration of the reactor water level meter of the present embodiment. Similar to the configuration of the first embodiment shown in FIG. 1, the coolant detector 14 of the reactor water level meter installed in the metal-coated cable 15 is arranged inside the neutron detection pipe 11 installed in the reactor core 2. Are stored together with a neutron detector 12 and a guide tube 13 for a scanning neutron detector. The neutron detection pipe 11 passes through the lower part of the reactor pressure vessel 1 through the in-core instrumentation guide tube 10 and the in-core instrument housing 9, and the end of the metal-coated cable 15 extends from the lower end of the neutron detection pipe 11. The part is pulled out, and the connector 16 is attached to the end. One end of a multi-core cable 17 is connected to the connector 16, and the other end is connected to the signal processing device 21. The in-core instrument housing 9 and the neutron detection pipe 11 are provided with through-holes 18 and 19 for guiding the cooling water in the lower part of the core at a position lower than the cooling water detector 14. The neutron detection pipe 11 is also provided with a similar through-hole 20 at the upper part of the core.

この第2実施形態では、上述の構成に加えて従来の差圧信号に基づく水位計を付加している。原子炉圧力容器1には炉心上方の蒸気が存在する気相部において高圧側計装配管28が接続され、蒸気凝縮槽29に一定高さの水面を形成している。蒸気凝縮槽29には差圧伝送器31の高圧側に接続する配管が取り付けられている。また、原子炉圧力容器1の冷却水が存在する液相部には低圧側計装配管30が接続され、差圧伝送器31の低圧側に導かれている。ここで、低圧側計装配管30は金属被覆ケーブル15内に設置された冷却水検出器14のうち、最も高い位置にある検出器(図6では14a)よりも低い位置において原子炉圧力容器1の液相部に接続されている。   In the second embodiment, a water level gauge based on a conventional differential pressure signal is added in addition to the above-described configuration. A high pressure side instrumentation pipe 28 is connected to the reactor pressure vessel 1 in a gas phase portion where steam above the core exists, and a water surface of a certain height is formed in the steam condensing tank 29. A pipe connected to the high pressure side of the differential pressure transmitter 31 is attached to the vapor condensing tank 29. Further, a low-pressure instrumentation pipe 30 is connected to the liquid phase portion where the cooling water of the reactor pressure vessel 1 exists, and is led to the low-pressure side of the differential pressure transmitter 31. Here, the low-pressure side instrumentation pipe 30 is the reactor pressure vessel 1 at a position lower than the highest detector (14a in FIG. 6) among the cooling water detectors 14 installed in the metal-coated cable 15. It is connected to the liquid phase part.

以下に動作を説明する。原子炉圧力容器1内の冷却水22は、通常、炉心上部において水位が形成され、差圧伝送器31を用いて水位監視装置32で水位が監視される。一方、万一、炉心損傷を伴うような事故が発生して炉心下部まで冷却水22の水位が低下するような場合、低圧側計装配管30よりも高い位置に水位がある間に、差圧伝送器31を用いた水位監視と金属被覆ケーブル15内に設置した冷却水検出器14を用いた水位監視の両方を実施する。そして2つの方法による水位監視結果を水位監視装置32で比較することにより、双方の水位監視の健全性を確認するとともに、周囲に冷却水がある場合と無い場合の冷却水検出器14の応答のレファレンスを得る。   The operation will be described below. In the cooling water 22 in the reactor pressure vessel 1, the water level is usually formed in the upper part of the core, and the water level is monitored by the water level monitoring device 32 using the differential pressure transmitter 31. On the other hand, in the unlikely event that an accident involving core damage occurs and the water level of the cooling water 22 decreases to the lower part of the core, the differential pressure is maintained while the water level is higher than the low-pressure instrumentation pipe 30. Both the water level monitoring using the transmitter 31 and the water level monitoring using the cooling water detector 14 installed in the metal-coated cable 15 are performed. Then, by comparing the water level monitoring results by the two methods with the water level monitoring device 32, the soundness of both water level monitoring is confirmed, and the response of the cooling water detector 14 with and without cooling water in the surroundings is confirmed. Get a reference.

たとえば、図5に示した熱電対25、金属製発熱部26及び電熱線27で構成される冷却水検出器14の場合、電熱線27で金属製発熱部26を加熱した場合の上昇温度または変化率に基づいて冷却水の有無を判断するが、本実施例では、差圧伝送器31を用いて冷却水の有無が分かっている場合の上昇温度または変化率の情報が得られるため、冷却水検出器14を用いた冷却水有無の検知の精度および信頼性を向上することができる。   For example, in the case of the cooling water detector 14 including the thermocouple 25, the metal heating part 26 and the heating wire 27 shown in FIG. 5, the temperature rise or change when the metal heating part 26 is heated by the heating wire 27. The presence or absence of cooling water is determined based on the rate. In this embodiment, since the information on the rising temperature or the rate of change when the presence or absence of cooling water is known using the differential pressure transmitter 31, the cooling water is obtained. The accuracy and reliability of detection of the presence or absence of cooling water using the detector 14 can be improved.

なお、図6の実施形態では、1つの炉内計装ハウジング9内に1つの金属被覆ケーブル15を挿入し、3つの冷却水検出器14a〜14cで冷却水の水位を検出する構成としてが、複数の炉内計装ハウジングに複数の冷却水検出器を備えた金属被覆ケーブルを挿入して冷却水の水位を検出、計測するように構成してもよい。   In the embodiment shown in FIG. 6, one metal-coated cable 15 is inserted into one in-core instrument housing 9, and the coolant level is detected by the three coolant detectors 14 a to 14 c. You may comprise so that the water level of a cooling water may be detected and measured by inserting the metal-coated cable provided with the several cooling water detector in the several in-core instrument housing.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

前記の実施形態では、冷却水検出器として金属製の発熱部と熱電対とで構成される例を示したが、これに限られるものでなく、他の水を検出する装置を用いてもよいことは勿論である。   In the above-described embodiment, an example in which the cooling water detector is configured by a metal heat generating portion and a thermocouple has been described. However, the present invention is not limited to this, and a device for detecting other water may be used. Of course.

1 原子炉圧力容器
2 炉心
3 気水分離器
4 蒸気乾燥器
5 シュラウド
6 シュラウド上蓋
7 炉心支持盤
8 上部格子板
9 炉内計装ハウジング
10 炉内計装案内管
11 中性子検出用配管
12 中性子検出器
13 走査型中性子検出器案内管
14,14a〜14c、14A〜14D 冷却水検出器
15 金属被覆ケーブル
16 コネクタ
17 多芯ケーブル
18 貫通口
19 貫通口
20 貫通口
21 信号処理装置
22 冷却水
23 止水栓
24 セラミック絶縁体
25 熱電対
26 金属製発熱部
27 電熱線
28 高圧側計装配管
29 蒸気凝縮槽
30 低圧側計装配管
31 差圧伝送器
32 水位監視装置
33 燃料集合体
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 Core 3 Steam-water separator 4 Steam dryer 5 Shroud 6 Shroud upper lid 7 Core support board 8 Upper lattice board 9 In-core instrument housing 10 In-core instrumentation guide pipe 11 Neutron detection piping 12 Neutron detection 13 Scanning neutron detector guide tube 14, 14a to 14c, 14A to 14D Cooling water detector 15 Metal-coated cable 16 Connector 17 Multi-core cable 18 Through port 19 Through port 20 Through port 21 Signal processing device 22 Cooling water 23 Stop Water faucet 24 Ceramic insulator 25 Thermocouple 26 Metal heating part 27 Heating wire 28 High-pressure side instrumentation pipe 29 Steam condensing tank 30 Low-pressure side instrumentation pipe 31 Differential pressure transmitter 32 Water level monitoring device 33 Fuel assembly

Claims (10)

沸騰水型原子炉の圧力容器内部の冷却水の水位を計測する原子炉水位計であって、
前記圧力容器底部に容器壁面を貫通して固定した炉内計装ハウジングと、該炉内計装ハウジングに挿入され中性子検出器を格納する中性子検出用配管と、該中性子検出用配管の内部であって炉心下端よりも下部の複数高さ位置に配置された複数の冷却水検出器と、該冷却水検出器を配置した複数高さ位置よりも下部位置において前記炉内計装ハウジングおよび前記中性子検出用配管の双方に設けた冷却水の貫通口と、前記貫通口よりも下方で前記複数の冷却水検出器のケーブルと前記中性子検出器の信号ケーブルが挿入されている前記中性子検出用配管の下方開口を封止する止水手段と、を備え、
前記中性子検出用配管は、前記炉内計装ハウジング内に、該炉内計装ハウジングとの間から冷却水が漏水するのを防止するように挿入され、
前記貫通口は、前記中性子検出用配管の内部と前記圧力容器の内部との間を連通することを特徴とする原子炉水位計。
A reactor water level meter that measures the level of cooling water inside the pressure vessel of a boiling water reactor,
An in-core instrument housing fixed to the bottom of the pressure vessel through the container wall surface, a neutron detection pipe inserted into the in-core instrument housing to store the neutron detector, and the neutron detection pipe A plurality of cooling water detectors disposed at a plurality of height positions below the lower end of the core, and the in-core instrument housing and the neutron at a position below the plurality of height positions at which the cooling water detectors are disposed. A cooling water through-hole provided in both of the detection pipes, a plurality of cooling water detector cables and a neutron detector signal cable inserted below the through-holes in the neutron detection pipe A water stop means for sealing the lower opening,
The neutron detection pipe is inserted into the in-core instrument housing to prevent leakage of cooling water from between the in-core instrument housing,
The reactor water level meter, wherein the through-hole communicates between the inside of the neutron detection pipe and the inside of the pressure vessel.
前記複数の冷却水検出器は、前記中性子検出用配管に挿入される金属被覆ケーブルの複数高さ位置に固定されることを特徴とする請求項1に記載の原子炉水位計。   The reactor water level meter according to claim 1, wherein the plurality of cooling water detectors are fixed at a plurality of height positions of a metal-coated cable inserted into the neutron detection pipe. 前記炉内計装ハウジング上部から炉心支持盤までの間に連通して配設された炉内計装案内管を備え、前記中性子検出用配管は前記炉内計装ハウジング及び前記炉内計装案内管に挿入されることを特徴とする請求項1又は2に記載の原子炉水位計。   An in-core instrumentation guide tube is provided in communication between the upper part of the in-core instrument housing and the core support board, and the neutron detection pipe is provided in the in-core instrument housing and the in-core instrument guide. The reactor water level meter according to claim 1 or 2, wherein the reactor water level meter is inserted into a pipe. 前記金属被覆ケーブルは、一端が前記複数の冷却水検出器に接続され、他端が前記中性子検出用配管内を貫通して前記圧力容器外部に引き出された信号ケーブルを備えており、該信号ケーブルは、前記複数の冷却水検出器から出力された水位信号を信号処理装置に供給することを特徴とする請求項2に記載の原子炉水位計。 The metal-coated cable includes a signal cable having one end connected to the plurality of cooling water detectors and the other end penetrating through the neutron detection pipe and drawn out of the pressure vessel. The reactor water level meter according to claim 2 , wherein the water level signal output from the plurality of cooling water detectors is supplied to a signal processing device. 前記圧力容器は、前記炉内計装ハウジングを複数備えており、前記中性子検出用配管は前記複数の炉内計装ハウジングに挿入されることを特徴とする請求項1〜4のいずれか一項に記載の原子炉水位計。 The pressure vessel is provided with a plurality of the furnace instrumentation housing, any one of claims 1 to 4 wherein the neutron detecting piping for being inserted into the plurality of furnace instrumentation housing Reactor water level meter as described in 1. 前記複数の中性子検出用配管内部に配置された複数の冷却水検出器は、高さ位置を変えて配置されることを特徴とする請求項5に記載の原子炉水位計。   The reactor water level meter according to claim 5, wherein the plurality of cooling water detectors arranged in the plurality of neutron detection pipes are arranged at different height positions. 前記冷却水検出器と別の冷却水検出器が、前記冷却水の貫通口の下方に設置され、前記炉内計装ハウジングおよび前記中性子検出用配管の内部に冷却水がある場合の冷却水の基準となる温度を測定することを特徴とする請求項1〜6のいずれか一項に記載の原子炉水位計。 Cooling water when the cooling water detector different from the cooling water detector is installed below the cooling water through-hole, and there is cooling water inside the in- core instrument housing and the neutron detection pipe The reactor water level meter according to any one of claims 1 to 6, wherein a reference temperature is measured. 前記冷却水検出器は、金属製の発熱部と熱電対とで構成されることを特徴とする請求項1〜7のいずれか一項に記載の原子炉水位計。 The reactor water level meter according to any one of claims 1 to 7, wherein the cooling water detector includes a metal heating part and a thermocouple. 前記冷却水検出器は、金属製の発熱部と熱電対と加熱用電熱線で構成されることを特徴とする請求項1〜7のいずれか一項に記載の原子炉水位計。 The reactor water level meter according to any one of claims 1 to 7, wherein the cooling water detector includes a metal heating part, a thermocouple, and a heating wire. 前記圧力容器は、その内部の気相部に接続されて気相部の蒸気または蒸気圧が加わった一定高さの冷却水を導く高圧側計装配管と、その内部の液相部に接続されて液相部の冷却水を導く低圧側計装配管と、前記低圧側計装配管及び高圧側計装配管の圧力差を検出して伝送する差圧伝送器と、前記差圧伝送器の出力信号を水位信号に変換する水位監視装置とを備え、
前記低圧側計装配管の前記圧力容器への接続部が前記冷却水検出器のうち最上部に位置するものよりも低い高さに位置し、前記最上部の冷却水検出器の高さ位置での冷却水有無を前記水位監視装置で検出することを特徴とする請求項1〜9のいずれか一項に記載の原子炉水位計。
The pressure vessel is connected to a gas phase portion inside thereof and connected to a high-pressure side instrumentation pipe for introducing a constant height of cooling water to which vapor or vapor pressure of the gas phase portion is applied, and to a liquid phase portion inside the pressure vessel. The low pressure side instrumentation pipe for guiding the cooling water in the liquid phase part, the differential pressure transmitter for detecting and transmitting the pressure difference between the low pressure side instrumentation pipe and the high pressure side instrumentation pipe, and the output of the differential pressure transmitter A water level monitoring device that converts the signal into a water level signal,
The connection portion of the low-pressure side instrumentation pipe to the pressure vessel is located at a lower height than that at the top of the cooling water detector, and at the height position of the uppermost cooling water detector. reactor water level gauge according cooling water presence to any one of claims 1 to 9, characterized in that detected by the water level monitoring devices.
JP2011272610A 2011-12-13 2011-12-13 Reactor water level gauge Active JP5980500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011272610A JP5980500B2 (en) 2011-12-13 2011-12-13 Reactor water level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011272610A JP5980500B2 (en) 2011-12-13 2011-12-13 Reactor water level gauge

Publications (2)

Publication Number Publication Date
JP2013124883A JP2013124883A (en) 2013-06-24
JP5980500B2 true JP5980500B2 (en) 2016-08-31

Family

ID=48776221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011272610A Active JP5980500B2 (en) 2011-12-13 2011-12-13 Reactor water level gauge

Country Status (1)

Country Link
JP (1) JP5980500B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045191A (en) * 2014-08-25 2016-04-04 コリア、ハイドロ、アンド、ニュークリア、パワー、カンパニー、リミテッドKorea Hydro & Nuclear Power Co.,Ltd. Multiple thermocouple furnace inner core measuring instrument, and nuclear reactor internal state monitoring system and monitoring method after serious accident using the same
JP6489904B2 (en) * 2015-03-31 2019-03-27 株式会社関電工 Reactor water level measurement method and apparatus during emergency
JP6591770B2 (en) * 2015-03-31 2019-10-16 株式会社関電工 Reactor temperature measurement device, molten state detection device, and water level measurement device in an emergency
JP6637738B2 (en) * 2015-11-17 2020-01-29 日立Geニュークリア・エナジー株式会社 Reactor water level estimation device
CN106782686B (en) * 2015-11-20 2023-11-21 国核(北京)科学技术研究院有限公司 Method for arranging detectors of core loaded with 185-cartridge fuel assemblies and core thereof
DE102015122224A1 (en) 2015-12-18 2017-06-22 Endress+Hauser Flowtec Ag Flowmeter
JP6752169B2 (en) * 2017-03-14 2020-09-09 日立Geニュークリア・エナジー株式会社 Thermocouple liquid level measurement system
CN107895599A (en) * 2017-10-12 2018-04-10 中广核研究院有限公司 A kind of voltage-stablizer water level measurement method and voltage-stablizer
US11280660B2 (en) * 2019-06-05 2022-03-22 Ge-Hitachi Nuclear Energy Americas Llc System and method using time-domain reflectometry to measure a level of a liquid
CN114373560B (en) * 2021-12-16 2023-05-16 华能核能技术研究院有限公司 Modular high-temperature gas cooled reactor internal power detection model

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677717A (en) * 1979-11-29 1981-06-26 Toshiba Corp Water level measuring device
JPS5684520A (en) * 1979-12-13 1981-07-09 Japan Atom Energy Res Inst Water-level detector of nuclear reactor
JPS57521A (en) * 1980-06-02 1982-01-05 Toshiba Corp Water level measuring device of nuclear reactor
JPS5764115A (en) * 1980-10-07 1982-04-19 Japan Atom Energy Res Inst Method and apparatus detecting liquid level
JPS57119295A (en) * 1981-01-19 1982-07-24 Hitachi Ltd Alarm device of reactor core water level
JPS59112290A (en) * 1982-12-20 1984-06-28 株式会社東芝 Reactor core monitoring device
JPH02116792A (en) * 1988-10-27 1990-05-01 Toshiba Corp Boiling water reactor
US5211904A (en) * 1990-12-10 1993-05-18 General Electric Company In-vessel water level monitor for boiling water reactors
US5365555A (en) * 1993-06-23 1994-11-15 General Electric Company Water level measurement system
JPH0990087A (en) * 1995-09-26 1997-04-04 Hitachi Ltd Reactor pressure vessel
US8175210B2 (en) * 2007-11-26 2012-05-08 Ge-Hitachi Nuclear Energy Americas Llc Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
JP5740288B2 (en) * 2011-11-22 2015-06-24 株式会社東芝 Reactor water level measurement system

Also Published As

Publication number Publication date
JP2013124883A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
JP5980500B2 (en) Reactor water level gauge
JP5829527B2 (en) Reactor water level and temperature measurement device
EP2661752B1 (en) Wireless in-core neutron monitor
EP3036745B1 (en) Ion chamber radiation detector
KR100960228B1 (en) Advanced fixed type in-core instrumentation
KR102263405B1 (en) Thermo-acoustic nuclear power distribution measurement assembly
KR102150741B1 (en) Method of validating nuclear reactor in-vessel detector output signals
EP2784781B1 (en) Reactor water level measuring system
JP6038730B2 (en) Neutron measurement system
CN103871526A (en) Detection apparatus for neutron flux and temperature of reactor core
JP2007064635A (en) Monitoring device and monitoring method for nuclear reactor state
CN105387948A (en) Multi-thermocouple in-core instrument assembly and system and method for monitoring nuclear reactor
MX2012014842A (en) Methods and apparatuses for monitoring nuclear reactor core conditions.
US5475720A (en) Non-condensable gas tolerant condensing chamber
JP6591770B2 (en) Reactor temperature measurement device, molten state detection device, and water level measurement device in an emergency
JP6004834B2 (en) Reactor water level gauge
JP6489904B2 (en) Reactor water level measurement method and apparatus during emergency
JPH1039083A (en) In-furnace information monitoring apparatus
JP4690923B2 (en) Neutron flux measuring device, neutron flux measuring method, and nuclear reactor
Chikazawa Acoustic leak detection system for sodium-cooled reactor steam generators using delay-and-sum beamformer
KR102638288B1 (en) Process measurement systems for light water small modular reactors
JP7344745B2 (en) Subcriticality measurement device and subcriticality measurement method
Sackett Approaches to measurement of thermal-hydraulic parameters in liquid-metal-cooled fast breeder reactors
CN112652412A (en) Nuclear power station neutron and temperature monitoring device
Regimbal TECHNICAL BASES FOR FFTF OPEN TEST POSITION AND CLOSED-LOOP INSTRUMENTATION.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R151 Written notification of patent or utility model registration

Ref document number: 5980500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151