JP6653834B2 - Energy conversion member, vibration power generation device, force sensor device and actuator - Google Patents

Energy conversion member, vibration power generation device, force sensor device and actuator Download PDF

Info

Publication number
JP6653834B2
JP6653834B2 JP2019525166A JP2019525166A JP6653834B2 JP 6653834 B2 JP6653834 B2 JP 6653834B2 JP 2019525166 A JP2019525166 A JP 2019525166A JP 2019525166 A JP2019525166 A JP 2019525166A JP 6653834 B2 JP6653834 B2 JP 6653834B2
Authority
JP
Japan
Prior art keywords
magnetostrictive material
vibration
power generation
energy conversion
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019525166A
Other languages
Japanese (ja)
Other versions
JPWO2018230154A1 (en
Inventor
史生 成田
史生 成田
隆一 小野寺
隆一 小野寺
厳 田山
厳 田山
将仁 渡辺
将仁 渡辺
大喜 千葉
大喜 千葉
達郎 佐々
達郎 佐々
武信 佐藤
武信 佐藤
江幡 貴司
貴司 江幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tohoku Steel Co Ltd
Original Assignee
Tohoku University NUC
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tohoku Steel Co Ltd filed Critical Tohoku University NUC
Publication of JPWO2018230154A1 publication Critical patent/JPWO2018230154A1/en
Application granted granted Critical
Publication of JP6653834B2 publication Critical patent/JP6653834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • H02N2/188Vibration harvesters adapted for resonant operation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/101Magnetostrictive devices with mechanical input and electrical output, e.g. generators, sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials

Description

本発明は、エネルギー変換部材、振動発電装置、力センサー装置およびアクチュエータに関する。   The present invention relates to an energy conversion member, a vibration power generator, a force sensor device, and an actuator.

従来の磁歪材料を用いた一般的な振動発電装置は、片持ち梁など振動しやすい形状を有する振動部材に、接着剤等により磁歪材料を貼り付けた振動部を有し、振動部材とともに磁歪材料が振動するときの磁歪材料の逆磁歪効果を利用して発電するよう構成されている(例えば、特許文献1または2参照)。   A general vibration power generation device using a conventional magnetostrictive material has a vibrating portion in which a magnetostrictive material is attached with an adhesive or the like to a vibrating member having a shape that easily vibrates, such as a cantilever, and the magnetostrictive material together with the vibrating member Is configured to generate power using the reverse magnetostrictive effect of a magnetostrictive material when vibrates (for example, see Patent Document 1 or 2).

また、本発明者により、強靱かつ軽量で、逆磁歪効果による発電性能が高い材料として、エポキシ樹脂から成る母材の内部に、磁歪材料から成る線材を埋め込んだ複合材料が開発されている(例えば、非特許文献1参照)。   In addition, the present inventor has developed a composite material in which a wire made of a magnetostrictive material is embedded in a base material made of an epoxy resin as a material that is tough, lightweight, and has a high power generation performance by an inverse magnetostriction effect (for example, , Non-Patent Document 1).

特開2013−177664号公報JP 2013-177664 A 特開2014−107982号公報JP 2014-107982 A

Fumio Narita, “Inverse Magnetostrictive Effect in Fe29Co71 Wire/Polymer Composites”, Advanced Engineering Materials, January 2017, Volume 19, Issue 1, 1600586Fumio Narita, “Inverse Magnetostrictive Effect in Fe29Co71 Wire / Polymer Composites”, Advanced Engineering Materials, January 2017, Volume 19, Issue 1, 1600586

しかしながら、特許文献1および2に記載の発電装置では、振動部材の形状等を工夫することにより、発電量の増加や発電周波数の広帯域化等による発電能力を高めることはできるが、それのみでは発電能力の向上には限界があるという課題があった。また、非特許文献1に記載の複合材料は、高い発電能力を有しているが、磁歪材料の線材の周囲に、母材のエポキシ樹脂を流し込んで製造するため、母材の品質にバラツキが生じて発電特性が不安定になる可能性があるという課題があった。   However, in the power generation devices described in Patent Documents 1 and 2, the power generation capacity can be increased by increasing the power generation amount or broadening the power generation frequency by devising the shape and the like of the vibration member. There was a problem that there was a limit to the ability improvement. Further, the composite material described in Non-Patent Document 1 has a high power generation capability. However, since the composite material is manufactured by pouring the epoxy resin of the base material around the wire of the magnetostrictive material, the quality of the base material varies. Therefore, there is a problem that power generation characteristics may be unstable.

本発明は、このような課題に着目してなされたもので、発電能力を高めることができ、安定した発電特性を有する振動発電装置、その振動発電装置を構成するエネルギー変換部材、そのエネルギー変換部材を有する力センサー装置およびアクチュエータを提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and is capable of enhancing power generation capacity and having stable power generation characteristics, an energy conversion member constituting the vibration power generation device, and an energy conversion member thereof. It is an object of the present invention to provide a force sensor device and an actuator having:

上記目的を達成するために、本発明に係るエネルギー変換部材は、固体の軟磁性材料と固体の磁歪材料とを、熱拡散接合,熱間圧延加工、熱間引抜加工、またはクラッド圧延により接合して成り、前記磁歪材料は、Fe−Co系合金、Fe−Al系合金、Ni、Ni−Fe系合金またはNi−Co系合金から成り、前記軟磁性材料は、保磁力が3A/cm以下であること、または前記磁歪材料の磁歪定数とは異なる符号の磁歪定数を有する磁歪材料から成ることを特徴とする。
In order to achieve the above object, an energy conversion member according to the present invention is configured to join a solid soft magnetic material and a solid magnetostrictive material by heat diffusion bonding, hot rolling, hot drawing, or clad rolling. adult Te is, the magnetostrictive material consists Fe-Co alloy, Fe-Al alloy, Ni, Ni-Fe alloy or Ni-Co alloy, the soft magnetic material, coercivity 3A / cm or less Or made of a magnetostrictive material having a magnetostrictive constant having a sign different from that of the magnetostrictive material .

本発明に係るエネルギー変換部材は、振動発電装置や力センサー装置、アクチュエータなど、電気エネルギー、磁気エネルギー、力学的エネルギー等のエネルギー間の変換を利用する装置で好適に使用される。本発明に係るエネルギー変換部材は、例えば、軟磁性材料と磁歪材料とを接合したものを複合型磁歪材料として大量生産し、その複合型磁歪材料から所望の部品形状に切り出すことにより、製造することができる。なお、磁歪材料は、磁歪定数λの絶対値が20ppm以上のものである。   The energy conversion member according to the present invention is suitably used in devices utilizing conversion between energies such as electric energy, magnetic energy, and mechanical energy, such as vibration power generation devices, force sensor devices, and actuators. The energy conversion member according to the present invention can be manufactured, for example, by mass-producing a joint of a soft magnetic material and a magnetostrictive material as a composite magnetostrictive material and cutting out the composite magnetostrictive material into a desired component shape. Can be. The magnetostrictive material has an absolute value of the magnetostriction constant λ of 20 ppm or more.

本発明に係る振動発電装置は、本発明に係るエネルギー変換部材から成る振動部を有し、前記振動部の振動による前記磁歪材料の逆磁歪効果で発電するよう構成されていることを特徴とする。   A vibration power generation device according to the present invention has a vibration portion including the energy conversion member according to the present invention, and is configured to generate power by an inverse magnetostriction effect of the magnetostrictive material due to vibration of the vibration portion. .

本発明に係る振動発電装置は、本発明に係るエネルギー変換部材から成る振動部が振動したとき、磁歪材料の逆磁歪効果により発電するとともに、その逆磁歪効果による磁化の変化により、軟磁性材料の磁化も変化させることができる。この軟磁性材料の磁化変化により、磁歪材料の逆磁歪効果のみの場合よりも、逆磁歪効果による振動発電能力を高めることができる。また、振動部が、固体の軟磁性材料と固体の磁歪材料とを接合して形成されるため、液体の材料から製造する場合と比べて発電特性はばらつかず、所望の安定した発電特性を得ることができる。   The vibration power generation device according to the present invention is configured such that, when the vibrating portion including the energy conversion member according to the present invention vibrates, generates power by the reverse magnetostriction effect of the magnetostrictive material, and changes the magnetization by the reverse magnetostriction effect to generate the soft magnetic material. The magnetization can also be changed. Due to the change in magnetization of the soft magnetic material, the vibration power generation capability by the inverse magnetostrictive effect can be enhanced as compared with the case where only the inverse magnetostrictive effect of the magnetostrictive material is provided. Also, since the vibrating part is formed by joining a solid soft magnetic material and a solid magnetostrictive material, the power generation characteristics do not vary as compared with the case of manufacturing from a liquid material, and the desired stable power generation characteristics are obtained. Obtainable.

本発明に係る振動発電装置は、振動体に取り付けて好適に使用される。振動体は、振動するものであればいかなるものであってもよいが、効率良く発電を行うために、振動部の振動方向に振動し、振動部の固有振動数を含むほぼ一定の周波数で振動するものが好ましい。振動体は、例えば、ポンプやモーターなどの産業用機械などである。   The vibration power generation device according to the present invention is suitably used by being attached to a vibrating body. The vibrating body may be of any kind as long as it vibrates, but in order to generate power efficiently, it vibrates in the vibration direction of the vibrating part and vibrates at a substantially constant frequency including the natural frequency of the vibrating part. Are preferred. The vibrating body is, for example, an industrial machine such as a pump or a motor.

本発明に係る振動発電装置で、前記振動部は、振動したときに応力集中する部分を1箇所以上有していてもよい。この場合、振動時の応力集中部付近の磁束密度の変化を大きくすることができ、応力集中する位置と発電用のコイルの位置とを調整することにより、発電効率を高めることができる。応力集中する部分は、例えば、振動部の長さ方向に沿って断面形状を変化させることにより、形成することができる。   In the vibration power generator according to the present invention, the vibrating portion may have one or more portions where stress is concentrated when vibrated. In this case, the change in magnetic flux density near the stress concentration portion during vibration can be increased, and the power generation efficiency can be increased by adjusting the position where the stress is concentrated and the position of the power generation coil. The portion where the stress is concentrated can be formed, for example, by changing the cross-sectional shape along the length direction of the vibrating portion.

本発明に係る力センサー装置は、本発明に係るエネルギー変換部材から成るセンサー部と、前記センサー部が変形したときの前記磁歪材料の逆磁歪効果による磁化の変化を検出し、その磁化の変化から、前記センサー部に作用する力を求める力検出部とを、有することを特徴とする。   The force sensor device according to the present invention includes a sensor unit including the energy conversion member according to the present invention, and detects a change in magnetization due to the inverse magnetostriction effect of the magnetostrictive material when the sensor unit is deformed. And a force detecting unit for obtaining a force acting on the sensor unit.

本発明に係る力センサー装置は、本発明に係るエネルギー変換部材から成るセンサー部に力が作用して変形したとき、力検出部で、磁歪材料の逆磁歪効果による磁化の変化を検出することができる。また、このとき、逆磁歪効果による磁化の変化により、軟磁性材料の磁化も変化するため、磁歪材料のみの場合よりも、磁化の変化が大きくなり、センサー部に作用する力の検出能力を高めることができる。また、センサー部が、固体の軟磁性材料と固体の磁歪材料とを接合して形成されるため、液体の材料から製造する場合と比べて、作用する力に対する磁化の変化特性がばらつかず、所望の安定した磁化の変化特性を得ることができる。   In the force sensor device according to the present invention, when a force is applied to the sensor unit including the energy conversion member according to the present invention and the sensor unit is deformed, the force detection unit can detect a change in magnetization due to the inverse magnetostriction effect of the magnetostrictive material. it can. At this time, since the magnetization of the soft magnetic material also changes due to the change in magnetization due to the inverse magnetostriction effect, the change in magnetization becomes larger than in the case of using only the magnetostrictive material, and the ability to detect the force acting on the sensor unit is improved. be able to. In addition, since the sensor section is formed by joining a solid soft magnetic material and a solid magnetostrictive material, compared to the case of manufacturing from a liquid material, the change characteristic of magnetization with respect to an applied force does not vary, Desired stable magnetization change characteristics can be obtained.

本発明に係る力センサー装置で、前記力検出部は、前記磁歪材料の近傍に配置された磁気センサーを有し、前記磁化の変化を、漏れ磁束として前記磁気センサーにより検出するよう構成されていてもよい。磁気センサーは、磁化の変化を漏れ磁束として検出可能なものであれば、いかなるものであってもよく、例えば、ホール素子から成っている。また、前記力検出部は、前記磁歪材料の近傍に配置された検出用コイルを有し、前記磁化の変化を、インピーダンスの変化として前記検出用コイルにより検出するよう構成されていてもよい。検出用コイルは、例えば、ソレノイドコイルである。   In the force sensor device according to the present invention, the force detection unit includes a magnetic sensor disposed near the magnetostrictive material, and is configured to detect the change in the magnetization as the leakage magnetic flux by the magnetic sensor. Is also good. The magnetic sensor may be of any type as long as it can detect a change in magnetization as a leakage magnetic flux, and is made of, for example, a Hall element. Further, the force detection unit may include a detection coil arranged near the magnetostrictive material, and may be configured to detect the change in the magnetization as a change in impedance by the detection coil. The detection coil is, for example, a solenoid coil.

本発明に係る力センサー装置で、前記センサー部は、前記力が作用したときに応力集中する部分を1箇所以上有していてもよい。この場合、力が作用した時の応力集中部付近の磁束密度の変化を大きくすることができ、応力集中する位置と検出用コイル等の位置とを調整することにより、検出能力を高めることができる。応力集中する部分は、例えば、センサー部の長さ方向に沿って断面形状を変化させることにより、形成することができる。   In the force sensor device according to the present invention, the sensor unit may have one or more portions where stress is concentrated when the force acts. In this case, the change in magnetic flux density near the stress concentration portion when a force is applied can be increased, and the detection capability can be enhanced by adjusting the position where the stress is concentrated and the position of the detection coil and the like. . The portion where the stress is concentrated can be formed, for example, by changing the cross-sectional shape along the length direction of the sensor portion.

本発明に係るアクチュエータは、本発明に係るエネルギー変換部材から成る振動部と、電流を流すことにより、前記磁歪材料の磁歪効果で前記振動部を振動させるよう配置された振動用コイルとを有することを特徴とする。本発明に係るアクチュエータは、本発明に係る振動発電装置と同様の構成を有していてもよい。また、本発明に係るアクチュエータで、前記振動用コイルは、前記振動部の周囲に巻かれていてもよく、前記振動部に磁気的に結合されたヨークの周囲に巻かれていてもよい。   An actuator according to the present invention includes a vibrating portion including the energy conversion member according to the present invention, and a vibration coil arranged to vibrate the vibrating portion by a magnetostrictive effect of the magnetostrictive material by flowing a current. It is characterized by. The actuator according to the present invention may have the same configuration as the vibration power generation device according to the present invention. In the actuator according to the present invention, the vibration coil may be wound around the vibrating part, or may be wound around a yoke magnetically coupled to the vibrating part.

本発明に係るアクチュエータは、振動用コイルに電流を流したとき、その電流により磁歪材料の磁化が変化するため、磁歪材料の磁歪効果により振動部を振動させることができる。また、このとき、軟磁性材料の磁化挙動と磁歪材料の磁歪現象との相乗効果により、磁歪材料のみの場合よりも、振動効率を高めることができる。また、振動部が、固体の軟磁性材料と固体の磁歪材料とを接合して形成されるため、液体の材料から製造する場合と比べて振動特性はばらつかず、所望の安定した振動特性を得ることができる。   The actuator according to the present invention can vibrate the vibrating section by the magnetostrictive effect of the magnetostrictive material because the current changes the magnetization of the magnetostrictive material when the current flows through the vibration coil. In addition, at this time, the vibration efficiency can be increased as compared with the case of using only the magnetostrictive material due to a synergistic effect of the magnetization behavior of the soft magnetic material and the magnetostrictive phenomenon of the magnetostrictive material. Also, since the vibrating portion is formed by joining a solid soft magnetic material and a solid magnetostrictive material, the vibration characteristics do not vary as compared with the case of manufacturing from a liquid material, and the desired stable vibration characteristics are obtained. Obtainable.

本発明に係るエネルギー変換部材は、比較的安価なFe−Co系合金、Fe−Al系合金、Ni、Ni−Fe系合金またはNi−Co系合金から成る磁歪材料に、圧延加工や熱処理を施すことにより、エネルギー変換効率が高い磁歪材料を容易に製造することができる。このため、振動発電装置に利用したときの発電効率や、力センサー装置に利用したときの力の検出能力、アクチュエータに利用したときの振動効率を高めることができる。また、これらの磁歪材料は、加工性が良く、切削加工や曲げ加工などの塑性加工が容易であるため、容易に任意の形状にすることができる。なお、Ni−Fe系合金は、Fe含有量が20質量%以下であることが好ましく、Ni−Co系合金は、Co含有量が30質量%以下であることが好ましい。また、磁歪材料は、耐食性や耐久性を向上させるために、Cr、Ni、Nb、V、Ti等を含んでいてもよい。
Energy conversion member of the present invention, relatively inexpensive Fe-Co alloy, Fe-Al alloy, Ni, a magnetostrictive material made of Ni-Fe alloy or Ni-Co alloy, the rolling and heat treatment By applying, a magnetostrictive material having high energy conversion efficiency can be easily manufactured. For this reason, it is possible to increase the power generation efficiency when used in a vibration power generation device, the ability to detect a force when used in a force sensor device, and the vibration efficiency when used in an actuator. In addition, these magnetostrictive materials have good workability and are easy to perform plastic working such as cutting and bending, and thus can be easily formed into an arbitrary shape. The Ni-Fe alloy preferably has an Fe content of 20% by mass or less, and the Ni-Co alloy preferably has a Co content of 30% by mass or less. In addition, the magnetostrictive material may include Cr, Ni, Nb, V, Ti, and the like in order to improve corrosion resistance and durability.

本発明に係るエネルギー変換部材で、軟磁性材料は、いかなるものであってもよく、例えば、純鉄やPBパーマロイに代表されるFe−Ni系合金、ケイ素鋼、電磁ステンレス鋼から成っていてもよい。また、本発明に係るエネルギー変換部材は、例えば、前記軟磁性材料および前記磁歪材料のいずれか一方が、正の磁歪定数を有するFe−Co系合金またはFe−Al系合金から成り、他方が、負の磁歪定数を有するNi−0〜20質量%Fe系合金(純Niを含む)またはNi−Co系合金から成っていてもよい。この場合、振動や力の作用によって同時に発生する圧縮応力および引張応力による逆磁歪効果を利用することができ、振動発電装置に利用したときの発電能力や、力センサー装置に利用したときの力の検出能力を、さらに高めることができる。また、電流による磁化の変化によって、正および負の磁歪材料に同時に発生する磁歪効果を利用することができ、アクチュエータに利用したときの振動能力を、さらに高めることができる。
In the energy conversion member according to the present invention, the soft magnetic material may be any material, for example, may be made of pure iron or an Fe-Ni alloy represented by PB permalloy, silicon steel, or electromagnetic stainless steel. Good. Further, the energy conversion member according to the present invention, for example, one of the soft magnetic material and the magnetostrictive material is made of a Fe-Co-based alloy or a Fe-Al-based alloy having a positive magnetostriction constant, and the other is, It may be made of a Ni-0 to 20 mass% Fe-based alloy (including pure Ni) or a Ni-Co-based alloy having a negative magnetostriction constant. In this case, it is possible to use the inverse magnetostriction effect caused by the compressive stress and the tensile stress generated simultaneously by the action of vibration and force, and to generate power when used in a vibration power generation device and force when used in a force sensor device. The detection ability can be further enhanced. Further, the magnetostriction effect simultaneously generated in the positive and negative magnetostrictive materials due to the change in magnetization due to the current can be used, and the vibration capability when used in the actuator can be further enhanced.

本発明に係るエネルギー変換部材は、熱拡散接合、熱間圧延加工または熱間引抜加工により接合されているため、高温で接合して冷却した後の残留応力により、磁歪材料の磁壁移動が容易になり、磁化変化が促進される。このため、振動発電装置や力センサー装置に利用したときの、逆磁歪効果による発電能力や力の検出能力、アクチュエータに利用したときの、磁歪効果による振動能力をさらに高めることができる。   Since the energy conversion member according to the present invention is joined by thermal diffusion joining, hot rolling or hot drawing, the domain wall movement of the magnetostrictive material can be easily performed by the residual stress after joining and cooling at a high temperature. That is, the change in magnetization is promoted. For this reason, it is possible to further enhance the power generation capability and the force detection capability by the inverse magnetostriction effect when used in a vibration power generation device and a force sensor device, and the vibration capability by the magnetostriction effect when used in an actuator.

本発明に係るエネルギー変換部材は、前記軟磁性材料と前記磁歪材料とが、負荷を加えた状態で接合されていてもよい。この場合、接合後に負荷を解除したときの残留応力により、磁歪材料の磁壁移動が容易になり、磁化変化が促進される。このため、振動発電装置や力センサー装置に利用したときの、逆磁歪効果による発電能力や力の検出能力、アクチュエータに利用したときの、磁歪効果による振動能力をさらに高めることができる。   In the energy conversion member according to the present invention, the soft magnetic material and the magnetostrictive material may be joined under a load. In this case, the residual stress when the load is released after the joining facilitates the domain wall movement of the magnetostrictive material and promotes the change in magnetization. For this reason, it is possible to further enhance the power generation capability and the force detection capability by the inverse magnetostriction effect when used in a vibration power generation device and a force sensor device, and the vibration capability by the magnetostriction effect when used in an actuator.

なお、本発明に関し、軟磁性材料を使用せず、エネルギー変換部材が、固体の部材と固体の磁歪材料とを熱拡散接合,熱間圧延加工または熱間引抜加工により接合して成っていてもよい。また、エネルギー変換部材が、固体の部材と固体の磁歪材料とを、負荷を加えた状態で接着剤または溶接により接合して成っていてもよい。これらの場合でも、軟磁性材料を使用したときよりは劣るが、残留応力により磁歪材料の磁壁移動が容易になり、磁化変化が促進される。このため、振動発電装置や力センサー装置に利用したときの、逆磁歪効果による発電能力や力の検出能力、アクチュエータに利用したときの、磁歪効果による振動能力を高めることができる。固体の部材は、例えばステンレスや木材などである。   In the present invention, even if the soft magnetic material is not used and the energy conversion member is formed by joining a solid member and a solid magnetostrictive material by thermal diffusion bonding, hot rolling or hot drawing. Good. Further, the energy conversion member may be formed by joining a solid member and a solid magnetostrictive material with an adhesive or welding while applying a load. Even in these cases, although it is inferior to when a soft magnetic material is used, domain wall movement of the magnetostrictive material is facilitated by residual stress, and magnetization change is promoted. For this reason, it is possible to enhance the power generation capability and force detection capability by the inverse magnetostriction effect when used in a vibration power generation device and a force sensor device, and the vibration capability by the magnetostriction effect when used in an actuator. The solid member is, for example, stainless steel or wood.

本発明によれば、発電能力を高めることができ、安定した発電特性を有する振動発電装置、その振動発電装置を構成するエネルギー変換部材、そのエネルギー変換部材、そのエネルギー変換部材を有する力センサー装置およびアクチュエータを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power generation capacity can be increased, a vibration power generation device having stable power generation characteristics, an energy conversion member constituting the vibration power generation device, the energy conversion member, a force sensor device having the energy conversion member, and An actuator can be provided.

本発明の実施の形態のエネルギー変換部材の、(a)熱拡散接合、(b)熱間圧延加工、(c)溶接または溶着による接合状態を示す側面図である。It is a side view which shows the joining state by (a) thermal diffusion joining, (b) hot rolling, (c) welding or welding of the energy conversion member of embodiment of this invention. 本発明の実施の形態のエネルギー変換部材の、(a)三点曲げ試験に用いる試験片を示す斜視図、(b)三点曲げ試験による磁束密度の測定試験の実施状態を示す側面図である。It is a perspective view of the energy conversion member of embodiment of this invention which shows the test piece used for a (a) three-point bending test, (b) The side view which shows the implementation state of the measurement test of the magnetic flux density by a three-point bending test. . 図2に示すエネルギー変換部材の試験片の、三点曲げ試験による磁束密度の測定試験の結果を示す、荷重に対する磁束密度の変化のグラフである。3 is a graph showing a result of a measurement test of a magnetic flux density of a test piece of the energy conversion member shown in FIG. 2 by a three-point bending test, showing a change in the magnetic flux density with respect to a load. 図2に示す三点曲げ試験による磁束密度の測定試験の、比較試験片の結果を示す、荷重に対する磁束密度の変化のグラフである。3 is a graph showing a change of a magnetic flux density with respect to a load, showing a result of a comparative test piece in a measurement test of a magnetic flux density by a three-point bending test shown in FIG. 2. 本発明の実施の形態の振動発電装置を示す側面図である。It is a side view showing the vibration power generator of an embodiment of the invention. 図5に示す振動発電装置の、純鉄とFe−70質量%Co系合金とを熱拡散接合した振動部、および、Fe−70質量%Co系合金のみの振動部の、振動数に対する発電量の測定結果を示すグラフである。In the vibration power generation device shown in FIG. 5, the power generation amount with respect to the frequency of the vibrating portion in which pure iron and the Fe-70 mass% Co-based alloy are thermally diffusion-bonded and the vibrating portion including only the Fe-70 mass% Co-based alloy 6 is a graph showing the measurement results of FIG. 図5に示す振動発電装置の、純鉄と純Ni、および、純鉄とNi−10質量%Fe系合金とをそれぞれ熱拡散接合した振動部、ならびに、純Niのみの振動部の、振動数に対する発電量の測定結果を示すグラフである。In the vibration power generation device shown in FIG. 5, the vibration frequency of the vibrating portion in which pure iron and pure Ni, and the pure iron and Ni-10 mass% Fe-based alloy are thermally diffusion-bonded, and the vibrating portion of pure Ni only, respectively. 6 is a graph showing measurement results of the amount of power generation with respect to FIG. 図5に示す振動発電装置の、純鉄とNi−20質量%Co系合金とを熱拡散接合した振動部、および、Ni−20質量%Co系合金のみの振動部の、振動数に対する発電量の測定結果を示すグラフである。In the vibration power generation device shown in FIG. 5, the power generation amount with respect to the frequency of the vibration portion in which pure iron and the Ni-20 mass% Co-based alloy are thermally diffusion-bonded, and the vibration portion of only the Ni-20 mass% Co-based alloy 6 is a graph showing the measurement results of FIG. 図5に示す振動発電装置の、純NiとFe−70質量%Co系合金とを熱拡散接合した振動部、純NiとFe−70質量%Co系合金とを接着した振動部、および、Fe−70質量%Co系合金のみの振動部の、振動数に対する発電量の測定結果を示すグラフである。In the vibration power generation device shown in FIG. 5, a vibrating portion in which pure Ni and a Fe-70 mass% Co-based alloy are thermally diffused, a vibrating portion in which pure Ni and an Fe-70 mass% Co-based alloy are bonded, and Fe It is a graph which shows the measurement result of the amount of electric power generation with respect to the frequency of the vibration part of only -70 mass% Co type alloy. 図5に示す振動発電装置の、純NiとFe−8質量%Al系合金とを熱拡散接合した振動部、および、Fe−8質量%Al系合金のみの振動部の、振動数に対する発電量の測定結果を示すグラフである。In the vibration power generation device shown in FIG. 5, the power generation amount with respect to the frequency of the vibration portion in which pure Ni and the Fe-8 mass% Al-based alloy are thermally diffusion-bonded, and the vibration portion of only the Fe-8 mass% Al-based alloy 6 is a graph showing the measurement results of FIG. 図5に示す振動発電装置の、Ni−20質量%Co系合金とFe−70質量%Co系合金とを熱拡散接合した振動部、および、Fe−70質量%Co系合金のみの振動部の、振動数に対する発電量の測定結果を示すグラフである。In the vibration power generation device shown in FIG. 5, a vibrating part in which a Ni-20 mass% Co-based alloy and a Fe-70 mass% Co-based alloy are thermally diffusion-bonded, and a vibrating part composed only of the Fe-70 mass% Co-based alloy 4 is a graph showing a measurement result of a power generation amount with respect to a frequency. 図5に示す振動発電装置の、SUS304とFe−70質量%Co系合金とを熱拡散接合した振動部、SUS304とFe−70質量%Co系合金とを接着した振動部、および、Fe−70質量%Co系合金のみの振動部の、振動数に対する発電量の測定結果を示すグラフである。In the vibration power generator shown in FIG. 5, a vibrating part in which SUS304 and a Fe-70 mass% Co-based alloy are thermally diffused, a vibrating part in which SUS 304 and an Fe-70 mass% Co-based alloy are bonded, and Fe-70 It is a graph which shows the measurement result of the amount of power generation with respect to the frequency of the vibration part of only the mass% Co system alloy. 本発明の実施の形態のアクチュエータを示す側面図である。It is a side view showing the actuator of an embodiment of the invention. 本発明の実施の形態のアクチュエータの(a)振動部が両持ち梁状を成す変形例、(b)ヨークに振動用コイルが巻かれた変形性、(c)振動部のみから成り、電磁場変動体に接触させる変形例を示す側面図である。(A) A modification in which the vibrating portion of the actuator according to the embodiment of the present invention has a doubly supported beam shape, (b) a deformability in which a vibrating coil is wound around a yoke, and (c) an electromagnetic field fluctuation which is composed only of the vibrating portion. It is a side view which shows the modification which contacts a body.

以下、図面に基づいて、本発明の実施の形態について説明する。
[本発明の実施の形態のエネルギー変換部材について]
図1乃至4に、本発明の実施の形態のエネルギー変換部材1を示す。
図1に示すように、エネルギー変換部材1は、同じ長さおよび幅を有する、細長い板状の固体の軟磁性材料2と、細長い板状の固体の磁歪材料3とを有している。エネルギー変換部材1は、側縁を揃えるように軟磁性材料2の表面と磁歪材料3の表面とを合わせて接合し、細長い板状に形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[About the energy conversion member of the embodiment of the present invention]
1 to 4 show an energy conversion member 1 according to an embodiment of the present invention.
As shown in FIG. 1, the energy conversion member 1 has an elongated plate-shaped solid soft magnetic material 2 and an elongated plate-shaped solid magnetostrictive material 3 having the same length and width. The energy conversion member 1 is formed into an elongated plate shape by joining the surfaces of the soft magnetic material 2 and the surface of the magnetostrictive material 3 so as to align the side edges.

軟磁性材料2は、例えば純鉄など、磁歪材料3とは異なる種類の磁性材料から成っている。磁歪材料3は、例えば、Fe−Co系合金、Fe−Al系合金、Ni、Ni−Fe系合金またはNi−Co系合金から成っている。Ni−Fe系合金のときは、Fe含有量が20質量%以下であることが好ましく、Ni−Co系合金のときは、Co含有量が30質量%以下であることが好ましい。また、磁歪材料3は、耐食性や耐久性を向上させるために、Cr、Ni、Nb、V、Ti等を含んでいてもよい。エネルギー変換部材1は、図1(a)に示すように、加圧装置で加熱しつつ荷重を加えることにより、軟磁性材料2と磁歪材料3とが熱拡散接合されている。   The soft magnetic material 2 is made of a magnetic material different from the magnetostrictive material 3 such as pure iron. The magnetostrictive material 3 is made of, for example, an Fe—Co alloy, an Fe—Al alloy, Ni, a Ni—Fe alloy, or a Ni—Co alloy. In the case of a Ni-Fe alloy, the Fe content is preferably 20% by mass or less, and in the case of a Ni-Co alloy, the Co content is preferably 30% by mass or less. Further, the magnetostrictive material 3 may contain Cr, Ni, Nb, V, Ti, or the like in order to improve corrosion resistance and durability. As shown in FIG. 1A, the energy conversion member 1 is thermally diffused and bonded to the soft magnetic material 2 and the magnetostrictive material 3 by applying a load while heating with a pressing device.

エネルギー変換部材1は、振動発電装置や力センサー装置、アクチュエータなど、電気エネルギー、磁気エネルギー、力学的エネルギー等のエネルギー間の変換を利用する装置で好適に使用される。本発明に係るエネルギー変換部材1は、例えば、軟磁性材料2と磁歪材料3とを接合したものを複合型磁歪材料として大量生産し、その複合型磁歪材料から所望の部品形状に切り出すことにより、製造することができる。   The energy conversion member 1 is suitably used in a device that uses conversion between energies such as electric energy, magnetic energy, and mechanical energy, such as a vibration power generation device, a force sensor device, and an actuator. The energy conversion member 1 according to the present invention is, for example, mass-produced by joining a soft magnetic material 2 and a magnetostrictive material 3 as a composite magnetostrictive material, and cutting out the composite magnetostrictive material into a desired component shape. Can be manufactured.

エネルギー変換部材1は、軟磁性材料2と磁歪材料3とを熱拡散接合しているため、冷却後の残留応力により、磁歪材料3の磁壁移動が容易になり、磁化変化が促進される。これにより、エネルギー変換効率を高めることができる。エネルギー変換部材1は、Fe−Co系合金、Fe−Al系合金、Ni、Ni−Fe系合金またはNi−Co系合金などの比較的安価な磁歪材料3を用いることができるため、安価かつ容易に製造することができる。また、これらの磁歪材料3は、加工性が良く、切削加工や曲げ加工などの塑性加工が容易であるため、容易に任意の形状にすることができる。   Since the energy conversion member 1 is formed by thermally diffusing the soft magnetic material 2 and the magnetostrictive material 3, the domain stress of the magnetostrictive material 3 is easily moved by the residual stress after cooling, and the change of magnetization is promoted. Thereby, the energy conversion efficiency can be increased. Since the energy conversion member 1 can use a relatively inexpensive magnetostrictive material 3 such as an Fe—Co alloy, an Fe—Al alloy, Ni, a Ni—Fe alloy, or a Ni—Co alloy, it is inexpensive and easy. Can be manufactured. Further, these magnetostrictive materials 3 have good workability and are easy to perform plastic working such as cutting and bending, and thus can be easily formed into an arbitrary shape.

なお、エネルギー変換部材1で、軟磁性材料2は、磁歪材料3の磁歪定数とは異なる符号の磁歪定数を有する磁歪材料から成っていてもよい。これらの材料として、例えば、軟磁性材料2および磁歪材料3のいずれか一方が、正の磁歪定数を有するFe−Co系合金またはFe−Al系合金から成り、他方が、負の磁歪定数を有するNi−0〜20質量%Fe系合金(純Niを含む)またはNi−Co系合金から成っていてもよい。この場合、振動や力の作用によって同時に発生する圧縮応力および引張応力による逆磁歪効果を利用することができ、エネルギー変換効率を高めることができる。   In the energy conversion member 1, the soft magnetic material 2 may be made of a magnetostrictive material having a magnetostriction constant having a sign different from that of the magnetostriction material 3. As these materials, for example, one of the soft magnetic material 2 and the magnetostrictive material 3 is made of a Fe—Co-based alloy or a Fe—Al-based alloy having a positive magnetostriction constant, and the other has a negative magnetostriction constant. It may be made of a Ni-0 to 20 mass% Fe-based alloy (including pure Ni) or a Ni-Co-based alloy. In this case, the reverse magnetostriction effect due to the compressive stress and the tensile stress simultaneously generated by the action of vibration or force can be used, and the energy conversion efficiency can be increased.

また、エネルギー変換部材1は、熱拡散接合に限らず、図1(b)に示すローラーによる熱間圧延加工や、図1(c)に示す溶接または溶着、熱間引抜加工、接着剤、クラッド圧延、爆発圧着など、いかなる方法により接合されていてもよい。熱間圧延加工および熱間引抜加工により接合した場合には、熱拡散接合の場合と同様に、エネルギー変換効率を高めることができる。   The energy conversion member 1 is not limited to the heat diffusion bonding, but may be hot-rolled by a roller as shown in FIG. 1B, welded or welded as shown in FIG. It may be joined by any method such as rolling and explosion pressure bonding. In the case of joining by hot rolling and hot drawing, the energy conversion efficiency can be increased as in the case of thermal diffusion joining.

また、エネルギー変換部材1は、軟磁性材料2と磁歪材料3とが、負荷を加えた状態で接合されていてもよい。この場合にも、接合後に負荷を解除したときの残留応力により、磁歪材料3の磁壁移動が容易になり、磁化変化が促進されるため、エネルギー変換効率をさらに高めることができる。   In the energy conversion member 1, the soft magnetic material 2 and the magnetostrictive material 3 may be joined in a state where a load is applied. Also in this case, the residual stress when the load is released after joining facilitates the domain wall movement of the magnetostrictive material 3 and promotes the change in magnetization, so that the energy conversion efficiency can be further increased.

軟磁性材料2と磁歪材料3とを接合したエネルギー変換部材1のエネルギー変換効率を調べるために、エネルギー変換部材1を曲げたときの磁束密度の測定を行った。軟磁性材料2として、純Niを用い、磁歪材料3としてFe−Co系合金を用いた。また、軟磁性材料2と磁歪材料3とを、熱拡散接合(熱圧着)で接合している。エネルギー変換部材1の試験片は、図2(a)に示すように、長さ70mm、幅5mm、厚さ1mmの細長い板状とした。また、曲げたときに応力が集中するよう、試験片の両側縁の中央に、長さ2mm、深さ1mmの切欠き(notch)1aを有するものも準備した。なお、軟磁性材料2の純Niは磁歪材料3であり、負の磁歪定数を有し、磁歪材料3のFe−Co系合金は正の磁歪定数を有している。   In order to examine the energy conversion efficiency of the energy conversion member 1 in which the soft magnetic material 2 and the magnetostrictive material 3 were joined, the magnetic flux density when the energy conversion member 1 was bent was measured. Pure Ni was used as the soft magnetic material 2, and an Fe—Co alloy was used as the magnetostrictive material 3. Further, the soft magnetic material 2 and the magnetostrictive material 3 are joined by thermal diffusion joining (thermocompression bonding). As shown in FIG. 2A, the test piece of the energy conversion member 1 was a long and thin plate having a length of 70 mm, a width of 5 mm, and a thickness of 1 mm. Further, a test piece having a notch 1a having a length of 2 mm and a depth of 1 mm at the center of both side edges of the test piece was prepared so that stress was concentrated when the test piece was bent. Note that pure Ni of the soft magnetic material 2 is the magnetostrictive material 3 and has a negative magnetostriction constant, and the Fe—Co alloy of the magnetostrictive material 3 has a positive magnetostriction constant.

試験は、図2(b)に示すように、三点曲げ試験により、試験片に荷重をかけて曲げ、そのときの磁束密度を測定した。三点曲げ試験では、試験片(エネルギー変換部材1)の中心位置を挟むよう、Ls=16mmの間隔で支柱31を設置し、試験片の中心位置に下向きに荷重Pをかけた。荷重Pは、切欠き1aを有する試験片に対しては、P=0N〜25N、切欠き1aを有しない試験片に対しては、P=0N〜50Nの範囲とした。また、試験中は、試験片の両端部に、それぞれ350mTのネオジム磁石32を取り付け、バイアス磁場B0Zを加えている。磁束密度Bの測定は、荷重Pの直下の、試験片の中心位置の近傍で行った。In the test, as shown in FIG. 2 (b), a test piece was bent under a load by a three-point bending test, and the magnetic flux density at that time was measured. In the three-point bending test, columns 31 were installed at intervals of Ls = 16 mm so as to sandwich the center position of the test piece (energy conversion member 1), and a load P was applied downward to the center position of the test piece. The load P was in the range of P = 0N to 25N for the test piece having the notch 1a and in the range of P = 0N to 50N for the test piece having no notch 1a. During the test, a neodymium magnet 32 of 350 mT was attached to each end of the test piece, and a bias magnetic field B0Z was applied. Measurements of the magnetic flux density B Z is just below the load P, was carried out in the vicinity of the center of the test piece.

また、試験は、試験片(エネルギー変換部材1)の表面と裏面とを入れ換えて行った。すなわち、荷重Pを受ける面とは反対側の面を引張面(Tension side)とし、軟磁性材料2が引張面側になる場合と、磁歪材料3が引張面側になる場合について測定を行った。なお、比較試験片として、軟磁性材料2の代わりに非磁性材料のSUS304を用いたものを作製し、同様の試験を行っている。   The test was performed by exchanging the front and back surfaces of the test piece (energy conversion member 1). In other words, the surface opposite to the surface receiving the load P was defined as a tensile surface, and measurements were made for the case where the soft magnetic material 2 was on the tensile surface side and the case where the magnetostrictive material 3 was on the tensile surface side. . As a comparative test piece, a test piece using SUS304 of a non-magnetic material instead of the soft magnetic material 2 was prepared, and the same test was performed.

エネルギー変換部材1の試験片の試験結果を図3に、比較試験片の試験結果を図4に示す。図3および図4に示すように、引張面(Tension side)側が純Niの軟磁性材料2(図4の場合には、非磁性材料)で、圧縮面側がFe−Co系合金の磁歪材料3のときの方が、その逆向きのときよりも、荷重に対する磁束密度の変化が大きくなっていることが確認された。また、切欠き(notch)1aを有するときの方が、応力が集中するため、切欠き1aを有しないときよりも、荷重に対する磁束密度の変化が大きくなっていることも確認された。また、同じ試験条件では、図3に示す軟磁性材料2を用いた試験片の方が、図4に示す非磁性材料を用いた比較試験片よりも、荷重に対する磁束密度の変化が大きくなっていることが確認された。   FIG. 3 shows a test result of the test piece of the energy conversion member 1, and FIG. 4 shows a test result of the comparative test piece. As shown in FIGS. 3 and 4, the tensile surface (Tension side) is a soft magnetic material 2 of pure Ni (non-magnetic material in FIG. 4), and the compressive surface is a magnetostrictive material 3 of an Fe—Co alloy. It was confirmed that the change of the magnetic flux density with respect to the load was larger in the case of (3) than in the case of the opposite direction. Further, it was also confirmed that the change in the magnetic flux density with respect to the load was greater in the case where the notch 1a was provided, because the stress was concentrated, than in the case where the notch 1a was not provided. Further, under the same test conditions, the test piece using the soft magnetic material 2 shown in FIG. 3 has a larger change in the magnetic flux density with respect to the load than the comparative test piece using the non-magnetic material shown in FIG. It was confirmed that.

[本発明の実施の形態の力センサー装置について]
このように、エネルギー変換部材1に作用する力を、磁束密度の変化として検出できるため、エネルギー変換部材1を利用して力センサー装置を構成することができる。このような力センサー装置は、例えば、エネルギー変換部材1から成るセンサー部と、そのセンサー部が変形したときの磁歪材料3の逆磁歪効果による磁化の変化を検出し、その磁化の変化から、センサー部に作用する力を求める力検出部とを有していてもよい。力検出部は、磁化の変化を、漏れ磁束として、磁歪材料3の近傍に配置されたホール素子により検出するよう構成されていてもよく、磁化の変化を、インピーダンスの変化として、磁歪材料3の近傍に配置されたソレノイドコイルにより検出するよう構成されていてもよい。
[Force sensor device according to an embodiment of the present invention]
As described above, since the force acting on the energy conversion member 1 can be detected as a change in the magnetic flux density, a force sensor device can be configured using the energy conversion member 1. Such a force sensor device detects, for example, a sensor portion including the energy conversion member 1 and a change in magnetization due to the inverse magnetostriction effect of the magnetostrictive material 3 when the sensor portion is deformed. A force detection unit that obtains a force acting on the unit. The force detection unit may be configured to detect a change in the magnetization as a leakage magnetic flux by a Hall element arranged near the magnetostrictive material 3, and the change in the magnetization as a change in the impedance of the magnetostrictive material 3. The detection may be performed by a solenoid coil arranged in the vicinity.

このような力センサー装置は、センサー部の磁歪材料3の逆磁歪効果による磁化の変化だけでなく、その磁化の変化により、軟磁性材料2の磁化も変化するため、磁歪材料3のみの場合よりも、磁化の変化が大きくなり、センサー部に作用する力の検出能力を高めることができる。また、センサー部が、固体の軟磁性材料2と固体の磁歪材料3とを接合して形成されるため、液体の材料から製造する場合と比べて、作用する力に対する磁化の変化特性がばらつかず、所望の安定した磁化変化特性を得ることができる。   In such a force sensor device, not only the magnetization of the soft magnetic material 2 changes due to the change of the magnetization due to the reverse magnetostriction effect of the magnetostrictive material 3 of the sensor section, but also compared to the case where only the magnetostrictive material 3 is used. Also, the change in magnetization is large, and the ability to detect the force acting on the sensor unit can be enhanced. In addition, since the sensor section is formed by joining the solid soft magnetic material 2 and the solid magnetostrictive material 3, the change characteristics of the magnetization with respect to the applied force vary as compared with the case where the sensor is manufactured from a liquid material. Therefore, a desired stable magnetization change characteristic can be obtained.

なお、力センサー装置は、力が作用した時の磁束密度の変化を大きくするために、図2に示すように、応力集中部となる切欠き1aなどを有していてもよい。この場合、応力集中する位置と検出用コイル等の位置とを調整することにより、検出能力を高めることができる。   The force sensor device may have a notch 1a serving as a stress concentration portion, as shown in FIG. 2, in order to increase a change in magnetic flux density when a force acts. In this case, by adjusting the position where the stress is concentrated and the position of the detection coil and the like, the detection capability can be enhanced.

[本発明の実施の形態の振動発電装置について]
図5乃至図12に、本発明の実施の形態の振動発電装置10を示す。
図5に示すように、振動発電装置10は、ケーシング11と支持部12と振動部13と錘14と磁石15と発電用コイル16とを有している。
[About a vibration power generation device according to an embodiment of the present invention]
5 to 12 show a vibration power generation device 10 according to an embodiment of the present invention.
As shown in FIG. 5, the vibration power generation device 10 includes a casing 11, a support part 12, a vibration part 13, a weight 14, a magnet 15, and a power generation coil 16.

ケーシング11は、細長い直方体の箱から成り、内部に収納空間を有している。支持部12は、厚めの板材から成り、ケーシング11の内部の一端側に固定されている。支持部12は、一方の表面を、ケーシング11の他端側に向けて固定されている。   The casing 11 is formed of an elongated rectangular box, and has a storage space inside. The support portion 12 is made of a thick plate material and is fixed to one end side inside the casing 11. The support portion 12 is fixed with one surface facing the other end of the casing 11.

振動部13は、図1に示すエネルギー変換部材1から成っている。振動部13は、ケーシング11の内部で、支持部12の一方の表面からケーシング11の他端側に伸びるよう、一方の端部13aが支持部12の一方の表面に固定されている。振動部13は、支持部12に支持された片持ち梁状を成し、長さ方向に対して垂直な方向に振動するよう構成されている。   The vibrating section 13 includes the energy conversion member 1 shown in FIG. The vibrating part 13 has one end 13 a fixed to one surface of the support part 12 so as to extend from one surface of the support part 12 to the other end of the casing 11 inside the casing 11. The vibrating part 13 has a cantilever shape supported by the support part 12 and is configured to vibrate in a direction perpendicular to the length direction.

錘14は、振動部13の他方の端部13b、すなわち片持ち梁の先端に取り付けられている。磁石15は、振動部13の支持部12への取付位置で、振動部13の一方の端部13aおよび支持部12に取り付けられている。磁石15は、磁歪材料3にバイアス磁界を印加可能に、磁歪材料3に接するよう取り付けられている。発電用コイル16は、内側に振動部13を貫通して、振動部13の中央付近に配置されている。   The weight 14 is attached to the other end 13 b of the vibrating part 13, that is, to the tip of the cantilever. The magnet 15 is attached to one end 13 a of the vibrating section 13 and the supporting section 12 at a position where the vibrating section 13 is attached to the supporting section 12. The magnet 15 is attached so as to be in contact with the magnetostrictive material 3 so that a bias magnetic field can be applied to the magnetostrictive material 3. The power generating coil 16 penetrates the vibrating part 13 inward, and is arranged near the center of the vibrating part 13.

振動発電装置10は、ケーシング11で振動体に設置可能に設けられ、振動体の振動により振動部13の他方の端部13bの側が振動するよう構成されている。これにより、振動発電装置10は、振動部13の振動による磁歪材料3の逆磁歪効果で発電するようになっている。なお、振動発電装置10は、例えば、振動部13の他方の端部13b付近に強制的に振動を加えるよう構成されていてもよい。   The vibration power generation device 10 is provided so as to be installed on a vibrating body by a casing 11, and is configured so that the other end 13b side of the vibrating part 13 vibrates due to vibration of the vibrating body. Thereby, the vibration power generation device 10 generates power by the reverse magnetostriction effect of the magnetostrictive material 3 due to the vibration of the vibration part 13. Note that the vibration power generation device 10 may be configured to forcibly apply vibration to the vicinity of the other end 13b of the vibration unit 13, for example.

次に、作用について説明する。
振動発電装置10は、ポンプやモーターといった産業用機械などの振動体に、ケーシング11で設置して使用される。振動発電装置10は、振動体の振動により振動部13がその長さ方向に対して垂直方向に振動したとき、磁歪材料3の逆磁歪効果により発電するとともに、その逆磁歪効果による磁化の変化により、軟磁性材料2の内部やその周辺の磁化も変化させることができる。この軟磁性材料2の磁化変化を利用することにより、磁歪材料3の逆磁歪効果のみの場合よりも、逆磁歪効果による振動発電能力を高めることができる。また、振動部13が、固体の軟磁性材料2と固体の磁歪材料3とを接合して形成されるため、液体の材料から製造する場合と比べて発電特性はばらつかず、所望の安定した発電特性を得ることができる。
Next, the operation will be described.
The vibration power generation device 10 is used by being installed in a casing 11 on a vibration body such as an industrial machine such as a pump or a motor. When the vibrating portion 13 vibrates in a direction perpendicular to its length direction due to the vibration of the vibrating body, the vibration power generation device 10 generates power by the reverse magnetostriction effect of the magnetostrictive material 3 and changes the magnetization by the reverse magnetostriction effect. Also, the magnetization inside and around the soft magnetic material 2 can be changed. By utilizing the change in magnetization of the soft magnetic material 2, the vibration power generation capability by the inverse magnetostrictive effect can be increased as compared with the case where the magnetostrictive material 3 has only the inverse magnetostrictive effect. Further, since the vibrating portion 13 is formed by joining the solid soft magnetic material 2 and the solid magnetostrictive material 3, the power generation characteristics are not varied as compared with the case of manufacturing from a liquid material, and a desired stable Power generation characteristics can be obtained.

なお、振動発電装置10で、振動部13は、図2(a)に示す切欠き1aのように、振動したときに応力集中する部分を1箇所以上有していてもよい。この場合、振動時の応力集中部付近の磁束密度の変化を大きくすることができ、応力集中する位置と発電用コイル16の位置とを調整することにより、発電効率を高めることができる。応力集中する部分は、例えば、振動部13の長さ方向に沿って断面形状を変化させることにより、形成することができる。また、振動発電装置10は、錘14を有さず、振動部13が他方の端部13bも固定された両持ち梁(両端梁、両端固定梁、両端支持梁)状を成していてもよい。   In the vibration power generator 10, the vibrating part 13 may have one or more portions where stress is concentrated when vibrated, as in a notch 1a shown in FIG. In this case, the change in magnetic flux density near the stress concentration portion during vibration can be increased, and the power generation efficiency can be increased by adjusting the position where the stress is concentrated and the position of the power generation coil 16. The portion where the stress is concentrated can be formed, for example, by changing the cross-sectional shape along the length direction of the vibrating portion 13. Further, the vibration power generation device 10 does not have the weight 14, and the vibrating portion 13 has a doubly supported beam (both-end beam, both-end fixed beam, both-end support beam) to which the other end 13b is also fixed. Good.

図5に示す振動発電装置10について、軟磁性材料2として純鉄(保磁力:0.8A/cm)を用い、磁歪材料3として正の磁歪定数を有するFe−70質量%Co系合金を用いた振動部13を使用して、振動体の振動に対する発電量を測定する実験を行った。実験では、振動部13の長さを70mm、幅を6mm、厚みを1mmとし、共振周波数が50Hz程度になるよう調整している。また、振動部13は、軟磁性材料2と磁歪材料3とを熱拡散接合で接合して形成している。   5, pure iron (coercive force: 0.8 A / cm) is used as the soft magnetic material 2, and a Fe-70 mass% Co-based alloy having a positive magnetostriction constant is used as the magnetostrictive material 3. An experiment was performed to measure the amount of power generated by the vibration of the vibrating body by using the vibrating part 13 that was used. In the experiment, the length of the vibrating portion 13 was 70 mm, the width was 6 mm, the thickness was 1 mm, and the resonance frequency was adjusted to be about 50 Hz. The vibrating part 13 is formed by joining the soft magnetic material 2 and the magnetostrictive material 3 by thermal diffusion bonding.

振動体の振動数を変化させたときの発電量の測定結果を、図6に示す。なお、図6には、比較のため、Fe−70質量%Co系合金の磁歪材料3のみで振動部13を形成したときの結果も示す。図6に示すように、軟磁性材料2の純鉄と磁歪材料3とを接合したとき(図6中の「純鉄熱拡散接合」)の方が、磁歪材料3のみのとき(図6中の「Fe-Co系」)よりも、全ての振動数で発電量が高くなっていることが確認された。また、軟磁性材料2の純鉄と磁歪材料3とを接合したときの方が、磁歪材料3のみのときよりも、共振周波数前後の発電量の低下が小さくなっていることも確認された。この結果から、軟磁性材料2と正の磁歪定数を有する磁歪材料3とを接合することにより、発電能力が向上することがわかる。   FIG. 6 shows the measurement results of the amount of power generation when the frequency of the vibrating body was changed. FIG. 6 also shows, for comparison, the results when the vibrating portion 13 is formed only of the magnetostrictive material 3 of the Fe-70 mass% Co-based alloy. As shown in FIG. 6, when the pure iron of the soft magnetic material 2 and the magnetostrictive material 3 are joined (“pure iron thermal diffusion bonding” in FIG. 6), only the magnetostrictive material 3 is used (in FIG. 6). ("Fe-Co system"), it was confirmed that the amount of power generation was higher at all frequencies. It was also confirmed that when pure iron of the soft magnetic material 2 and the magnetostrictive material 3 were joined, the decrease in the amount of power generation around the resonance frequency was smaller than when only the magnetostrictive material 3 was used. From this result, it is understood that the power generation capacity is improved by joining the soft magnetic material 2 and the magnetostrictive material 3 having a positive magnetostriction constant.

図5に示す振動発電装置10について、軟磁性材料2として純鉄(保磁力:0.8A/cm)を用い、磁歪材料3として負の磁歪定数を有する純Ni、および、負の磁歪定数を有するNi−10質量%Fe系合金をそれぞれ用いた振動部13を使用して、振動体の振動に対する発電量を測定する実験を行った。実験では、振動部13の長さを70mm、幅を6mm、厚みを1mmとし、共振周波数が50Hz程度になるよう調整している。また、振動部13は、軟磁性材料2と磁歪材料3とを熱拡散接合で接合して形成している。   5, pure iron (coercive force: 0.8 A / cm) is used as the soft magnetic material 2, pure Ni having a negative magnetostriction constant is used as the magnetostrictive material 3, and a negative magnetostriction constant is used. An experiment was performed to measure the amount of power generation with respect to the vibration of the vibrating body, using the vibrating part 13 using each of the Ni-10 mass% Fe-based alloys. In the experiment, the length of the vibrating portion 13 was 70 mm, the width was 6 mm, the thickness was 1 mm, and the resonance frequency was adjusted to be about 50 Hz. The vibrating part 13 is formed by joining the soft magnetic material 2 and the magnetostrictive material 3 by thermal diffusion bonding.

振動体の振動数を変化させたときの発電量の測定結果を、図7に示す。なお、図7には、比較のため、純Niの磁歪材料3のみで振動部13を形成したときの結果も示す。図7に示すように、軟磁性材料2の純鉄と磁歪材料3とを接合したとき(図7中の「Ni+純鉄熱拡散接合」および「NiFe+純鉄熱拡散接合」)の方が、磁歪材料3のみのとき(図7中の「Ni」)よりも、全ての振動数で発電量が高くなっていることが確認された。また、軟磁性材料2の純鉄と磁歪材料3とを接合したときの方が、磁歪材料3のみのときよりも、共振周波数前後の発電量の低下が小さくなっていることも確認された。また、磁歪材料3として純Niを用いたとき(図7中の「Ni+純鉄熱拡散接合」)と、Ni−10質量%Fe系合金を用いたとき(図7中の「NiFe+純鉄熱拡散接合」)では、全ての振動数でほぼ同じ発電量になっていることが確認された。この結果から、軟磁性材料2と負の磁歪定数を有する磁歪材料3とを接合しても、発電能力が向上することがわかる。   FIG. 7 shows the measurement results of the amount of power generation when the frequency of the vibrating body was changed. FIG. 7 also shows, for comparison, results when the vibrating portion 13 is formed only of the pure Ni magnetostrictive material 3. As shown in FIG. 7, when the pure iron of the soft magnetic material 2 and the magnetostrictive material 3 are joined (“Ni + pure iron thermal diffusion bonding” and “NiFe + pure iron thermal diffusion bonding” in FIG. 7), It was confirmed that the power generation amount was higher at all frequencies than when only the magnetostrictive material 3 was used (“Ni” in FIG. 7). It was also confirmed that when pure iron of the soft magnetic material 2 and the magnetostrictive material 3 were joined, the decrease in the amount of power generation around the resonance frequency was smaller than when only the magnetostrictive material 3 was used. In addition, when pure Ni is used as the magnetostrictive material 3 (“Ni + pure iron thermal diffusion bonding” in FIG. 7), and when a Ni-10 mass% Fe-based alloy is used (“NiFe + pure iron heat diffusion” in FIG. 7). In the case of "diffusion bonding"), it was confirmed that the power generation was almost the same at all frequencies. From this result, it can be seen that even when the soft magnetic material 2 and the magnetostrictive material 3 having a negative magnetostriction constant are joined, the power generation capability is improved.

図5に示す振動発電装置10について、軟磁性材料2として純鉄を用い、磁歪材料3として負の磁歪定数を有するNi−20質量%Co系合金をそれぞれ用いた振動部13を使用して、振動体の振動に対する発電量を測定する実験を行った。実験では、振動部13の長さを70mm、幅を6mm、厚みを1mmとし、共振周波数が50Hz程度になるよう調整している。また、振動部13は、軟磁性材料2と磁歪材料3とを熱拡散接合で接合して形成している。   The vibration power generation device 10 shown in FIG. 5 uses pure iron as the soft magnetic material 2 and the vibrating portions 13 each using a Ni-20 mass% Co-based alloy having a negative magnetostriction constant as the magnetostrictive material 3. An experiment was performed to measure the amount of power generated by the vibration of the vibrating body. In the experiment, the length of the vibrating portion 13 was 70 mm, the width was 6 mm, the thickness was 1 mm, and the resonance frequency was adjusted to be about 50 Hz. The vibrating part 13 is formed by joining the soft magnetic material 2 and the magnetostrictive material 3 by thermal diffusion bonding.

振動体の振動数を変化させたときの発電量の測定結果を、図8に示す。なお、図8には、比較のため、Ni−20質量%Co系合金の磁歪材料3のみで振動部13を形成したときの結果も示す。図8に示すように、軟磁性材料2の純鉄と磁歪材料3とを接合したとき(図8中の「NiCo+純鉄熱拡散接合」)の方が、磁歪材料3のみのとき(図8中の「Ni-Co系」)よりも、全ての振動数で発電量が高くなっていることが確認された。また、軟磁性材料2の純鉄と磁歪材料3とを接合したときの方が、磁歪材料3のみのときよりも、共振周波数前後の発電量の低下が小さくなっていることも確認された。この結果からも、軟磁性材料2と負の磁歪定数を有する磁歪材料3とを接合することにより、発電能力が向上することがわかる。   FIG. 8 shows the measurement results of the amount of power generation when the frequency of the vibrating body was changed. FIG. 8 also shows, for comparison, the results when the vibrating portion 13 was formed only of the magnetostrictive material 3 of a Ni-20 mass% Co-based alloy. As shown in FIG. 8, when pure iron of the soft magnetic material 2 is joined to the magnetostrictive material 3 (“NiCo + pure iron thermal diffusion bonding” in FIG. 8), only the magnetostrictive material 3 is used (FIG. 8). ("Ni-Co system" in the figure), it was confirmed that the power generation was higher at all frequencies. It was also confirmed that when pure iron of the soft magnetic material 2 and the magnetostrictive material 3 were joined, the decrease in the amount of power generation around the resonance frequency was smaller than when only the magnetostrictive material 3 was used. From this result, it is understood that the power generation capacity is improved by joining the soft magnetic material 2 and the magnetostrictive material 3 having a negative magnetostriction constant.

図5に示す振動発電装置10について、軟磁性材料2として負の磁歪定数を有する純Ni(保磁力:0.5A/cm)を用い、磁歪材料3として正の磁歪定数を有するFe−70質量%Co系合金を用いた振動部13を使用して、振動体の振動に対する発電量を測定する実験を行った。振動部13として、軟磁性材料2と磁歪材料3とを熱拡散接合で接合したものと、接着したものの2種類を用いた。実験では、各振動部13の長さを70mm、幅を6mm、厚みを1mmとし、共振周波数が50Hz程度になるよう調整している。   5, pure Ni (coercive force: 0.5 A / cm) having a negative magnetostriction constant is used as the soft magnetic material 2, and Fe-70 mass having a positive magnetostriction constant is used as the magnetostriction material 3. An experiment was performed to measure the amount of power generation with respect to the vibration of the vibrating body using the vibrating part 13 using a% Co-based alloy. As the vibrating portion 13, two types, one in which the soft magnetic material 2 and the magnetostrictive material 3 were joined by thermal diffusion bonding, and the other in which the soft magnetic material 2 and the magnetostrictive material 3 were bonded were used. In the experiment, the length of each vibrating part 13 was 70 mm, the width was 6 mm, the thickness was 1 mm, and the resonance frequency was adjusted to be about 50 Hz.

振動体の振動数を変化させたときの発電量の測定結果を、図9に示す。なお、図9には、比較のため、Fe−70質量%Co系合金の磁歪材料3のみで振動部13を形成したときの結果も示す。図9に示すように、軟磁性材料2の純Niと磁歪材料3とを熱拡散接合したとき(図9中の「Ni熱拡散接合」)の方が、接着したとき(図9中の「Ni接着」)および磁歪材料3のみのとき(図9中の「Fe-Co系」)よりも、全ての振動数で発電量が高くなっていることが確認された。また、接着したときの方が、磁歪材料3のみのときよりも、共振周波数付近以外の振動数で発電量が高くなっていることが確認された。また、軟磁性材料2の純Niと磁歪材料3とを接合したときの方が、磁歪材料3のみのときよりも、共振周波数前後の発電量の低下が小さくなっていることも確認された。   FIG. 9 shows a measurement result of the amount of power generation when the frequency of the vibrating body is changed. FIG. 9 also shows, for comparison, the results when the vibrating portion 13 was formed using only the magnetostrictive material 3 of an Fe-70 mass% Co-based alloy. As shown in FIG. 9, when the pure Ni of the soft magnetic material 2 and the magnetostrictive material 3 are bonded by thermal diffusion (“Ni thermal diffusion bonding” in FIG. 9), they are bonded together (“Ni” in FIG. 9). It was confirmed that the amount of power generation was higher at all frequencies than in the case of "Ni bonding") and only the magnetostrictive material 3 ("Fe-Co system" in FIG. 9). In addition, it was confirmed that the amount of power generation was higher at the frequency other than the vicinity of the resonance frequency than when only the magnetostrictive material 3 was bonded. It was also confirmed that when pure Ni of the soft magnetic material 2 and the magnetostrictive material 3 were joined, the decrease in the amount of power generation around the resonance frequency was smaller than when only the magnetostrictive material 3 was used.

これらの結果から、負の磁歪定数を有する磁歪材料3の軟磁性材料2と、正の磁歪定数を有する磁歪材料3とを接合することにより、発電能力が向上することがわかる。また、軟磁性材料2と磁歪材料3とを熱拡散接合した場合、冷却後の残留応力により、接着した場合よりも発電能力がさらに高くなることがわかる。   From these results, it can be seen that the power generation capacity is improved by joining the soft magnetic material 2 of the magnetostrictive material 3 having a negative magnetostriction constant and the magnetostrictive material 3 having a positive magnetostriction constant. Further, it can be seen that when the soft magnetic material 2 and the magnetostrictive material 3 are thermally diffusion-bonded, the power generation capacity is further increased by the residual stress after cooling as compared with the case where they are bonded.

軟磁性材料2の純Niと磁歪材料3とを熱拡散接合したとき(図9中の「Ni熱拡散接合」)と、軟磁性材料2の純鉄と磁歪材料3とを熱拡散接合したとき(図6中の「純鉄熱拡散接合」、図7中の「Ni+純鉄熱拡散接合」および「NiFe+純鉄熱拡散接合」、ならびに、図8中の「NiCo+純鉄熱拡散接合」)とを比較すると、軟磁性材料2の純Niと磁歪材料3とを熱拡散接合したときの方が、やや発電量が大きくなっている。これは、符号の異なる磁歪定数を有する磁歪材料3を接合することにより、振動によって同時に発生する圧縮応力および引張応力による逆磁歪効果を利用できるためであると考えられる。   When pure Ni of the soft magnetic material 2 and the magnetostrictive material 3 are thermally diffusion bonded (“Ni thermal diffusion bonding” in FIG. 9), and when pure iron of the soft magnetic material 2 and the magnetostrictive material 3 are thermally diffusion bonded. ("Pure iron thermal diffusion bonding" in FIG. 6, "Ni + pure iron thermal diffusion bonding" and "NiFe + pure iron thermal diffusion bonding" in FIG. 7, and "NiCo + pure iron thermal diffusion bonding" in FIG. 8) Comparing with the above, the amount of power generation is slightly larger when pure Ni of the soft magnetic material 2 and the magnetostrictive material 3 are thermally diffusion bonded. This is considered to be because by joining the magnetostrictive materials 3 having different magnetostriction constants, the inverse magnetostriction effect caused by the compressive stress and the tensile stress simultaneously generated by the vibration can be used.

図5に示す振動発電装置10について、軟磁性材料2として負の磁歪定数を有する純Niを用い、磁歪材料3として正の磁歪定数を有するFe−8質量%Al系合金を用いた振動部13を使用して、振動体の振動に対する発電量を測定する実験を行った。実験では、各振動部13の長さを70mm、幅を6mm、厚みを1mmとし、共振周波数が50Hz程度になるよう調整している。また、振動部13は、軟磁性材料2と磁歪材料3とを熱拡散接合で接合して形成している。   In the vibration power generator 10 shown in FIG. 5, a vibrating part 13 using pure Ni having a negative magnetostriction constant as the soft magnetic material 2 and using an Fe-8 mass% Al-based alloy having a positive magnetostriction constant as the magnetostriction material 3 The experiment which measured the electric power generation amount with respect to the vibration of a vibrating body was performed using. In the experiment, the length of each vibrating part 13 was 70 mm, the width was 6 mm, the thickness was 1 mm, and the resonance frequency was adjusted to be about 50 Hz. The vibrating part 13 is formed by joining the soft magnetic material 2 and the magnetostrictive material 3 by thermal diffusion bonding.

振動体の振動数を変化させたときの発電量の測定結果を、図10に示す。なお、図10には、比較のため、Fe−8質量%Al系合金の磁歪材料3のみで振動部13を形成したときの結果も示す。図10に示すように、軟磁性材料2の純Niと磁歪材料3とを接合したとき(図10中の「Fe-Al Ni熱拡散接合」)の方が、磁歪材料3のみのとき(図10中の「Fe-Al系」)よりも、全ての振動数で発電量が高くなっていることが確認された。また、軟磁性材料2の純Niと磁歪材料3とを接合したときの方が、磁歪材料3のみのときよりも、共振周波数前後の発電量の低下が小さくなっていることも確認された。この結果から、図9に示すFe−Co系合金を用いたときよりもやや劣るが、磁歪材料3としてFe−Al系合金を用いた場合であっても、軟磁性材料2と磁歪材料3とを接合することにより、発電能力が向上することがわかる。   FIG. 10 shows the measurement results of the amount of power generation when the frequency of the vibrating body was changed. FIG. 10 also shows, for comparison, the results when the vibrating portion 13 was formed only of the magnetostrictive material 3 of an Fe-8 mass% Al-based alloy. As shown in FIG. 10, when pure Ni of the soft magnetic material 2 and the magnetostrictive material 3 are joined (“Fe—AlNi thermal diffusion bonding” in FIG. 10), only the magnetostrictive material 3 is used (see FIG. 10). It was confirmed that the power generation amount was higher at all frequencies than “Fe-Al system” in 10). It was also confirmed that when pure Ni of the soft magnetic material 2 and the magnetostrictive material 3 were joined, the decrease in the amount of power generation around the resonance frequency was smaller than when only the magnetostrictive material 3 was used. From this result, although slightly inferior to the case where the Fe—Co alloy shown in FIG. 9 is used, even when the Fe—Al alloy is used as the magnetostrictive material 3, the soft magnetic material 2 and the magnetostrictive material 3 It can be seen that the power generation capacity is improved by joining the.

図5に示す振動発電装置10について、軟磁性材料2として負の磁歪定数を有するNi−20質量%Co系合金(保磁力:1A/cm)を用い、磁歪材料3として正の磁歪定数を有するFe−70質量%Co系合金を用いた振動部13を使用して、振動体の振動に対する発電量を測定する実験を行った。実験では、各振動部13の長さを70mm、幅を6mm、厚みを1mmとし、共振周波数が50Hz程度になるよう調整している。また、振動部13は、軟磁性材料2と磁歪材料3とを熱拡散接合で接合して形成している。   In the vibration power generator 10 shown in FIG. 5, a soft magnetic material 2 is a Ni-20 mass% Co-based alloy having a negative magnetostriction constant (coercive force: 1 A / cm), and a magnetostriction material 3 has a positive magnetostriction constant. The experiment which measured the electric power generation amount with respect to the vibration of a vibrating body was performed using the vibrating part 13 using the Fe-70 mass% Co type alloy. In the experiment, the length of each vibrating part 13 was 70 mm, the width was 6 mm, the thickness was 1 mm, and the resonance frequency was adjusted to be about 50 Hz. The vibrating part 13 is formed by joining the soft magnetic material 2 and the magnetostrictive material 3 by thermal diffusion bonding.

振動体の振動数を変化させたときの発電量の測定結果を、図11に示す。なお、図11には、比較のため、Fe−70質量%Co系合金の磁歪材料3のみで振動部13を形成したときの結果も示す。図11に示すように、軟磁性材料2と磁歪材料3とを接合したとき(図11中の「FeCo+NiCo熱拡散接合」)の方が、磁歪材料3のみのとき(図11中の「Fe-Co系」)よりも、全ての振動数で発電量が高くなっていることが確認された。また、軟磁性材料2と磁歪材料3とを接合したときの方が、磁歪材料3のみのときよりも、共振周波数前後の発電量の低下が小さくなっていることも確認された。この結果から、図9に示す純Niを用いたときよりもやや劣るが、軟磁性材料2としてNi−20質量%Co系合金を用いた場合であっても、軟磁性材料2と磁歪材料3とを接合することにより、発電能力が向上することがわかる。   FIG. 11 shows the measurement results of the amount of power generation when the frequency of the vibrating body was changed. FIG. 11 also shows, for comparison, the results when the vibrating portion 13 was formed only of the magnetostrictive material 3 of the Fe-70 mass% Co-based alloy. As shown in FIG. 11, when the soft magnetic material 2 and the magnetostrictive material 3 are joined (“FeCo + NiCo thermal diffusion bonding” in FIG. 11), only when the magnetostrictive material 3 is used (“FIG. 11” It was confirmed that the power generation was higher at all frequencies than that of the Fe-Co system. Further, it was also confirmed that when the soft magnetic material 2 and the magnetostrictive material 3 were joined, the decrease in the amount of power generation around the resonance frequency was smaller than when only the magnetostrictive material 3 was used. From this result, although slightly inferior to the case where pure Ni shown in FIG. 9 is used, even when the Ni-20 mass% Co-based alloy is used as the soft magnetic material 2, the soft magnetic material 2 and the magnetostrictive material 3 are used. It can be seen that the power generation capacity is improved by joining.

[参考例]
図5に示す振動発電装置10について、軟磁性材料2の代わりに非磁性材料のSUS304を用い、磁歪材料3としてFe−70質量%Co系合金を用いた振動部13を使用して、振動体の振動に対する発電量を測定する実験を行った。振動部13として、非磁性材料と磁歪材料3とを熱拡散接合で接合したものと、接着したものの2種類を用いた。実験では、各振動部13の長さを70mm、幅を6mm、厚みを1mmとし、共振周波数が50Hz程度になるよう調整している。
[Reference example]
The vibration power generating device 10 shown in FIG. 5 uses a nonmagnetic material SUS304 in place of the soft magnetic material 2 and a vibrating part 13 using an Fe-70 mass% Co-based alloy as the magnetostrictive material 3. An experiment was conducted to measure the amount of power generation with respect to the vibration of the steel. As the vibrating portion 13, two types, one in which a nonmagnetic material and a magnetostrictive material 3 are bonded by thermal diffusion bonding, and the other in which the nonmagnetic material and the magnetostrictive material 3 are bonded are used. In the experiment, the length of each vibrating part 13 was 70 mm, the width was 6 mm, the thickness was 1 mm, and the resonance frequency was adjusted to be about 50 Hz.

振動体の振動数を変化させたときの発電量の測定結果を、図12に示す。なお、図12には、比較のため、Fe−70質量%Co系合金の磁歪材料3のみで振動部13を形成したときの結果も示す。図12に示すように、非磁性材料のSUS304と磁歪材料3とを熱拡散接合したとき(図12中の「SUS304接合」)の方が、接着したとき(図12中の「SUS304接着」)および磁歪材料3のみのとき(図12中の「Fe-Co系」)よりも、全ての振動数で発電量が高くなっていることが確認された。また、接着したときの方が、磁歪材料3のみのときよりも、共振周波数付近以外の振動数で発電量が高くなっていることが確認された。また、非磁性材料のSUS304と磁歪材料3とを接合したときの方が、磁歪材料3のみのときよりも、共振周波数前後の発電量の低下が小さくなっていることも確認された。   FIG. 12 shows the measurement results of the amount of power generation when the frequency of the vibrating body was changed. FIG. 12 also shows, for comparison, results when the vibrating portion 13 is formed only of the magnetostrictive material 3 of the Fe-70 mass% Co-based alloy. As shown in FIG. 12, when the non-magnetic material SUS304 and the magnetostrictive material 3 are bonded by heat diffusion (“SUS304 bonding” in FIG. 12), they are bonded (“SUS304 bonding” in FIG. 12). It was confirmed that the power generation amount was higher at all frequencies than when only the magnetostrictive material 3 was used (“Fe—Co system” in FIG. 12). In addition, it was confirmed that the amount of power generation was higher at the frequency other than the vicinity of the resonance frequency than when only the magnetostrictive material 3 was bonded. It was also confirmed that when the non-magnetic material SUS304 and the magnetostrictive material 3 were joined, the decrease in the amount of power generation around the resonance frequency was smaller than when only the magnetostrictive material 3 was used.

これらの結果から、非磁性材料と磁歪材料3とを接合した場合であっても、軟磁性材料2を使用したときよりは劣るが、発電能力が向上することがわかる。また、非磁性材料と磁歪材料3とを熱拡散接合した場合、冷却後の残留応力により、接着した場合よりも発電能力が高くなることがわかる。   From these results, it can be seen that even when the non-magnetic material and the magnetostrictive material 3 are joined, the power generation capability is improved, though inferior to when the soft magnetic material 2 is used. Further, it can be seen that when the non-magnetic material and the magnetostrictive material 3 are thermally diffusion-bonded, the power generation capacity is higher than that when they are bonded due to residual stress after cooling.

[本発明の実施の形態のアクチュエータについて]
図13および図14に、本発明の実施の形態のアクチュエータ20を示す。
図13に示すように、アクチュエータ20は、本発明の実施の形態の振動発電装置10と同様の構成を成しており、ケーシング11と支持部12と振動部13と錘14と磁石15と振動用コイル21とを有している。なお、以下の説明では、本発明の実施の形態の振動発電装置10と同一の構成には同一の符号を付して、重複する説明を省略する。
[Actuator of Embodiment of the Present Invention]
13 and 14 show an actuator 20 according to an embodiment of the present invention.
As shown in FIG. 13, the actuator 20 has the same configuration as the vibration power generation device 10 according to the embodiment of the present invention, and includes a casing 11, a support portion 12, a vibration portion 13, a weight 14, a magnet 15, And the use coil 21. In the following description, the same components as those of the vibration power generation device 10 according to the embodiment of the present invention are denoted by the same reference numerals, and redundant description will be omitted.

振動用コイル21は、内側に、エネルギー変換部材1から成る振動部13を貫通して、振動部13の中央付近に配置されている。振動用コイル21は、電流を流すことにより、磁歪材料3の磁歪効果で振動部13を振動させるよう構成されている。   The vibration coil 21 penetrates the vibration part 13 formed of the energy conversion member 1 on the inside, and is disposed near the center of the vibration part 13. The vibrating coil 21 is configured to vibrate the vibrating section 13 by the magnetostrictive effect of the magnetostrictive material 3 by flowing a current.

アクチュエータ20は、振動用コイル21に電流を流したとき、その電流により磁歪材料3の磁化が変化するため、磁歪材料3の磁歪効果により振動部13を振動させることができる。また、このとき、軟磁性材料2の磁化挙動と磁歪材料3の磁歪現象との相乗効果により、磁歪材料3のみの場合よりも、振動効率を高めることができる。また、振動部13が、固体の軟磁性材料2と固体の磁歪材料3とを接合して形成されるため、液体の材料から製造する場合と比べて振動特性はばらつかず、所望の安定した振動特性を得ることができる。   When a current flows through the vibration coil 21, the actuator 20 changes the magnetization of the magnetostrictive material 3 by the current, so that the vibrating section 13 can be vibrated by the magnetostrictive effect of the magnetostrictive material 3. Further, at this time, due to the synergistic effect of the magnetization behavior of the soft magnetic material 2 and the magnetostrictive phenomenon of the magnetostrictive material 3, the vibration efficiency can be increased as compared with the case where only the magnetostrictive material 3 is used. Further, since the vibrating portion 13 is formed by joining the solid soft magnetic material 2 and the solid magnetostrictive material 3, the vibration characteristics are not varied as compared with the case of manufacturing from a liquid material, and a desired stable Vibration characteristics can be obtained.

図13に示すように、アクチュエータ20は、ケーシング11や、片持ち梁の振動部13の先端に取り付けられた錘14に、被振動体41を接触させることにより、被振動体41を振動させることができる。   As shown in FIG. 13, the actuator 20 causes the vibrated body 41 to vibrate by bringing the vibrated body 41 into contact with the casing 11 and the weight 14 attached to the tip of the cantilever vibrating section 13. Can be.

なお、アクチュエータ20は、図14(a)に示すように、錘14を有さず、振動部13の他方の端部13bも第2支持部12bで固定された両持ち梁(両端梁、両端固定梁、両端支持梁)状を成していてもよい。この場合、被振動体41に効率良く振動を伝えるため、振動部13の一方の端部13aを固定する支持部12、および他方の端部13bを固定する第2支持部12bのうち、少なくともいずれか一方が、弾性を有する材質から成っていることが好ましい。   As shown in FIG. 14A, the actuator 20 does not have the weight 14, and the other end 13b of the vibrating portion 13 is also fixed to the second support portion 12b in a doubly supported beam (both ends beam, both ends). (Fixed beam, support beam at both ends). In this case, in order to efficiently transmit the vibration to the vibrated body 41, at least one of the supporting portion 12 for fixing one end 13a of the vibrating portion 13 and the second supporting portion 12b for fixing the other end 13b. One of them is preferably made of a material having elasticity.

また、アクチュエータ20は、図14(b)に示すように、振動部13に磁気的に結合され、振動部13から伸びるよう設けられた軟磁性のヨーク22を有し、振動用コイル21が、振動部13の周囲ではなく、ヨーク22の周囲に巻かれていてもよい。この場合にも、磁歪材料3の磁歪効果により、ヨーク22を介して振動部13を振動させることができる。また、振動部13に振動用コイル21が巻かれていないため、振動部13をより狭い場所に挿入することができ、挿入先に存在する被振動体41を振動させることができる。   Further, as shown in FIG. 14B, the actuator 20 has a soft magnetic yoke 22 magnetically coupled to the vibrating portion 13 and provided to extend from the vibrating portion 13. It may be wound around the yoke 22 instead of around the vibrating section 13. Also in this case, the vibrating portion 13 can be vibrated via the yoke 22 by the magnetostrictive effect of the magnetostrictive material 3. Further, since the vibration coil 21 is not wound around the vibration section 13, the vibration section 13 can be inserted into a narrower place, and the vibrated body 41 existing at the insertion destination can be vibrated.

アクチュエータ20は、振動を伴うものであればいかなるものであっても利用可能である。アクチュエータ20は、例えば、わき見運転や居眠り運転を防止するために自動車のハンドルやシートに取り付けられるHMI、振動ドリルの振動源、低周波治療などの健康器具、携帯電話のバイブレータ、被振動体(壁や机、コーン、紙コップなど)をスピーカーとして使用するための振動源、ブザー、振動による警報器、ノイズキャンセラーや消音スピーカーなどの音・振動キャンセラー、モスキート音などを発生する害虫・害獣撃退器、超音波ソナー、魚群探知機、骨伝導補聴器のイヤホンやスピーカー、炭酸水やビールの泡立器、配管内の汚れ除去装置、超音波風呂、食器洗浄機や洗濯機などの超音波洗浄機、加湿器の振動源、溶接時の残留応力緩和衝撃装置、振動ペン、自動車用振動ワイパー、振動モーター、パースフィーダーなどの搬送機、防舷シールドスライダー、高周波音叉、超音波つぼマッサージ器、超音波カッター、テレビゲームのコントローラー、振動式目覚まし時計、イオン発生装置、気化装置、振動ふるい等として、あるいはこれらの振動源として使用することができる。   The actuator 20 can be used as long as it has vibration. The actuator 20 may be, for example, an HMI attached to a steering wheel or a seat of a car to prevent aside driving and falling asleep, a vibration source of a vibration drill, a health appliance such as a low frequency treatment, a vibrator of a mobile phone, a vibrating body (wall) , Desk, cone, paper cup, etc.) as a speaker, buzzer, vibration alarm, sound and vibration cancellers such as noise cancellers and silencing speakers, and mosquito repellents that produce mosquito sounds , Ultrasonic sonar, fish finder, bone conduction hearing aid earphones and speakers, carbonated water and beer whisk, dirt removal device in piping, ultrasonic bath, dishwasher and washing machine, etc. Humidifier vibration source, residual stress relaxation shock device during welding, vibration pen, automobile vibration wiper, vibration motor, purse feeder, etc. As a carrier, fender shield slider, high-frequency tuning fork, ultrasonic pot massager, ultrasonic cutter, video game controller, vibrating alarm clock, ion generator, vaporizer, vibrating sieve, etc. Can be used.

なお、アクチュエータ20は、図14(c)に示すように、エネルギー変換部材1から成る振動部13のみから構成されていてもよい。この場合、電磁場が変化している場所や物から成る電磁場変動体42に、近接または接触させることにより、振動部13を振動させることができる。このため、例えば、鍋やフライパン等の底に取り付けることにより、電磁場変動体42である電磁調理器で使用したときに、鍋やフライパン等の底を振動させて焦げ付きを防止することができる。   Note that the actuator 20 may include only the vibrating section 13 including the energy conversion member 1 as shown in FIG. In this case, the vibrating part 13 can be vibrated by approaching or contacting the electromagnetic field fluctuating body 42 made of a place or an object where the electromagnetic field is changing. For this reason, for example, by being attached to the bottom of a pot or a frying pan, the bottom of the pot or frying pan or the like can be vibrated to prevent scorching when used in an electromagnetic cooker that is the electromagnetic field fluctuating body 42.

1 エネルギー変換部材
1a 切欠き
2 軟磁性材料
3 磁歪材料

10 振動発電装置
11 ケーシング
12 支持部
13 振動部
14 錘
15 磁石
16 発電用コイル

20 アクチュエータ
21 振動用コイル
22 ヨーク

31 支柱
32 ネオジム磁石
41 被振動体
42 電磁場変動体
DESCRIPTION OF SYMBOLS 1 Energy conversion member 1a Notch 2 Soft magnetic material 3 Magnetostrictive material

DESCRIPTION OF SYMBOLS 10 Vibration power generation apparatus 11 Casing 12 Support part 13 Vibration part 14 Weight 15 Magnet 16 Power generation coil

Reference Signs List 20 Actuator 21 Vibration coil 22 Yoke

DESCRIPTION OF SYMBOLS 31 Prop 32 Neodymium magnet 41 Vibration body 42 Electromagnetic field fluctuation body

Claims (11)

固体の軟磁性材料と固体の磁歪材料とを、熱拡散接合,熱間圧延加工、熱間引抜加工、またはクラッド圧延により接合して成り、
前記磁歪材料は、Fe−Co系合金、Fe−Al系合金、Ni、Ni−Fe系合金またはNi−Co系合金から成り、
前記軟磁性材料は、保磁力が3A/cm以下であること、または前記磁歪材料の磁歪定数とは異なる符号の磁歪定数を有する磁歪材料から成ることを
特徴とするエネルギー変換部材。
The solid and the soft magnetic material and a solid magnetostrictive material of the thermal diffusion bonding, hot rolling, Ri hot drawing process, or by joined by clad rolling formation,
The magnetostrictive material is made of an Fe-Co alloy, an Fe-Al alloy, Ni, a Ni-Fe alloy or a Ni-Co alloy,
The energy conversion member , wherein the soft magnetic material has a coercive force of 3 A / cm or less or is made of a magnetostrictive material having a magnetostriction constant having a sign different from that of the magnetostriction material .
前記軟磁性材料および前記磁歪材料のいずれか一方が、正の磁歪定数を有するFe−Co系合金またはFe−Al系合金から成り、他方が、負の磁歪定数を有するNi−0〜20質量%Fe系合金またはNi−Co系合金から成ることを特徴とする請求項記載のエネルギー変換部材。 One of the soft magnetic material and the magnetostrictive material is made of a Fe-Co-based alloy or a Fe-Al-based alloy having a positive magnetostriction constant, and the other is Ni-0 to 20% by mass having a negative magnetostriction constant. The energy conversion member according to claim 1 , wherein the energy conversion member is made of an Fe-based alloy or a Ni-Co-based alloy. 前記軟磁性材料と前記磁歪材料とが、負荷を加えた状態で接合されていることを特徴とする請求項1または2記載のエネルギー変換部材。 The soft magnetic material and said magnetostrictive material according to claim 1 or 2 energy conversion member, wherein that are joined in a state where the load was added. 請求項1乃至のいずれか1項に記載のエネルギー変換部材から成る振動部を有し、
前記振動部の振動による前記磁歪材料の逆磁歪効果で発電するよう構成されていることを
特徴とする振動発電装置。
It has a vibration part consisting of the energy conversion member according to any one of claims 1 to 3 ,
A vibrating power generation device configured to generate power by an inverse magnetostriction effect of the magnetostrictive material due to the vibration of the vibrating portion.
前記振動部は、振動したときに応力集中する部分を1箇所以上有することを特徴とする請求項記載の振動発電装置。 The vibration power generator according to claim 4 , wherein the vibrating part has one or more portions where stress is concentrated when vibrated. 請求項1乃至のいずれか1項に記載のエネルギー変換部材から成るセンサー部と、
前記センサー部が変形したときの前記磁歪材料の逆磁歪効果による磁化の変化を検出し、その磁化の変化から、前記センサー部に作用する力を求める力検出部とを、
有することを特徴とする力センサー装置。
A sensor unit comprising the energy conversion member according to any one of claims 1 to 3 ,
A force detection unit that detects a change in magnetization due to the inverse magnetostriction effect of the magnetostrictive material when the sensor unit is deformed, and obtains a force acting on the sensor unit from the change in magnetization.
A force sensor device comprising:
前記力検出部は、前記磁歪材料の近傍に配置された磁気センサーを有し、前記磁化の変化を、漏れ磁束として前記磁気センサーにより検出するよう構成されていることを特徴とする請求項記載の力センサー装置。 7. The power sensor according to claim 6 , wherein the force detector includes a magnetic sensor disposed near the magnetostrictive material, and the change in magnetization is detected as a leakage magnetic flux by the magnetic sensor. Force sensor device. 前記力検出部は、前記磁歪材料の近傍に配置された検出用コイルを有し、前記磁化の変化を、インピーダンスの変化として前記検出用コイルにより検出するよう構成されていることを特徴とする請求項記載の力センサー装置。 The said force detection part has the coil for a detection arrange | positioned near the said magnetostrictive material, and it is comprised so that the change of the said magnetization may be detected as a change of an impedance by the said coil for a detection. Item 7. The force sensor device according to Item 6 . 前記センサー部は、前記力が作用したときに応力集中する部分を1箇所以上有することを特徴とする請求項乃至のいずれか1項に記載の力センサー装置。 The force sensor device according to any one of claims 6 to 8 , wherein the sensor unit has one or more portions where stress is concentrated when the force acts. 請求項1乃至のいずれか1項に記載のエネルギー変換部材から成る振動部と、
電流を流すことにより、前記磁歪材料の磁歪効果で前記振動部を振動させるよう配置された振動用コイルとを有することを
特徴とするアクチュエータ。
A vibrating part comprising the energy conversion member according to any one of claims 1 to 3 ,
An actuator, comprising: a vibrating coil arranged to vibrate the vibrating portion by a magnetostrictive effect of the magnetostrictive material when a current flows.
前記振動用コイルは、前記振動部の周囲に巻かれている、または、前記振動部に磁気的に結合されたヨークの周囲に巻かれていることを特徴とする請求項10記載のアクチュエータ。
The actuator according to claim 10 , wherein the vibration coil is wound around the vibrating portion or around a yoke magnetically coupled to the vibrating portion.
JP2019525166A 2017-06-16 2018-04-20 Energy conversion member, vibration power generation device, force sensor device and actuator Active JP6653834B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017119095 2017-06-16
JP2017119095 2017-06-16
PCT/JP2018/016247 WO2018230154A1 (en) 2017-06-16 2018-04-20 Energy conversion member, vibration power generation device, force sensor device, and actuator

Publications (2)

Publication Number Publication Date
JPWO2018230154A1 JPWO2018230154A1 (en) 2019-11-07
JP6653834B2 true JP6653834B2 (en) 2020-02-26

Family

ID=64659033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019525166A Active JP6653834B2 (en) 2017-06-16 2018-04-20 Energy conversion member, vibration power generation device, force sensor device and actuator

Country Status (5)

Country Link
US (1) US11131588B2 (en)
JP (1) JP6653834B2 (en)
CN (1) CN110754035A (en)
DE (1) DE112018003021T5 (en)
WO (1) WO2018230154A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247605B2 (en) * 2019-01-29 2023-03-29 住友金属鉱山株式会社 Method for manufacturing vibration power generation device and method for manufacturing magnetostrictive part
JP7450919B2 (en) 2019-03-25 2024-03-18 国立大学法人信州大学 Power generation elements and sensors
JP7327793B2 (en) 2019-09-12 2023-08-16 株式会社大武ルート工業 treadmill
JP2021072707A (en) * 2019-10-31 2021-05-06 一般財団法人電力中央研究所 Vibration power generator
CN112212900A (en) * 2020-09-29 2021-01-12 刘翡琼 Low-cost high-sensitivity ultrasonic detector
CN112880882B (en) * 2021-01-12 2022-04-15 山东大学 Transformer type force sensor
WO2022196391A1 (en) * 2021-03-15 2022-09-22 国立大学法人東北大学 Load sensor, and load detecting device
JPWO2022219981A1 (en) * 2021-04-13 2022-10-20

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585574A (en) * 1993-02-02 1996-12-17 Mitsubishi Materials Corporation Shaft having a magnetostrictive torque sensor and a method for making same
US6149736A (en) * 1995-12-05 2000-11-21 Honda Giken Kogyo Kabushiki Kaisha Magnetostructure material, and process for producing the same
JP3751084B2 (en) * 1996-08-30 2006-03-01 本田技研工業株式会社 Composite magnetostrictive material and method for producing the same
JPH1114472A (en) 1997-06-24 1999-01-22 Aisin Seiki Co Ltd Manufacture of torque transfer shaft for magnetostrictive torque sensor
JP3377519B2 (en) * 2000-12-22 2003-02-17 ティーディーケイ株式会社 Torque sensor and method of manufacturing the same
US7104056B2 (en) * 2003-02-27 2006-09-12 University Of Washington Design of ferromagnetic shape memory alloy composites and actuators incorporating such materials
JP4462611B2 (en) 2004-06-03 2010-05-12 国立大学法人信州大学 Mechanical quantity sensor unit and mechanical quantity sensor
JP2008112841A (en) 2006-10-30 2008-05-15 Tdk Corp Magnetoresistance effect element, thin film magnetic head, base, wafer, head gimbal assembly, and hard disc device
JP2009159574A (en) * 2007-12-28 2009-07-16 Namiki Precision Jewel Co Ltd Planar vibrator
JP5101561B2 (en) * 2009-04-17 2012-12-19 本田技研工業株式会社 Magnetostrictive torque sensor and electric power steering device
US9506824B2 (en) * 2009-08-03 2016-11-29 Japan Science And Technology Agency Magnetostrictive film, magnetostrictive element, torque sensor, force sensor, pressure sensor, and manufacturing method therefor
JP2013170996A (en) 2012-02-22 2013-09-02 Nissan Motor Co Ltd Magnetostrictive ring type torque sensor, and method of manufacturing magnetostrictive ring type torque sensor
JP2013177664A (en) 2012-02-28 2013-09-09 Yasubumi Furuya Alloy for magnetostrictive vibration power generation
US20130291657A1 (en) * 2012-04-02 2013-11-07 Ashish S. Purekar Apparatus and method for non contact sensing of forces and motion on rotating shaft
JP5998879B2 (en) 2012-11-28 2016-09-28 富士通株式会社 Power generator
JP6420824B2 (en) * 2014-03-17 2018-11-07 国立大学法人金沢大学 Power generation element and actuator using the structure of the power generation element
MX2016012754A (en) * 2014-03-28 2017-04-27 Hitachi Metals Ltd Soft magnetic component for torque sensor, and torque sensor using same.
JP6349909B2 (en) * 2014-04-23 2018-07-04 ミツミ電機株式会社 Power generator
JP6523004B2 (en) * 2015-03-24 2019-05-29 株式会社東芝 Strain sensing element and pressure sensor

Also Published As

Publication number Publication date
DE112018003021T5 (en) 2020-03-12
CN110754035A (en) 2020-02-04
US11131588B2 (en) 2021-09-28
WO2018230154A1 (en) 2018-12-20
JPWO2018230154A1 (en) 2019-11-07
US20210172812A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6653834B2 (en) Energy conversion member, vibration power generation device, force sensor device and actuator
Ribichini et al. Study and comparison of different EMAT configurations for SH wave inspection
CN109075724B (en) Power generating element, method for manufacturing power generating element, and actuator
Hirao et al. EMATs for science and industry: noncontacting ultrasonic measurements
JP5867700B2 (en) Power generator
JP7302868B2 (en) Power generation element and actuator
JP4203045B2 (en) Magnetic deformation transducer using tail patch and elastic wave measuring device using it
US20150084443A1 (en) High energy density vibration energy harvesting device with high-mu material
JP2021103940A (en) Magnetostriction power generation device
JP6991685B2 (en) Vibration power generator
US2031789A (en) Acoustic electric energy converter
JP7112382B2 (en) Magnetostrictive element for power generation and magnetostrictive power generation device
JP5031314B2 (en) Electromagnetic ultrasonic sensor and electromagnetic ultrasonic detection system
Sablik et al. Relationship between magnetostriction and the magnetostrictive coupling coefficient for magnetostrictive generation of elastic waves
JP2021136826A (en) Power generation element and device using power generation element
US20240048076A1 (en) Power generation element and power generation apparatus using power generation element
JP2006300902A (en) Stress detection method and device
Su et al. Numerical simulation of magnetostrictive Lamb wave EMATs on steel plate
JPH04229085A (en) Magnetostrictive actuator
WO2022124185A1 (en) Power-generating magnetostrictive element and magnetostrictive power generation device
JP6136758B2 (en) Power generation device
JP2021103922A (en) Magnetostriction element for power generation and magnetostriction power generation device
JP7309457B2 (en) Power generation element and device using power generation element
JP2022090601A (en) Magnetostriction element for power generation and magnetostriction power generation device
JP2024001628A (en) Magnetostrictive component, power generation element, and method for manufacturing magnetostrictive component

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20190614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191217

R150 Certificate of patent or registration of utility model

Ref document number: 6653834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250