JP6649751B2 - 静止衛星型補強システム(sbas)格子点電離層垂直遅延量誤差(give)情報を使用して地上型補強システム(gbas)のために電離層誤差を緩和する方法 - Google Patents

静止衛星型補強システム(sbas)格子点電離層垂直遅延量誤差(give)情報を使用して地上型補強システム(gbas)のために電離層誤差を緩和する方法 Download PDF

Info

Publication number
JP6649751B2
JP6649751B2 JP2015225409A JP2015225409A JP6649751B2 JP 6649751 B2 JP6649751 B2 JP 6649751B2 JP 2015225409 A JP2015225409 A JP 2015225409A JP 2015225409 A JP2015225409 A JP 2015225409A JP 6649751 B2 JP6649751 B2 JP 6649751B2
Authority
JP
Japan
Prior art keywords
ionospheric
vig
gnss
vertical
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015225409A
Other languages
English (en)
Other versions
JP2016099353A (ja
Inventor
ジェームズ・アーサー・マクドナルド
トム・ジャケル
キム・エイ・クラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2016099353A publication Critical patent/JP2016099353A/ja
Application granted granted Critical
Publication of JP6649751B2 publication Critical patent/JP6649751B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/072Ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/073Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations
    • G01S19/074Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations providing integrity data, e.g. WAAS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/12Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are telecommunication base stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

関連出願の相互参照
[1]本特許出願は下記の出願に関連する。
[2]「GNSS USING SBAS IONOSPHERIC MEASUREMENTS IN CONJUNCTION WITH GBAS AIDING(GBAS支援と共にSBAS電離層測定値を用いたGNSS)」と題する、2013年11月27に出願され、参照により本明細書に組み込まれている米国仮特許出願第61/909,900号。
[3]「USING SBAS IONOSPHERIC DELAY MEASUREMENTS TO MITIGATE IONOSPHERIC ERROR(SBAS電離層遅延測定値を用いて電離層誤差を軽減する方法)」と題する、2014年2月3日に出願され、参照により本明細書に組み込まれる米国特許出願第14/171,257号。
[4]全地球航法衛星システム(Global Navigation Satellite System)(GNSS)は、進入操作および着陸操作において航空機に航行支援を提供する。しかし、これらの操作では高い正確性および精度が要求されるので、航空機が地上型補強システム(GBAS:Ground Based Augmentation System)の地上サブシステムの付近にあるときは、GBASがGNSSを補強する。GBAS地上サブシステムは本明細書ではGBAS局とも呼ばれ、航空機に疑似距離補正値およびインテグリティ(integrity)情報をブロードキャストすることによってGNSS受信機を補強し、このことは、航空機のGNSS受信機によって処理される衛星測定値に影響するGNSS誤差を除去するために役立つ。その結果、精密進入、出発手続き、およびターミナルエリア管制のための、航空機のコンティニュイティ(continuity)、アベイラビリティ(availability)、インテグリティの性能が改善される。
地上型補強システム(GBAS)のために誤差を緩和する方法を提供する。
[5]地上型補強システム(GBAS)は、既知の位置を有する複数の基準局受信機と、複数の基準局受信機に通信可能に接続された少なくとも1つの処理モジュールと、少なくとも1つの処理モジュールに通信可能に接続された航空機通信装置とを備える。少なくとも1つの処理モジュールは、複数の全地球航法衛星システム(GNSS)衛星のそれぞれについて全地球航法衛星システム(GNSS)衛星測定値をチェックして、少なくとも1つの静止衛星型補強システム(SBAS:Space−Based Augmentation System)対地静止衛星から導出された複数の電離層格子点(Ionosphere Grid Point)(IGP)に対する全地球航法衛星システム(GNSS)衛星測定値の電離層貫通点(Ionosphere Pierce Point)(IPP)の近接性を判断するように構成される。少なくとも1つの処理モジュールは、電離層格子点(IGP)が許容可能な格子点電離層垂直遅延量誤差(GRID IONOSPHERE VERTICAL ERROR)(GIVE)値をもつときは、複数の全地球航法衛星システム(GNSS)衛星のそれぞれについての全地球航法衛星システム(GNSS)衛星測定値が、少なくとも1つのオーバーバウンドされた垂直電離層勾配(Vertical Ionosphere Gradient)標準偏差シグマvig(σvig)を使用する緩和(軽減)に対して安全であると判断するようにさらに構成される。少なくとも1つの処理モジュールは、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(Vertical Alert Limit)(VAL)に適合する垂直保護限界(Vertical Protection Limit)(VPL)を生成できるかどうか判断するようにさらに構成される。少なくとも1つの処理モジュールは、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成できるときに、少なくとも1つの航空機通信装置に、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を、ディファレンシャル補正値および、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全な全地球航法衛星システム(GNSS)衛星測定値のうちのどれが精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成できるかの指標と共に、航空機GNSS受信機に伝えさせるように構成される。
[6]図面は単に例示的実施形態を示し、よって範囲を制限するとは見なされないとの理解の元で、添付図面を使用して例示的実施形態をさらに具体的かつ詳細に説明する。
[7]静止衛星型補強システム(SBAS)電離層遅延測定値を使用して、電離層の品質測定基準に基づいて使用される電離層の緩和機構を選択する地上型補強システム(GBAS)地上サブシステムの例示的実施形態のブロック線図である。 [8]ある地理的領域の上にある電離層格子点(IGP)202の格子および、4つのIGPの間に位置する電離層貫通点(IPP)を示すブロック線図である。 [9]電離層の緩和機構で使用される垂直電離層勾配の標準偏差シグマvig(σvig)のオーバーバウンド基準に対する保護限界感度を示すブロック線図である。 [10]航空機上に搭載される全地球航法衛星システム(GNSS)受信機の例示的実施形態を示すブロック線図である。 [11]GBAS電離層脅威の緩和技法を選択する方法の例示的一実施形態を示すフロー図である。 [12]電離層によって誘発される誤差を静止衛星型補強システム(SBAS)を使用して地上型補強システム(GBAS)のために緩和する、全地球航法衛星システム(GNSS)と共に使用される方法の例示的一実施形態を示すフロー図である。 [13]GBASからのデータに基づいてGBAS電離層脅威の緩和技法を選択する別の方法の例示的一実施形態を示すフロー図である。
[14]慣行に従って、記載される様々な特徴は正確な縮尺で描かれるのではなく、例示的実施形態に関連する特定の特徴を強調して描かれる。
[15]下記の詳細な説明において、本明細書の一部を成す添付図面が参照され、参照は図面内に説明目的の例示的実施形態を使用して示されている。ただし、その他の実施形態が利用されてもよく、かつ、論理的、機械的、および電気的な変更が行われてもよいことを理解されたい。さらに、図面および本明細書に記載される方法は、個々のステップが行われる順序を限定すると見なされてはならない。よって、下記の詳細な説明は制限的な意味に解釈されてはならない。
[16]複数の例示的実施形態で、本明細書に記載される全地球航法衛星システム(GNSS)は、米国の全地球測位システム(GPS)および広域補強システム(Wide Area Augmentation System)(WAAS)、ロシアの全地球航法衛星システム(Global’naya Navigatsionnaya Sputnikovaya Sisterna)(GLONASS)、中国の百度(バイドゥ:Beidou)および北斗−2(コンパス)、欧州連合のガリレオ(Galileo)および欧州静止衛星航法オーバーレイサービス(European Geostationary Navigation Overlay Service)(EGNOS)、インドのインド地域航法衛星システム(Indian Regional Navigational Satellite System)(IRNSS)、ならびに日本の準天頂衛星システム(QZSS:Quasi−Zenith Satellite System)を含む。GSPを実装する例示的実施形態には、L1信号(約1.57542GHzで動作)および/またはL2信号(約1.2276GHzで動作)および/またはL5信号(約1.17645GHzで動作)が実装される。グロナスを実装する例示的実施形態には、第1の周波数のSP信号(約1.602GHzで動作)および/または第2の周波数のSP信号(約1.246GHzで動作)が実装される。コンパスを実装する例示的実施形態には、B1信号(約1.561098GHzで動作)、B1−2信号(約1.589742で動作)、B2信号(約1.20714GHzで動作)および/またはB3信号(約1.26852GHzで動作)が実装される。ガリレオを実装する例示的実施形態には、E5aおよびE5b信号(約1.164−1.215GHzで動作)、E6信号(約1.260−1.500GHzで動作)および/またはE2−L1−E11信号(約1.559−1.592GHzで動作)が実装される。
[17]前述したように、地上型補強システム(GBAS)は、精密進入、出発手続き、およびターミナルエリア管制のための、コンティニュイティ、アベイラビリティ、インテグリティの性能を改善することができる。GBASは一般に、単一の空港の地所に限定される。GNSS受信機によって処理されるGNSS衛星測定値に影響する可能性のある誤差の主要な発生源は、電離層によって引き起こされる信号遅延を原因とする。航空機のGNSS受信機とGBAS局との間の電離層が一様であるとき、GBAS局および航空機のGNSS受信機は電離層の一様性による類似した信号遅延を受けるので、この誤差は、ほぼ完全に緩和(軽減)することができる。しかし、電離層攪乱に起因して電離層が非一様になると、その結果、GNSS衛星に対するGBAS局の照準線と航空機の照準線の間にある電離層に遅延の差が生じ、航空機で適用されるGBAS局の疑似距離補正値が正確でなくなる。このことの原因は、電離層によって引き起こされるそれぞれの位置での異なった遅延に起因する、GBAS局と航空機のGNSS受信機との間の空間的な無相関な誤差である。いくつかのケースでは、電離層はメートル単位での著しい遅延をGNSS信号に引き起こすことがあり、これが移行して数メートルもの位置誤差が空中位置に生じる。空中受信機の無誤差出力のインテグリティの責任は地上局が負うので、米国連邦航空局(FAA:Federal Aviation Administration)はあらゆるGBASに対して、これらの誤差、またはインテグリティ不履行の可能性を緩和する能力を有することを要求する。このことは、空中受信機への潜在的な脅威を実時間で推定し、潜在的な脅威を制限することによって達成することができるが、このことはGBASのアベイラビリティ性能を低下させる。精密進入を行うときには空中位置を制限することが重要である。複数の例示的実施形態で、この位置は航空機の周囲の円筒形の境界によって制限され、この境界は保護限界と呼ばれ、垂直成分および水平成分を有する。その他の実施形態では、その他の形状を有する境界が使用される。複数の例示的実施形態で、航空機が自機の位置と考えている場所から10メートル以内に、高い確率(1−10−7など)で実際に位置するように、垂直成分は10メートル未満に制限される。
[18]GBASは、GNSS衛星信号の電離層誘導遅延における空間的無相関(この現象は電離層勾配と呼ばれる)に起因するディファレンシャル距離誤差に感応する。異常な電離層活動が起こっている間に、空中のユーザが許容できないほど大きな位置誤差を受けるような空間的変動(電離層勾配と呼ばれる)が、地上サブステーションおよび空中ユーザが受ける遅延に生じる可能性がある。電離層嵐、異常な電離層活動、電離層誘導遅延、および電離層勾配は上層大気(高度約200キロメートル)で発生し、太陽フレアおよびその他の太陽活動などの電子活動に基づく。GBAS地上局と空中ユーザとの間の長い距離をわたって、電離層遅延における変動が許容できないほど大きな距離誤差を生む可能性があり、この誤差によって安全で精密進入操作が禁じられることもある。大きな電離層勾配の緩和(軽減)は、(1)GBASの空中コンポーネントと地上コンポーネントとの間で協力して緩和を行うこと、または(2)最悪ケースのGNSS衛星ジオメトリと最悪ケースの電離層勾配との組合せに基づく従来手法のスクリーニングによって達成することができる。1の方法では地上と空中の両方のサブシステムに先進機器が必要だが、2の方法はシステムアベイラビリティの低下を代償にすれば可能である。
[19]複数の例示的実施形態で、考え得る全てのGNSS衛星ジオメトリの実時間スクリーニングが実行され、最悪のケースの異常な電離層勾配が存在するときに許容できない空中ユーザ位置誤差の原因となる測定値が排除される。複数の例示的実施形態で、この実時間スクリーニングは電離層異常ジオメトリスクリーニング(Anomalous Ionospheric Geometry Screening)(AIGS)を使用して実行される。より具体的には、GBASは、最悪ケースの電離層勾配が常に存在すると自動的に仮定することもできる。よって、GBAS局が、接近中の航空機が使用している可能性のある、考え得るGNSS衛星ジオメトリ構成をチェックするとき、最悪ケースの電離層勾配が存在すると仮定して、許容可能な誤差限度を超える誤差を生むGNSS衛星ジオメトリがある場合は、それらのGNSS衛星ジオメトリを航空機が使用すべきではないとの指標と共に、それらが航空機にブロードキャストされる。
[20]ジオメトリのスクリーニングを実装する複数の例示的実施形態では、利用可能なジオメトリのセットは、有用なジオメトリのみが利用可能になるように、地上局によってブロードキャストされる、インテグリティに関する増加/インフレーションパラメータによって制限される。複数の例示的実施形態で、このことは、(1)実現性のある空中ジオメトリを全て特定し、(2)垂直最大電離層誘導誤差(Maximum Ionospheric Error in Vertical Position)(MIEV)を計算し、(3)この潜在的に危険な、実現性のあるジオメトリのサブセットについて、考え得る最も小さい垂直保護限界(VPL)(および/または水平保護限界(Lateral Protection Limit)(LPL))を計算し、(4)このサブセットの垂直保護限界(VPL)(および/または水平保護限界(LPL))が、特定のカテゴリの精密進入に対する垂直警報限界(VAL)(および/または水平警報限界(Lateral Alert Limit)(LAL))より小さい場合は、実現性のあるジオメトリのサブセット内の全てのジオメトリについてVAL(および/またはLAL)を超えるまでVPL(および/またはLPL)を増大させる最も小さいインフレーション係数の探求を開始することを含む。
[21]そのようなブロードキャストされるパラメータの1つは、垂直電離層勾配(VIG)の標準偏差であり、シグマvig(σvig)とも呼ばれる。通常、(σvig)は、ある将来の時点でGBASの視野に入るGNSS衛星に基づいて、その将来の時点について計算される。複数の例示的実施形態で、GNSS衛星は1恒星日に2回、地球の周りの軌道を回るので、時間につれてGBASの見通しの中を複数の異なるGNSS衛星が昇り、沈む。周期毎に、(σvig)の計算が、将来のその時点にGBASの視野に入ると予想される全てのGNSS衛星に対して、予測された全てのサブジオメトリ上で、後続の時点について行われる。この実時間ジオメトリスクリーニングは、空港での全ての進入を保護するために適している。図の中の1つのタイムステップについて計算される(σvig)値と、現在のタイムステップについて先に計算された(σvig)値のうち大きい方の値がGNSS受信機にブロードキャストされる。最悪ケースの電離層勾配を仮定すると、カテゴリI(CAT−I)の進入操作に対するコンティニュイティ性能およびアベイラビリティが低下し、かつ、カテゴリII(CAT−II)進入またはディファレンシャル補正(差動補正、微分補正)ポジティングサービス(Differential Correction Positing Service)(DCPS)などのより高度な操作が禁じられることがあるので、一定の状況では、このような仮定をたてるとあまり有利ではないことがある。さらに、最悪ケースの電離層条件は米国では約10年に1回しかGBAS局で発生せず、最悪ケースを仮定すると、リソースが有効活用されない場合が多くなる。
[22]本開示の態様を実装するシステムは、GBASのインテグリティを脅かして正確性を減少させる妨害的な非一様性電離層を、静止衛星型補強システム(SBAS)データを使用して可視化し、洞察可能にすることによって、この問題を解決することができる。SBASは地上システムの広域ネットワークであり、広大な地理的領域(米国全土または、その他の広大な陸地または水上領域など)の情報を処理して、それらの情報を地球上の同じ位置の上空に留まるSBAS対地静止(GEO)衛星にアップロードする。これらのSBAS対地静止衛星は、補正情報ならびにその他の誤差情報をGNSS受信機に提供する。SBASはGBASと類似した働きをするが、その働きは、はるかに大きな規模で行われる。GBASとSBASは異なる観測可能性で同じ問題を異なる方法により処理することができるので、相補的なシステムである。具体的には、SBASはGBASよりも、GNSS受信機からはるかに長い距離から事物を観察することができる。例示的SBASは、全地球測位システム(GPS)を補強する、米国連邦航空局(FAA)によって開発された広域補強システム(WAAS)を含む。
[23]SBASは、既知の固定位置を有する地上局のネットワークを使用する。これらの地上局は極めて正確な既知の位置を有し、電離層貫通点(IPP)に起因する、視野内の全てのGNSS衛星からの遅延を計算する。異なる遅延を計算した後に、地上局はこの情報を主局に送信し、主局は固定格子システムを使用して電離層遅延を計算してから、その情報を定期的に(約5分毎、または、より高頻度で)SBAS対地静止衛星にアップロードする。SBAS対地静止衛星は次に、この遅延時間情報の配列をSBAS対応のGNSS受信機にブロードキャストする。「電離層遅延データの配列」および「電離層格子点遅延」という用語は同義に使用されることに留意されたい。
[24]図1は、静止衛星型補強システム(SBAS)電離層遅延測定値を使用して、電離層の品質測定基準に基づいて使用される電離層の緩和機構を選択する地上型補強システム(GBAS)地上サブシステム100の例示的実施形態のブロック線図である。複数の例示的実施形態において、GBAS地上サブシステム100は、地上型補強システム(GBAS)処理モジュール102、複数の基準局受信機104(基準局受信機104−1、基準局受信機104−2、および基準局受信機104−3を含む)、オプションのSBAS受信機106、および航空機通信装置108を含む。複数の例示的実施形態には、それより多数または少数の基準局受信機104が含まれる。複数の例示的実装には、4つの基準局受信機104が含まれる。
[25]複数の例示的実施形態で、GBAS処理モジュール102は、本明細書に記載される機能に使用される様々な方法、プロセスタスク、計算、および制御機能を遂行するためのソフトウェアプログラム、ファームウェア、またはその他のコンピュータ可読命令を含む、またはそれらの命令と共に機能するプロセッサを含む。これらの命令は通常、コンピュータ可読命令またはデータ構造のストレージのための適切な任意のコンピュータ可読媒体に格納される。コンピュータ可読媒体は、汎用プロセッサ(GPP)または専用目的のコンピュータもしくはプロセッサ(フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、または他の集積回路など)によってアクセスできる利用可能な任意の媒体、または任意のプログラマブル論理デバイスとして実装されることができる。適切なプロセッサ可読媒体は、磁気または光媒体などのストレージ媒体またはメモリ媒体を含んでもよい。例えば、ストレージ媒体またはメモリ媒体は、従来型のハードディスク、コンパクトディスク読出し専用メモリ(CD−ROM)、ランダムアクセスメモリ(RAM)(同期型ダイナミックランダムアクセスメモリ(SDRAM)、ダブルデータレート(DDR)RAM、RAMBUSダイナミックRAM(RDRAM)、スタティックRAM(SRAM)などを含むがこれらに限定されない)、読出し専用メモリ(ROM)、電気的消去書き込み可能ROM(EEPROM)、およびフラッシュメモリなどの揮発性または不揮発性の媒体などを含んでもよい。適切なプロセッサ可読媒体はまた、ネットワークおよび/または無線リンクなどの通信媒体を介して伝達される、電気的、電気磁気的またはデジタル信号など送信媒体を含んでもよい。
[26]複数の例示的実施形態で、GBAS基準局受信機104はそれぞれ、視野内にある複数のGNSS衛星110(GNSS衛星110−1、GNSS衛星110−2、GNSS衛星110−3、GNSS衛星110−4、GNSS衛星110−5、および/またはGNSS衛星110−6などのいずれかを含む)からGNSS信号を受信するように構成される。複数の例示的実施形態で、GBAS処理モジュール102はGBAS基準局受信機104からGNSSデータを受信し、このデータおよびGBAS基準局受信機104の精密な地理位置についての知識を使用して、GNSSに基づくGBAS基準局受信機104の位置の計算における誤差を判断するように構成される。複数の例示的実施形態で、航空機通信装置108を使用してGNSS航空機受信機に誤差データを提供するために、GNSSに基づく計算におけるこれらの誤差が使用される。この説明では、誤差データは航空機通信装置108を使用してGNSS航空機受信機に送信されるが、その他の実施形態では、誤差データはその他の車両、目標物、物体、または人々のGNSS受信機に提供される。
[27]複数の例示的実施形態で、オプションのSBAS受信機106は、いずれかのSBAS対地静止衛星112(SBAS対地静止衛星112−1および/またはSBAS対地静止衛星112−2などを含む)からSBAS情報を受信するように構成される。その他の実施形態では、GBAS基準局受信機104自体のうち少なくとも1つが、いずれかのSBAS対地静止衛星112(SBAS対地静止衛星112−1および/またはSBAS対地静止衛星112−2などを含む)からSBAS情報を受信するように構成される。複数の例示的実施形態で、GBAS処理モジュール102は、SBAS対地静止衛星112からのSBAS情報を利用してGBAS地上サブシステム100の正確性およびインテグリティを向上させるようにも構成される。具体的には、GBAS処理モジュール102はSBAS対地静止衛星112によって提供される電離層遅延データの配列を使用して、電離層勾配(電離層嵐またはその他の電離層活動によって引き起こされることがある)が存在する可能性を判断することができる。ある領域を横切る様々な貫通点からの電離層遅延の一様性は電離層勾配および大きな不規則性のリスクに逆相関し、GBAS地上サブシステム100によって提供される操作に影響する。GBAS処理モジュール102は、より多くの貫通点にわたるSBAS情報を使用して、電離層が、GBAS処理モジュール102によって測定される遅延と航空機114のGNSS受信機によって測定される遅延にそれぞれ異なる影響を与えているかどうかを判断することができる。GBAS地上サブシステム100が受ける電離層遅延と航空機114のGNSS受信機が受ける電離層遅延との間の差が閾値より小さい場合は、GBAS処理モジュール102によって使用されるジオメトリスクリーニングおよび(σvig)インフレーション技法を保留して、代わりに、垂直電離層勾配の標準偏差シグマvig(σvig)をオーバーバウンドする、よりシンプルな技法を実行することができる。複数の例示的実施形態で、垂直電離層勾配の標準偏差シグマvig(σvig)をオーバーバウンドすることによって、少なくとも1つのGNSS衛星からの測定値の距離誤差がオーバーバウンドされる。
[28]複数の例示的実施形態で、垂直位置誤差が境界を10メートルを超えるほど大きくなると推定されたときは、この位置を航空機114の周囲で十分な狭さに制限することは不可能なので、精密進入路が利用不可能になる。精密進入路が利用不可能なとき、航空機114はCAT−I精密進入を行うことができず、代替の空港を探すこと、または、操縦士による目視進入の実行および/もしくは、計器着陸システム(Instrument Landing System)(ILS)などの非GNSSベースの航法ツールの使用が必要になる。SBAS対地静止衛星112からのデータを使用してGBAS地上サブシステム100と静止衛星型補強システム(SBAS)を統合することによって、航空機114のGNSS機器を更新する必要なく、ジオメトリスクリーニングおよび(σvig)インフレーション技法に関連するアベイラビリティ性能を著しく改善する代替手段が得られる。
[29]複数の例示的実施形態で、SBAS対地静止衛星112からの情報を使用して、ある所与の瞬間の電離層の品質が判断される。複数の例示的実施形態では、電離層の品質が不十分であると判断されると、より複雑な緩和技法であるジオメトリスクリーニングおよび(σvig)インフレーションを使用することが決定され、(σvig)インフレーションでは最悪ケースの電離層嵐が存在し、システム内の誤差が最悪ケースのレベルに至ると常に仮定される。複数の例示的実施形態では、電離層の品質が十分であると判断されると、より複雑な緩和技法(ジオメトリスクリーニングおよび(σvig)インフレーション)は必要ないと決定される。その代わりに、SBAS対地静止衛星112から提供される情報に基づいてGNSS衛星に存在し得る最悪ケースの誤差に基づき、垂直電離層勾配の標準偏差シグマvig(σvig)の単純なオーバーバウンドが使用される。複数の例示的実施形態で、垂直電離層勾配の標準偏差シグマvig(σvig)のオーバーバウンドは、1−σ(1−シグマ)の電離層誤差オーバーバウンド値である。この方法により、複雑な解析を少なくすることができ、精密進入路の精度についてアベイラビリティの向上が可能になる。複数の例示的実施形態で、垂直電離層勾配の標準偏差シグマvig(σvig)のオーバーバウンドは、K係数および/またはシグマ乗数を追加することにより航空機114からの誤差制限距離を拡大することによって達成することができる。例えば、時間の67%で航空機114が1メートルの範囲内にあることを示す、1メートル1シグマタイプの正規分布の誤差は、それを2倍し、この測距ソース上に2メートルの垂直電離層勾配の標準偏差シグマvig(σvig)オーバーバウンドが存在することをユーザにブロードキャストすることによって95%までのオーバーバウンドが統計的に可能である。ここでは、時間の95%で、無故障条件時の距離誤差が2メートルを超えないと仮定される。複数の例示的実施形態で、GBAS地上サブシステムは状況に応じてオーバーバウンド技法と、より複雑なスクリーニング技法との間で切り替わることができる。複数の例示的実施形態で、どちらの技法を使用するかに応じて、これより多くの、または少ないGNSS衛星が使用されることになる。複数の例示的実施形態で、GBAS地上サブシステムは、オーバーバウンド技法とスクリーニング技法の間で切り替わることができ、シームレスに使用されるGNSS衛星のセットを切り替えることができる。
[30]複数の例示的実施形態で、GNSS地上サブシステム100から航空機114のGNSS機器にブロードキャストされる垂直電離層勾配の標準偏差シグマvig(σvig)の1−σ(1−シグマ)電離層誤差オーバーバウンドを介してGNSS衛星110測定値内の残存電離層誤差を防ぐことが可能になるように、GNSS衛星110測定値がSBASのGIVEリファレンス点(電離層格子点(IGP)と呼ばれる)に十分近いか、またはそれらに囲まれているかが、SBAS対地静止衛星112からの静止衛星型補強システム(SBAS)格子点電離層垂直遅延量誤差(GRID IONOSPHERE VERTICAL ERROR)(GIVE)情報を使用して判断される。複数の例示的実施形態で、SBASのIGPのGIVE値は、GBAS地上サブシステム100がブロードキャストされたオーバーバウンド垂直電離層勾配の標準偏差シグマvig(σvig)を使用してオーバーバウンドすることができる残存電離層誤差にマッピングされる。
[31]複数の例示的実施形態で、機能は地上型補強システム(GBAS)地上サブシステム100のGBAS処理モジュール102によって実装される。機能は、各GNSS衛星110測定値をチェックして、ブロードキャストされたSBAS対地静止衛星の一連の電離層格子点(IGP)に対するGNSS衛星110測定値の電離層貫通点(IPP)の近接性を判断する。複数のIGPが許容可能なGIVE値を示す場合は、そのGNSS衛星測定値は、1−σ(1−シグマ)電離層誤差オーバーバウンド値に基づいてオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を介した緩和に対して安全であると考えられる。GBAS地上サブシステム100から観測可能な各GNSS衛星110測定値を考察した後、次に、機能は、1−σ(1−シグマ)電離層誤差オーバーバウンド値を有する垂直電離層勾配の標準偏差シグマvig(σvig)に適合するGNSS衛星110のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合することのできる垂直保護限界(VPL)を作成することができるかを判断する。複数の例示的実施形態で、CAT−I進入のVALは10メートルである。計算されたVPLがVALより小さい場合は、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)基準に一致するGNSS衛星110が、航空機114のGNSS機器に、ディファレンシャル補正値および各GNSS衛星110の電離層貫通点(IPP)の周りのGIVE値に対応するオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)の値と共にブロードキャストされる。機能は、1−σ(1−シグマ)電離層誤差オーバーバウンド値に基づく垂直電離層勾配の標準偏差シグマvig(σvig)を各GNSS衛星110測定値に個別に(各測定値の周りのIGPのGIVE値に応じて)提供することもでき、または、機能は、最悪ケースのGNSS衛星110測定値をカバーする1−σ(1−シグマ)値に基づく単一の垂直電離層勾配の標準偏差シグマvig(σvig)を提供することもできる。
[32]複数の例示的実施形態で、現在一定レベルの電離層嵐(またはその他の電離層妨害)が存在しているとGBAS処理モジュール102が判断すると、システムは、一定のタイムアウト期間(数分間および/または数時間など)待機し、その後SBASベースの操作を再開することによって、ヒステリシスを適用する。複数の例示的実施形態で、タイムアウト期間は、一定日数にわたる一定数の局からのデータを調べてタイムアウト期間の延長および/または短縮が勾配の分布にどのように影響するかを判断することによって決定される。複数の例示的実施形態で、タイムアウト期間に対して感度解析が行われ、そのような電離層嵐がない静かな日の勾配分布に類似するまで勾配分布が崩れるタイムアウト期間が選択される。例えば、電離層勾配が存在するはずがないと地域システムのSBASが判断した期間内に存在し、非常に大きな電離層勾配を有する非常に悪質な嵐に対して特定の勾配分布が存在するとき、その原因は、そのSBASシステムがGBAS地上サブシステム100の位置する局地的電離層を直接測定していないことであり得る。したがって、複数の例示的実施形態では、タイムアウト期間は、特定の地理的領域の電離層勾配の分布が、正常な日に期待される特定の値にまで減少したGIVE値(GIVE値6など)を有する分布になるまで履歴的に崩れるような期間になるように選択される。したがって、複数の例示的実施形態で、GBAS処理モジュール102は、電離層勾配が一定の閾値に達した後、GBAS地上サブシステム100をより正常な状態に到達させるためにタイムアウト期間を使用するヒステリシスが使用された後は、そのサブシステムが再び有効なデータを提供するために十分適切に機能していると見なされるまではシステムは適切に機能できないと判断する。
[33]図2は、ある地理的領域の上にある電離層格子点(IGP)202の格子200および、4つのIGP202の間に位置する電離層貫通点(IPP)204を示すブロック線図である。電離層貫通点(IPP)204は黒く塗られた4つの電離層格子点(IGP)208の間にある。電離層貫通点(IPP)204は、その電離層貫通点(IPP)204の周りに実効半径206を含む。複数の例示的実施形態で、黒く塗られた4つの電離層格子点(IGP)208は、前述したように許容可能であるかどうかを判断するためにGIVE値が計算されるIGPである。
[34]図3は、航空機114および、拡大されたジオメトリスクリーニングベースの方法論に基づいて1つまたは複数の保護限界(第1の垂直保護限界(VPL1)および/または第1の水平保護限界(LPL1)など)によって定められる空間境界302および、SBASベースのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)に基づいて1つまたは複数の保護限界(第2の垂直保護限界(VPL2)および/または第2の水平保護限界(LPL2)など)によって定められる空間境界304の両方を示すブロック線図である。図3に示されるように、空間境界304は空間境界302より狭く、このことは、より高い正確性が可能になることを意味する。空間境界306が、1つまたは複数の警報限界(垂直警報限界(VAL)および/または水平警報限界(LAL)など)によって定められる。複数の例示的実施形態で、垂直保護限界(VPL)および垂直警報限界(VAL)は、水平保護限界(LAL)および水平警報限界(LAL)よりも問題になることが多い。その理由は、GNSS衛星ジオメトリに基づいて得られる位置の水平成分(経度および緯度)と同程度に良質な、位置の垂直成分(高度)を計算するためのGNSSデータが得られないことである。図3には1つの航空機114が示されているが、その他の実施形態では、その他の車両、目標物、物体、または人々が空間境界302および/または空間境界304を有する。複数の例示的実施形態で、空間境界302、空間境界304、および空間境界306は円筒形の空間境界である。その他の実施形態では、空間境界302、空間境界304、および空間境界306のいずれかが、異なる形状および/またはジオメトリを有する。複数の例示的実施形態では空間境界302および/または空間境界304は動的で、実時間で変化し、大きくなりすぎると、1つまたは複数の保護限界によって定められる空間境界306を超過する。
[35]複数の例示的実施形態で、電離層の緩和機構としてオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)が選択されるとき、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)は1−σ(1−シグマ)電離層誤差オーバーバウンド値になるように選択され、ここでσ(シグマ)は標準偏差である。この1−σ(1−シグマ)電離層誤差オーバーバウンド値を使用する緩和に対して安全なGNSS衛星測定値が十分にあって、1−σ(1−シグマ)電離層誤差オーバーバウンド値基準に適合するGNSS衛星110のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合し得る垂直保護限界(VPL)を作成することができるであろうとGBAS地上サブシステム100が判断するために、この1−σ(1−シグマ)電離層誤差オーバーバウンド値が使用される。具体的には、計算された垂直保護限界(VPL)が垂直警報限界(VAL)よりも小さい場合は、オーバーバウンド基準に適合するGNSS衛星110の指標が、ディファレンシャル補正値および1−σ(1−シグマ)電離層誤差オーバーバウンド値と共に航空機114(およびその他のGBASユーザ)にブロードキャストされる。複数の例示的実施形態で、オーバーバウンド基準に適合するGNSS衛星110の指標は、オーバーバウンド基準に適合するGNSS衛星110のリストを含む。その他の例示的実施形態では、オーバーバウンド基準に適合するGNSS衛星110の指標は、オーバーバウンド基準に適合せず、使用すべきではないGNSS衛星110のリストを含む。
[36]複数の例示的実施形態で、この1−σ(1−シグマ)電離層誤差オーバーバウンド値は、各GNSS衛星の電離層貫通点(IPP)の周りのSBAS格子点電離層垂直遅延量誤差(GIVE)値に対応する。複数の例示的実施形態で、1−σ(1−シグマ)電離層誤差のオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)は、各GNSS衛星測定値に個別に(各測定値の周りのIGPのGIVE値に応じて)提供される。その他の例示的実施形態では、1−σ(1−シグマ)電離層誤差のオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)は、最悪ケースのGNSS衛星測定値をカバーする単一の値として提供される。
[37]図4は、航空機114などの航空機上に搭載される全地球航法衛星システム(GNSS)受信機400の例示的実施形態を示すブロック線図である。複数の例示的実施形態で、GNSS受信機400は、複数のGNSS衛星110からGNSS信号を受信するための少なくとも1つのGNSSアンテナ402および、GBAS地上サブシステム100の航空機通信装置108から信号を受信するための少なくとも1つのGBASアンテナ404を含む。複数の例示的実施形態で、少なくとも1つのGBASアンテナ404は、オーバーバウンド基準に適合するGNSS衛星110の指標を、ディファレンシャル補正値および少なくとも1つの1−σ(1−シグマ)電離層誤差オーバーバウンド値と共に受信する。複数の例示的実施形態で、1−σ(1−シグマ)電離層誤差オーバーバウンド値は、各GNSS衛星110の電離層貫通点(IPP)の周りのGIVE値に対応する。複数の例示的実施形態で、各GNSS衛星110測定値についての(測定値の周りのIGPのGIVE値に応じて)、別個の1−σ(1−シグマ)電離層誤差オーバーバウンド値が別々に受信される。その他の例示的実施形態では、最悪ケースのGNSS衛星110測定値をカバーする単一の1−σ(1−シグマ)値が受信される。
[38]複数の例示的実施形態で、オーバーバウンド基準に適合するGNSS衛星110の指標は、オーバーバウンド基準に適合するGNSS衛星110のリストを含む。その他の例示的実施形態では、オーバーバウンド基準に適合するGNSS衛星110の指標は、オーバーバウンド基準に適合せず、使用すべきではないGNSS衛星110のリストを含む。複数の例示的実施形態で、GNSS受信機400は、オーバーバウンド基準に適合するとされるGNSS衛星110のサブセットからのGNSSデータのみを使用する。複数の例示的実施形態で、GNSS受信機400は、オーバーバウンド基準に適合するとされるGNSS衛星110のサブセットからのデータ、ディファレンシャル補正値、および少なくとも1つの1−σ(1−シグマ)電離層誤差オーバーバウンド値を使用して、GBAS補強されたGNSS航法ソリューションを生成する。
[39]図5は、GBAS電離層脅威の緩和技法を選択する方法500の例示的一実施形態を示すフロー線図である。方法500はブロック502で開始し、ある電離層の現在の品質測定基準を決定する。複数の例示的実施形態で、電離層の品質測定基準は、静止衛星型補強システム(SBAS)から受信されたデータに基づいて決定される。
[40]方法500はブロック504に進み、電離層の現在の品質測定基準が閾値に適合するときに地上型補強システム(GBAS)に使用される、第1の電離層緩和機構を選択する。複数の例示的実施形態で、第1の電離層緩和機構は、K係数および/またはシグマ乗数を追加することによりGNSS受信機からの誤差制限距離を調整してオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を作成することによるオーバーバウンディングである。
[41]方法500はブロック506に進み、電離層の現在の品質測定基準が閾値に適合しないときに地上型補強システム(GBAS)に使用される、第2の電離層緩和機構を選択する。複数の例示的実施形態で、第2の電離層緩和機構は、最悪ケースの電離層勾配が存在すると仮定したときの許容限度より大きい誤差を生む任意のGNSS衛星ジオメトリをスクリーニングすることである。複数の例示的実施態様で、このGNSS衛星ジオメトリのスクリーニングは、電離層異常ジオメトリスクリーニング(AIGS)を使用して実行される。
[42]図6は、電離層によって誘発される誤差を静止衛星型補強システム(SBAS)を使用して地上型補強システム(GBAS)のために緩和する、全地球航法衛星システム(GNSS)と共に使用される方法600の例示的一実施形態を示すフロー図である。方法600はブロック602で開始し、地上型補強システム(GBAS)から観測可能な複数の全地球航法衛星システム(GNSS)衛星測定値をチェックして、少なくとも1つの静止衛星型補強システム(SBAS)対地静止衛星から導出された複数の電離層格子点(IGP)に対する、複数の全地球航法衛星システム(GNSS)衛星測定値について各電離層貫通点(IPP)の近接性を判断する。
[43]方法600はブロック604に進み、電離層格子点(IGP)が許容可能な格子点電離層垂直遅延量誤差(GIVE)値をもつときは全地球航法衛星システム(GNSS)衛星測定値が、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると見なす。方法600はブロック606に進み、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)に適合する全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成することができるかどうかを判断する。
[44]方法600はブロック608に進み、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)に適合する全地球航法衛星システム(GNSS)衛星測定値のうち一定数が、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成することができると判断された場合に、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を、ディファレンシャル補正値および、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全な全地球航法衛星システム(GNSS)衛星測定値のどれが精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成するかの指標と共に、航空機の全地球航法衛星システム(GNSS)受信機に伝える。
[45]方法600の複数の例示的実施形態で、垂直保護限界(VPL)が垂直警報限界(VAL)より小さいときに、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、正確な進入に必要な垂直警報限界(VAL)に適合することのできる垂直保護限界(VPL)を作成することができる。複数の例示的実施形態で、方法600は、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、正確な進入に必要な垂直警報限界(VAL)に適合することのできる垂直保護限界(VPL)を作成できないとき、操作を再開する前にタイムアウト期間だけ待機することをさらに含む。
[46]複数の例示的実施形態で、方法600は、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうち、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成できるものが一定数ないときに、考え得る全ての全地球航法衛星システム(GNSS)衛星ジオメトリの実時間スクリーニングに基づいて垂直電離層勾配の標準偏差シグマvig(σvig)を判断することをさらに含む。方法600の複数の例示的実施形態で、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)は、複数の全地球航法衛星システム(GNSS)衛星のそれぞれの電離層貫通点(IPP)の周りの格子点電離層垂直遅延量誤差(GIVE)値に対応する。
[47]図7は、GBASからのデータに基づいてGBAS電離層脅威の緩和技法を選択する方法700の例示的一実施形態を示すフロー図である。方法700はブロック702で開始し、GNSS衛星貫通点を計算する。方法700はブロック704に進み、電離層勾配点(IGP:Ionosphere Gradient Point)境界を計算する。方法700はブロック706に進み、垂直保護限界(VPL)値を計算する。方法700はブロック708に進み、緩和技法を選択する。
[48]本明細書には特定の実施形態が説明されているが、同じ目的を達成するために計算された任意の構成を、図示された特定の実施形態に置き換えてもよいことは当業者には理解されるであろう。したがって、本発明が特許請求の範囲およびその等価物によってのみ制限されることが明確に意図される。
[49]実施例1は地上型補強システム(GBAS)を含み、このGBASは、既知の位置を有する複数の基準局受信機と、複数の基準局受信機に通信可能に接続された少なくとも1つの処理モジュールと、少なくとも1つの処理モジュールに通信可能に接続された少なくとも1つの航空機通信装置とを備えており、少なくとも1つの処理モジュールが、複数の全地球航法衛星システム(GNSS)衛星のそれぞれについて全地球航法衛星システム(GNSS)衛星測定値をチェックして、少なくとも1つの静止衛星型補強システム(SBAS)対地静止衛星から導出された複数の電離層格子点(IGP)に対する全地球航法衛星システム(GNSS)衛星測定値の電離層貫通点(IPP)の近接性を判断するように構成され、少なくとも1つの処理モジュールが、電離層格子点(IGP)が許容可能な格子点電離層垂直遅延量誤差(GIVE)値をもつときは、複数の全地球航法衛星システム(GNSS)衛星のそれぞれについての全地球航法衛星システム(GNSS)衛星測定値が、少なくとも1つのオーバーバウンドされた垂直電離層勾配標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断するようにさらに構成され、少なくとも1つの処理モジュールが、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成できるかどうか判断するようにさらに構成され、少なくとも1つの処理モジュールが、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成できるときに、少なくとも1つの航空機通信装置に、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を、ディファレンシャル補正値および、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全な全地球航法衛星システム(GNSS)衛星測定値のうちのどれが精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成できるかの指標と共に、航空機GNSS受信機に伝えさせるように構成される。
[50]実施例2は実施例1の地上型補強システム(GBAS)を含み、複数の基準局受信機が4つの基準局受信機を含む。
[51]実施例3は実施例1〜2のいずれかの地上型補強システム(GBAS)を含み、垂直保護限界(VPL)が垂直警報限界(VAL)より小さいときに、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成することができる。
[52]実施例4は、実施例1〜3のいずれかの地上型補強システム(GBAS)を含み、垂直保護限界(VPL)が垂直警報限界(VAL)より小さいときに、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成することができないときに、少なくとも1つの処理モジュールが、操作を再開する前にタイムアウト期間待機するように構成される。
[53]実施例5は実施例1〜4のいずれかの地上型補強システム(GBAS)を含み、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)が、複数の全地球航法衛星システム(GNSS)衛星のそれぞれについて個別のオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を含む。
[54]実施例6は実施例1〜5のいずれかの地上型補強システム(GBAS)を含み、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)が、複数の全地球航法衛星システム(GNSS)衛星からの最悪ケースの全地球航法衛星システム(GNSS)衛星測定値をカバーする単一のオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を含む。
[55]実施例7は実施例1〜6のいずれかの地上型補強システム(GBAS)を含み、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちに、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を作成できるものが一定数ないときに、少なくとも1つの処理モジュールが、考え得る全ての全地球航法衛星システム(GNSS)衛星ジオメトリの実時間スクリーニングに基づいて垂直電離層勾配の標準偏差シグマvig(σvig)を判断するようにさらに構成されることをさらに含む。
[56]実施例8は実施例1〜7のいずれかの地上型補強システム(GBAS)を含み、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)が、複数の全地球航法衛星システム(GNSS)衛星のそれぞれの電離層貫通点(IPP)の周りの格子点電離層垂直遅延量誤差(GIVE)値に対応する。
[57]実施例9は電離層によって誘導される誤差を全地球航法衛星システム(GNSS)と共に使用される地上型補強システム(GBAS)のために静止衛星型補強システム(SBAS)を使用して緩和する方法を含み、この方法は、地上型補強システム(GBAS)から観測可能な複数の全地球航法衛星システム(GNSS)衛星測定値をチェックして、少なくとも1つの静止衛星型補強システム(SBAS)対地静止衛星から導出された複数の電離層格子点(IGP)に対する、複数の全地球航法衛星システム(GNSS)衛星測定値についての各電離層貫通点(IPP)の近接性を判断し、電離層格子点(IGP)が許容可能な格子点電離層垂直遅延量誤差(GIVE)値をもつときは、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して全地球航法衛星システム(GNSS)衛星測定値が安全であると見なすステップと、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)に適合すると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を作成できるかどうか判断するステップと、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)に適合すると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を作成できるときに、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を、ディファレンシャル補正値および、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全である全地球航法衛星システム(GNSS)衛星測定値のうちのどれが精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を作成できるかの指標と共に、航空機の全地球航法衛星システム(GNSS)受信機に伝えるステップとを含む。
[58]実施例10は実施例9の方法を含み、垂直保護限界(VPL)が垂直警報限界(VAL)より小さいときに、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合することができる垂直保護限界(VPL)を生成することができる。
[59]実施例11は実施例9〜10のいずれかの方法を含み、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、正確な進入に必要な垂直警報限界(VAL)に適合することのできる垂直保護限界(VPL)を作成できないとき、操作を再開する前にタイムアウト期間待機するステップをさらに含む。
[60]実施例12は実施例9〜11のいずれかの方法を含み、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうち、精密進入に必要な垂直警報限界(VAL)に適合する垂直保護限界(VPL)を生成できるものが一定数ないときに、考え得る全ての全地球航法衛星システム(GNSS)衛星ジオメトリの実時間スクリーニングに基づいて垂直電離層勾配の標準偏差シグマvig(σvig)を判断するステップをさらに含む。
[61]実施例13は実施例9〜12のいずれかの方法を含み、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)は、複数の全地球航法衛星システム(GNSS)衛星のそれぞれの電離層貫通点(IPP)の周りの格子点電離層垂直遅延量誤差(GIVE)値に対応する。
[62]実施例14は地上型補強システム(GBAS)を含み、このGBASは、既知の位置を有する複数の基準局受信機と、複数の基準局受信機に通信可能に接続された少なくとも1つの処理モジュールと、少なくとも1つの処理モジュールに通信可能に接続された少なくとも1つの航空機通信装置とを備えており、少なくとも1つの処理モジュールは、少なくとも1つの静止衛星型補強システム(SBAS)対地静止衛星から受信されたデータに基づいて電離層の現在の品質測定基準を決定するように構成されており、少なくとも1つの処理モジュールは、電離層の現在の品質測定基準が閾値に適合するときに、少なくとも1つの静止衛星型補強システム(SBAS)対地静止衛星から受信されたデータに基づいて、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を決定するようにさらに構成されている。
[63]実施例15は実施例14の地上型補強システム(GBAS)を含み、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)が、複数の全地球航法衛星システム(GNSS)衛星について個別のオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を含む。
[64]実施例16は実施例14〜15のいずれかの地上型補強システム(GBAS)を含み、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)が、複数の全地球航法衛星システム(GNSS)衛星からの最悪ケースの全地球航法衛星システム(GNSS)衛星測定値をカバーする、単一のオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を含む。
[65]実施例17は実施例14〜16のいずれかの地上型補強システム(GBAS)を含み、電離層の現在の品質測定基準が閾値に適合しないときに、少なくとも1つの処理モジュールが、考え得る全ての全地球航法衛星システム(GNSS)衛星ジオメトリの実時間スクリーニングに基づいて垂直電離層勾配の標準偏差シグマvig(σvig)を判断するようにさらに構成されることをさらに含む。
[66]実施例18は実施例14〜17のいずれかの地上型補強システム(GBAS)を含み、オーバーバウンドを使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)に適合することができる垂直保護限界(VPL)を生成することができるときに、電離層の現在の品質測定基準が閾値に適合する。
[67]実施例19は実施例14〜18のいずれかの地上型補強システム(GBAS)を含み、電離層の現在の品質測定基準値が閾値に適合するときに、少なくとも1つの処理モジュールが、少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を、ディファレンシャル補正値および、どの全地球航法衛星システム(GNSS)衛星がオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)に適合するかの指標と共に、航空機の全地球航法衛星システム(GNSS)受信機に伝えるようにさらに構成されることをさらに含む。
[68]実施例20は実施例19の地上型補強システム(GBAS)を含み、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)が、各全地球航法衛星システム(GNSS)衛星の電離層貫通点(IPP)の周りの格子点電離層垂直遅延量誤差(GIVE)値に対応する。
100 地上型補強システム(GBAS)地上サブシステム
102 地上補強システム(GBAS)処理モジュール
104 基準局受信機
106 SBAS受信機
108 航空機通信装置
110 GNSS衛星
112 SBAS対地静止衛星
114 航空機
200 電離層格子点(IGP)の格子
202 電離層格子点(IGP)
204 電離層貫通点(IPP)
206 実効半径
302 空間境界
304 空間境界
306 空間境界
400 全地球航法衛星システム(GNSS)受信機
402 GNSSアンテナ
404 GBASアンテナ

Claims (3)

  1. 既知の位置を有する複数の基準局受信機(104)と、
    前記複数の基準局受信機(104)に通信可能に接続された少なくとも1つの処理モジュール(102)と、
    前記少なくとも1つの処理モジュール(102)に通信可能に接続された少なくとも1つの航空機通信装置(108)と
    を備える地上型補強システム(GBAS)(100)であって、
    前記少なくとも1つの処理モジュール(108)が、複数の全地球航法衛星システム(GNSS)衛星(110)のそれぞれについて全地球航法衛星システム(GNSS)衛星(110)測定値をチェックして、少なくとも1つの静止衛星型補強システム(SBAS)対地静止衛星(112)から導出された複数の電離層格子点(IGP)(202)に対する各全地球航法衛星システム(GNSS)衛星(110)測定値の電離層貫通点(IPP)(204)の近接性を判断するように構成され、
    前記少なくとも1つの処理モジュールが、前記電離層格子点(IGP)(202)が許容可能な格子点電離層垂直遅延量誤差(GIVE)値をもつときは、前記複数の全地球航法衛星システム(GNSS)衛星(110)のそれぞれについての前記全地球航法衛星システム(GNSS)衛星(110)測定値が、少なくとも1つのオーバーバウンドされた垂直電離層勾配標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断するようにさらに構成され、
    前記少なくとも1つの処理モジュール(102)が、前記少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星(110)測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)(306)に適合する垂直保護限界(VPL)(304)を生成できるかどうか判断するようにさらに構成され、
    前記少なくとも1つの処理モジュール(102)が、前記少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全であると判断された全地球航法衛星システム(GNSS)衛星(110)測定値のうちの一定数が精密進入に必要な垂直警報限界(VAL)(306)に適合する垂直保護限界(VPL)(304)を生成できるときに、前記少なくとも1つの航空機通信装置(108)に、前記少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を、ディファレンシャル補正値および、前記少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全な全地球航法衛星システム(GNSS)衛星(110)測定値のうちのどれが精密進入に必要な垂直警報限界(VAL)(306)に適合する垂直保護限界(VPL)(304)を生成できるかの指標と共に、航空機GNSS受信機(400)に伝えさせるように構成される、
    地上型補強システム(GBAS)(100)。
  2. 前記少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)が、前記複数の全地球航法衛星システム(GNSS)衛星(110)のそれぞれについて個別のオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を含む、請求項1に記載の地上型補強システム(GBAS)(100)。
  3. 電離層によって誘導される誤差を全地球航法衛星システム(GNSS)と共に使用される地上型補強システム(GBAS)(100)のために静止衛星型補強システム(SBAS)を使用して緩和する方法(600)であって、
    地上型補強システム(GBAS)(100)から観測可能な複数の全地球航法衛星システム(GNSS)衛星(110)測定値をチェックして、少なくとも1つの静止衛星型補強システム(SBAS)対地静止衛星(112)から導出された複数の電離層格子点(IGP)(202)に対する、前記複数の全地球航法衛星システム(GNSS)衛星(110)測定値についての各電離層貫通点(IPP)(204)の近接性を判断するステップ(602)と、
    前記電離層格子点(IGP)(202)が許容可能な格子点電離層垂直遅延量誤差(GIVE)値をもつときは、オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して前記全地球航法衛星システム(GNSS)衛星(110)測定値が安全であると見なすステップ(604)と、
    前記オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)に適合する全地球航法衛星システム(GNSS)衛星(110)測定値のうちの一定数が、精密進入に必要な垂直警報限界(VAL)(306)に適合する垂直保護限界(VPL)(304)を作成できるかどうか判断するステップ(606)と、
    前記オーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)に適合する全地球航法衛星システム(GNSS)衛星(110)測定値のうちの一定数が、精密進入に必要な前記垂直警報限界(VAL)(306)に適合する前記垂直保護限界(VPL)(304)を作成できるときに、前記少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を、ディファレンシャル補正値および、前記少なくとも1つのオーバーバウンドされた垂直電離層勾配の標準偏差シグマvig(σvig)を使用する緩和に対して安全である全地球航法衛星システム(GNSS)衛星(110)測定値のうちのどれが精密進入に必要な垂直警報限界(VAL)(306)に適合する垂直保護限界(VPL)(304)を作成するかの指標と共に、航空機の全地球航法衛星システム(GNSS)受信機(400)に伝えるステップ(608)と
    を含む、方法(600)。
JP2015225409A 2014-11-20 2015-11-18 静止衛星型補強システム(sbas)格子点電離層垂直遅延量誤差(give)情報を使用して地上型補強システム(gbas)のために電離層誤差を緩和する方法 Active JP6649751B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/549,382 2014-11-20
US14/549,382 US9945954B2 (en) 2014-11-20 2014-11-20 Using space-based augmentation system (SBAS) grid ionosphere vertical error (GIVE) information to mitigate ionosphere errors for ground based augmentation systems (GBAS)

Publications (2)

Publication Number Publication Date
JP2016099353A JP2016099353A (ja) 2016-05-30
JP6649751B2 true JP6649751B2 (ja) 2020-02-19

Family

ID=54540982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225409A Active JP6649751B2 (ja) 2014-11-20 2015-11-18 静止衛星型補強システム(sbas)格子点電離層垂直遅延量誤差(give)情報を使用して地上型補強システム(gbas)のために電離層誤差を緩和する方法

Country Status (5)

Country Link
US (1) US9945954B2 (ja)
EP (1) EP3023811B1 (ja)
JP (1) JP6649751B2 (ja)
CN (1) CN105717515B (ja)
RU (1) RU2015149491A (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9576082B2 (en) * 2012-02-08 2017-02-21 California Institute Of Technology Ionospheric slant total electron content analysis using global positioning system based estimation
US10884132B1 (en) * 2015-10-28 2021-01-05 U.S. Department Of Energy Beacon-based precision navigation and timing (PNT) system
KR101803652B1 (ko) 2016-06-23 2017-12-29 국방과학연구소 광역 보강 시스템의 전리층 불균질 위협모델을 위한 기하학적 측정 메트릭 개발을 통한 sbas 가용성 향상 방법 및 장치
CN106154291B (zh) * 2016-07-08 2019-03-05 北京航空航天大学 基于卫星几何结构的sbas可用性预测方法与装置
US10782417B2 (en) 2016-07-29 2020-09-22 Trimble Inc. Mobile reference station for GNSS positioning
KR101970240B1 (ko) * 2017-12-18 2019-04-18 한국과학기술원 전리층 위협 완화를 위한 무인항공기 탑재 위성기하 분별 방법 및 장치
US11119222B2 (en) * 2017-12-18 2021-09-14 Korea Advanced Institute Of Science And Technology (Kaist) Method and system for local-area differential GNSS for UAV navigation, and for generating optimal protection level and geometry screening therefor
DE102018202223A1 (de) * 2018-02-14 2019-08-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen einer Integritätsinformation zum Überprüfen von Atmosphärenkorrekturparametern zur Korrektur atmosphärischer Störungen bei einer Satellitennavigation für ein Fahrzeug
US10830905B2 (en) * 2018-11-16 2020-11-10 Trimble Inc. Vertical accuracy improvements for dynamic real-time kinematic reference stations
JP7302196B2 (ja) * 2019-02-22 2023-07-04 日本電気株式会社 電離圏遅延量推定誤差演算装置、電離圏遅延量推定誤差演算方法及びプログラム
US11353593B2 (en) * 2019-12-06 2022-06-07 Raytheon Company Ionospheric gradient H1 monitor
CN111366958B (zh) * 2020-05-26 2020-08-14 天津七一二通信广播股份有限公司 一种高可用性的差分增强装置
CN113253303B (zh) * 2021-05-13 2023-11-10 中国电子科技集团公司第二十研究所 一种用于实时监测单频星基增强系统性能的方法
CN114047526B (zh) * 2022-01-12 2022-04-05 天津七一二通信广播股份有限公司 基于双频双星座gbas的电离层异常监测方法及装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743446A (ja) 1993-08-02 1995-02-14 Aisin Seiki Co Ltd Gps衛星デ−タの検証装置
JP3407705B2 (ja) * 1999-11-16 2003-05-19 日本電気株式会社 衛星航法受信システム及び監視装置
US6356232B1 (en) 1999-12-17 2002-03-12 University Corporation For Atmospheric Research High resolution ionospheric technique for regional area high-accuracy global positioning system applications
US6799116B2 (en) * 2000-12-15 2004-09-28 Trimble Navigation Limited GPS correction methods, apparatus and signals
JP2002318271A (ja) * 2001-04-23 2002-10-31 Japan Radio Co Ltd 電離層遅延推定方法
US7031730B1 (en) * 2001-10-01 2006-04-18 Garmin Ltd. Method and system for minimizing storage and processing of ionospheric grid point correction information in a wireless communications device
US6639549B2 (en) 2001-12-20 2003-10-28 Honeywell International Inc. Fault detection and exclusion for global position systems
US6647340B1 (en) 2002-03-13 2003-11-11 Garmin Ltd. Space based augmentation systems and methods using ionospheric bounding data to determine geographical correction source
US7089452B2 (en) 2002-09-25 2006-08-08 Raytheon Company Methods and apparatus for evaluating operational integrity of a data processing system using moment bounding
JP2004125667A (ja) * 2002-10-03 2004-04-22 Matsushita Electric Ind Co Ltd 測位装置
US6826476B2 (en) 2002-11-01 2004-11-30 Honeywell International Inc. Apparatus for improved integrity of wide area differential satellite navigation systems
US8131463B2 (en) 2003-12-02 2012-03-06 Gmv Aerospace And Defence, S.A. GNSS navigation solution integrity in non-controlled environments
EP1825290B1 (en) * 2004-12-16 2010-05-19 Raytheon Company Determining a predicted performance of a navigation system
US7532161B2 (en) * 2005-09-22 2009-05-12 Raytheon Company Method and apparatus for wide area augmentation system having L1/L5 bias estimation
MX2008011032A (es) 2006-02-28 2008-09-10 Nokia Corp Metodo y aparato para sistemas de navegacion.
US7468694B2 (en) * 2006-04-21 2008-12-23 Broadcom Corporation Communication system with assisted GPS and SBAS
FR2927705B1 (fr) * 2008-02-19 2010-03-26 Thales Sa Systeme de navigation a hybridation par les mesures de phase
FR2929015B1 (fr) 2008-03-21 2010-04-23 Thales Sa Reseau et procede de calcul de corrections ionospheriques
JP5369475B2 (ja) 2008-04-07 2013-12-18 日本電気株式会社 航法データ更新通知システム及び方法
DE602008001788D1 (de) 2008-04-21 2010-08-26 Deutsch Zentr Luft & Raumfahrt Verfahren zum Betrieb eines Satellitennavigationsempfängers
ATE477508T1 (de) 2008-04-30 2010-08-15 Gmv Aerospace And Defence S A Verfahren für autonome bestimmung von sicherheitsebenen für gnss-positionierung auf basis von navigationsanpassungsfehlern und isotroper konfidenzrate
GB0901685D0 (en) 2009-01-31 2009-03-11 Qinetiq Ltd Navigation system integrity
CN101598780B (zh) * 2009-07-03 2011-12-28 北京航空航天大学 局域机场监测方法、装置及系统
US8344946B2 (en) * 2009-08-25 2013-01-01 Raytheon Company Single frequency user ionosphere system and technique
US20120208557A1 (en) 2009-10-19 2012-08-16 Carter Robert A Location Reliability Determination
US8094064B2 (en) * 2010-03-04 2012-01-10 Honeywell International Inc. Ground-based system and method to monitor for excessive delay gradients
CN101839986B (zh) 2010-05-11 2012-10-03 北京航空航天大学 基于laas和waas的卫星导航监测方法和系统
US9576082B2 (en) * 2012-02-08 2017-02-21 California Institute Of Technology Ionospheric slant total electron content analysis using global positioning system based estimation
FR2998976B1 (fr) * 2012-11-30 2015-01-16 Thales Sa Procede et systeme de determination d'une erreur de l'estimation du temps de la traversee de la ionosphere
US9557419B2 (en) * 2012-12-18 2017-01-31 Trimble Inc. Methods for generating accuracy information on an ionosphere model for satellite navigation applications
US9476985B2 (en) * 2013-03-20 2016-10-25 Honeywell International Inc. System and method for real time subset geometry screening satellite constellations
US9784846B2 (en) * 2013-08-21 2017-10-10 Samsung Electronics Co., Ltd. System, method, and apparatus for compensating for ionospheric delay in a multi constellation single radio frequency path GNSS receiver
US20150145722A1 (en) * 2013-11-27 2015-05-28 Honeywell International Inc. Using sbas ionospheric delay measurements to mitigate ionospheric error
CN104155666A (zh) * 2014-08-11 2014-11-19 常州光电技术研究所 Sbas和gps兼容的多模式信号处理系统及其信号处理方法
US10495758B2 (en) * 2015-03-27 2019-12-03 Honeywell International Inc. Systems and methods using multi frequency satellite measurements to mitigate spatial decorrelation errors caused by ionosphere delays
US9921314B2 (en) * 2015-04-20 2018-03-20 Honeywell International Inc. Using code minus carrier measurements to mitigate spatial decorrelation errors caused by ionosphere delays

Also Published As

Publication number Publication date
EP3023811A1 (en) 2016-05-25
JP2016099353A (ja) 2016-05-30
CN105717515A (zh) 2016-06-29
US20160146942A1 (en) 2016-05-26
RU2015149491A (ru) 2017-05-24
RU2015149491A3 (ja) 2019-03-28
CN105717515B (zh) 2020-10-13
US9945954B2 (en) 2018-04-17
EP3023811B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6649751B2 (ja) 静止衛星型補強システム(sbas)格子点電離層垂直遅延量誤差(give)情報を使用して地上型補強システム(gbas)のために電離層誤差を緩和する方法
US8976064B2 (en) Systems and methods for solution separation for ground-augmented multi-constellation terminal area navigation and precision approach guidance
EP3073288B1 (en) Systems and methods using multi frequency satellite measurements to mitigate spatial decorrelation errors caused by ionosphere delays
EP3086138B1 (en) Using code minus carrier measurements to mitigate spatial decorrelation errors caused by ionosphere delays
Walter et al. Worldwide vertical guidance of aircraft based on modernized GPS and new integrity augmentations
EP3206048B1 (en) Use of wide area reference receiver network data to mitigate local area error sources
CN105068088A (zh) 双频卫星导航星基增强系统可用性预测方法
Sarma et al. Modelling of low-latitude ionosphere using modified planar fit method for GAGAN
CN110988934A (zh) 多模式接收机星基增强技术装置及处理方法
Tsai et al. Performance assessment on expanding SBAS service areas of GAGAN and MSAS to Singapore region
Arenas et al. Low-latitude ionospheric effects on SBAS
US9952326B2 (en) Systems and methods for maintaining minimum operational requirements of a ground-based augmentation system
Kahlouche et al. Performance of the EGNOS system in Algeria for single and dual frequency
Caamano et al. Multi-constellation GBAS: how to benefit from a second constellation
Osechas et al. Use of APNT to protect GNSS-based RNP services from international and unintentional RF interference
Păunescu et al. „Considerations for GNSS measurements”
Baba et al. Estimation Of global positioning system measurement errors For GAGAN applications
Caamaño Albuerne Network-based ionospheric gradient monitoring to support ground based augmentation systems
Azoulai et al. Multi SBAS Interoperability Flight Trials with A380
Raghuvanshi Characterization of Airborne Antenna Group Delay as a Function of Arrival Angle and its Impact on Accuracy and Integrity of the Global Positioning System
Gratton Relative receiver autonomous integrity monitoring for future GNSS-based aircraft navigation
GRATTON ORIGINAL ARCHIVAL COPY
Sarma et al. Ionospheric Error Analysis of Indian WAAS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R150 Certificate of patent or registration of utility model

Ref document number: 6649751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250