JP6648539B2 - 電力貯蔵システム - Google Patents

電力貯蔵システム Download PDF

Info

Publication number
JP6648539B2
JP6648539B2 JP2016013990A JP2016013990A JP6648539B2 JP 6648539 B2 JP6648539 B2 JP 6648539B2 JP 2016013990 A JP2016013990 A JP 2016013990A JP 2016013990 A JP2016013990 A JP 2016013990A JP 6648539 B2 JP6648539 B2 JP 6648539B2
Authority
JP
Japan
Prior art keywords
power
storage unit
power storage
monitoring control
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016013990A
Other languages
English (en)
Other versions
JP2017135865A (ja
Inventor
田代 洋一郎
洋一郎 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2016013990A priority Critical patent/JP6648539B2/ja
Publication of JP2017135865A publication Critical patent/JP2017135865A/ja
Application granted granted Critical
Publication of JP6648539B2 publication Critical patent/JP6648539B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電力系統に接続され運用される電力貯蔵システムに関する。
電力貯蔵システムは、発電事業者、再生可能エネルギー発電事業者、送配電事業者、需要家などに配置され、発電事業者において時間的に変動する需要のピークに対応して電力を供給するために用いたり、再生可能エネルギー発電事業者において再生可能エネルギー発電の平滑化に用いたり、送配電事業者において電力系統網での電力品質の向上(周波数調整や電圧調整)などに用いたり、需要家において需要家内の電力の負荷平準化に用いたりしている。
リチウムイオン二次電池は、内部抵抗が小さく、大電流での充放電による電圧変動と温度上昇が少ない特性があり、EV(Electric Vehicle)などの移動体のみならず、大型の電力貯蔵システム(Energy Storage System, ESS)にも適用されている。リチウムイオン二次電池は、他の二次電池に比べてエネルギー密度が高く、電解液として有機溶媒を使用しているため高温で発火する危険性がある。このため、リチウムイオン二次電池を適用した電力貯蔵貯システムにおいては、リチウムイオン二次電池の安全性の確保のために監視制御を行っている。このリチウムイオン二次電池の監視制御にかかる消費電力は意外と大きく、電力貯蔵システムでは無視できないレベルになっている。
ここで、リチウムイオン二次電池の監視制御のための電力消費を軽減するものとして、制御回路により蓄電セルを常時監視してその異常発生を検知すると、不可逆表示手段を動作させて不可逆的かつ視認可能な状態変化を起こし、その後は蓄電セルの電力消費を伴わずに異常発生の事実を表示し続けるようにしたものがある(例えば、特許文献1参照)。
また、二次電池の電流が規定値以下のときには監視回路がスリープモードに設定され、マイクロコンピュータが低速作動して内部消費電力を小さくし、バッテリーパックが充電器に接続されているときは第1スリープモードとし、バッテリーパックが充電器に接続されていないときは、測定間隔が最も長い第2のスリープモードとし、内部消費電力を抑制するようにしたものがある(例えば、特許文献2参照)。
特開2009−199950号公報 特開平11−283677号公報
しかし、特許文献1のものは、蓄電セルの異常発生の表示には電力を消費しないが、リチウムイオン二次電池の監視制御のための演算は継続して行うものであり、監視制御装置は監視制御のために消費電力を必要とするものである。
特許文献2のものは、二次電池の電流が規定値以下のときにはマイクロコンピュータが低速作動して内部消費電力を小さくするものであるが、携帯型の電子機器の二次電池であり、監視制御装置には常に二次電池から電力が供給されており、監視制御装置に供給される電力は、二次電池を介した電力であることから、その二次電池への充放電に要するロスが発生している。
一方、電力貯蔵システムでは蓄電部の二次電池が大型であるので、監視制御にかかる監視制御装置の消費電力に加え、二次電池の冷却や加熱、電力変換装置の冷却などのシステムの保護制御のための消費電力も必要となる。例えば、リチウムイオン二次電池の充電時は多くは吸熱特性であり、放電時は発熱特性であるので、二次電池の運転モードにより二次電池の冷却や加熱が必要となる。また、電力変換装置の冷却が必要となり、保護制御装置の制御電源も必要となる。
本発明の目的は、蓄電部の充放電ロスをなくして監視制御及び保護制御のための電力を得ることができ、しかも蓄電部の監視制御及びシステムの保護制御のための消費電力を軽減できる電力貯蔵システムを提供することである。
請求項1の発明に係る電力貯蔵システムは、複数のリチウムイオン電池セルを積層した蓄電池を有した蓄電部と、電力系統と前記蓄電部との間に接続された負荷と、前記蓄電部の予め定められた運転スケジュールを有し、前記負荷の使用電力、外部からの前記蓄電部に対する充電指令や放電指令を入力し、前記運転スケジュール、前記充電指令や放電指令、前記負荷の使用電力に基づいて前記蓄電池を制御するとともに、前記蓄電部を含むシステム全体の監視制御を行う監視制御装置と、前記監視制御装置からの指令により動作し、前記負荷の使用電力が小さいときや前記充電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記電力系統の交流電力を直流電力に変換して前記蓄電部に充電し、前記負荷の使用電力が大きいときや前記放電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記蓄電部の直流電力を交流電力に変換して前記負荷に放電する電力変換装置と、前記システムの補機を駆動するための電力及び前記監視制御装置を動作させるための電力を前記補機及び前記監視制御装置に供給する電源装置とを備え、前記監視制御装置は、前記蓄電部の運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード又は前記蓄電部から前記負荷に電力を放電する放電モードであり、前記蓄電部の電池電圧の変化又は電池電流の変化又は電池温度の変化が大きいときは前記監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、前記蓄電部の電池電圧又は電池電流の変化又は電池温度の変化が小さいときは前記監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくすることを特徴とする。
請求項2の発明に係る電力貯蔵システムは、複数のリチウムイオン電池セルを積層した蓄電池を有した蓄電部と、電力系統と前記蓄電部との間に接続された負荷と、前記蓄電部の予め定められた運転スケジュールを有し、前記負荷の使用電力、外部からの前記蓄電部に対する充電指令や放電指令を入力し、前記運転スケジュール、前記充電指令や放電指令、前記負荷の使用電力に基づいて前記蓄電池を制御するとともに、前記蓄電部を含むシステム全体の監視制御を行う監視制御装置と、前記監視制御装置からの指令により動作し、前記負荷の使用電力が小さいときや前記充電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記電力系統の交流電力を直流電力に変換して前記蓄電部に充電し、前記負荷の使用電力が大きいときや前記放電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記蓄電部の直流電力を交流電力に変換して前記負荷に放電する電力変換装置と、前記システムの補機を駆動するための電力及び前記監視制御装置を動作させるための電力を前記補機及び前記監視制御装置に供給する電源装置とを備え、前記監視制御装置は、前記蓄電部の運転モードが前記蓄電部の充放電動作の開始を待っている待機モード又は前記蓄電部の充放電動作が停止している停止モードとなったときは、一定時間経ってから前記監視制御のための演算間隔を長く及び/又は監視制御対象を少なくし、前記待機モード又は前記停止モード中であるときは、予め定めた運転スケジュールの運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード又は前記蓄電部から前記負荷に電力を放電する放電モードとなる以前に先行的に前記監視制御のための演算間隔を短く及び/又は監視制御対象を多くすることを特徴とする。
請求項3の発明に係る電力貯蔵システムは、請求項1または請求項2の発明において、前記補機は、前記蓄電部及び前記電力変換装置の温度を所定温度に保つ空調設備であり、前記監視制御装置は、前記運転スケジュールの運転モードが前記蓄電部から前記電力系統に電力を放電する放電モード又は前記蓄電部に前記電力系統から電力を充電する充電モードとなる以前に先行的に前記空調設備を駆動し、前記蓄電部の運転モードが前記放電モード又は前記充電モードとなったときに前記蓄電部の温度が所定温度になるように前記蓄電部を温度制御することを特徴とする。
請求項1の発明によれば、蓄電部からではなく独立に設けた電源装置から、システムの補機を駆動するための電力及び監視制御装置を動作させるための電力を補機及び監視制御装置に供給するので、蓄電部の充放電ロスをなくして監視制御及び保護制御のための電力を得ることができる。また、蓄電部に高信頼性の保護監視が要求される充放電モード中において、蓄電部の電池電圧の変化又は電池電流の変化又は電池温度の変化が大きいときは、監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、そうでないときは監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくするので、監視制御のための消費電力を軽減できる。
請求項2の発明によれば、蓄電部からではなく独立に設けた電源装置から、システムの補機を駆動するための電力及び監視制御装置を動作させるための電力を補機及び監視制御装置に供給するので、蓄電部の充放電ロスをなくして監視制御及び保護制御のための電力を得ることができる。また、待機停止モードとなったときは一定時間経ってから監視制御のための演算間隔を長く及び/又は監視制御対象を少なくするので監視制御の安全性を高めることができ、予め定めた運転スケジュールの運転モードが充放電モードとなる以前に先行的に監視制御のための演算間隔を短く及び/又は監視制御対象を多くするので、事前に高信頼性の保護監視に備えることができる。
請求項3の発明によれば、請求項1または請求項2の発明の効果に加え、監視制御装置は運転スケジュールの運転モードが充放電モードとなる以前に先行的に補機である空調設備を駆動し、蓄電部の運転モードが充放電モードとなったときに蓄電部の温度が所定温度になるように蓄電部を先行的に温度制御するので、蓄電池の吸熱や発熱による温度変化を容易に吸収できる。
本発明の実施形態に係る電力貯蔵システムの構成図。 本発明の実施形態に係る電力貯蔵システムの運転モードの一例を示すグラフ。 本発明の実施形態に係る電力貯蔵システムにおける蓄電部の蓄電池の電圧充電率特性の一例を示すグラフ。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例1を示すフローチャート。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例1の他の一例を示すフローチャート。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例2を示すフローチャート。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例2の他の一例を示すフローチャート。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例3を示すフローチャート。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例3の他の一例を示すフローチャート。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例3の別の他の一例を示すフローチャート。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例4の一例を示すフローチャート。 本発明の実施形態に係る電力貯蔵システムにおける監視制御装置での監視制御のための演算処理の実施例5の一例を示すフローチャート。
以下、本発明の実施形態を説明する。図1は本発明の実施形態に係る電力貯蔵システムの構成図である。図1では、需要家において需要家内の電力の負荷平準化に用いた場合を示している。需要家においては、蓄電部11、蓄電部運転装置12、電源装置13を有し、需要家の負荷14が使用する電力の平準化を図っている。
需要家の負荷14は電力系統15と蓄電部11との間に遮断器16を介して接続され、通常時は受電変圧器17を介して電力系統15から電力が供給される。そして、電力系統15から負荷14に供給される電力が予め定めた第1所定電力(放電開始電力)を超えたとき(負荷14の使用電力が大きいとき)は、蓄電部11に蓄電された電力を負荷14に供給する。第1所定電力は負荷の使用電力が需要家の契約電力に近い値であり、その契約電力より少し小さい値である。また、負荷14の使用電力が予め定めた第2所定電力(蓄電開始電力)以下のとき(負荷14の使用電力が小さいとき)は、蓄電部11には電力系統15からの電力が蓄電される。第2所定電力は負荷の省電力が需要家の契約電力より十分に小さい値である。例えば、蓄電部11には深夜に電力系統15からの電力が蓄電される。これにより、需要家の負荷14が使用する電力の平準化を図っている。
蓄電部11は、複数のリチウムイオン電池セルを積層した蓄電池18を有し、補機19aとして蓄電池18の温度を所定温度に保つための空調設備を有している。リチウムイオン電池は放電時は発熱特性であり温度が高くなり、充電時は、多くは吸熱特性であり温度が低くなるので、蓄電池18の温度を所定温度に保持し蓄電池18の劣化の進行を防止する。なお、所定温度は幅を持った温度範囲である。これは空調設備の頻繁な起動停止を防止するためである。以下の説明でも同様である。
蓄電部運転装置12は、蓄電部11の充放電を制御するものである。蓄電部運転装置12は、システムを保護する保護装置20、電力を交直変換する電力変換装置21、電力変換装置21を受電変圧器17を介して電力系統15に接続する連系変圧器22、蓄電部11を含むシステム全体の監視制御を行う監視制御装置23、電力変換装置21の温度を所定温度に保つための補機19bとしての空調設備を有している。
保護装置20は、電圧検出器24で検出された負荷14の電圧及び電流検出器25で検出された負荷14の電流を入力し、受電変圧器17から蓄電池18に至る系統に事故が発生したときは遮断器26を開放する。
電力変換装置21は、交流電力を直流電力に直流電力を交流電力に変換する交直変換装置であり、蓄電部11に電力を充電する際に電力系統15の交流電力を直流電力に変換して蓄電部11の蓄電池18に充電する。一方、蓄電部11から電力を放電する際に蓄電部11の蓄電池18に蓄電されている直流電力を交流電力に変換して負荷14に放電する。
監視制御装置23は、蓄電部11の予め定められた運転スケジュールを有する。通常時は、運転スケジュールに基づいて蓄電池18を制御するが、負荷14の使用電力に基づいて蓄電池18を制御することもある。例えば、負荷14の使用電力が大きくなったときなったとき、つまり、電力系統15から負荷14に供給される電力が予め定めた第1所定電力を超えたときは、蓄電部11に蓄電された電力を負荷14に供給する。また、負荷14の使用電力が小さくなったとき、つまり、負荷14の使用電力が予め定めた第2所定電力以下のとき、蓄電部11には電力系統15からの電力を蓄電する。
また、外部からの蓄電部11に対する充電指令や放電指令に基づいて蓄電池18を制御することもある。外部からの充電指令や放電指令は、電力貯蔵システムの運転員から手動で入力されることもあれば、電力の負荷平準化や電力品質の向上(周波数調整や電圧調整)などの別の監視制御装置から入力されることもある。
また、監視制御装置23は、遮断器16、26の開閉状態、蓄電部11への電力の入出力値、蓄電部11の蓄電池18の状態量である電圧、電流、温度を入力し、蓄電部11を含むシステム全体の監視制御を行う。例えば、監視制御装置23は、予め定めた運転スケジュールの運転モードが充電モードになったときに、遮断器26が閉じていることを確認し、電力変換装置21に指令を出して充電を開始し、蓄電部11の蓄電池18が満充電(満充電の近傍の充電率上限閾値)になったとき、または、運転スケジュールで充電モードが終了となったときに電力変換装置21に指令を出して充電を終了する。一方、予め定めた運転スケジュールの運転モードが放電モードになったときは、遮断器16が閉じていることを確認し、電力変換装置21に指令を出して放電を開始し、蓄電部11の蓄電池18が完全放電(完全放電の近傍の充電率下限閾値)になったとき、または、運転スケジュールで放電モードが終了となったときに電力変換装置21に指令を出して放電を終了する。
さらには、監視制御装置23は、負荷14の使用電力が零のときや外部から蓄電部11への充電指令があるときには、電力変換装置21に指令を出して電力系統15の交流電力を直流電力に変換し蓄電部11に充電する。一方、負荷14の使用電力の大きさが大きくなったとき、つまり、負荷14の使用電力が蓄電部11の放電開始電力を超えたときや、外部から蓄電部11への放電指令があるときには、電力変換装置21に指令を出して蓄電部11の直流電力を交流電力に変換して負荷14に放電する。
さらに、監視制御装置23は、空調設備である補機19aを駆動し蓄電部11の蓄電池18が所定温度を保持するように制御するとともに、空調設備である補機19bを駆動し蓄電部運転装置12の電力変換装置21が所定温度を保持するように制御する。
電源装置13は無停電電源装置(USP)であり、電力系統15からの電力が断になった場合も、一定時間、接続されている機器に対して停電することなく電力を供給し続けるものであり、電源装置13からは、システムの補機19a、19bを駆動するための電力、保護装置20や監視制御装置23を動作させるための電力が供給される。すなわち、本発明の実施形態では、補機19a、19b、保護装置20、及び監視制御装置23への電力は、蓄電部11の蓄電池18からではなく、電源装置13から供給されるので、蓄電部11の充放電ロスをなくして監視制御及び保護制御のための電力を安定的に得ることができる。
図2は、本発明の実施形態に係る電力貯蔵システムの運転モードの一例を示すグラフである。電力貯蔵システムの運転モードには、充電モード、放電モード、待機モード、停止モードがあり、電力貯蔵システムの蓄電部11の蓄電池18は、充電モードのときに電力を充電し、放電モードのときに電力を放電する。そして、待機モードは即座に充放電モードに移行可能な状態で待機している状態であり、停止モードは動作を停止している状態である。
図2において、0時から7時まで充電モード、7時から10時まで停止モード、10時から18時まで放電モード、18時から20時まで待機モード、20時から24時まで充電モードである場合を示している。
充電モード及び放電モードでは、蓄電部11の蓄電池18は動作状態にあるので監視制御が必要である。充電モードでは、蓄電部11の蓄電池18は吸熱特性であり温度が低くなるので、必要に応じて補機19aである空調設備を駆動して蓄電部11の蓄電池18を所定温度に保持する。リチウムイオン電池の場合は、充電の際に、電圧を高い精度で制御しないと劣化しやすく、過充電となると発熱したり発火したりするので、高信頼性の保護監視が要求される。そこで、監視制御装置23は、蓄電部11の蓄電池18の電圧、電流、温度を測定し、蓄電部11の蓄電池18を監視制御する。
放電モードでは、蓄電部11の蓄電池18は発熱特性であり温度が高くなるので、必要に応じて補機19aである空調設備を駆動して蓄電部11の蓄電池18を所定温度に保持する。放電モードにおいても、過放電となると異常発熱に繋がり高信頼性の保護監視が要求されるので、監視制御装置23は、蓄電部11の蓄電池18の電圧、電流、温度を測定し、充電モードの場合と同様に電圧を高い精度で蓄電部11の蓄電池18を監視制御する。
一方、待機モード及び停止モードでは、蓄電部11の蓄電池18は不動作状態であるので、充電モードや放電モードのときのように、必ずしも電圧を高い精度で監視制御する必要はないが、蓄電部11の蓄電池18の劣化による異常発熱は監視しなければならない。
図3は、本発明の実施形態に係る電力貯蔵システムにおける蓄電部の蓄電池の電圧充電率特性の一例を示すグラフである。図3では蓄電部11の蓄電池18が一定温度である場合の電圧充電率特性の特性曲線Cを示している。図3に示すように、満充電のときは充電率は100%であり、完全放電のときは充電率は0%である。充電率100%(満充電)から充電率A1%までは、特性曲線Cの変化率が大きく、蓄電部11の蓄電池18の充電率に対する電池電圧の変化が大きい。以下、その領域を変化率大領域T1という。これに対して、充電率A1%から充電率A2%までは、特性曲線Cの変化率が小さく、充電率に対する電池電圧の変化が小さい。以下、その領域を変化率小領域T2という。
変化率大領域T1では蓄電部11の蓄電池18の発熱量が大きく、変化率小領域T2では発熱量は少ない。また、前述したように過充電となると発熱したり発火したりするので、満充電の手前の充電率上限閾値AUで充電を停止し、過放電となると異常発熱に繋がるので、完全放電の手前の充電率下限閾値ALで放電を停止するのが望ましい。
以上の説明では、蓄電部の充電率に対する電池電圧の変化で変化率大領域T1、変化率小領域T2を判定するようにしたが、電池電流の変化で変化率大領域T1、変化率小領域T2を判定するようにしてもよいし、電池温度の変化で変化率大領域T1、変化率小領域T2を判定するようにしてもよい。
図4は、監視制御装置23での監視制御のための演算処理の実施例1を示すフローチャートである。前述したように、リチウムイオン電池の場合は、充電モード及び放電モードの際に、高信頼性の保護監視が要求され電圧を高い精度で制御しなければならないことから、図4(a)に示すように、監視制御装置23は、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードであるか否かを判定し(S1)、充放電モードであるときは、監視制御のための演算処理間隔を短くする(S2)。蓄電部11の蓄電池18の監視制御に当たっては、監視制御対象の状態量として、蓄電部11の蓄電池18の電圧、電流、温度を短い周期で読み取り、蓄電部11の蓄電池18の充電率や温度を監視し、また、過充電や過放電にならないように充電率が充電率上限閾値AUになると充電を停止し、充電率が充電率下限閾値ALなると放電を停止する。これにより、蓄電部11の蓄電池18の安全性を確保する。
一方、ステップS1の判定で充放電モードでないときは、待機モードまたは停止モード(待機停止モード)であるので、監視制御のための演算処理間隔を長くする(S3)。待機停止モードであるときは蓄電部11の蓄電池18は不動作状態であり、蓄電部11の蓄電池18の電圧を高い精度で制御したり、高信頼性の保護監視は要求されないからである。これにより、監視制御のために監視制御装置23が消費する電力を軽減できる。
また、充放電モードのときに監視制御のための演算処理間隔を短くし、待機停止モードのときに監視制御のための演算処理間隔を長くしたりすることに代えて、図4(b)に示すように、充放電モードのときに監視制御対象を多くし、待機停止モードのときに監視制御対象を少なくするようにすることも可能である。すなわち、ステップS1の判定で充放電モードであるときは監視制御対象を多くし(S4)、待機停止モードであるときは重要な監視制御対象を残して監視制御対象を少なくする(S5)。例えば、監視制御対象が電圧、電流、温度である場合、充放電モードであるときは、これら電圧、電流、温度すべてを監視制御対象とし、待機停止モードであるときは、例えば、温度のみを監視制御対象とすることが考えられる。これは、待機停止モードであっても蓄電池18の温度は重要な監視制御対象であるからである。
また、図5に示すように、ステップS1の判定で充放電モードであるときは、監視制御のための演算処理間隔を短く(S2)、かつ監視制御対象を多くし(S4)、待機停止モードであるときは、監視制御のための演算処理間隔を長く(S3)、かつ監視制御対象を少なくする(S5)ようにしてもよい。
図6は、監視制御装置23での監視制御のための演算処理の実施例2を示すフローチャートである。この実施例2は、図4に示した実施例1に対し、ステップS1の判定で充放電モードであるときに、蓄電池18の電圧、電流、温度を取得するステップS6、及び蓄電池18の電圧、電流、温度が変化率大領域であるか否を判定するステップS7を追加して設けたものである。
図6(a)において、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードであるか否かを判定し(S1)、充放電モードであるときは、蓄電池18の電圧、電流、温度を取得し(S6)、蓄電池18の電圧、電流、温度は変化率大領域であるか否を判定する(S7)。ステップS7の判定で蓄電部11の蓄電池18の電圧、電流、温度が変化率大領域であるときは、監視制御のための演算処理間隔を短くする(S2)。すなわち、蓄電部11の蓄電池18の監視制御に当たっては、監視制御対象の状態量として、蓄電部11の蓄電池18の電圧、電流、温度を短い周期で読み取り、蓄電部11の蓄電池18を監視制御する。これは、変化率大領域では蓄電部11の蓄電池18の発熱量が大きく、蓄電部11の蓄電池18の電圧、電流、温度の高信頼性の保護監視が要求されるからである。また、過充電や過放電にならないように充電率が充電率上限閾値AUになると充電を停止し、充電率が充電率下限閾値ALなると放電を停止する。
一方、ステップS1の判定で充放電モードでないとき、及びステップS7の判定で変化率大領域でないときは、監視制御のための演算処理間隔を長くする(S3)。充放電モードでないときは待機停止モードであり、また、変化率大領域でないときは変化率小領域であり蓄電部11の蓄電池18の発熱量は少なく、必ずしも、蓄電部11の蓄電池18の電圧、電流、温度の高信頼性の保護監視を必要としないからである。これにより、監視制御のために監視制御装置23が消費する電力を軽減できる。
また、充放電モードのときに監視制御のための演算処理間隔を短くし、待機停止モードのときに監視制御のための演算処理間隔を長くしたりすることに代えて、図6(b)に示すように、充放電モードのときに監視制御対象を多くし、(S4)、待機停止モードのときに監視制御対象を少なくする(S5)ようにすることも可能である。これによっても、監視制御装置23が消費する電力を軽減できる。
また、図7に示すように、ステップS7の判定で変化率大領域であるときは、監視制御のための演算処理間隔を短く(S2)、かつ監視制御対象を多くし(S4)、待機停止モードであるときは、監視制御のための演算処理間隔を長く(S3)、かつ監視制御対象を少なくする(S5)ようにしてもよい。
次に、図8は監視制御装置23での監視制御のための演算処理の実施例3を示すフローチャートであり、図4(a)に示した実施例1に対し、運転モードが待機停止モードとなったときは一定時間経ってから監視制御のための演算間隔を長くし、また、蓄電部11の蓄電池18の運転モードが充放電モードになる以前に先行的に監視制御のための演算間隔を短くするようにしたものである。
通常、電力貯蔵システムは、前述したように、予め定められた運転スケジュールで運用される。いま、図2に示した運転モードの運転スケジュールが予め定められていたとすると、蓄電部11の蓄電池18の運転モードが予め分かっているので、例えば、監視制御装置23は運転モードが充放電モードになる以前に先行的に監視制御のための演算間隔を短くすることが可能である。
図8において、図4(a)に示した実施例1に対し、ステップS8、ステップS9、ステップS10が追加されている。まず、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードであるか否かを判定し(S1)、充放電モードであるときは、監視制御のための演算処理間隔を短くする(S2)。ステップS1の判定で充放電モードでないときは、ステップS3で監視制御のための演算処理間隔を長くする前に、待機停止モードになってから一定時間経過したか否かを判定する(S8)。そして、一定時間経過しているときは監視制御のための演算処理間隔を長くする(S3)。これは、充放電モードから待機停止モードへの運転モードの切り替えの際の監視制御の安全性を確保するためである。待機停止モードになってから一定時間は、安全性のため、監視制御のための演算処理間隔を短くして監視制御を高い精度で行えるようにしておくためである。
次に、蓄電部11の運転スケジュールから充放電モードになる時点を取得する(S9)。そして、充放電モードになる時点の所定時間前になったか否かを判定し(S10)、充放電モードになる時点の所定時間前になったときは、待機停止モードであったとしても、監視制御のための演算処理間隔を短くする(S2)。これにより、充放電モードになる前に、事前に高い制度の監視制御に備えることができる。
また、充放電モードのときに監視制御のための演算処理間隔を短くし、待機停止モードのときに監視制御のための演算処理間隔を長くしたりすることに代えて、図9に示すように、充放電モードのときに監視制御対象を多くし、待機停止モードのときに監視制御対象を少なくするようにすることも可能である。すなわち、ステップS1の判定で充放電モードであるときは監視制御対象を多くし(S4)、待機停止モードであるときは重要な監視制御対象を残して監視制御対象を少なくする(S5)。例えば、監視制御対象が電圧、電流、温度である場合、充放電モードであるときは、これら電圧、電流、温度すべてを監視制御対象とし、待機停止モードであるときは、例えば、温度のみを監視制御対象とすることが考えられる。これは、待機停止モードであっても蓄電池18の温度は重要な監視制御対象であるからである。
また、図10に示すように、ステップS1の判定で充放電モードであるときは、監視制御のための演算処理間隔を短く(S2)、かつ監視制御対象を多くし(S4)、待機停止モードであるときは、監視制御のための演算処理間隔を長く(S3)、かつ監視制御対象を少なくする(S5)ようにしてもよい。
図11は、監視制御装置23での監視制御のための演算処理の実施例4を示すフローチャートであり、蓄電部11の蓄電池18の運転モードが充放電モードになる以前に、予め蓄電部11の蓄電池18を温度制御しておくための監視制御装置23での演算処理を示すフローチャートである。
図11において、まず、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードであるか否かを判定し(S1)、充放電モードであるときは処理を終了する。これは、蓄電部11の蓄電池18の運転モードが充放電モードになる以前に、予め蓄電部11の蓄電池18を温度制御しておくものであるから、充放電モードであるときは本処理を必要としないからである。
ステップS1の判定で充放電モードでないときは、蓄電部11の運転スケジュールから放電モードになる時点及び蓄電池18の温度を取得する(S11)。そして、蓄電部11の温度は所定温度を逸脱しているか否かを判定し(S12)、高効率に運転できる所定温度を逸脱しているときは、充放電モード時の蓄電部11の温度が所定温度になるように先行的に蓄電部11を温度制御する(S13)。
例えば、運転モードが放電モードになる以前においては、放電時には発熱特性であるので、蓄電池18の温度が高いときは所定温度まで冷却する。その際には、蓄電池18の温度や周囲温度を考慮して放電開始時に蓄電部11の温度が所定温度になるように冷却開始時点を決定する。逆に、運転モードが充電モードになる以前においては、充電時には吸熱特性であるので、蓄電池18の温度が低いときは所定温度まで加熱する。その際には、蓄電池18の温度や周囲温度を考慮して充電開始時に蓄電部11の温度が所定温度になるように加熱開始時点を決定する。リチウムイオン二次電池の充電時は多くは前述したように吸熱特性であるが、充電後期には発熱特性を示すことがあるので、それも考慮に入れて高効率に運転できる範囲に収まるような所定温度になるように加熱開始時点を決定する。
図12は、監視制御装置23での監視制御のための演算処理の実施例5を示すフローチャートであり、充放電モードの終了後に空調設備を駆動し、蓄電部の温度が所定温度になるように蓄電部を温度制御するようにしたものである。
図12において、まず、電力貯蔵システムの蓄電部11の蓄電池18が充放電モードを終了したか否かを判定し(S1)、充放電モードを終了していないときは処理を終了する。これは、蓄電部11の蓄電池18の充放電モードの終了後に空調設備を駆動し、蓄電部の温度が所定温度になるように蓄電部を温度制御するものであるから、充放電モードであるときは本処理を必要としないからである。
ステップS1の判定で充放電モードを終了したときは、蓄電池18の温度を取得する(S11)。そして、蓄電部11の温度は所定温度を逸脱しているか否かを判定し(S12)、所定温度を逸脱しているときは、蓄電部11の温度が所定温度になるように蓄電部11を温度制御する(S15)。
すなわち、監視制御装置23は放電モードのときは、蓄電池18の発熱は許容し、放電モードの終了後に空調設備を駆動し、蓄電部11の温度が所定温度になるように蓄電部を温度制御する。つまり、放電により蓄電池18が放熱して温度上昇した分だけ蓄電部11を冷却する。蓄電部11が放電モードであるときは、蓄電部11から負荷14に電力が供給されているときであり、電力系統15から負荷14への電力供給が制限されている。従って、蓄電部11の温度調整のための空調設備への電力供給は停止した方が需要家内の電力の負荷平準化に繋がるので、蓄電部11から負荷14に電力が供給されていないときに空調設備を駆動し蓄電部11を冷却する。
一方、充電モードのときは、蓄電池18の吸熱は許容し、充電モードの終了後に空調設備を駆動し、蓄電部11の温度が所定温度になるように蓄電部を温度制御する。つまり、充電により蓄電池18が吸熱して温度下降した分だけ蓄電部11を加熱する。蓄電部11が充電モードであるときは、電力系統15から蓄電部11に電力が供給されているときであり、蓄電部11の温度調整のための空調設備への電力供給は停止した方が需要家内の電力の負荷平準化に繋がるので、電力系統15から蓄電部11に電力が供給されていないときに空調設備を駆動し蓄電部11を加熱する。
これにより、監視制御装置23は蓄電部11への充放電中に電源装置13から電力を消費することがなく、全体として監視制御のための消費電力を軽減できる。
図11に示した実施例4、図12に示した実施例5を、実施例1、実施例2、実施例3に適用することも可能である。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
11…蓄電部、12…蓄電部運転装置、13…電源装置、14…負荷、15…電力系統、16…遮断器、17…受電変圧器、18…蓄電池、19…補機、20…保護装置、21…電力変換装置、22…連系変圧器、23…監視制御装置、24…電圧検出器、25…電流検出器、26…遮断器

Claims (3)

  1. 複数のリチウムイオン電池セルを積層した蓄電池を有した蓄電部と、
    電力系統と前記蓄電部との間に接続された負荷と、
    前記蓄電部の予め定められた運転スケジュールを有し、前記負荷の使用電力、外部からの前記蓄電部に対する充電指令や放電指令を入力し、前記運転スケジュール、前記充電指令や放電指令、前記負荷の使用電力に基づいて前記蓄電池を制御するとともに、前記蓄電部を含むシステム全体の監視制御を行う監視制御装置と、
    前記監視制御装置からの指令により動作し、前記負荷の使用電力が小さいときや前記充電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記電力系統の交流電力を直流電力に変換して前記蓄電部に充電し、前記負荷の使用電力が大きいときや前記放電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記蓄電部の直流電力を交流電力に変換して前記負荷に放電する電力変換装置と、
    前記システムの補機を駆動するための電力及び前記監視制御装置を動作させるための電力を前記補機及び前記監視制御装置に供給する電源装置とを備え、
    前記監視制御装置は、前記蓄電部の運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード又は前記蓄電部から前記負荷に電力を放電する放電モードであり、前記蓄電部の電池電圧の変化又は電池電流の変化又は電池温度の変化が大きいときは前記監視制御のための演算処理間隔を短く及び/又は監視制御対象を多くし、前記蓄電部の電池電圧又は電池電流の変化又は電池温度の変化が小さいときは前記監視制御のための演算処理間隔を長く及び/又は監視制御対象を少なくすることを特徴とする電力貯蔵システム。
  2. 複数のリチウムイオン電池セルを積層した蓄電池を有した蓄電部と、
    電力系統と前記蓄電部との間に接続された負荷と、
    前記蓄電部の予め定められた運転スケジュールを有し、前記負荷の使用電力、外部からの前記蓄電部に対する充電指令や放電指令を入力し、前記運転スケジュール、前記充電指令や放電指令、前記負荷の使用電力に基づいて前記蓄電池を制御するとともに、前記蓄電部を含むシステム全体の監視制御を行う監視制御装置と、
    前記監視制御装置からの指令により動作し、前記負荷の使用電力が小さいときや前記充電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記電力系統の交流電力を直流電力に変換して前記蓄電部に充電し、前記負荷の使用電力が大きいときや前記放電指令があるときあるいは前記蓄電部の前記運転スケジュールの運転モードにより前記蓄電部の直流電力を交流電力に変換して前記負荷に放電する電力変換装置と、
    前記システムの補機を駆動するための電力及び前記監視制御装置を動作させるための電力を前記補機及び前記監視制御装置に供給する電源装置とを備え、
    前記監視制御装置は、前記蓄電部の運転モードが前記蓄電部の充放電動作の開始を待っている待機モード又は前記蓄電部の充放電動作が停止している停止モードとなったときは、一定時間経ってから前記監視制御のための演算間隔を長く及び/又は監視制御対象を少なくし、前記待機モード又は前記停止モード中であるときは、予め定めた運転スケジュールの運転モードが前記蓄電部に前記電力系統から電力を充電する充電モード又は前記蓄電部から前記負荷に電力を放電する放電モードとなる以前に先行的に前記監視制御のための演算間隔を短く及び/又は監視制御対象を多くすることを特徴とする電力貯蔵システム。
  3. 前記補機は、前記蓄電部及び前記電力変換装置の温度を所定温度に保つ空調設備であり、前記監視制御装置は、前記運転スケジュールの運転モードが前記蓄電部から前記電力系統に電力を放電する放電モード又は前記蓄電部に前記電力系統から電力を充電する充電モードとなる以前に先行的に前記空調設備を駆動し、前記蓄電部の運転モードが前記放電モード又は前記充電モードとなったときに前記蓄電部の温度が所定温度になるように前記蓄電部を温度制御することを特徴とする請求項1または請求項2に記載の電力貯蔵システム。
JP2016013990A 2016-01-28 2016-01-28 電力貯蔵システム Active JP6648539B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016013990A JP6648539B2 (ja) 2016-01-28 2016-01-28 電力貯蔵システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013990A JP6648539B2 (ja) 2016-01-28 2016-01-28 電力貯蔵システム

Publications (2)

Publication Number Publication Date
JP2017135865A JP2017135865A (ja) 2017-08-03
JP6648539B2 true JP6648539B2 (ja) 2020-02-14

Family

ID=59505012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013990A Active JP6648539B2 (ja) 2016-01-28 2016-01-28 電力貯蔵システム

Country Status (1)

Country Link
JP (1) JP6648539B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6985999B2 (ja) * 2018-09-18 2021-12-22 カシオ計算機株式会社 充電保護回路、充電装置、電子機器及び充電保護方法
JP7251503B2 (ja) * 2020-03-16 2023-04-04 トヨタ自動車株式会社 電力管理装置、及び電力管理方法
JP7480075B2 (ja) 2021-01-27 2024-05-09 京セラ株式会社 蓄電装置管理システム及び蓄電装置管理方法
JP2022059568A (ja) * 2021-08-26 2022-04-13 東京瓦斯株式会社 空調機器制御方法及び空調機器制御プログラム
JP2024010570A (ja) * 2022-07-12 2024-01-24 株式会社デンソー 2次電池の熱暴走予兆検知装置、及び2次電池の熱暴走予兆検知方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327386A (ja) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd 組電池の冷却方法
JP4715123B2 (ja) * 2004-08-05 2011-07-06 パナソニック株式会社 鉛蓄電池の状態検出装置およびこの状態検出装置を一体に備えた鉛蓄電池
JP4784409B2 (ja) * 2006-06-15 2011-10-05 トヨタ自動車株式会社 車両用バッテリ冷却制御システム
CN102893488B (zh) * 2010-07-30 2015-03-25 三洋电机株式会社 二次电池的控制装置
GB201019061D0 (en) * 2010-11-11 2010-12-29 The Technology Partnership Plc System and method for controlling an electricity supply
JP2012130123A (ja) * 2010-12-14 2012-07-05 Makita Corp 充電器
JP6047929B2 (ja) * 2012-05-31 2016-12-21 日産自動車株式会社 バッテリ制御装置
JP6482170B2 (ja) * 2013-12-27 2019-03-13 三菱重工業株式会社 エネルギ・マネジメント・システム、電力システム、エネルギ管理方法、及びプログラム

Also Published As

Publication number Publication date
JP2017135865A (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6648539B2 (ja) 電力貯蔵システム
JP5857247B2 (ja) 電力管理システム
TWI594540B (zh) 蓄電系統及電源系統
US10008862B2 (en) Power storage device, power storage system, and control method of power storage device
US10063070B2 (en) Battery active balancing system
JP5567741B2 (ja) バッテリの充電プロセスを監視する方法、バッテリシステム、および車両
WO2012050014A1 (ja) 電力管理システム
KR102052241B1 (ko) 밸런싱 배터리를 이용한 배터리 관리 시스템 및 방법
JP5959289B2 (ja) 蓄電池システム
JP2009050085A (ja) 二次電池パック
US20130134784A1 (en) Ping-Pong Type Battery Management system
TW201832442A (zh) 不斷電系統(ups)之轉換電路裝置
WO2019187692A1 (ja) 電池パック及びその充電制御方法
KR20140054320A (ko) 축전 장치 관리 시스템
JP2012088086A (ja) 電力管理システム
WO2012049955A1 (ja) 電力管理システム
KR101674855B1 (ko) 저온 환경에서의 리튬 배터리 보호 시스템
JP2009071922A (ja) 直流バックアップ電源装置およびその制御方法
JP2013146159A (ja) 組電池の充電制御システムおよび充電制御方法
JP3175573U (ja) 充電方式の電池管理装置
JP6008735B2 (ja) 荷役車両の電源装置
JP2002320339A (ja) 組電池の放電方法、組電池の放電回路、及び蓄電装置
WO2012049973A1 (ja) 電力管理システム
JP2013200979A (ja) 制御装置
JP2008148369A (ja) 簡易過充電保護機能付二次電池パック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6648539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150