JP6646943B2 - Method for manufacturing MID circuit carrier and MID circuit carrier - Google Patents

Method for manufacturing MID circuit carrier and MID circuit carrier Download PDF

Info

Publication number
JP6646943B2
JP6646943B2 JP2015071002A JP2015071002A JP6646943B2 JP 6646943 B2 JP6646943 B2 JP 6646943B2 JP 2015071002 A JP2015071002 A JP 2015071002A JP 2015071002 A JP2015071002 A JP 2015071002A JP 6646943 B2 JP6646943 B2 JP 6646943B2
Authority
JP
Japan
Prior art keywords
contact
surface area
metal layer
conductor
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015071002A
Other languages
Japanese (ja)
Other versions
JP2015201634A (en
Inventor
マルク・ツィンマーマン
ミヒャエル・ホーン
シナン・ヤルチン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2015201634A publication Critical patent/JP2015201634A/en
Application granted granted Critical
Publication of JP6646943B2 publication Critical patent/JP6646943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus
    • H05K3/242Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus characterised by using temporary conductors on the printed circuit for electrically connecting areas which are to be electroplated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/0909Preformed cutting or breaking line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09127PCB or component having an integral separable or breakable part
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0228Cutting, sawing, milling or shearing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/17Post-manufacturing processes
    • H05K2203/176Removing, replacing or disconnecting component; Easily removable component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/302Bending a rigid substrate; Breaking rigid substrates by bending
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • H05K3/106Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam by photographic methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、MID回路担持体の製造方法およびこの種のMID回路担持体に関するものである。   The present invention relates to a method for manufacturing an MID circuit carrier and to this type of MID circuit carrier.

MID(Molded Interconnect Devices)回路担持体は射出成形された回路担持体であり、3次元の成形を施した基板と、該基板の少なくとも1つの表面領域に形成された金属導電路とを有している。これにより、基板の十分に任意性のある3次元成形、または、十分に任意性があるように3次元で構成されるべき構成体の表面への導電路の組み込みが可能になる。   An MID (Molded Interconnect Devices) circuit carrier is an injection-molded circuit carrier that includes a three-dimensionally molded substrate and a metal conductive path formed in at least one surface region of the substrate. I have. This allows a sufficiently optional three-dimensional shaping of the substrate, or the incorporation of conductive paths into the surface of the structure to be configured in a sufficiently optional three-dimensional manner.

種々のMID製造方法が公知であり、たとえば2成分射出成形およびたとえばレーザーダイレクトストラクチャリング(LDS)のようなレーザーMID方法が公知である。LDSの場合、金属核、たとえば小さな金属粒子がプラスチック材料の中に受容され、プラスチック材料はその後射出成形方法によって適当に成形される。次に、レーザーによる構造化が行われ、構造化すべき表面領域に金属核を露出させる。次に、表面領域または射出成形体全体をめっき槽内で、たとえば銅イオンを含んだ溶液内でパッシブなめっきに曝す。このようにして、溶液内での金属核と銅イオンとのポテンシャル差に基づき化学被覆が発生し、この化学被覆により、一般的には非合金の銅から成る第1の金属化層が形成される。   Various MID manufacturing methods are known, for example two-component injection molding and laser MID methods such as, for example, laser direct structuring (LDS). In the case of LDS, a metal core, for example small metal particles, is received in a plastic material, which is then suitably shaped by an injection molding method. Next, laser structuring is performed, exposing the metal nuclei in the surface region to be structured. Next, the surface region or the entire injection molded body is exposed to passive plating in a plating bath, for example in a solution containing copper ions. In this way, a chemical coating is created based on the potential difference between the metal nucleus and the copper ions in the solution, which forms a first metallization layer, typically made of non-alloyed copper. You.

より肉厚の導電路を形成するため、パッシブなめっきをさらに続行することができる。しかしながら、導電路は横幅においても成長し、その結果ピッチまたはモジューラ寸法が小さいと、すなわち導電路の中心間の横方向間隔が小さいと、プロセス時間がある程度経過した後に短絡することがある。さらに、パッシブな汚染粒子があると、溶液を介して構造の中に一緒に沈積することがあり、これによって材料特性、特に延性が制限される。このように、パッシブなめっきの利点は、第一に微細なモジューラ寸法または導電路間の小さな間隔、および幅狭の導電路が形成可能なことであるが、導電路の厚さおよび材料品質が制限されている。   Passive plating can be continued further to form thicker conductive paths. However, the vias can also grow in lateral width, resulting in small pitch or modular dimensions, ie, small lateral spacing between the centers of the vias, which can cause short circuiting after some processing time. In addition, the presence of passive contaminating particles can collectively settle into the structure via the solution, which limits material properties, especially ductility. Thus, the advantages of passive plating are, firstly, the possibility of forming fine modular dimensions or small spacing between conductive paths and narrow conductive paths, but the thickness and material quality of the conductive paths are limited. Limited.

パッシブなめっきの第1の金属層を形成した後に引き続いて、アクティブなめっきを行うことができる。このため、個別に形成した導電路に、適当なめっき槽に対して電気ポテンシャルを、すなわち電圧を印加する。アクティブなめっきはプロセス技術的により高速に構成でき、より高い延性とより優れた材料特性とを備えた合目的な材料を、たとえば金とニッケルとから成る合金を形成するために使用することを可能にする。   Subsequent to the formation of the first metal layer of passive plating, active plating can follow. For this purpose, an electric potential, that is, a voltage is applied to the individually formed conductive paths to an appropriate plating tank. Active plating can be constructed faster in process technology and allows the use of purposeful materials with higher ductility and better material properties, for example to form alloys of gold and nickel To

しかしながら、小さな横幅の導電路と、たとえば150μm以下の、或いはたとえば100μm以下の微細なモジューラ寸法とを備えるように導電路構造を構成すると、アクティブなめっきのための個々の導電路の接触が部分的に困難である。   However, if the conductor structure is configured to have small lateral conductors and fine modular dimensions, for example 150 μm or less, or for example 100 μm or less, the contact of the individual conductors for active plating is partially Difficult.

本発明によれば、射出成形体は接触領域を備えるように、たとえば端子接点を備えるように構成され、該接触領域上には、少なくとも2つの導電路が接触する少なくとも1つの導線集結部が設けられている。   According to the invention, the injection-molded body is configured to have a contact area, for example to have a terminal contact, on which at least one conductor consolidation with which at least two conductive paths contact is provided. Have been.

特に、すべての導電路を接触させるために、ただ1つの導線集結部、すなわち中央の導線集結部を設ければよい。しかし、基本的には、複数の導線集結部を、たとえば複数の接触領域を、それぞれ1つの導線集結部を備えるように構成することも可能である。   In particular, only one conductor concentrator, i.e. the central conductor concentrator, has to be provided in order to make all the conductive paths contact. However, in principle, it is also possible to configure a plurality of conductors, for example a plurality of contact areas, each with one conductor.

MID製造方法で導線集結部を形成することは、第2の金属層のアクティブな電解被着のために行われ、すなわち電圧を印加してアクティブなめっきを実施するために行われる。しかし導線集結部はその後再び除去され、その結果導電路は互いに切り離される。   The formation of the conductor junction in the MID manufacturing method is performed for the active electrolytic deposition of the second metal layer, ie for applying a voltage to perform active plating. However, the wire connection is then removed again, so that the conductive paths are disconnected from one another.

本発明によれば、いくつかの利点が達成される。   According to the present invention, several advantages are achieved.

アクティブな電解めっきを行うことで、または、電圧を印加して形成することで、適当な材料を選定することができ、優れた材料特性、特に高い延性、よって高い機械的応力耐性を可能にすることができる。アクティブな電解被着は一定の条件のもとで行うことができ、その際層厚は負荷供給量によって、従って電流によって決定される。さらに、横方向への導電路の成長は、よって短絡の危険は回避することができ、或いは、少なくとも低減させることができる。   By performing active electroplating or by applying a voltage, a suitable material can be selected, and excellent material properties, particularly high ductility, and thus high mechanical stress resistance can be achieved. be able to. Active electrolytic deposition can take place under certain conditions, the layer thickness being determined by the load supply and thus by the current. Furthermore, the growth of the conductive tracks in the lateral direction can thus avoid or at least reduce the risk of short circuits.

横方向で幅狭の導電路と、微細なモジューラ寸法とを達成でき、たとえば60μmよりも小さい幅の導電路と、150μmよりも小さな、たとえば100μmよりも小さなモジューラ寸法を達成できる。というのは、導線集結部または該導線集結部と結合される接続接点は、より大きな横方向幅で形成させることができ、よって支障なく電気接触することができるからである。従って、導電路の横方向の幅とモジューラ寸法とは基本的に電解方法によって制限されていない。   Narrow conductive tracks in the lateral direction and fine modular dimensions can be achieved, for example conductive tracks with a width of less than 60 μm and modular dimensions of less than 150 μm, for example less than 100 μm. This is because the conductor junctions or the connection contacts connected to the conductor junctions can be formed with a larger lateral width and can therefore make electrical contact without hindrance. Thus, the lateral width and the modular dimensions of the conductive path are not essentially limited by the electrolytic method.

導電路は、1つの共通の導線集積部または複数の導線集結部を介して互いに接触し、この場合導線集結部はアクティブな電解被着またはアクティブなめっきのためだけに設けられているにすぎないが、その後再び除去される。これは、導電路が通常のように別個の機能に用いられるからであり、たとえば複数の電気要素の種々の接触を可能にするために用いられるからである。   The conductive paths contact one another via one common conductor stack or several conductor collectors, the conductor collectors being provided only for active electrolytic deposition or active plating. Is then removed again. This is because the conductive path is used for a separate function as usual, for example to allow various contacts of a plurality of electrical elements.

導線集結部の除去は、有利には接触領域全体の除去によって行うことができ、従って接触領域は、射出成形体の一部として一時的にのみ一緒に形成されてその後除去される薄い端子接点として形成されていてよい。   The removal of the conductor bundle can advantageously be effected by the removal of the entire contact area, so that the contact area is formed as a thin terminal contact which is formed only temporarily as part of the injection molding and is subsequently removed. It may be formed.

このため、接触領域または端子接点は規定切り離し個所を備えるように構成することができ、該規定切り離し個所でこれらはその後切り離される。従って個々の導電路は、規定切り離し個所を経て、接触領域内に設けられている少なくとも1つの導線集結部へ延在し、その結果規定切り離し個所を切り離したときにすでに個々の導電路の切り離しまたは電気的個別化が行われる。この場合、規定切り離し個所は機械的な薄肉部、すなわち特に規定破断個所として形成されていてよく、その結果機械的な破断工程はたとえば折り曲げによって、或いは、機械的切断によっても行うことができる。さらに、規定切り離し個所はレーザー切断またはレーザー切除によっても切り離すことができる。   For this purpose, the contact area or the terminal contact can be configured with a defined disconnection point, where they are subsequently disconnected. The individual conductor paths thus extend via the defined disconnection points to at least one conductor connection provided in the contact area, so that when the defined disconnection points are disconnected, the individual conductor paths are already disconnected or separated. Electrical singulation is performed. In this case, the defined breaking points can be formed as mechanically thin sections, in particular as defined breaking points, so that the mechanical breaking step can be carried out, for example, by bending or by mechanical cutting. Furthermore, the defined cut-off points can be cut off by laser cutting or laser cutting.

これによって更なる利点が可能になる。   This allows for further advantages.

比較的大きな表面領域を構造化して、めっきするだけでよい。比較的大きな表面領域は、基板の回路表面領域に加えて、導線集結部と場合によっては接続接点とのための端子接点表面領域を有しているが、しかしプロセスを遅延させない。   It is only necessary to structure and plate a relatively large surface area. The relatively large surface area has, in addition to the circuit surface area of the substrate, a terminal contact surface area for the conductor consolidation and possibly the connection contacts, but does not slow down the process.

接触領域を切り離すことにより、高い確実性で個々の導電路の電気的切り離しまたは個別化が行われる。   By decoupling the contact areas, an electrical decoupling or individualization of the individual conductive paths is achieved with a high degree of certainty.

従って本発明による方法により、付加コストを非常に少なくした高いプロセス確実性が可能になり、特にめっきプロセスおよび材料選択の改善並びに迅速なプロセスコントロールといった大きな利点をもたらす。   Thus, the method according to the invention allows for high process reliability with very low added costs, and offers significant advantages, in particular, improved plating processes and material selection and rapid process control.

接触領域の切り離しの代わりに、導線集結部および場合によっては付加的な接続接点のみをたとえばレーザー切除によって接触領域から除去してもよい。このようにして接触領域をその後も活用することができ、たとえばMID回路担持体の操作の位置決めに活用することができる。   As an alternative to disconnecting the contact area, only the wire connection and possibly additional connection contacts may be removed from the contact area, for example by laser ablation. In this way, the contact area can be subsequently utilized, for example, for positioning the operation of the MID circuit carrier.

導線集結部は、たとえば規定切り離し個所が接触領域を直接折り取るための、または、切断するための規定破断個所として設けられている場合には、特に直線状であってよい。しかし、導線集結部の非直線状の、またはまっすぐでない構成も可能であり、この場合たとえば切断または押し抜きによる切り離し、或いは、前述のレーザー切除による切り離しも可能である。   The conductor junction can be particularly straight, for example, if the defined disconnection points are provided as defined breakpoints for directly breaking or cutting the contact area. However, non-linear or non-straight configurations of the conductor concentrator are also possible, in which case, for example, cutting or punching out or laser cutting as described above.

端子接点を切り離す前の本発明の1実施形態によるMID回路担持体の詳細拡大図である。FIG. 3 is a detailed enlarged view of the MID circuit carrier according to the embodiment of the present invention before disconnecting the terminal contacts. 本発明の1実施形態によるMID回路担持体を製造する方法の連続する複数のステップのうちの1つのステップを示す図である。FIG. 3 illustrates one of a series of steps of a method of manufacturing a MID circuit carrier according to one embodiment of the present invention. 本発明の1実施形態によるMID回路担持体を製造する方法の連続する複数のステップのうちの1つのステップを示す図である。FIG. 3 illustrates one of a series of steps of a method of manufacturing a MID circuit carrier according to one embodiment of the present invention. 本発明の1実施形態によるMID回路担持体を製造する方法の連続する複数のステップのうちの1つのステップを示す図である。FIG. 3 illustrates one of a series of steps of a method of manufacturing a MID circuit carrier according to one embodiment of the present invention. 本発明の1実施形態によるMID回路担持体を製造する方法の連続する複数のステップのうちの1つのステップを示す図である。FIG. 3 illustrates one of a series of steps of a method of manufacturing a MID circuit carrier according to one embodiment of the present invention. 本発明の1実施形態によるMID回路担持体を製造する方法の連続する複数のステップのうちの1つのステップを示す図である。FIG. 3 illustrates one of a series of steps of a method of manufacturing a MID circuit carrier according to one embodiment of the present invention.

図1によれば、3次元の射出成形体3はプラスチック材料または成形材料から形成されている。射出成形体3の少なくとも1つの表面領域4上には、複数の個々の導電路6を備えた導電路構造部5が形成されている。複数の図に示した本実施形態によれば、導電路6で構造化されている表面領域4は実質的に平らにまたは平面的に形成されているが、基本的には、湾曲面上または3次元成形面上に導電路6を形成してもよく、たとえば図1において下側に示した筒状領域に形成してもよい。   According to FIG. 1, the three-dimensional injection molded body 3 is formed from a plastic material or a molding material. On at least one surface region 4 of the injection molding 3, a conductive path structure 5 with a plurality of individual conductive paths 6 is formed. According to the embodiment shown in the figures, the surface area 4 structured by the conductive path 6 is formed substantially flat or planar, but basically on a curved surface or The conductive path 6 may be formed on the three-dimensional forming surface, for example, may be formed in a cylindrical region shown on the lower side in FIG.

一体の射出成形体3は、部分領域として、基板7と端子接点2とを有し、基板と端子接点とは規定破断個所8を介して結合されている。規定破断個所8は、たとえば図1に切欠き9、凹部またはノッチによって示したように、たとえば薄肉部として形成されていてよい。構造化されている表面領域4は、基板から規定破断個所8を経て端子接点2まで延在し、従って基板7上には回路表面領域4aが形成され、端子接点2上には端子接点表面領域2aが形成され、回路表面領域と端子接点表面領域とは、規定破断個所8を経て延在する1つまたは複数の共通の連続金属化層によって形成される。   The integral injection-molded body 3 has, as a partial area, a substrate 7 and terminal contacts 2, which are connected to one another via defined breaks 8. The defined breaking point 8 may be formed, for example, as a thin-walled part, as indicated, for example, by a notch 9, a recess or a notch in FIG. The structured surface area 4 extends from the substrate to the terminal contact 2 via a defined break 8, so that a circuit surface area 4 a is formed on the substrate 7, and the terminal contact surface area is formed on the terminal contact 2. 2a are formed, and the circuit surface area and the terminal contact surface area are formed by one or more common continuous metallization layers extending through defined breaks 8.

個々の導電路6は、ここでは直角に屈曲している接続板10を経て延在し、該接続板10から規定破断個所8を経て、端子接点表面領域2a上に形成されてすべての導電路6と電気接触している1つの共通の導線集結部12へ延在している。導線集結部12は、端子接点表面領域2a上に形成された接続接点14へ移行し、または、これと結合されている。中央の接続板10はたとえば端子接点2全体にわたって延在していてもよいが、この種の構成は高価であって費用がかさむ。   The individual conductive paths 6 extend through a connection plate 10 that is bent at a right angle here, from the connection plate 10 via a defined breaking point 8 on the terminal contact surface area 2a and all the conductive paths 6 6 to one common wire junction 12 that is in electrical contact with 6. The conductor junction 12 transitions to or is connected to a connection contact 14 formed on the terminal contact surface area 2a. The central connecting plate 10 may extend, for example, over the entire terminal contact 2, but such an arrangement is expensive and costly.

回路表面領域4aを備えた基板7は、規定破断個所8に至るまでMID回路担持体1を形成している。この場合、回路表面領域4aの複数の導電路6は当初導線集結部12を介して電気結合され、または、短絡されている。   The substrate 7 provided with the circuit surface area 4a forms the MID circuit carrier 1 up to the specified breaking point 8. In this case, the plurality of conductive paths 6 in the circuit surface region 4a are initially electrically connected or short-circuited via the conductor connecting portion 12.

図1の実施形態とは択一的に、MID回路担持体1を、複数の端子接点2を備えるように構成するのも可能であり、その結果各端子接点2の中央の接続板10は導線6の一部と接触している。   As an alternative to the embodiment of FIG. 1, it is also possible to configure the MID circuit carrier 1 with a plurality of terminal contacts 2, so that the central connecting plate 10 of each terminal contact 2 is a conductor. 6 and is in contact with a part thereof.

MID回路担持体1の製造を、図2ないし図6の1実施形態に関して説明する。基本的には、MID回路担持体1は種々のMID製造方法で形成させることができる。以下では、特にレーザーダイレクトストラクチャリング(LDS)について説明するが、一般的にはこれに限定されるものではない。   The manufacture of the MID circuit carrier 1 will be described with reference to one embodiment of FIGS. Basically, the MID circuit carrier 1 can be formed by various MID manufacturing methods. In the following, laser direct structuring (LDS) will be described in particular, but is generally not limited to this.

まず、図2によれば、添加材を混合させたプラスチック材料または成形材料から成る射出成形体3を射出成形法で形成させる。   First, according to FIG. 2, an injection molded body 3 made of a plastic material or a molding material mixed with an additive is formed by an injection molding method.

この場合、射出成形体3は1回のステップで形成させることができ、或いは、まず基板7を形成して端子接点2を射出することができる。   In this case, the injection molded body 3 can be formed in one step, or the substrate 7 can be formed first and the terminal contact 2 can be injected.

次に、図3ないし図5において、表面領域4を構造化する。これは、特に、ここに示唆したレーザービーム13を用いたレーザーダイレクトストラクチャリング(LDS)によって行うことができるが、他のMIDプロセスも可能である。従って、図3のレーザーダイレクトストラクチャリングによって、まず(図3に示唆した)金属核16を露出させて活性化させる。このようにしてまず、のちの導電路6の導電路領域106を露出させ、さらにのちに形成される導線集結部12の個所に集結領域112を露出させ、のちに形成される接続接点14の個所に接続接点領域114を露出させる。   Next, in FIGS. 3 to 5, the surface region 4 is structured. This can be done in particular by laser direct structuring (LDS) using the laser beam 13 suggested here, but other MID processes are also possible. Therefore, the metal nucleus 16 (indicated in FIG. 3) is first exposed and activated by the laser direct structuring of FIG. In this manner, first, the conductive path region 106 of the later conductive path 6 is exposed, and further, the gathering region 112 is exposed at the location of the conductive wire gathering portion 12 to be formed, and the location of the connection contact 14 formed later is formed. To expose the connection contact region 114.

次に、図4によれば、外部電流のない短い金属層21を、特に銅(Cu)層21を導電材料として被着させる。従って図4のステップでは、外部電圧を印加せずにポテンシャル差による化学めっきが行われる。従って図4のステップは適当な槽13内への、特に金属核16よりも高い電圧ポテンシャルを有する銅イオンを含んだ溶液内への浸漬によって行われる。   Next, according to FIG. 4, a short metal layer 21 with no external current is applied, in particular a copper (Cu) layer 21 as conductive material. Therefore, in the step of FIG. 4, chemical plating is performed by a potential difference without applying an external voltage. The step of FIG. 4 is thus carried out by dipping into a suitable bath 13, in particular into a solution containing copper ions having a higher voltage potential than the metal core 16.

次に、図5によれば、アクティブに射出成形体3の電解被覆を行う。このため、射出成形体3を、一般的には適当な金属イオン(たとえば銅イオン、ニッケルイオン、金イオン(Cu,Ni,Au))を含んだ適当な電解槽内に設置し、適当なポテンシャルVを端子接点2の接続接点14に印加し、よって中央の接続板10に印加させ、一般的には電解槽内に浸漬される他の電極20に対し負のポテンシャルVで接続接点14に印加させる。電圧Uを印加することにより、接続接点14は中央の接続板10およびすべての導電路6ともども、槽または電解槽17内の他の電極20に対し共通の負のポテンシャルに設定される。これによって、構造化に従って導電路6を備えた導電路構造部5と、導線集結部12と、接続接点14とを図1に対応して形成させる金属層18が形成される。   Next, according to FIG. 5, the injection molding 3 is electrolytically coated actively. For this reason, the injection molded body 3 is generally placed in a suitable electrolytic cell containing appropriate metal ions (for example, copper ions, nickel ions, and gold ions (Cu, Ni, Au)), and an appropriate potential is applied. V is applied to the connecting contacts 14 of the terminal contacts 2 and thus to the central connecting plate 10 and is generally applied to the connecting contacts 14 at a negative potential V with respect to the other electrodes 20 immersed in the electrolytic cell. Let it. By the application of the voltage U, the connection contacts 14 are set at a common negative potential with respect to the other electrodes 20 in the cell or electrolytic cell 17, together with the central connection plate 10 and all the conductive paths 6. In this way, a metal layer 18 is formed which, according to the structuring, forms the conductive path structure 5 with the conductive path 6, the conductor concentrator 12 and the connection contacts 14 according to FIG.

次に、図6によれば、端子接点2の切り離しを行う。これは特に端子接点2を折り取ることによる、すなわちたとえば曲げることによる機械的な切り離しとして行われる。というのは、規定破断個所8に所定の破断部が形成されるからである。個々の導電路6が規定破断個所8を経て延在しているので、端子接点2および中央の導線集結部12を除去した後、導電路6はもはや互いに接触せず、接続板10に個別に接触することができる。   Next, according to FIG. 6, the terminal contact 2 is disconnected. This takes place in particular as a mechanical decoupling by breaking off the terminal contacts 2, ie, for example by bending. This is because a predetermined break is formed at the predetermined break 8. After the terminal contacts 2 and the central conductor connection 12 have been removed, the individual conductive paths 6 no longer contact each other, since the individual conductive paths 6 extend through the defined breaking points 8, and the individual connecting plates 10 Can contact.

機械的に折る代わりに、レーザー切り離し(レーザー処理)を介しての端子接点2の切り離し、または、機械的な切断を行ってもよい。さらに、他の破壊的な切り離しも可能である。   Instead of mechanical breaking, the terminal contacts 2 may be cut off via laser cutting (laser treatment) or mechanical cutting may be performed. In addition, other destructive disconnections are possible.

図6の変形実施形態では、端子接点2は結果的に保持されたままである。これに対応して、基本的には規定破断個所8も必要でなく、有利にはこの変形実施形態の場合設けられない。図5に続くステップで、少なくとも中央の導線集結部12を、たとえば接続接点14をも、たとえばレーザー切除により選択的に除去することで、複数の導電路6を互いに電気的に切り離す。その後引き続き、端子接点2はMID回路担持体1を位置決めするために用いることができる。   In the alternative embodiment of FIG. 6, the terminal contact 2 remains consequently held. Correspondingly, a defined break 8 is basically not required, and is advantageously not provided in this variant. In a step subsequent to FIG. 5, the plurality of conductive paths 6 are electrically disconnected from each other by selectively removing at least the central wire junction 12, for example also the connection contacts 14, for example by laser ablation. Subsequently, the terminal contacts 2 can be used for positioning the MID circuit carrier 1.

図2ないし図6の実施形態の場合も、実装後の図6の切り離しのステップを行うことができ、その結果端子接点2は引き続きMID回路担持体1の位置決めに用いることができる。   In the case of the embodiment according to FIGS. 2 to 6 also, the detaching step according to FIG. 6 after the mounting can be carried out, so that the terminal contacts 2 can subsequently be used for positioning the MID circuit carrier 1.

導電路構成部5は多数の、たとえば10個以上の導電路6を有していてよく、この場合個々の導電路6は、たとえば60μmよりも小さな導電路幅Lと、100μmよりも小さなピッチ間隔d(個々の導電路6の間隔または導電路中心間の間隔)を有する。   The conductive path component 5 may have a large number, for example, ten or more, of the conductive paths 6, wherein the individual conductive paths 6 have a conductive path width L of, for example, less than 60 μm and a pitch spacing of less than 100 μm. d (distance between individual conductive paths 6 or distance between conductive path centers).

1 MID回路担持体
2 端子接点(接触領域)
2a 端子接点表面領域
3 射出成形体
4a 回路表面領域
6 導電路
7 基板
8 規定破断個所(規定切り離し個所)
9 ノッチ
12 導線集結部
13 第1の槽
14 接続接点
16 金属核
17 第2の槽
18 第2の金属層
20 電極
21 第1の金属層
106 導電路領域
d ピッチ間隔(導電路の間隔量)
L 導電路の幅
U 電圧
V 電気ポテンシャル
1 MID circuit carrier 2 terminal contact (contact area)
2a Terminal contact surface area 3 Injection molded body 4a Circuit surface area 6 Conductive path 7 Substrate 8 Specified breaking point (specified disconnecting point)
REFERENCE SIGNS LIST 9 notch 12 conductive wire concentrating part 13 first tank 14 connection contact 16 metal core 17 second tank 18 second metal layer 20 electrode 21 first metal layer 106 conductive path area d pitch interval (interval of conductive path)
L Conductor path width U Voltage V Electric potential

Claims (6)

MID回路担持体(1)を製造する方法において、
基板(7)と接触領域(2)とを有する一体の射出成形体(3)を射出成形技術で形成するステップと、
金属核(16)の作用のもとに、前記基板(7)上で回路表面領域(4a)を構造化し、且つ前記接触領域(2)上で端子接点表面領域(2a)を構造化するステップであって、前記回路表面領域(4a)上で、前記接触領域(2)の前記端子接点表面領域(2a)へ延在する導電路領域(106)を構造化させる前記ステップと、
構造化した前記回路表面領域(4a)上と前記端子接点表面領域(2a)上とに第1の金属層(21)を外部電流なしに次のように被着させ、すなわち少なくとも2つの導電路(6)が、前記回路表面領域(4a)から、前記端子接点表面領域(2a)上に形成される少なくとも1つの導線集結部(12)へ延在し、その際前記導電路(6)が前記少なくとも1つの導線集結部(12)を介して互いに接触するように、被着させるステップと、 前記導線集結部(12)に電気ポテンシャル(V)を印加して、前記第1の金属層(21)上に、または、前記第1の金属層(21)とともに、第2の金属層(18)を電気化学的に形成するステップと、
少なくとも前記導線集結部(12)を除去して、前記導電路(6)を電気的に切り離すステップと、
を含んでいて、
前記基板(7)に形成された接続板(10)と前記接触領域(2)に形成され前記接触板(10)と鋭角をなす斜板との間に規定切り離し個所(8)を形成し、その際複数の前記導電路(6)は前記回路表面領域(4a)から前記接続板(10)、前記規定切り離し個所(8)および前記斜板の順に経て前記導線集結部(12)へ延在していること、
前記接触領域(2)を前記規定切り離し個所(8)に沿って前記基板(7)から切り離すことにより、前記導線集結部(12)が除去されるとともに、個々の前記導電路(6)の電気的切り離しが行われること、
を特徴とする方法。
In a method for producing an MID circuit carrier (1),
Forming an integral injection molded body (3) having a substrate (7) and a contact area (2) by an injection molding technique;
Structuring a circuit surface area (4a) on the substrate (7) and a terminal contact surface area (2a) on the contact area (2) under the action of metal nuclei (16). Structuring a conductive path area (106) on said circuit surface area (4a) extending to said terminal contact surface area (2a) of said contact area (2);
On the structured circuit surface area (4a) and on the terminal contact surface area (2a), a first metal layer (21) is deposited without external current as follows, ie at least two conductive paths. (6) extends from the circuit surface area (4a) to at least one conductor junction (12) formed on the terminal contact surface area (2a), wherein the conductive path (6) is Applying the first metal layer (12) by applying an electric potential (V) to the conductive wire concentrating portion (12) so as to contact each other via the at least one conductive wire concentrating portion (12); 21) electrochemically forming a second metal layer (18) on or with the first metal layer (21);
Removing at least the conductor concentrator (12) to electrically disconnect the conductive path (6);
Containing
Forming a prescribed disconnection point (8) between the substrate (7) which is formed in the connection plate (10) and said formed in the contact region (2) the contact plate (10) and the swash plate at an acute angle, At this time, the plurality of conductive paths (6) extend from the circuit surface area (4a) to the conductor gathering portion (12) through the connection plate (10), the specified disconnection point (8), and the swash plate in this order. Doing things,
By separating the contact area (2) from the substrate (7) along the specified disconnection point (8), the conductor concentration part (12) is removed and the electric current of each of the conductive paths (6) is removed. That separation is performed,
A method characterized by the following.
前記規定切り離し個所(8)が、材料薄肉部を備えるように、たとえばノッチ(9)を備えるように規定破断個所(8)として形成され、前記接触領域(2)を前記導線集結部(12)とともに機械的に切り離し、たとえば曲げによって折り取ることを特徴とする、請求項1に記載の方法。   The specified separating point (8) is formed as a specified breaking point (8) so as to include a thin material portion, for example, a notch (9), and the contact area (2) is connected to the conductor collecting part (12). Method according to claim 1, characterized in that it is mechanically detached with it, for example by bending. 前記接触領域(2)を前記規定切り離し個所(8)においてレーザー切断によって切り離すことを特徴とする、請求項1に記載の方法。   Method according to claim 1, characterized in that the contact area (2) is separated by laser cutting at the defined separation point (8). 前記第1の金属層(21)を第1の槽(13)内で、特に銅イオンを含んだ第1の槽(13)内で形成し、前記第2の金属層(18)を第2の槽(17)内で、特に金イオンを含んだ第2の槽(17)内で形成し、その際に前記第2の槽(17)内で使用される電極(20)と前記第1の金属層(21)との間に電圧(U)を印加することを特徴とする、請求項1〜3のいずれか一項に記載の方法。   The first metal layer (21) is formed in a first tank (13), particularly in a first tank (13) containing copper ions, and the second metal layer (18) is formed in a second tank (13). In the second tank (17) containing gold ions, in particular, the electrode (20) used in the second tank (17) and the first tank (17). 4. The method according to claim 1, wherein a voltage (U) is applied to the metal layer (21). 前記接触領域(2)上で、前記少なくとも1つの導線集結部(12)に接続接点(14)が接触しており、該接続接点(14)は、個々の前記導電路(6)よりも大きな横幅(a)を有し、前記第2の金属層(21)を電解被着するための電気接点を設置するために設けられていることを特徴とする、請求項1〜4のいずれか一項に記載の方法。   On the contact area (2), a connection contact (14) is in contact with the at least one conductor junction (12), the connection contact (14) being larger than the individual said conductive path (6). 5. The method according to claim 1, wherein the second metal layer has a width and is provided for installing an electrical contact for electrolytically depositing the second metal layer. The method described in the section. 前記射出成形体(3)を形成するプラスチック材料が金属核(16)を有し、該金属核は、レーザー構造化により、特にレーザーダイレクトストラクチャリングにより構造化する際に露出され、前記導電路(6)と前記少なくとも1つの導線集結部(12)と好ましくは前記接続接点(14)とを形成するために設けられていることを特徴とする、請求項5に記載の方法。   The plastic material forming the injection-molded body (3) has metal nuclei (16), which are exposed during structuring by laser structuring, in particular by laser direct structuring, and Method according to claim 5, characterized in that it is provided for forming 6), the at least one wire junction (12) and preferably the connection contact (14).
JP2015071002A 2014-04-04 2015-03-31 Method for manufacturing MID circuit carrier and MID circuit carrier Active JP6646943B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014206558.5 2014-04-04
DE102014206558.5A DE102014206558A1 (en) 2014-04-04 2014-04-04 Method for producing a MID circuit carrier and MID circuit carrier

Publications (2)

Publication Number Publication Date
JP2015201634A JP2015201634A (en) 2015-11-12
JP6646943B2 true JP6646943B2 (en) 2020-02-14

Family

ID=54146390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071002A Active JP6646943B2 (en) 2014-04-04 2015-03-31 Method for manufacturing MID circuit carrier and MID circuit carrier

Country Status (3)

Country Link
JP (1) JP6646943B2 (en)
CN (1) CN104981106A (en)
DE (1) DE102014206558A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338547B2 (en) 2015-03-31 2018-06-06 オリンパス株式会社 Molded circuit component, method for manufacturing molded circuit component, and circuit module
CN105472901A (en) * 2015-12-30 2016-04-06 东莞光韵达光电科技有限公司 Laser engraving manufacturing process for fine circuit
EP3407685A4 (en) * 2016-01-20 2019-02-06 Panasonic Intellectual Property Management Co., Ltd. Circuit board
DE102017201634B3 (en) 2017-02-01 2018-06-14 Leoni Kabel Gmbh Strand-shaped element and method for producing a strand-like element
CN111497116A (en) * 2019-01-31 2020-08-07 深圳正峰印刷有限公司 Preparation method of injection molding structural part with integrated intelligent surface
DE102023105398A1 (en) 2023-03-06 2024-09-12 Diehl Aviation Laupheim Gmbh Additively manufactured MID electronic component

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582959A (en) * 1991-09-20 1993-04-02 Hitachi Chem Co Ltd Molded form with conductive circuit
JP3119439B2 (en) * 1996-03-26 2000-12-18 株式会社住友金属エレクトロデバイス Tie bar for plating and plating method for internal wiring
WO1998041070A1 (en) * 1997-03-11 1998-09-17 Siemens S.A. Method for forming metal conductor models on electrically insulating supports
JP3783544B2 (en) * 2000-09-26 2006-06-07 松下電工株式会社 MID manufacturing method
US8059415B2 (en) * 2006-12-15 2011-11-15 Finisar Corporation Molded communications module having integrated plastic circuit structures
TWI334320B (en) * 2007-07-16 2010-12-01 Nanya Technology Corp Fabricating method of gold finger of circuit board
TWI417013B (en) * 2010-05-14 2013-11-21 Kuang Hong Prec Co Ltd Stereo circuit device and manufacturing method thereof
CN102014579B (en) * 2010-11-24 2012-07-04 深南电路有限公司 Gold-plating method of long and short golden fingers
JP2012174898A (en) * 2011-02-22 2012-09-10 Panasonic Corp Manufacturing method of circuit board and circuit board
TWI396477B (en) * 2011-04-01 2013-05-11 Adv Flexible Circuits Co Ltd A composite circuit board with easy breakage
CN103037615B (en) * 2011-09-30 2017-04-19 无锡江南计算技术研究所 Printed circuit board and formation method thereof

Also Published As

Publication number Publication date
DE102014206558A1 (en) 2015-10-08
CN104981106A (en) 2015-10-14
JP2015201634A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP6646943B2 (en) Method for manufacturing MID circuit carrier and MID circuit carrier
CN107567668B (en) Method for producing at least one spring contact pin or spring contact pin assembly and corresponding device
JP6268769B2 (en) Method for forming conductive thin wire and wire and substrate used therefor
US20140374141A1 (en) Fabricating a conductive trace structure and substrate having the structure
US20100181670A1 (en) Contact structure for a semiconductor and method for producing the same
JP2014176984A5 (en)
CN105744749A (en) Method for forming conductive circuit on substrate insulating surface
JP2010202900A (en) Method of producing electrical contact
WO2008066571A2 (en) Reducing formation of tin whiskers on a tin plating layer
CN107430152B (en) Method for producing a contact-distance converter and contact-distance converter
GB2579505A (en) Dynamic glass and method of formation
US20080036099A1 (en) Method for producing a component and device having a component
DE102015115809A9 (en) A method of electrodepositing gold on a copper seed layer to form a gold metallization structure
US6787456B1 (en) Wafer-level inter-connector formation method
TW200908833A (en) Metal plugged substrates with no adhesive between metal and polyimide
US20230345642A1 (en) Asymmetrical electrolytic plating for a conductive pattern
US20100230146A1 (en) Circuit layer comprising cnts and method of manufacturing the same
TWI417013B (en) Stereo circuit device and manufacturing method thereof
JP6137832B2 (en) Semiconductor wafer plating bus and method for forming the same
KR102267328B1 (en) Method for manufacturing probe needle and probe needle manufactured therby
KR20150080565A (en) Electrical components and methods of manufacturing electrical components
CN106416439B (en) The manufacturing method of wiring substrate
CN102163556B (en) Method for electric-lead-free electroplating by adopting buried circuit substrate
JP2015229775A (en) Contact jig for electroplating, semiconductor production apparatus and production method of semiconductor device
US20240094247A1 (en) Methods of Reinforcing Plated Metal Structures and Independently Modulating Mechanical Properties Using Nano-Fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200114

R150 Certificate of patent or registration of utility model

Ref document number: 6646943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250