JP6645110B2 - Siloxane removing agent and siloxane removing filter using the same - Google Patents

Siloxane removing agent and siloxane removing filter using the same Download PDF

Info

Publication number
JP6645110B2
JP6645110B2 JP2015201001A JP2015201001A JP6645110B2 JP 6645110 B2 JP6645110 B2 JP 6645110B2 JP 2015201001 A JP2015201001 A JP 2015201001A JP 2015201001 A JP2015201001 A JP 2015201001A JP 6645110 B2 JP6645110 B2 JP 6645110B2
Authority
JP
Japan
Prior art keywords
siloxane
activated carbon
gas
sample
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201001A
Other languages
Japanese (ja)
Other versions
JP2017070930A (en
Inventor
恵子 坂口
恵子 坂口
増森 忠雄
忠雄 増森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2015201001A priority Critical patent/JP6645110B2/en
Publication of JP2017070930A publication Critical patent/JP2017070930A/en
Application granted granted Critical
Publication of JP6645110B2 publication Critical patent/JP6645110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、シロキサン類ガスの除去性能および低脱離性に優れたシロキサン除去剤、ならびに前記除去剤を用いたシロキサン除去フィルタに関する。さらに詳しくは、シロキサン類ガスを効率的に除去することができ、一旦除去したシロキサン類ガスが濃度、温度、湿度等の環境変化により脱離する問題の少ないシロキサン除去剤およびそれを用いたシロキサン除去フィルタに関する。   The present invention relates to a siloxane remover excellent in siloxane gas removal performance and low desorption properties, and a siloxane removal filter using the remover. More specifically, a siloxane remover capable of efficiently removing siloxane gas, and having little problem that the once removed siloxane gas is desorbed due to environmental changes such as concentration, temperature, and humidity, and siloxane removal using the same. Regarding filters.

なお、前記濃度、温度、湿度等の環境変化とは、濃度で0〜10vol%、温度で−30〜300℃、湿度で0〜100RH%の範囲内での変化のことである。シロキサン類ガスとは、シロキサン結合(Si−O結合)を有するガス状化合物のことであり、例えば、シロキサン結合数が1〜40の鎖状および環状のガス状化合物のことである。より具体的には、ヘキサメチルジシロキサン(L2)、オクタメチルトリシロキサン(L3)、デカメチルテトラシロキサン(L4)、ドデカメチルペンタシロキサン(L5)、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)等が挙げられる。また、ここで言う低脱離性とは、吸着容量と脱離量の比(吸着容量/脱離量)のことを指す。   The environmental changes such as the concentration, temperature, and humidity refer to changes within a range of 0 to 10 vol% in concentration, -30 to 300 ° C in temperature, and 0 to 100 RH% in humidity. The siloxane gas is a gaseous compound having a siloxane bond (Si-O bond), and is, for example, a chain or cyclic gaseous compound having 1 to 40 siloxane bonds. More specifically, hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5), hexamethylcyclotrisiloxane (D3), octamethylcyclohexane Examples include tetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6). The term “low desorption” as used herein refers to the ratio between the adsorption capacity and the desorption amount (adsorption capacity / desorption amount).

大気中の汚染物質については、その種類は多岐にわたっており、硫化水素、アンモニア、アルデヒド、酢酸等の極性ガスおよびベンゼン、トルエン、スチレン、シロキサン類ガス等の低極性ガスから構成されている。特に、シロキサン類ガスは種々の弊害の原因となることが知られている。例えば、燃焼して生成する微粒子状の酸化ケイ素がガスタービンやガスエンジンに付着することによって引き起こされる発電障害の原因や、ガスセンサー表面においてシリカ皮膜を形成し、誤った警報の原因となる。   Pollutants in the atmosphere are of various types, and are composed of polar gases such as hydrogen sulfide, ammonia, aldehyde, and acetic acid, and low-polar gases such as benzene, toluene, styrene, and siloxane gases. In particular, siloxane gases are known to cause various adverse effects. For example, fine silicon oxide generated by combustion causes a power generation failure caused by adhering to a gas turbine or a gas engine, or forms a silica film on the gas sensor surface, causing a false alarm.

従来、シロキサン類ガスを除去する目的で、活性炭、シリカゲル、ゼオライト、活性アルミナ等の多孔質材料が多く用いられている。   Conventionally, porous materials such as activated carbon, silica gel, zeolite, and activated alumina have been widely used for the purpose of removing siloxane gases.

シロキサン化合物の吸着材として、ヨウ素のオキソ酸、臭素のオキソ酸、ヨウ素の酸化物、および臭素の酸化物からなる群から選択される少なくとも1種が表面に担持または添着された活性炭(例えば、特許文献1)、スルホン酸基を有する樹脂を担持した活性炭(例えば、特許文献2)およびスルホン酸基修飾金属酸化物ゾルを添着した活性炭が知られている(例えば、特許文献3、4)。しかしながら、担持体としての活性炭に関する具体的な記載はない。例えば、一般的な活性炭に、ヨウ素酸、スルホン酸基を有する樹脂およびスルホン酸基修飾金属酸化物ゾルを担持しても低脱離性が十分でないという問題がある。また、活性炭にスルホン酸基を有する樹脂およびスルホン酸基修飾金属酸化物ゾルを担持させた場合、スルホン酸基を有する樹脂およびスルホン酸基修飾金属酸化物ゾルは分子量が大きく、分子サイズが大きいため、活性炭の細孔を閉塞してしまい、シロキサン類ガスを効率的に除去することができないという問題も生じる。   As an adsorbent for the siloxane compound, activated carbon having at least one selected from the group consisting of oxoacids of iodine, oxoacids of bromine, oxides of iodine, and oxides of bromine (eg, patent Reference 1), activated carbon carrying a resin having a sulfonic acid group (for example, Patent Document 2) and activated carbon to which a sulfonic acid group-modified metal oxide sol is attached (for example, Patent Documents 3 and 4). However, there is no specific description about activated carbon as a carrier. For example, even if iodic acid, a resin having a sulfonic acid group, and a sulfonic acid group-modified metal oxide sol are supported on general activated carbon, there is a problem that the low desorption property is not sufficient. Further, when a resin having a sulfonic acid group and a sulfonic acid group-modified metal oxide sol are supported on activated carbon, the resin having a sulfonic acid group and the sulfonic acid group-modified metal oxide sol have a large molecular weight and a large molecular size. Further, there is also a problem that the pores of the activated carbon are blocked, and the siloxane gas cannot be efficiently removed.

上述のとおり、シロキサン類ガスを効率的に除去することができ、低脱離性に優れたシロキサン除去剤および前記シロキサン除去剤を用いたシロキサン除去フィルタは見当たらないのが現状である。   As described above, at present, there is no siloxane remover capable of efficiently removing siloxane gases and having excellent desorption properties, and no siloxane removal filter using the siloxane remover.

特開2002−58997号公報JP-A-2002-58997 特開2011−212565号公報JP 2011-212565 A 特開2013−103153号公報JP 2013-103153 A 特開2013−103154号公報JP 2013-103154 A

本発明は上記従来技術の課題を背景になされたものであり、シロキサン類ガスを効率的に除去することができ、低脱離性に優れたシロキサン除去剤およびそれを用いたシロキサン除去フィルタを提供することを課題とする。   The present invention has been made in view of the above-mentioned problems of the related art, and provides a siloxane remover capable of efficiently removing siloxane gases and having excellent desorption properties, and a siloxane removal filter using the same. The task is to

本発明者らは上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに到った。すなわち本発明は、以下の通りである。
(1)活性炭に酸性化合物を0.1〜20質量%担持させたシロキサン除去剤であって、活性炭の残熱残渣分(灰分率)が4.0%以下であることを特徴とするシロキサン除去剤。
(2)温度25℃相対湿度40%時の水分吸着量を、温度25℃相対湿度90%時の水分吸着量で割った水分吸着量比が0.10以上である(1)に記載のシロキサン除去剤。
(3)酸性化合物が酸解離指数(pKa)2.2以下の化合物であり、硫黄(S)元素を含む酸である(1)または(2)に記載のシロキサン除去剤。
(4)(1)〜(3)のいずれかに記載のシロキサン除去剤を含有したシロキサン除去フィルタ。
なお、酸解離指数(pKa)とは酸解離定数(Ka)より以下の式に従って算出される。 また、酸解離定数(Ka)とは常温常圧(25℃、1atm)の条件における水中での酸解離定数(Ka)のことを指し、酸解離指数(pKa)が複数ある場合は、最も小さい酸解離指数(pKa)のことを指す。
pKa=−log10Ka
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have finally completed the present invention. That is, the present invention is as follows.
(1) A siloxane removing agent comprising 0.1 to 20% by mass of an acidic compound supported on activated carbon, wherein the residual heat residue (ash content) of the activated carbon is 4.0% or less. Agent.
(2) The siloxane according to (1), wherein the water adsorption ratio obtained by dividing the water adsorption at a temperature of 25 ° C. and a relative humidity of 40% by the water adsorption at a temperature of 25 ° C. and a relative humidity of 90% is 0.10 or more. Remover.
(3) The siloxane remover according to (1) or (2), wherein the acidic compound is a compound having an acid dissociation index (pKa) of 2.2 or less and is an acid containing a sulfur (S) element.
(4) A siloxane removal filter containing the siloxane removal agent according to any one of (1) to (3).
The acid dissociation index (pKa) is calculated from the acid dissociation constant (Ka) according to the following equation. The acid dissociation constant (Ka) refers to the acid dissociation constant (Ka) in water under the conditions of normal temperature and normal pressure (25 ° C., 1 atm), and is the smallest when there are a plurality of acid dissociation indices (pKa). It refers to the acid dissociation index (pKa).
pKa = -log 10 Ka

本発明によるシロキサン除去剤は、シロキサン類ガスを効率的に除去することができ、低脱離であるという効果を有するものである。   The siloxane remover according to the present invention is capable of efficiently removing siloxane gas and has an effect of low desorption.

以下、本発明を詳細に説明する。
本発明におけるシロキサン除去剤は、活性炭に酸性化合物を0.1〜20質量%担持させたものである。
Hereinafter, the present invention will be described in detail.
The siloxane remover in the present invention is one in which an acidic compound is supported on activated carbon by 0.1 to 20% by mass.

本発明のメカニズムについては明確ではないが、次のように推測される。まずは、(1)シロキサン類ガスと水分子が活性炭に吸着する。次に、(2)吸着したシロキサン類ガスは、近傍の酸性化合物と反応することによりシロキサン類ガスが活性化される。また、(3)その近傍に存在する水分子により、その活性化されたシロキサン類ガスの活性状態が維持される。さらに、(4)活性化されたシロキサン類ガス同士または活性化されたシロキサン類ガスと新たに活性炭に吸着した活性化されていないシロキサン類ガスが反応することにより、シロキサン類ガスが分子量のより大きいシロキサン類化合物へと変換される。分子量の大きいシロキサン類化合物は沸点が高いため、低脱離性が向上する、と考えられる。   The mechanism of the present invention is not clear, but is presumed as follows. First, (1) siloxane gas and water molecules are adsorbed on activated carbon. Next, (2) the adsorbed siloxane gas reacts with a nearby acidic compound to activate the siloxane gas. (3) The activated state of the activated siloxane gas is maintained by water molecules present in the vicinity thereof. Further, (4) the activated siloxane gas or the activated siloxane gas reacts with the non-activated siloxane gas newly adsorbed on the activated carbon, whereby the siloxane gas has a larger molecular weight. Converted to siloxane compounds. It is considered that a siloxane compound having a large molecular weight has a high boiling point, so that low elimination property is improved.

本発明のシロキサン除去剤において、活性炭に担持されている酸性化合物が0.1質量%未満であれば、前記(2)の進行が遅くなるため、シロキサン類ガスの脱離を十分に抑制することはできない。また、活性炭に担持されている酸性化合物が20質量%より大きければ、担持される酸性化合物により活性炭の細孔が閉塞され、前記(1)の進行が遅くなるため、シロキサン類ガスを効率的に除去することはできない。   In the siloxane remover of the present invention, if the amount of the acidic compound supported on the activated carbon is less than 0.1% by mass, the progress of the above (2) becomes slow, and thus the desorption of the siloxane gas is sufficiently suppressed. Can not. If the amount of the acidic compound supported on the activated carbon is larger than 20% by mass, the pores of the activated carbon are blocked by the supported acidic compound, and the progress of the above (1) is slowed down. It cannot be removed.

前記活性炭において、残熱残渣分(灰分率)の割合が大きいほど活性炭に不純物や金属類などが含まれている可能性があり、これらがシロキサンと反応、またはシロキサン同士の反応を阻害すると考えられる。そのため、本発明における活性炭の残熱残渣分(灰分率)は4.0%以下である。残熱残渣分(灰分率)は3.5%以下であることが好ましく、2.5%以下であることがより好ましい。下限は特に限定しないが、残熱残渣分(灰分率)が4.0%より大きければ前記(3)〜(4)が進行しないため、シロキサン類ガスの脱離を十分に抑制することはできない。   In the activated carbon, as the ratio of the residual heat residue (ash content) is larger, the activated carbon may contain impurities, metals, and the like, and these are considered to inhibit the reaction with siloxane or the reaction between siloxanes. . Therefore, the residual heat residue (ash content) of the activated carbon in the present invention is 4.0% or less. The residual heat residue (ash content) is preferably 3.5% or less, more preferably 2.5% or less. The lower limit is not particularly limited, but if the residual heat residue (ash content) is greater than 4.0%, the above (3) to (4) do not proceed, so that the desorption of the siloxane gas cannot be sufficiently suppressed. .

本発明におけるシロキサン除去剤は、温度25℃、相対湿度40%時の水分吸着量を、温度25℃、相対湿度90%時の水分吸着量で割った水分吸着量比が0.10以上であることが好ましい。水分吸着量比が0.10未満であると、前記(3)〜(4)が進行しないため、シロキサン類ガスの脱離を十分に抑制することはできない。水分吸着量比の上限については、特に限定しないが、0.40以下であることが好ましく、0.35以下がより好ましい。0.40より大きければ、水分子によりシロキサンの吸着が阻害され、前記(1)が進行しなくなるからである。   The siloxane remover of the present invention has a water adsorption ratio of 0.10 or more obtained by dividing the water adsorption at 25 ° C. and 40% relative humidity by the water adsorption at 25 ° C. and 90% relative humidity. Is preferred. If the moisture adsorption ratio is less than 0.10, the above (3) and (4) do not proceed, so that desorption of the siloxane gas cannot be sufficiently suppressed. The upper limit of the water adsorption amount ratio is not particularly limited, but is preferably 0.40 or less, more preferably 0.35 or less. If it is larger than 0.40, adsorption of siloxane is inhibited by water molecules, and the above (1) does not proceed.

本発明におけるシロキサン除去剤のBET比表面積については特に限定しないが、200〜3000m2/gであることが好ましく、600〜1800m2/gであることがより好ましく、1000〜1600m2/gであることがさらに好ましい。BET比表面積が200m2/gより小さければ、シロキサン類ガスとの接触面積が小さいため、効率的に除去することができない。BET比表面積が3000m2/gより大きければ、活性炭の製造が困難になる。 Although not particularly limited BET specific surface area of the siloxane removal agent in the present invention is preferably 200~3000m 2 / g, more preferably 600~1800m 2 / g, is 1000~1600m 2 / g Is more preferable. If the BET specific surface area is less than 200 m 2 / g, the contact area with the siloxane gas is small, so that it cannot be efficiently removed. If the BET specific surface area is larger than 3000 m 2 / g, it becomes difficult to produce activated carbon.

本発明におけるシロキサン除去剤の細孔容積については特に限定しないが、0.3〜2.0cc/gであることが好ましく、0.4〜1.0cc/gであることがより好ましく、0.5〜1.0cc/gであることがさらに好ましい。細孔容積が0.3cc/gより小さければ、シロキサン類ガスの吸着容量が小さくなり、効率的に除去することができない。細孔容積が2.0cc/gより大きければ、製造が著しく困難になる。   The pore volume of the siloxane remover in the present invention is not particularly limited, but is preferably from 0.3 to 2.0 cc / g, more preferably from 0.4 to 1.0 cc / g, and more preferably from 0.4 to 1.0 cc / g. More preferably, it is 5 to 1.0 cc / g. If the pore volume is smaller than 0.3 cc / g, the adsorption capacity of the siloxane gas becomes small and it cannot be efficiently removed. If the pore volume is larger than 2.0 cc / g, production becomes extremely difficult.

本発明における活性炭は特に限定しないが、ヤシガラ系活性炭、石炭系活性炭、木質系活性炭、合成樹脂系活性炭等の一般的な活性炭を親水化したものが好ましい。具体的な、活性炭の親水化方法としては、硝酸、次亜塩素酸ナトリウム水溶液、過酸化水素水等の酸化性液体に活性炭を接触させる方法、酸素、オゾン、窒素酸化物等の酸化性ガスに接触させる方法等が好ましい。硝酸、次亜塩素酸ナトリウム水溶液に接触させる方法がより好ましい。   The activated carbon in the present invention is not particularly limited, but is preferably a general activated carbon such as coconut shell activated carbon, coal activated carbon, wood activated carbon, or synthetic resin activated carbon, which is made hydrophilic. As a specific method of making the activated carbon hydrophilic, a method of bringing the activated carbon into contact with an oxidizing liquid such as nitric acid, an aqueous solution of sodium hypochlorite, or hydrogen peroxide, or an oxidizing gas such as oxygen, ozone, or nitrogen oxide is used. A contacting method is preferred. A method of contacting with nitric acid and an aqueous solution of sodium hypochlorite is more preferable.

本発明における酸性化合物の酸解離指数(pKa)は2.2以下であることが好ましい。酸解離指数(pKa)が2.2より大きいと、活性炭に吸着したシロキサン類ガスと酸性化合物との反応が遅くなり、十分な低脱離性が得られないからである。酸解離指数(pKa)の下限値については、特に定めないが、−10以上であることが好ましい。もし、−10未満であれば、活性炭が溶解するおそれがあるからである。   The acid compound of the present invention preferably has an acid dissociation index (pKa) of 2.2 or less. If the acid dissociation index (pKa) is greater than 2.2, the reaction between the siloxane gas adsorbed on the activated carbon and the acidic compound becomes slow, and sufficient low desorption properties cannot be obtained. The lower limit of the acid dissociation index (pKa) is not particularly limited, but is preferably -10 or more. If it is less than -10, activated carbon may be dissolved.

本発明における酸性化合物の分子量は1000以下であることが好ましく、500以下であることがより好ましく、400以下であることがさらに好ましい。分子量が1000より大きいと、活性炭に吸着したシロキサン類ガスと酸性化合物との反応が遅くなり、十分な低脱離性が得られないからである。また、硫黄(S)元素を含む有機酸として、スルホン酸類であることが好ましい。S元素を含むことで電子の偏りが発生し、シロキサン類ガスとの反応が起こりやすいからである。スルホン酸類化合物としては、例えば、亜硫酸(pKa=1.90、分子量82)、硫酸(pKa=−3.00、分子量98)等の無機酸類、p−トルエンスルホン酸(pKa=−2.80、分子量172)、ベンゼンスルホン酸(pKa=−2.80、分子量158)等のスルホン酸類等およびこれらを含む混合物が好ましい。比較的容易に入手できる無機酸類、スルホン酸類およびこれらを含む混合物であることがより好ましい。安価に入手できる硫酸、p−トルエンスルホン酸、ベンゼンスルホン酸およびこれらを含む混合物がさらに好ましい。   The molecular weight of the acidic compound in the present invention is preferably 1,000 or less, more preferably 500 or less, and even more preferably 400 or less. If the molecular weight is larger than 1,000, the reaction between the siloxane gas adsorbed on the activated carbon and the acidic compound becomes slow, and a sufficiently low desorption property cannot be obtained. The organic acid containing the sulfur (S) element is preferably a sulfonic acid. This is because the inclusion of the S element causes electron bias, and the reaction with the siloxane gas is likely to occur. Examples of the sulfonic acid compounds include inorganic acids such as sulfurous acid (pKa = 1.90, molecular weight 82), sulfuric acid (pKa = −3.00, molecular weight 98), p-toluenesulfonic acid (pKa = −2.80, Sulfonic acids such as 172), benzenesulfonic acid (pKa = −2.80, 158) and mixtures containing these are preferred. More preferably, it is a relatively easily available inorganic acid, sulfonic acid and a mixture containing these. Sulfuric acid, p-toluenesulfonic acid, benzenesulfonic acid and mixtures containing these, which are available at low cost, are more preferred.

本発明における酸性化合物の種類については特に限定しないが、常温常圧(25℃、1atm)条件下で液体または固体であることが好ましい。常温常圧で気体であれば、活性炭への担持が困難になるからである。   The kind of the acidic compound in the present invention is not particularly limited, but is preferably a liquid or a solid under normal temperature and normal pressure (25 ° C., 1 atm). This is because if it is a gas at normal temperature and normal pressure, it becomes difficult to carry it on activated carbon.

本発明における酸性化合物は、溶解度1g以上であることが好ましい。溶解度が1g未満であれば、活性炭表面に酸性化合物を担持することが困難になり、シロキサン類ガスの脱離を十分に抑制することはできない。なお、ここでいう溶解度とは、温度20℃で、水100gに溶ける溶質の質量のことを指す。   The acidic compound in the present invention preferably has a solubility of 1 g or more. If the solubility is less than 1 g, it becomes difficult to carry an acidic compound on the activated carbon surface, and it is not possible to sufficiently suppress the desorption of the siloxane gas. Here, the solubility refers to the mass of a solute soluble in 100 g of water at a temperature of 20 ° C.

本発明における活性炭への酸性化合物の担持方法については特に限定しないが、酸性化合物の水溶液に活性炭を含浸させ、次いで乾燥させる方法、または、酸性化合物の水溶液を霧状・ミスト状にして活性炭に吹き付け、次いで乾燥させる方法が好ましい。   The method for supporting the acidic compound on the activated carbon in the present invention is not particularly limited, but a method in which an aqueous solution of the acidic compound is impregnated with the activated carbon and then dried, or a method in which the aqueous solution of the acidic compound is atomized / misted and sprayed onto the activated carbon And then drying.

本発明におけるシロキサン除去フィルタはシロキサン除去剤を含有することが好ましい。前記シロキサン除去フィルタの製造方法については、特に限定しないが、シート化されたシロキサン除去剤を、平面状、プリーツ状、ハニカム状に加工するという製造方法が好ましい。プリーツ状は直行流型フィルタとしての使用において、また、ハニカム状は平行流型フィルタとしての使用において、処理する気体との接触面積を大きくして除去効率を向上させるとともに、脱臭フィルタの低圧損化を同時に図ることができる。   The siloxane removing filter of the present invention preferably contains a siloxane removing agent. The method for producing the siloxane removal filter is not particularly limited, but is preferably a production method in which the sheeted siloxane removal agent is processed into a planar shape, a pleated shape, or a honeycomb shape. When the pleated shape is used as a direct flow type filter, and when the honeycomb type is used as a parallel flow type filter, the contact area with the gas to be treated is increased to improve the removal efficiency and to reduce the pressure loss of the deodorizing filter. At the same time.

本発明におけるシロキサン除去剤をシート化する方法としては特に制限されず、従来公知の加工方法を用いることができる。例えば、(a)シート構成繊維と共にシロキサン除去剤粒子を水中に分散させ脱水することにより得られる湿式シート化法、(b)シート構成繊維と共にシロキサン除去剤粒子を気中分散させることにより得られるエアレイド法、(c)二層以上の不織布または織布、ネット状物、フィルム、膜の層間に、熱接着によりシロキサン除去剤を充填する方法、(d)エマルジョン接着剤、溶剤系接着剤を利用して不織布、織布、発泡ウレタンなどの通気性材料にシロキサン除去剤を結合担持させる方法、(e)基材、ホットメルト接着剤の熱可塑性等を利用して不織布、織布、発泡ウレタンなどの通気性材料にシロキサン除去剤を結合担持させる方法、(f)シロキサン除去剤を繊維または樹脂に練りこむことにより混合一体化する方法等、用途に応じて適当な方法を用いることができる。界面活性剤、水溶性高分子等を用いる必要がなく、多孔質体自身の細孔閉塞を防止することができるため、前記加工方法(b)、(c)、(e)を用いることが好ましい。   The method for forming the siloxane remover into a sheet in the present invention is not particularly limited, and a conventionally known processing method can be used. For example, (a) a wet sheeting method obtained by dispersing siloxane remover particles in water together with sheet constituent fibers in water and dehydrating the water; (b) air laid obtained by dispersing siloxane remover particles in the air together with sheet constituent fibers. Method, (c) a method of filling a siloxane-removing agent by thermal bonding between two or more layers of nonwoven fabric or woven fabric, net-like material, film, film, and (d) using an emulsion adhesive or a solvent-based adhesive. A method of bonding and supporting a siloxane removing agent to a breathable material such as nonwoven fabric, woven fabric, urethane foam, etc .; (e) nonwoven fabric, woven fabric, urethane foam, etc. by utilizing the thermoplasticity of a base material, a hot melt adhesive, etc. Uses such as a method in which a siloxane remover is bonded and supported on a gas-permeable material, and a method (f) in which a siloxane remover is mixed and integrated by kneading the fiber or resin into a fiber or a resin. Suitable methods according can be used. Since it is not necessary to use a surfactant, a water-soluble polymer, or the like, and it is possible to prevent pore blockage of the porous body itself, it is preferable to use the processing methods (b), (c), and (e). .

本発明におけるシロキサン除去剤およびそれを用いたシロキサン除去フィルタは、屋内、乗り物内、壁紙、家具、内装材、樹脂成形体、電気機器等で、シロキサン類ガスを低減する目的で広く用いることができる。特に空気中に含有されるシロキサン類ガスの除去目的で用いることが好ましく、例えば、粒状物を通気性の箱、袋、網等の容器に充填し、静置または通気させて用いることが好ましい。   The siloxane-removing agent and the siloxane-removing filter using the same according to the present invention can be widely used for reducing siloxane gas in indoors, vehicles, wallpapers, furniture, interior materials, resin moldings, electric appliances and the like. . In particular, it is preferably used for the purpose of removing siloxane gas contained in the air. For example, it is preferable that the granular material is filled in a container such as a gas permeable box, bag, or net and left standing or ventilated.

以下、実施例によって本発明の作用効果をより具体的に示す。下記実施例は本発明方法を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。なお、実施例中で測定した特性値の評価方法を以下に示す。   Hereinafter, the working effects of the present invention will be more specifically described with reference to examples. The following examples are not intended to limit the method of the present invention, and any design change in accordance with the above and subsequent points is within the technical scope of the present invention. In addition, the evaluation method of the characteristic value measured in the Example is shown below.

[BET比表面積、全細孔容積の測定方法]
サンプル約100mgを採取し、120℃で24時間真空乾燥した後、秤量した。自動比表面積装置ジェミニ2375(マイクロメリティックス社製)を使用し、液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で徐々に高めながら40点測定し、前記サンプルの吸着等温線を作製した。自動比表面積装置ジェミニ2375に付属の解析ソフト(GEMINI−PCW version1.01)にて、BET条件で、表面積解析範囲を0.01〜0.15に設定して、BET比表面積[m2/g]を求めた。また、相対圧0.95のデータより全細孔容積[cc/g]を求めた。
[Method of measuring BET specific surface area and total pore volume]
About 100 mg of a sample was collected, vacuum-dried at 120 ° C. for 24 hours, and weighed. Using an automatic specific surface area device Gemini 2375 (manufactured by Micromeritics Co., Ltd.), the adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) was gradually increased in a relative pressure range of 0.02 to 0.95. The measurement was performed at 40 points while increasing the temperature to obtain an adsorption isotherm of the sample. Using the analysis software (GEMINI-PCW version 1.01) attached to the Gemini 2375 automatic specific surface area device, the surface area analysis range was set to 0.01 to 0.15 under BET conditions, and the BET specific surface area [m 2 / g ]. Further, the total pore volume [cc / g] was determined from the data of the relative pressure of 0.95.

[水分吸着量比の測定方法]
サンプル10gを採取し、80℃で72時間真空乾燥した後に、始点重量[g]を測定した。温度25℃±0.5℃の固定床流通式ガラスカラムにサンプルを均一に充填し、温度25℃、相対湿度40%の水蒸気/窒素の混合ガスを2L/minでカラム内に流通させた。30分毎にサンプル重量を測定し、30分間での重量変化が5mg以内になったところで終点とし、その時の重量を終点重量[g]とした。終点重量と始点重量の差を始点重量で割ることにより、温度25℃、相対湿度40%時の水分吸着量[mg/g]を算出した。カラム内に流通させる水蒸気/窒素の混合ガスを温度25℃、相対湿度90%に変え、上記と同様に測定し、温度25℃、相対湿度90%時の水分吸着量[mg/g]を算出し、さらに、温度25℃、相対湿度40%時の水分吸着量を温度25℃、相対湿度90%時の水分吸着量で割ることにより、水分吸着量比[−]を算出した。
[Method of measuring water adsorption ratio]
After 10 g of a sample was collected and vacuum-dried at 80 ° C. for 72 hours, the starting weight [g] was measured. The sample was uniformly packed in a fixed bed flow type glass column at a temperature of 25 ° C. ± 0.5 ° C., and a steam / nitrogen mixed gas at a temperature of 25 ° C. and a relative humidity of 40% was passed through the column at 2 L / min. The sample weight was measured every 30 minutes, and when the change in weight within 30 minutes was within 5 mg, the end point was determined, and the weight at that time was defined as the end point weight [g]. By dividing the difference between the end point weight and the start point weight by the start point weight, the water adsorption amount [mg / g] at a temperature of 25 ° C. and a relative humidity of 40% was calculated. The water vapor / nitrogen mixture gas passed through the column was changed to a temperature of 25 ° C. and a relative humidity of 90%, and the measurement was carried out in the same manner as described above, and the water adsorption amount [mg / g] at a temperature of 25 ° C. and a relative humidity of 90% was calculated. Further, the water adsorption amount at a temperature of 25 ° C. and a relative humidity of 40% was divided by the water adsorption amount at a temperature of 25 ° C. and a relative humidity of 90% to calculate a water adsorption amount ratio [−].

[シロキサン吸着/脱離の測定方法]
粒子直径355〜500μmに分級されたサンプルを、内径15mmφのガラス管中に、サンプル層の厚みが0.32cmになるように充填した。これに、オクタメチルシクロテトラシロキサン(環状シロキサンD4)15ppmを含有する温度25℃、湿度50%RHの空気を10L/minで連続的に流通させた。サンプルの入口側と出口側のガスを1分毎にサンプリングし、FID付きガスクロマトグラフ(GC−2014、島津製作所製)において、シロキサン濃度を測定し、その比から除去率[%]を算出した。この除去率が5%以下になるまで流通、濃度測定を続けた。サンプルの入口側と出口側のガス濃度差、流通させた流量、および、測定時の温度から除去量を算出し、時間と除去量の曲線を時間で積分したものをサンプル重量で割ることにより、シロキサン吸着容量[mg/g]を算出した。
次に、この除去率が5%以下になるまで流通、濃度測定を続けたサンプルについて、シロキサンを含有しない温度25℃、相対湿度50%の空気を10L/minで連続的に流通させ、サンプルの出口側のガスを1分毎にサンプリングし、FID付きガスクロマトグラフ(GC−2014、島津製作所製)において、シロキサン濃度を20分間測定した。サンプルの出口側のガス濃度、流通させた流量、および、測定時の温度から脱離量を求め、時間と脱離量の曲線を時間(20分間)で積分したものをサンプル重量で割ることにより、シロキサン脱離量[mg/g]を算出した。シロキサン吸着容量[mg/g]をシロキサン脱離量[mg/g]で割ることにより、低脱離性[−]を算出した。
[Method for measuring siloxane adsorption / desorption]
A sample classified to a particle diameter of 355 to 500 μm was filled in a glass tube having an inner diameter of 15 mmφ so that the thickness of the sample layer was 0.32 cm. Air containing 15 ppm of octamethylcyclotetrasiloxane (cyclic siloxane D4) at a temperature of 25 ° C. and a humidity of 50% RH was continuously flown at 10 L / min. The gas on the inlet side and the outlet side of the sample was sampled every minute, the siloxane concentration was measured using a gas chromatograph with FID (GC-2014, manufactured by Shimadzu Corporation), and the removal rate [%] was calculated from the ratio. Distribution and concentration measurement were continued until the removal rate became 5% or less. By calculating the removal amount from the gas concentration difference between the inlet side and the outlet side of the sample, the flow rate circulated, and the temperature at the time of measurement, and dividing the curve of time and removal amount by time by the sample weight, The siloxane adsorption capacity [mg / g] was calculated.
Next, with respect to the sample whose flow rate and concentration measurement were continued until the removal rate became 5% or less, air without siloxane at a temperature of 25 ° C. and a relative humidity of 50% was continuously flowed at 10 L / min. The gas on the outlet side was sampled every minute, and the siloxane concentration was measured for 20 minutes using a gas chromatograph with FID (GC-2014, manufactured by Shimadzu Corporation). The amount of desorption is determined from the gas concentration on the outlet side of the sample, the flow rate of the sample, and the temperature at the time of measurement, and the curve obtained by integrating the time and the amount of desorption with time (20 minutes) is divided by the sample weight. And the siloxane desorption amount [mg / g] were calculated. The low desorption property [-] was calculated by dividing the siloxane adsorption capacity [mg / g] by the siloxane desorption amount [mg / g].

(実施例1)
希塩酸(0.1N、ナカライテスク製)10gとイオン交換水10gを混合し、塩酸水溶液を調整した。ヤシガラ系活性炭(BET比表面積:1640m2/g、全細孔容積:0.80cc/g、粒径:355〜500μm)3gを調製した塩酸水溶液中に投入した後に室温で3時間処理を行った。その後、ろ過し、50mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。このとき得られた活性炭の残熱残渣分(灰分率)は2.0%であった。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)25mgをイオン交換水450mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Example 1)
10 g of dilute hydrochloric acid (0.1 N, manufactured by Nacalai Tesque) and 10 g of ion-exchanged water were mixed to prepare a hydrochloric acid aqueous solution. 3 g of coconut shell-based activated carbon (BET specific surface area: 1640 m 2 / g, total pore volume: 0.80 cc / g, particle size: 355 to 500 μm) was put into the prepared hydrochloric acid aqueous solution, and then treated at room temperature for 3 hours. . Thereafter, the mixture was filtered, washed 10 times with 50 ml of ion-exchanged water, and dried at 80 ° C. overnight. The residual heat residue (ash content) of the activated carbon obtained at this time was 2.0%.
25 mg of p-toluenesulfonic acid (manufactured by Wako Pure Chemical Industries, molecular weight: 172, pKa = -2.80, solubility: 67 g) was dissolved in 450 mg of ion-exchanged water, and the aqueous solution and 475 mg of hydrophilized activated carbon were mixed with stirring. Then, after drying at 80 ° C. for 6 hours, the sample was classified to obtain a sample supporting 5% by weight of p-toluenesulfonic acid having a particle diameter of 355 to 500 μm. The BET specific surface area, total pore volume measurement, water adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

(実施例2)
希塩酸(0.1N、ナカライテスク製)10gとイオン交換水10gを混合し、塩酸水溶液を調整した。ヤシガラ系活性炭(BET比表面積:1630m2、全細孔容積:0.77cc/g、粒径:355〜500μm)3gを調製した塩酸水溶液中に投入した後に室温で3時間処理を行った。その後、ろ過し、50mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。このとき得られた活性炭の残熱残渣分(灰分率)は2.0%であった。
濃硫酸(和光純薬工業製、分子量98、pKa=−3.00、溶解度200g以上)25mgをイオン交換水450mgに溶解させ、その水溶液と親水化された活性炭475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmの硫酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Example 2)
10 g of diluted hydrochloric acid (0.1 N, manufactured by Nacalai Tesque) and 10 g of ion-exchanged water were mixed to prepare a hydrochloric acid aqueous solution. 3 g of coconut shell activated carbon (BET specific surface area: 1630 m 2 , total pore volume: 0.77 cc / g, particle size: 355 to 500 μm) was charged into the prepared hydrochloric acid aqueous solution, and then treated at room temperature for 3 hours. Thereafter, the mixture was filtered, washed 10 times with 50 ml of ion-exchanged water, and dried at 80 ° C. overnight. The residual heat residue (ash content) of the activated carbon obtained at this time was 2.0%.
25 mg of concentrated sulfuric acid (manufactured by Wako Pure Chemical Industries, molecular weight 98, pKa = -3.00, solubility 200 g or more) was dissolved in 450 mg of ion-exchanged water, and the aqueous solution and 475 mg of hydrophilized activated carbon were mixed with stirring. Then, after drying at 80 ° C. for 6 hours, the sample was classified to obtain a sample supporting 5% by weight of sulfuric acid having a particle diameter of 355 to 500 μm. The BET specific surface area, total pore volume measurement, moisture adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

(実施例3)
希塩酸(0.1N、ナカライテスク製)10gとイオン交換水10gを混合し、塩酸水溶液を調整した。ヤシガラ系活性炭(BET比表面積:1299m2/g、全細孔容積:0.74cc/g、粒径:355〜500μm)3gを調製した塩酸水溶液中に投入した後に室温で3時間処理を行った。その後、ろ過し、50mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。このとき得られた活性炭の残熱残渣分(灰分率)は2.0%であった。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)100mgをイオン交換水850mgに溶解させ、その水溶液と親水化された活性炭900mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸10重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Example 3)
10 g of dilute hydrochloric acid (0.1 N, manufactured by Nacalai Tesque) and 10 g of ion-exchanged water were mixed to prepare a hydrochloric acid aqueous solution. 3 g of coconut shell-based activated carbon (BET specific surface area: 1299 m 2 / g, total pore volume: 0.74 cc / g, particle size: 355 to 500 μm) was charged into the prepared hydrochloric acid aqueous solution, and then treated at room temperature for 3 hours. . Thereafter, the mixture was filtered, washed 10 times with 50 ml of ion-exchanged water, and dried at 80 ° C. overnight. The residual heat residue (ash content) of the activated carbon obtained at this time was 2.0%.
100 mg of p-toluenesulfonic acid (manufactured by Wako Pure Chemical Industries, molecular weight: 172, pKa = -2.80, solubility: 67 g) was dissolved in 850 mg of ion-exchanged water, and the aqueous solution and 900 mg of hydrophilized activated carbon were stirred and mixed. Thereafter, the sample was dried at 80 ° C. for 6 hours and then classified to obtain a sample supporting 10% by weight of p-toluenesulfonic acid having a particle diameter of 355 to 500 μm. The BET specific surface area, total pore volume measurement, water adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

(実施例4)
希塩酸(0.1N、ナカライテスク製)10gとイオン交換水10gを混合し、塩酸水溶液を調整した。ヤシガラ系活性炭(BET比表面積:1561m2/g、全細孔容積:0.89cc/g、粒径:355〜500μm)3gを調製した塩酸水溶液中に投入した後に室温で3時間処理を行った。その後、ろ過し、50mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。このとき得られた活性炭の残熱残渣分(灰分率)は2.0%であった。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)2mgをイオン交換水250mgに溶解させ、その水溶液と親水化された活性炭900mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸0.2重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Example 4)
10 g of dilute hydrochloric acid (0.1 N, manufactured by Nacalai Tesque) and 10 g of ion-exchanged water were mixed to prepare a hydrochloric acid aqueous solution. 3 g of coconut shell-based activated carbon (BET specific surface area: 1561 m 2 / g, total pore volume: 0.89 cc / g, particle size: 355 to 500 μm) was charged into the prepared aqueous hydrochloric acid solution, and then treated at room temperature for 3 hours. . Thereafter, the mixture was filtered, washed 10 times with 50 ml of ion-exchanged water, and dried at 80 ° C. overnight. The residual heat residue (ash content) of the activated carbon obtained at this time was 2.0%.
2 mg of p-toluenesulfonic acid (manufactured by Wako Pure Chemical Industries, molecular weight 172, pKa = -2.80, solubility 67 g) was dissolved in 250 mg of ion-exchanged water, and the aqueous solution and 900 mg of hydrophilized activated carbon were stirred and mixed. Then, after drying at 80 ° C. for 6 hours, the sample was classified to obtain a sample carrying 0.2% by weight of p-toluenesulfonic acid having a particle diameter of 355 to 500 μm. The BET specific surface area, total pore volume measurement, water adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

(実施例5)
希塩酸(0.1N、ナカライテスク製)10gとイオン交換水10gを混合し、塩酸水溶液を調整した。ヤシガラ系活性炭(BET比表面積:860m2/g、全細孔容積:0.50cc/g、粒径:355〜500μm)3gを調製した塩酸水溶液中に投入した後に室温で3時間処理を行った。その後、ろ過し、50mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。このとき得られた活性炭の残熱残渣分(灰分率)は1.0%であった。
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)200mgをイオン交換水850mgに溶解させ、その水溶液と親水化された活性炭900mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸20重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Example 5)
10 g of dilute hydrochloric acid (0.1 N, manufactured by Nacalai Tesque) and 10 g of ion-exchanged water were mixed to prepare a hydrochloric acid aqueous solution. 3 g of coconut shell activated carbon (BET specific surface area: 860 m 2 / g, total pore volume: 0.50 cc / g, particle size: 355 to 500 μm) was charged into the prepared hydrochloric acid aqueous solution, and then treated at room temperature for 3 hours. . Thereafter, the mixture was filtered, washed 10 times with 50 ml of ion-exchanged water, and dried at 80 ° C. overnight. The residual heat residue (ash content) of the activated carbon obtained at this time was 1.0%.
200 mg of p-toluenesulfonic acid (manufactured by Wako Pure Chemical Industries, molecular weight 172, pKa = -2.80, solubility 67 g) was dissolved in 850 mg of ion-exchanged water, and the aqueous solution and 900 mg of hydrophilized activated carbon were stirred and mixed. Thereafter, the sample was dried at 80 ° C. for 6 hours and then classified to obtain a sample supporting 20% by weight of p-toluenesulfonic acid having a particle diameter of 355 to 500 μm. The BET specific surface area, total pore volume measurement, water adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

(比較例1)
石炭系活性炭(BET比表面積:1457m2/g、全細孔容積:0.90cc/g、粒径:355〜500μm、残熱残渣分(灰分率)6.0%)についてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Comparative Example 1)
BET specific surface area of coal-based activated carbon (BET specific surface area: 1457 m 2 / g, total pore volume: 0.90 cc / g, particle size: 355 to 500 μm, residual heat residue (ash content) 6.0%) Pore volume measurement, moisture adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed, and are shown in Table 1.

(比較例2)
ヤシガラ系活性炭(BET比表面積:1630m2/g、全細孔容積:0.91cc/g、粒径:355〜500μm)3gについて、50mlのイオン交換水で10回洗浄を行い、80℃で終夜乾燥させた。このとき得られた活性炭の残熱残渣分(灰分率)は5.0%であった。得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Comparative Example 2)
3 g of coconut husk activated carbon (BET specific surface area: 1630 m 2 / g, total pore volume: 0.91 cc / g, particle size: 355 to 500 μm) is washed 10 times with 50 ml of ion-exchanged water, and overnight at 80 ° C. Let dry. The residual heat residue (ash content) of the activated carbon obtained at this time was 5.0%. The BET specific surface area, total pore volume measurement, water adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

(比較例3)
p−トルエンスルホン酸(和光純薬工業製、分子量172、pKa=−2.80、溶解度67g)25mgをイオン交換水650mgに溶解させ、その水溶液とヤシガラ系活性炭(BET比表面積:1627m2/g、全細孔容積:0.91cc/g、粒径:355〜500μm、残熱残渣分(灰分率)6.0%)475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのp−トルエンスルホン酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Comparative Example 3)
25 mg of p-toluenesulfonic acid (manufactured by Wako Pure Chemical Industries, molecular weight: 172, pKa = -2.80, solubility: 67 g) is dissolved in 650 mg of ion-exchanged water, and the aqueous solution and coconut shell-based activated carbon (BET specific surface area: 1627 m 2 / g) , 475 mg of a total pore volume: 0.91 cc / g, a particle size: 355 to 500 µm, and a residual heat residue (ash content: 6.0%). Then, after drying at 80 ° C. for 6 hours, the sample was classified to obtain a sample supporting 5% by weight of p-toluenesulfonic acid having a particle diameter of 355 to 500 μm. The BET specific surface area, total pore volume measurement, water adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

(比較例4)
クエン酸(和光純薬工業製、分子量192、pKa=3.09、溶解度73g)25mgをイオン交換水450mgに溶解させ、その水溶液とヤシガラ系活性炭(BET比表面積:1450m2/g、全細孔容積:0.78cc/g、粒径:355〜500μm、残熱残渣分(灰分率)6.0%)475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmの硫酸5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Comparative Example 4)
25 mg of citric acid (manufactured by Wako Pure Chemical Industries, molecular weight 192, pKa = 3.09, solubility 73 g) is dissolved in 450 mg of ion-exchanged water, and the aqueous solution and coconut shell type activated carbon (BET specific surface area: 1450 m 2 / g, total pores) 475 mg of a volume: 0.78 cc / g, a particle size: 355 to 500 μm, and a residual heat residue (ash content: 6.0%) were stirred and mixed. Then, after drying at 80 ° C. for 6 hours, the sample was classified to obtain a sample supporting 5% by weight of sulfuric acid having a particle diameter of 355 to 500 μm. The BET specific surface area, total pore volume measurement, water adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

(比較例5)
ナフィオン10%分散液DE1021(和光純薬工業製、分子量1000〜10000、pKa=−3.10)350mgをイオン交換水300mgを混合し、その混合溶液とヤシガラ系活性炭(BET比表面積:686m2/g、全細孔容積:0.47cc/g、粒径:355〜500μm、残熱残渣分(灰分率)6.0%)475mgとを撹拌混合した。その後、80℃条件で6時間乾燥させた後、分級し、粒子直径355〜500μmのナフィオン5重量%担持サンプルを得た。この得られたサンプルについてBET比表面積、全細孔容積測定、水分吸着量比測定、シロキサン吸着/脱離測定を行い、表1にまとめた。
(Comparative Example 5)
350 mg of Nafion 10% dispersion DE1021 (manufactured by Wako Pure Chemical Industries, molecular weight: 1,000 to 10,000, pKa = -3.10) was mixed with 300 mg of ion-exchanged water, and the mixed solution was mixed with coconut shell activated carbon (BET specific surface area: 686 m 2 / g, total pore volume: 0.47 cc / g, particle size: 355 to 500 μm, and 475 mg of residual heat residue (ash content: 6.0%) were stirred and mixed. Then, after drying at 80 ° C. for 6 hours, the mixture was classified to obtain a sample carrying 5% by weight of Nafion having a particle diameter of 355 to 500 μm. The BET specific surface area, total pore volume measurement, water adsorption ratio measurement, and siloxane adsorption / desorption measurement were performed on the obtained sample.

表1より明らかなように、本発明である実施例1〜5は、残熱残渣分(灰分率)が4.0%を超える場合である比較例1〜5と比較し、低脱離性に優れることが分かる。   As is clear from Table 1, Examples 1 to 5 according to the present invention have lower desorption properties than Comparative Examples 1 to 5 in which the residual heat residue (ash content) exceeds 4.0%. It turns out that it is excellent.

本発明のシロキサン除去剤によりシロキサン類ガスを効率的に除去することができ、、一旦除去したシロキサン類ガスが環境変化により脱離する問題が少なくなるため、産業界に大きく寄与することが期待できる。   The siloxane gas can be efficiently removed by the siloxane remover of the present invention, and the problem that the once removed siloxane gas is desorbed due to an environmental change is reduced, which can be expected to greatly contribute to the industry. .

Claims (4)

活性炭に酸性化合物を0.1〜20質量%担持したシロキサン除去剤において、前記活性炭の残熱残渣分が3.5%以下0.5以上であることを特徴とするシロキサン除去剤。 A siloxane remover in which 0.1 to 20% by mass of an acidic compound is supported on activated carbon, wherein the residual heat residue of the activated carbon is not more than 3.5% and not less than 0.5 . 温度25℃相対湿度40%時の水分吸着量を温度25℃相対湿度90%時の水分吸着量で割った水分吸着量比が0.10以上である請求項1に記載のシロキサン除去剤。   2. The siloxane remover according to claim 1, wherein a water adsorption ratio obtained by dividing a water adsorption amount at a temperature of 25 ° C. and a relative humidity of 40% by a water adsorption amount at a temperature of 25 ° C. and a relative humidity of 90% is 0.10 or more. 酸性化合物が酸解離指数(pKa)2.2以下である化合物であり、硫黄(S)元素を含む酸である請求項1または2に記載のシロキサン除去剤。   The siloxane remover according to claim 1 or 2, wherein the acidic compound is a compound having an acid dissociation index (pKa) of 2.2 or less, and is an acid containing a sulfur (S) element. 請求項1〜3のいずれかに記載のシロキサン除去剤を含有したシロキサン除去フィルタ。   A siloxane removal filter containing the siloxane removal agent according to claim 1.
JP2015201001A 2015-10-09 2015-10-09 Siloxane removing agent and siloxane removing filter using the same Active JP6645110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201001A JP6645110B2 (en) 2015-10-09 2015-10-09 Siloxane removing agent and siloxane removing filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201001A JP6645110B2 (en) 2015-10-09 2015-10-09 Siloxane removing agent and siloxane removing filter using the same

Publications (2)

Publication Number Publication Date
JP2017070930A JP2017070930A (en) 2017-04-13
JP6645110B2 true JP6645110B2 (en) 2020-02-12

Family

ID=58538953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201001A Active JP6645110B2 (en) 2015-10-09 2015-10-09 Siloxane removing agent and siloxane removing filter using the same

Country Status (1)

Country Link
JP (1) JP6645110B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542248B2 (en) * 2000-08-09 2010-09-08 新コスモス電機株式会社 Silicone gas adsorbent, gas filter and gas sensor
JP3627100B2 (en) * 2000-08-23 2005-03-09 Jfeエンジニアリング株式会社 Digestion gas purification method
TWI538726B (en) * 2010-02-15 2016-06-21 Nitta Corp Chemical filters using acidic additives, and air purification methods
JP2011212531A (en) * 2010-03-31 2011-10-27 Kuraray Chemical Co Ltd Alkylsilanol removing material, and method for manufacturing the same
JP5690075B2 (en) * 2010-03-31 2015-03-25 大阪瓦斯株式会社 Siloxane remover and filter using the same
EP2846895B1 (en) * 2012-05-07 2021-12-15 Donaldson Company, Inc. Materials, methods, and devices for siloxane contaminant removal
KR20150119368A (en) * 2013-02-20 2015-10-23 오사카 가스 케미칼 가부시키가이샤 Granular activated carbon having many mesopores, and manufacturing method for same
JP6552783B2 (en) * 2013-08-29 2019-07-31 東洋紡株式会社 Siloxane removing agent and siloxane removing filter using the same

Also Published As

Publication number Publication date
JP2017070930A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
Keller et al. High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture
Bagreev et al. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent
Lee et al. Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture
JP6552783B2 (en) Siloxane removing agent and siloxane removing filter using the same
Lee et al. Impregnation of palm shell-based activated carbon with sterically hindered amines for CO2 adsorption
Martin et al. Wet impregnation of a commercial low cost silica using DETA for a fast post-combustion CO2 capture process
JP6273015B2 (en) Renewable adsorbent of modified amines on nanostructured supports
CN105771902A (en) Preparation method and application of sulfhydryl activated carbon mercury removal agent
Goel et al. Development of nitrogen enriched nanostructured carbon adsorbents for CO2 capture
Quang et al. Investigation of CO2 adsorption performance and fluidization behavior of mesoporous silica supported polyethyleneimine
US9039807B2 (en) Regenerative adsorption process for removal of silicon-containing contaminants from process gas using a neutral adsorbent media
Kapica-Kozar et al. Alkali-treated titanium dioxide as adsorbent for CO2 capture from air
JP6645110B2 (en) Siloxane removing agent and siloxane removing filter using the same
JP6500352B2 (en) Siloxane removing agent and siloxane removing filter using the same
JP4480505B2 (en) Siloxane remover and siloxane removal method
JP6500353B2 (en) Siloxane removing agent and siloxane removing filter using the same
JP6264859B2 (en) Siloxane removal agent and siloxane removal filter using the same
JP6405718B2 (en) Acid gas adsorption / removal agent and adsorption / removal filter using the same
WO2013137300A1 (en) Silanol compound remover, silanol compound removal method, chemical filter, and light exposure device
Hsu et al. Adsorption kinetic, thermodynamic, and desorption studies of isopropyl alcohol vapor by oxidized single-walled carbon nanotubes
JP2016221467A (en) Siloxane remover and siloxane removal filter prepared therewith
JP2010022952A (en) Agent and sheet for removing aldehyde
WO2015190459A1 (en) Siloxane-removing agent and siloxane-removing filter using same
Tang et al. Novel hydrophobic hierarchical porous carbon from sewage sludge for the efficient capture of gaseous iodine
JP2013150647A (en) Low desorption deodorant and deodorizing filter using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R151 Written notification of patent or utility model registration

Ref document number: 6645110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350