JP6264859B2 - Siloxane removal agent and siloxane removal filter using the same - Google Patents

Siloxane removal agent and siloxane removal filter using the same Download PDF

Info

Publication number
JP6264859B2
JP6264859B2 JP2013243696A JP2013243696A JP6264859B2 JP 6264859 B2 JP6264859 B2 JP 6264859B2 JP 2013243696 A JP2013243696 A JP 2013243696A JP 2013243696 A JP2013243696 A JP 2013243696A JP 6264859 B2 JP6264859 B2 JP 6264859B2
Authority
JP
Japan
Prior art keywords
siloxane
sample
manufactured
average pore
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013243696A
Other languages
Japanese (ja)
Other versions
JP2015100753A (en
Inventor
増森 忠雄
忠雄 増森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2013243696A priority Critical patent/JP6264859B2/en
Publication of JP2015100753A publication Critical patent/JP2015100753A/en
Application granted granted Critical
Publication of JP6264859B2 publication Critical patent/JP6264859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、シロキサン類ガスの除去性能および低脱離性に優れたシロキサン除去剤ならびに前記除去剤を用いたシロキサン除去フィルタに関する。さらに詳しくは、シロキサン類ガスを効率的に除去することができ、一旦除去したシロキサン類ガスが濃度、温度、湿度等の環境変化により脱離する問題の少ないシロキサン除去剤およびそれを用いたシロキサン除去フィルタに関する。   The present invention relates to a siloxane remover excellent in siloxane gas removal performance and low desorption properties, and a siloxane removal filter using the remover. More specifically, the siloxane gas can be efficiently removed, and the siloxane gas that has been removed is less likely to desorb due to environmental changes such as concentration, temperature, and humidity, and siloxane removal using the same. Regarding filters.

前記濃度、温度、湿度等の環境変化とは、濃度で0〜10vol%、温度で−30〜300℃、湿度で0〜100RH%の範囲内での変化のことである。シロキサン類ガスとは、シロキサン結合(Si−O結合)を有するガス状化合物のことであり、例えば、シロキサン結合数が1〜40の鎖状、および、環状のガス状化合物のことである。より、具体的には、ヘキサメチルジシロキサン(L2)、オクタメチルトリシロキサン(L3)、デカメチルテトラシロキサン(L4)、ドデカメチルペンタシロキサン(L5)、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)等が挙げられる。また、ここで言う低脱離性とは、吸着容量と脱離量の比(吸着容量/脱離量)のことを指す。   The environmental changes such as the concentration, temperature, and humidity are changes within a range of 0 to 10 vol% in concentration, −30 to 300 ° C. in temperature, and 0 to 100 RH% in humidity. The siloxane gas is a gaseous compound having a siloxane bond (Si—O bond), for example, a linear or cyclic gaseous compound having 1 to 40 siloxane bonds. More specifically, hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5), hexamethylcyclotrisiloxane (D3), octamethyl Examples include cyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and the like. Moreover, the low desorption property said here refers to the ratio of adsorption capacity and desorption amount (adsorption capacity / desorption amount).

大気中の汚染物質については、その種類は多岐にわたっており、硫化水素、アンモニア、アルデヒド、酢酸等の極性ガス、および、ベンゼン、トルエン、スチレン、シロキサン類ガス等の低極性ガスから構成されている。特に、シロキサン類ガスは種々の弊害の原因となることが知られている。例えば、燃焼して生成する微粒子状の酸化ケイ素がガスタービンやガスエンジンに付着することによって引き起こされる発電障害の原因や、ガスセンサー表面においてシリカ皮膜を形成し、誤った警報の原因となることが知られている。   Concerning pollutants in the atmosphere, there are a wide variety of types, and they are composed of polar gases such as hydrogen sulfide, ammonia, aldehyde, and acetic acid, and low polarity gases such as benzene, toluene, styrene, and siloxane gases. In particular, siloxane gases are known to cause various harmful effects. For example, particulate silicon oxide produced by combustion may cause power generation failure caused by adhesion to gas turbines or gas engines, or a silica film may be formed on the gas sensor surface, causing false alarms. Are known.

従来から、シロキサン類ガスを除去する目的で、活性炭、シリカゲル、ゼオライト、活性アルミナ等の多孔質材料が多く用いられている。   Conventionally, many porous materials such as activated carbon, silica gel, zeolite, activated alumina and the like have been used for the purpose of removing siloxane gases.

けいそう土、シリカ、アルミナ、シリカとアルミナの混合物、珪酸アルミニウム、活性アルミナ、多孔質ガラス、活性白土、活性ベントナイトまたは合成ゼオライトのうちの少なくとも1種からなる無機物の粉末に無機酸塩を添着した吸着剤を含有する空気浄化フィルタが知られている(例えば、特許文献1)。しかしながら、添着される無機酸塩はアンモニア、アミン等の塩基性ガス状不純物を除去し、一旦除去した塩基性ガス状不純物の脱離を抑制する目的であり、シロキサン類ガスの脱離抑制に関する記載はない。また、添着する無機酸塩の種類に関して、具体的な記載はあるものの、シロキサン類ガスの脱離抑制に効果的な化合物について具体的な記載はなく、効果的な添着量の範囲に関する具体的な記載もない。したがって、例えば、塩基性ガス状不純物を十分に除去する目的で、シリカゲル粉末に硫酸アルミを添着しても、添着する無機酸塩が硫酸アルミであるため、低脱離性が十分でないという問題がある。また、シリカゲル粉末に硫酸ジルコニウムを30重量%添着しても、添着量が多すぎるため、シロキサン類ガスを十分に除去できないという問題がある。   An inorganic acid salt was impregnated with inorganic powder consisting of at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite or synthetic zeolite. An air purification filter containing an adsorbent is known (for example, Patent Document 1). However, the added inorganic acid salt is intended to remove basic gaseous impurities such as ammonia and amine, and to suppress the elimination of the basic gaseous impurities once removed. There is no. In addition, although there is a specific description regarding the type of inorganic acid salt to be added, there is no specific description on a compound effective for suppressing the elimination of siloxane gases, and a specific description on the range of effective addition amount. There is no description. Therefore, for example, for the purpose of sufficiently removing basic gaseous impurities, even when aluminum sulfate is added to silica gel powder, the inorganic acid salt to be added is aluminum sulfate, so that there is a problem that low desorption is not sufficient. is there. Further, even when 30% by weight of zirconium sulfate is added to the silica gel powder, there is a problem that the amount of the siloxane gas cannot be sufficiently removed because the amount of addition is too large.

また、硫酸第一鉄および/または硫酸第二鉄が、シロキサン化合物の吸着剤として用いられているガスフィルタ、ならびに、硫酸第一鉄および/または硫酸第二鉄が多孔質活性アルミナおよび/または活性炭に担持されているガスフィルタが知られている(例えば、特許文献2)。しかしながら、これら硫酸鉄はシロキサン類ガスを吸着除去することが目的であり、一旦除去したシロキサン類ガスの脱離抑制に関する記載はない。また、硫酸鉄の担持に関して、効果的な担持量の範囲に関する具体的な記載もない。したがって、例えば、活性炭に硫酸第一鉄を担持しても低脱離性が十分でないという問題がある。   Further, a gas filter in which ferrous sulfate and / or ferric sulfate is used as an adsorbent for a siloxane compound, and ferrous sulfate and / or ferric sulfate are porous activated alumina and / or activated carbon There is known a gas filter carried on a cylinder (for example, Patent Document 2). However, these iron sulfates are intended to adsorb and remove siloxane gases, and there is no description regarding suppression of desorption of siloxane gases once removed. In addition, there is no specific description regarding the range of effective loading amount for loading iron sulfate. Therefore, for example, there is a problem that even if ferrous sulfate is supported on activated carbon, low desorption is not sufficient.

上述のとおり、シロキサン類ガスを効率的に除去することができ、低脱離性に優れたシロキサン除去剤および前記シロキサン除去剤を用いたシロキサン除去フィルタは見当たらないのが現状である。   As described above, the present situation is that there is no siloxane removal agent that can efficiently remove siloxane gases and has excellent low desorption and a siloxane removal filter using the siloxane removal agent.

特開平11−333226号公報JP-A-11-333226 特開昭60−222144号公報JP 60-222144 A

本発明は上記従来技術の課題を背景になされたものであり、シロキサン類ガスを効率的に除去することができ、低脱離性に優れたシロキサン除去剤および前記シロキサン除去剤を用いたシロキサン除去フィルタを提供することを課題とする。   The present invention has been made against the background of the above-described prior art, and can efficiently remove siloxane gases and has a low detachability and a siloxane removal using the siloxane remover. It is an object to provide a filter.

本発明者らは上記課題を解決するため、鋭意研究した結果、ついに本発明を完成するに到った。すなわち本発明は、以下の通りである。
1.平均細孔直径が3〜20nmの無機多孔質体に金属塩を0.1〜20重量%担持させたシロキサン除去剤であって、前記金属塩が、第3イオン化エネルギーが30〜35eVである3価の金属元素、または、第4イオン化エネルギーが30〜55eVである4価以上の金属元素を含むことを特徴とするシロキサン除去剤。
2.前記無機多孔質体がシリカゲル、メソポーラスシリカである上記1に記載のシロキサン除去剤。
3.前記金属元素が、Ti、V、Mn、Fe、Co、Ga、または、Zrである上記1または2に記載のシロキサン除去剤。
4.上記1〜3のいずれかに記載のシロキサン除去剤を含有するシロキサン除去フィルタ。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
1. A siloxane remover having a metal salt supported on an inorganic porous material having an average pore diameter of 3 to 20 nm in an amount of 0.1 to 20% by weight, wherein the metal salt has a third ionization energy of 30 to 35 eV 3 A siloxane removing agent comprising a valent metal element or a tetravalent or higher valent metal element having a fourth ionization energy of 30 to 55 eV.
2. 2. The siloxane remover according to 1 above, wherein the inorganic porous material is silica gel or mesoporous silica.
3. 3. The siloxane remover according to 1 or 2 above, wherein the metal element is Ti, V, Mn, Fe, Co, Ga, or Zr.
4). The siloxane removal filter containing the siloxane removal agent in any one of said 1-3.

本発明によるシロキサン除去剤は、平均細孔直径が3〜20nmの無機多孔質体に金属塩を0.1〜20重量%担持させ、前記金属塩が、第3イオン化エネルギーが30〜35Vである3価の金属元素、または、第4イオン化エネルギーが30〜55eVである4価以上の金属元素を含むため、シロキサン類ガスを効率的に除去することができ、低脱離性に優れるという利点を有するものである。   In the siloxane remover according to the present invention, 0.1 to 20% by weight of a metal salt is supported on an inorganic porous material having an average pore diameter of 3 to 20 nm, and the metal salt has a third ionization energy of 30 to 35V. Since it contains a trivalent metal element or a tetravalent or higher metal element having a fourth ionization energy of 30 to 55 eV, the siloxane gas can be efficiently removed and has the advantage of excellent low desorption. It is what you have.

以下、本発明を詳細に説明する。本発明におけるシロキサン除去剤は、平均細孔直径が3〜20nmの無機多孔質体に金属塩を0.1〜20重量%担持させ、前記金属塩が、第3イオン化エネルギーが30〜35eVである3価の金属元素、または、第4イオン化エネルギーが30〜55eVである4価以上の金属元素を含む。平均細孔直径が3〜20nmの無機多孔質体に金属塩を0.1〜20重量%担持させ、前記金属塩が、第3イオン化エネルギーが30〜35eVである3価の金属元素、または、第4イオン化エネルギーが30〜55eVである4価以上の金属元素を含むことにより、シロキサン類ガスを効率的に除去することができ、さらには、低脱離性に優れることを本発明者は見出した。   Hereinafter, the present invention will be described in detail. In the siloxane removing agent of the present invention, 0.1 to 20% by weight of a metal salt is supported on an inorganic porous material having an average pore diameter of 3 to 20 nm, and the metal salt has a third ionization energy of 30 to 35 eV. A trivalent metal element or a tetravalent or higher metal element having a fourth ionization energy of 30 to 55 eV is included. A metal salt is supported on an inorganic porous body having an average pore diameter of 3 to 20 nm in an amount of 0.1 to 20% by weight, and the metal salt is a trivalent metal element having a third ionization energy of 30 to 35 eV, or The present inventor has found that the inclusion of a tetravalent or higher-valent metal element having a fourth ionization energy of 30 to 55 eV can efficiently remove siloxane gases, and further has excellent low desorption properties. It was.

メカニズムについては明確ではないが、次のように推測される。まずは、(1)シロキサン類ガスが無機多孔質体に吸着する。次に、(2)吸着したシロキサン類ガスが、近傍の金属塩と反応することによりシロキサン類ガスが活性化される。さらに、(3)活性化されたシロキサン類ガス同士、または、活性化されたシロキサン類ガスと新たに無機多孔質体に吸着した活性化されていないシロキサン類ガスが反応することにより、シロキサン類ガスが分子量のより大きいシロキサン類化合物へと変換される。分子量の大きいシロキサン類化合物は沸点が高いため、低脱離性が向上する、と考えられる。   The mechanism is not clear, but is presumed as follows. First, (1) siloxane gas is adsorbed on the inorganic porous material. Next, (2) the adsorbed siloxane gas reacts with a nearby metal salt to activate the siloxane gas. Further, (3) the activated siloxane gases or the activated siloxane gases react with the unactivated siloxane gases newly adsorbed on the inorganic porous material, whereby the siloxane gases Is converted to a siloxane compound having a higher molecular weight. Since siloxane compounds having a large molecular weight have a high boiling point, it is considered that low detachability is improved.

前記シロキサン除去剤において、平均細孔直径が3〜20nmの無機多孔質体を含有していない、または、金属塩の担持量が20重量%より大きければ、前記(1)の進行が遅くなるため、シロキサン類ガスを効率的に除去することはできない。   If the siloxane remover does not contain an inorganic porous material having an average pore diameter of 3 to 20 nm, or the supported amount of the metal salt is larger than 20% by weight, the progress of (1) is delayed. The siloxane gases cannot be removed efficiently.

また、前記シロキサン除去剤において、第3イオン化エネルギーが30eV〜35eVである3価の金属元素、または、第4イオン化エネルギーが30〜55eVである4価以上の金属元素を含む金属塩を含有していない、もしくは、金属塩の担持量が0.1重量%より小さければ、前記(2)〜(3)の反応が進行しないため、シロキサン類ガスの脱離を十分に抑制することはできない。   The siloxane remover contains a trivalent metal element having a third ionization energy of 30 eV to 35 eV or a metal salt containing a tetravalent or higher metal element having a fourth ionization energy of 30 to 55 eV. If the amount of the metal salt supported is less than 0.1% by weight, the reactions (2) to (3) do not proceed, and the siloxane gas desorption cannot be sufficiently suppressed.

本発明における無機多孔質体の平均細孔直径は3〜20nmである。好ましくは3〜15nmであり、より好ましくは3〜10nmである。平均細孔直径が3nmより小さければ、細孔が小さいため、シロキサン類ガスが細孔に入りにくく、効率的に吸着することができない。また、平均細孔直径が20nmより大きければ、細孔が大きいため、一旦吸着したシロキサン類ガスを捕捉し続けることが困難になる。   The average pore diameter of the inorganic porous material in the present invention is 3 to 20 nm. Preferably it is 3-15 nm, More preferably, it is 3-10 nm. If the average pore diameter is smaller than 3 nm, since the pores are small, the siloxane gas hardly enters the pores and cannot be adsorbed efficiently. On the other hand, if the average pore diameter is larger than 20 nm, the pores are large, so that it is difficult to keep capturing the once adsorbed siloxane gas.

本発明における無機多孔質体のBET比表面積については特に限定しないが、200〜1000m/gであることが好ましく、400〜1000m/gであることがより好ましい。BET比表面積が200m/gより小さければ、シロキサン類ガスとの接触面積が小さいため、効率的に除去することができない。また、BET比表面積が1000m/gより大きければ、無機多孔質体の製造が困難になる。 Although not particularly limited BET specific surface area of the inorganic porous material in the present invention is preferably 200~1000m 2 / g, more preferably 400 to 1000 m 2 / g. If the BET specific surface area is smaller than 200 m 2 / g, the contact area with the siloxane gas is small, so that it cannot be efficiently removed. Moreover, if the BET specific surface area is larger than 1000 m 2 / g, it is difficult to produce an inorganic porous body.

本発明における無機多孔質体の細孔容積については特に限定しないが、0.5〜1.5cc/gであることが好ましく、0.7〜1.1cc/gであることがより好ましい。細孔容積が0.5cc/gより小さければ、シロキサン類ガスの吸着容量が小さくなり、効率的に除去することができない。また、細孔容積が1.5cc/gより大きければ、製造が著しく困難になる。   Although it does not specifically limit about the pore volume of the inorganic porous body in this invention, It is preferable that it is 0.5-1.5 cc / g, and it is more preferable that it is 0.7-1.1 cc / g. If the pore volume is smaller than 0.5 cc / g, the adsorption capacity of the siloxane gas becomes small and cannot be efficiently removed. Further, if the pore volume is larger than 1.5 cc / g, the production becomes extremely difficult.

本発明における無機多孔質体の種類については特に限定しないが、例えば、シリカゲル、メソポーラスシリカ、珪藻土、シリカライト等のSi系多孔質体、合成ゼオライト、天然ゼオライト、人工ゼオライト等のSi/Al系多孔質体、活性アルミナ等のAl系多孔質体、ベントナイト、活性白土、セピオライト、アロフェン等の粘土鉱物系多孔質体、アルミノリン酸塩(AlPO)、シリコアルミノリン酸塩(SAPO)等のP系多孔質体、および、これらの混合物が好ましい。金属塩の担持しやすさより、シリカゲル、メソポーラスシリカ、およびこれらを含む混合物がより好ましい。   The type of the inorganic porous material in the present invention is not particularly limited. For example, Si-based porous materials such as silica gel, mesoporous silica, diatomaceous earth, and silicalite, Si / Al-based porous materials such as synthetic zeolite, natural zeolite, and artificial zeolite. , Porous materials such as activated alumina, clay-based porous materials such as bentonite, activated clay, sepiolite, and allophane, P-based porous materials such as aluminophosphate (AlPO) and silicoaluminophosphate (SAPO) A mass and a mixture thereof are preferred. Silica gel, mesoporous silica, and a mixture containing these are more preferable than the ease of loading the metal salt.

本発明における金属塩は第3イオン化エネルギーが30〜35eVである3価の金属元素、または、第4イオン化エネルギーが30〜55eVである4価以上の金属元素を含む。3価の金属元素の第3イオン化エネルギーが30eV未満、または、4価以上の金属元素の第4イオン化エネルギーが30eV未満であれば、無機多孔質体に吸着したシロキサン類ガスと金属塩との反応が遅くなり、十分な低脱離性が得られない。また、3価の金属元素の第3イオン化エネルギーが35eVより大きい、または、4価以上の金属元素の第4イオン化エネルギーが55eVより大きければ、安全性の面から取り扱いが困難になる。   The metal salt in the present invention contains a trivalent metal element having a third ionization energy of 30 to 35 eV or a tetravalent or higher metal element having a fourth ionization energy of 30 to 55 eV. If the third ionization energy of the trivalent metal element is less than 30 eV or the fourth ionization energy of the tetravalent or higher metal element is less than 30 eV, the reaction between the siloxane gas adsorbed on the inorganic porous body and the metal salt However, sufficient low detachability cannot be obtained. If the third ionization energy of the trivalent metal element is larger than 35 eV, or the fourth ionization energy of the tetravalent or higher metal element is larger than 55 eV, handling becomes difficult from the viewpoint of safety.

本発明における金属元素については、コストおよび環境汚染の面から、Ti、V、Mn、Fe、Co、Ga、またはZrであることが好ましい。より好ましくは、Ti、Fe、Ga、またはZrである。   The metal element in the present invention is preferably Ti, V, Mn, Fe, Co, Ga, or Zr from the viewpoint of cost and environmental pollution. More preferably, it is Ti, Fe, Ga, or Zr.

本発明における金属塩の種類については特に限定せず、硫酸塩、硝酸塩、リン酸塩、炭酸塩、炭酸水素塩、クエン酸塩、酢酸塩、塩化物等の一般的な塩を用いることができ、常温常圧(25℃、1atm)で液体、または、固体であることが好ましい。常温常圧で気体であれば、無機多孔質体への担持が困難になるからである。   The type of metal salt in the present invention is not particularly limited, and general salts such as sulfates, nitrates, phosphates, carbonates, bicarbonates, citrates, acetates and chlorides can be used. It is preferably liquid or solid at room temperature and normal pressure (25 ° C., 1 atm). This is because if it is a gas at normal temperature and pressure, it is difficult to support the inorganic porous material.

本発明における金属塩の担持量は0.1〜20重量%である。好ましくは0.5〜15重量%であり、より好ましくは1〜10重量%である。担持量が0.1重量%未満であれば、金属塩の含有量が少ないため、シロキサン類ガスの脱離を十分に抑制することはできない。担持量が20重量%より大きければ、金属塩の担持量が多いため、無機多孔質体の細孔が閉塞され、効率的に吸着することができない。   In the present invention, the supported amount of the metal salt is 0.1 to 20% by weight. Preferably it is 0.5 to 15 weight%, More preferably, it is 1 to 10 weight%. If the supported amount is less than 0.1% by weight, the content of the metal salt is small, so that the desorption of the siloxane gas cannot be sufficiently suppressed. If the loading amount is larger than 20% by weight, the loading amount of the metal salt is large, so that the pores of the inorganic porous body are blocked and cannot be adsorbed efficiently.

本発明におけるシロキサン除去フィルタは前記シロキサン除去剤を含有することが好ましい。シロキサン除去フィルタの製造方法については、特に限定しないが、シート化されたシロキサン除去剤を、平面状、プリーツ状、ハニカム状に加工するという製造方法が好ましい。プリーツ状は直行流型フィルタとしての使用において、また、ハニカム状は平行流型フィルタとしての使用において、処理する気体との接触面積を大きくして除去効率を向上させるとともに、脱臭フィルタの低圧損化を同時に図ることができる。   The siloxane removal filter in the present invention preferably contains the siloxane remover. The method for producing the siloxane removal filter is not particularly limited, but a production method in which the sheet-formed siloxane removal agent is processed into a planar shape, a pleated shape, or a honeycomb shape is preferable. When using a pleated shape as a direct flow filter, or when using a honeycomb shape as a parallel flow filter, the contact area with the gas to be treated is increased to improve removal efficiency, and the deodorizing filter has a low pressure loss. Can be achieved simultaneously.

本発明におけるシロキサン除去剤をシート化する方法としては特に制限されず、従来公知の加工方法を用いることができる。例えば、(1)シート構成繊維と共にシロキサン除去剤粒子を水中に分散させ脱水することにより得られる湿式シート化法、(2)シート構成繊維と共にシロキサン除去剤粒子を気中分散させることにより得られるエアレイド法、(3)二層以上の不織布、織布、ネット状物、フィルムまたは膜の層間に、熱接着によりシロキサン除去剤を充填する方法、(4)エマルジョン接着剤、溶剤系接着剤を利用して不織布、織布、発泡ウレタンなどの通気性材料にシロキサン除去剤を結合担持させる方法、(5)基材、ホットメルト接着剤の熱可塑性等を利用して不織布、織布、発泡ウレタンなどの通気性材料にシロキサン除去剤を結合担持させる方法、(6)シロキサン除去剤を繊維または樹脂に練りこむことにより混合一体化する方法等、用途に応じて適当な方法を用いることができる。界面活性剤、水溶性高分子等を用いる必要がなく、多孔質体自身の細孔閉塞を防止することができるため、前記加工方法(2)、(3)、(5)を用いることが好ましい。   The method for forming the siloxane remover in the present invention into a sheet is not particularly limited, and a conventionally known processing method can be used. For example, (1) a wet sheeting method obtained by dispersing siloxane remover particles in water together with sheet constituent fibers and dehydrating, and (2) airlaid obtained by dispersing siloxane remover particles in the air together with sheet constituent fibers. (3) A method of filling a siloxane remover by thermal bonding between two or more layers of non-woven fabric, woven fabric, net-like material, film or film, (4) Emulsion adhesive, solvent-based adhesive (5) Non-woven fabrics, woven fabrics, foamed urethane, etc. by utilizing the thermoplasticity of the base material, hot melt adhesive, etc. Use such as a method of bonding and supporting a siloxane remover on a breathable material, (6) a method of mixing and integrating a siloxane remover into a fiber or resin, etc. Suitable methods according can be used. It is preferable to use the processing methods (2), (3), and (5) because it is not necessary to use a surfactant, a water-soluble polymer, etc., and the pores of the porous body itself can be prevented. .

本発明におけるシロキサン除去剤およびシロキサン除去フィルタは、屋内、乗り物内、壁紙、家具、内装材、樹脂成形体、電気機器等で、シロキサン類ガスを低減する目的で広く用いることができる。特に空気中に含有されるシロキサン類ガスの除去目的で用いることが好ましく、例えば、粒状物を通気性の箱、袋、網等の容器に充填し、静置または通気させて用いることが好ましい。   The siloxane remover and siloxane removal filter in the present invention can be widely used for the purpose of reducing siloxane gases in indoors, in vehicles, wallpaper, furniture, interior materials, resin moldings, electrical equipment and the like. In particular, it is preferably used for the purpose of removing siloxane gases contained in the air. For example, it is preferable to fill a granular material in a container such as a breathable box, bag, or net, and leave or aeration.

以下、実施例によって本発明の作用効果をより具体的に示す。下記実施例は本発明方法を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。なお、実施例中で測定した特性値の評価方法を以下に示す。   Hereinafter, the effects of the present invention will be described more specifically by way of examples. The following examples are not intended to limit the method of the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are included in the technical scope of the present invention. In addition, the evaluation method of the characteristic value measured in the Example is shown below.

[平均細孔直径の測定方法]
サンプル約100mgを採取し、120℃で24時間真空乾燥した後、秤量した。自動比表面積装置ジェミニ2375(マイクロメリティックス社製)を使用し、液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で徐々に高めながら40点測定し、前記サンプルの吸着等温線を作製した。自動比表面積装置ジェミニ2375に付属の解析ソフト(GEMINI−PCW version1.01)にて、BET条件で、表面積解析範囲を0.01〜0.15に設定して、BET比表面積[m/g]を求めた。また、相対圧0.95のデータより全細孔容積[cc/g]を求め、全細孔容積を4倍した値をBET比表面積で割ることにより、平均細孔径[nm]を算出した。
[Measurement method of average pore diameter]
About 100 mg of a sample was taken, vacuum-dried at 120 ° C. for 24 hours, and then weighed. Using an automatic specific surface area device Gemini 2375 (manufactured by Micromeritics), the adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) is gradually increased in a range of relative pressure of 0.02 to 0.95. The sample was measured at 40 points while raising it to obtain an adsorption isotherm of the sample. With the analysis software (GEMINI-PCW version 1.01) attached to the automatic specific surface area device Gemini 2375, the surface area analysis range is set to 0.01 to 0.15 under the BET conditions, and the BET specific surface area [m 2 / g ] Was requested. Further, the total pore volume [cc / g] was obtained from the data of the relative pressure 0.95, and the average pore diameter [nm] was calculated by dividing the value obtained by multiplying the total pore volume by 4 by the BET specific surface area.

[シロキサン吸着/脱離の測定方法]
粒子直径355〜500μmに分級されたサンプルを、内径15mmφのガラス管中に、サンプル層の厚みが0.32cmになるように充填した。これに、オクタメチルシクロテトラシロキサン(環状シロキサンD4)15ppmを含有する温度25℃、湿度50%RHの空気を10L/minで連続的に流通させた。サンプルの入口側と出口側のガスを1分毎にサンプリングし、FID付きガスクロマトグラフ(GC−2014、島津製作所製)において、シロキサン濃度を測定し、その比から除去率[%]を算出した。この除去率が5%以下になるまで流通、濃度測定を続けた。サンプルの入口側と出口側のガス濃度差、流通させた流量、および、測定時の温度から除去量を算出し、時間と除去量の曲線を時間で積分したものをサンプル重量で割ることにより、シロキサン吸着容量[mg/g]を算出した。
次に、この除去率が5%以下になるまで流通、濃度測定を続けたサンプルについて、シロキサンを含有しない温度25℃、湿度50%RHの空気を10L/minで連続的に流通させ、サンプルの出口側のガスを1分毎にサンプリングし、FID付きガスクロマトグラフ(GC−2014、島津製作所製)において、シロキサン濃度を20分間測定した。サンプルの出口側のガス濃度、流通させた流量、および、測定時の温度から脱離量を求め、時間と脱離量の曲線を時間(20分間)で積分したものをサンプル重量で割ることにより、シロキサン脱離量[mg/g]を算出した。シロキサン吸着容量[mg/g]をシロキサン脱離量[mg/g]で割ることにより、低脱離性[−]を算出した。
[Measurement method of siloxane adsorption / desorption]
The sample classified to a particle diameter of 355 to 500 μm was filled in a glass tube having an inner diameter of 15 mmφ so that the thickness of the sample layer was 0.32 cm. To this, air having a temperature of 25 ° C. and a humidity of 50% RH containing 15 ppm of octamethylcyclotetrasiloxane (cyclic siloxane D4) was continuously circulated at 10 L / min. The gas at the inlet side and the outlet side of the sample was sampled every minute, the siloxane concentration was measured on a gas chromatograph with FID (GC-2014, manufactured by Shimadzu Corporation), and the removal rate [%] was calculated from the ratio. Distribution and concentration measurement were continued until the removal rate was 5% or less. By calculating the removal amount from the gas concentration difference between the inlet side and the outlet side of the sample, the flow rate passed through, and the temperature at the time of measurement, and dividing the time and removal amount curve by time, dividing by the sample weight, Siloxane adsorption capacity [mg / g] was calculated.
Next, about the sample which continued distribution | circulation and density | concentration measurement until this removal rate became 5% or less, the air of the temperature 25 degreeC and humidity 50% RH which do not contain siloxane was continuously distribute | circulated at 10 L / min, The gas on the outlet side was sampled every minute, and the siloxane concentration was measured for 20 minutes in a gas chromatograph with FID (GC-2014, manufactured by Shimadzu Corporation). By calculating the desorption amount from the gas concentration at the outlet side of the sample, the flow rate at which it was circulated, and the temperature at the time of measurement, and dividing the curve of time and desorption amount over time (20 minutes) by the sample weight The amount of siloxane desorption [mg / g] was calculated. Low desorption [-] was calculated by dividing the siloxane adsorption capacity [mg / g] by the amount of siloxane desorption [mg / g].

<実施例1>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水8.6gに溶解させ、その水溶液とB形シリカゲル(富士シリシア化学株式会社製、BET比表面積614m/g、細孔容積0.82cc/g、平均細孔直径5.3nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 1>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (0.5 g) was dissolved in 8.6 g of ion-exchanged water, and the aqueous solution and B-type silica gel (Fuji Silysia Chemical Ltd., BET specific surface area 614 m). 2 / g, pore volume 0.82 cc / g, average pore diameter 5.3 nm) and 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5 wt%. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例2>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 2>
Iron sulfate (III) n hydrate (Wako Pure Chemical Industries, Ltd.) (0.5 g) was dissolved in ion-exchanged water (9.0 g), and the resulting aqueous solution and B-type silica gel (Toyota Kako Co., Ltd., BET specific surface area of 531 m 2) / G, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例3>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水6.7gに溶解させ、その水溶液とC形シリカゲル(富士シリシア化学株式会社製G−10、BET比表面積271m/g、細孔容積0.64cc/g、平均細孔直径9.4nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 3>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 g was dissolved in 6.7 g of ion-exchanged water, and the aqueous solution and C-type silica gel (G-10, BET manufactured by Fuji Silysia Chemical Ltd.) A specific surface area of 271 m 2 / g, a pore volume of 0.64 cc / g, and an average pore diameter of 9.4 nm were mixed with 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例4>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水15.2gに溶解させ、その水溶液とID形シリカゲル(富士シリシア化学株式会社製、BET比表面積302m/g、細孔容積1.45cc/g、平均細孔直径19.2nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 4>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 g was dissolved in 15.2 g of ion-exchanged water, and the aqueous solution and ID silica gel (manufactured by Fuji Silysia Chemical Co., Ltd., BET specific surface area 302 m). 2 / g, pore volume 1.45 cc / g, average pore diameter 19.2 nm) and 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例5>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水8.4gに溶解させ、その水溶液とメソポーラスシリカ(アルドリッチ株式会社製MCM−41、BET比表面積895m/g、細孔容積0.80cc/g、平均細孔直径3.6nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、圧縮造粒・粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 5>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 g was dissolved in ion-exchanged water 8.4 g, and the aqueous solution and mesoporous silica (Aldrich MCM-41, BET specific surface area 895 m). 2 / g, pore volume 0.80 cc / g, average pore diameter 3.6 nm) and 9.5 g. Then, after drying for 12 hours at 80 ° C., compression granulation, pulverization, and classification were performed to obtain a 5 wt% sample with a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例6>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水7.6gに溶解させ、その水溶液とメソポーラスシリカ(日本化成工業株式会社製、BET比表面積613m/g、細孔容積0.73cc/g、平均細孔直径4.8nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、圧縮造粒・粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 6>
0.5 g of iron (III) sulfate n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 7.6 g of ion-exchanged water, and its aqueous solution and mesoporous silica (manufactured by Nippon Kasei Kogyo Co., Ltd., BET specific surface area 613 m 2). / G, pore volume 0.73 cc / g, average pore diameter 4.8 nm) and 9.5 g. Then, after drying for 12 hours at 80 ° C., compression granulation, pulverization, and classification were performed to obtain a 5 wt% sample with a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例7>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水11.1gに溶解させ、その水溶液とメソポーラスシリカ(日本化成工業株式会社製、BET比表面積480m/g、細孔容積1.06cc/g、平均細孔直径8.8nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、圧縮造粒・粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 7>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 g was dissolved in ion-exchanged water 11.1 g, and the aqueous solution and mesoporous silica (manufactured by Nippon Kasei Kogyo Co., Ltd., BET specific surface area 480 m 2). / G, pore volume 1.06 cc / g, average pore diameter 8.8 nm) and 9.5 g. Then, after drying for 12 hours at 80 ° C., compression granulation, pulverization, and classification were performed to obtain a 5 wt% sample with a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例8>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水9.1gに溶解させ、その水溶液とメソポーラスシリカ(日本化成工業株式会社製、BET比表面積268m/g、細孔容積0.87cc/g、平均細孔直径13.0nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、圧縮造粒・粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 8>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 g was dissolved in ion-exchanged water 9.1 g, and the aqueous solution and mesoporous silica (manufactured by Nippon Kasei Kogyo Co., Ltd., BET specific surface area 268 m 2). / G, pore volume 0.87 cc / g, average pore diameter 13.0 nm) and 9.5 g. Then, after drying for 12 hours at 80 ° C., compression granulation, pulverization, and classification were performed to obtain a 5 wt% sample with a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<比較例1>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水6.1gに溶解させ、その水溶液とA形シリカゲル(豊田化工株式会社製、BET比表面積796m/g、細孔容積0.43cc/g、平均細孔直径2.2nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Comparative Example 1>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (0.5 g) was dissolved in ion exchange water (6.1 g), and the resulting aqueous solution and A-type silica gel (Toyota Kako Co., Ltd., BET specific surface area 796 m 2) / G, pore volume 0.43 cc / g, average pore diameter 2.2 nm) and 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<比較例2>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.5gをイオン交換水6.1gに溶解させ、その水溶液とID形シリカゲル(富士シリシア化学株式会社製G−50、BET比表面積120m/g、細孔容積0.62cc/g、平均細孔直径20.7nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Comparative example 2>
Iron sulfate (III) n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (0.5 g) was dissolved in ion-exchanged water (6.1 g), the aqueous solution and ID silica gel (Fuji Silysia Chemical Co., Ltd., G-50, BET). 9.5 g of a specific surface area of 120 m 2 / g, a pore volume of 0.62 cc / g, and an average pore diameter of 20.7 nm were mixed with stirring. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

実施例1〜8、比較例1〜2に関して、無機多孔質体のBET比表面積[m/g]、細孔容積[cc/g]、平均細孔径[nm]、および、金属塩担持サンプルのシロキサン吸着/脱離測定を行った結果を表1に示す。表1より明らかなように、本発明である実施例1〜8は、平均細孔直径が3nmより小さい場合(比較例1)、および、平均細孔直径が20nmより大きい場合(比較例2)と比較して、シロキサン吸着容量が大きく、低脱離性に優れることが分かる。 Regarding Examples 1 to 8 and Comparative Examples 1 and 2, the BET specific surface area [m 2 / g], the pore volume [cc / g], the average pore diameter [nm], and the metal salt-supported sample of the inorganic porous body The results of siloxane adsorption / desorption measurements are shown in Table 1. As is clear from Table 1, Examples 1 to 8 according to the present invention have an average pore diameter of less than 3 nm (Comparative Example 1) and an average pore diameter of greater than 20 nm (Comparative Example 2). It can be seen that the siloxane adsorption capacity is large and the low desorption property is excellent as compared with.

<実施例9>
ヘキサアンミンコバルト(III)塩化物(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 9>
0.5 g of hexaamminecobalt (III) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 9.0 g of ion-exchanged water, and an aqueous solution thereof and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2 / g, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例10>
硫酸ガリウム(III)水和物(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 10>
0.5 g of gallium sulfate (III) hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2 / g, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例11>
硫酸チタン(IV)24%含有溶液(キシダ化学株式会社製)2.1gをイオン交換水6.9gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 11>
A solution containing 24% of titanium sulfate (IV) (manufactured by Kishida Chemical Co., Ltd.) is dissolved in 6.9 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2 / g). And 9.5 g of a pore volume of 0.86 cc / g and an average pore diameter of 6.5 nm). Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例12>
硫酸ジルコニウム(IV)4水和物(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 12>
0.5 g of zirconium sulfate (IV) tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 9.0 g of ion-exchanged water, and an aqueous solution thereof and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2). / G, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5 wt%. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例13>
酸化硫酸バナジウム(IV)(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 13>
0.5 g of vanadium oxide sulfate (IV) (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 9.0 g of ion-exchanged water, and its aqueous solution and B-type silica gel (manufactured by Toyota Chemical Industries, Ltd., BET specific surface area 531 m 2 / g, The mixture was stirred and mixed with 9.5 g of a pore volume of 0.86 cc / g and an average pore diameter of 6.5 nm. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例14>
過マンガン酸カリウム(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 14>
0.5 g of potassium permanganate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area 531 m 2 / g, pores) The mixture was stirred and mixed with 9.5 g of a volume of 0.86 cc / g and an average pore diameter of 6.5 nm. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<比較例3>
硫酸アルミニウム(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Comparative Example 3>
0.5 g of aluminum sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 9.0 g of ion-exchanged water, and the resulting solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area 531 m 2 / g, pore volume 0) 8.6 cc / g, average pore diameter 6.5 nm) and 9.5 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<比較例4>
塩化ルテニウムn水和物(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Comparative Example 4>
Ruthenium chloride n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 g was dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area 531 m 2 / g, The mixture was stirred and mixed with 9.5 g of a pore volume of 0.86 cc / g and an average pore diameter of 6.5 nm. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 5% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<比較例5>
硫酸鉄(II)七水和物(和光純薬工業株式会社製)0.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.5gとを撹拌混合した。その後、窒素雰囲気下、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量5重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Comparative Example 5>
Iron sulfate (II) sulfate heptahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 g was dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area 531 m 2). / G, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.5 g. Then, after drying for 12 hours at 80 ° C. in a nitrogen atmosphere, pulverization and classification were performed to obtain a 5 wt% sample with a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

実施例9〜14、比較例3〜5に関して、無機多孔質体のBET比表面積[m/g]、細孔容積[cc/g]、平均細孔径[nm]、および、金属塩担持サンプルのシロキサン吸着/脱離測定を行った結果を表2に示す。表2より明らかなように、本発明である実施例2、および、実施例9〜14は、第3イオン化エネルギーが30ev未満である3価の金属元素を含む金属塩を担持した場合(比較例3〜4)、および、2価の金属元素を含む金属塩を担持した場合(比較例5)と比較して、低脱離性に優れることが分かる。 Regarding Examples 9 to 14 and Comparative Examples 3 to 5, the BET specific surface area [m 2 / g], the pore volume [cc / g], the average pore diameter [nm], and the metal salt-supported sample of the inorganic porous body Table 2 shows the results of the siloxane adsorption / desorption measurement. As is apparent from Table 2, Example 2 and Examples 9 to 14 of the present invention carried a metal salt containing a trivalent metal element having a third ionization energy of less than 30 ev (Comparative Example). 3-4) and when a metal salt containing a divalent metal element is supported (Comparative Example 5), it can be seen that the low detachability is excellent.

<実施例15>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.02gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.98gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量0.2重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 15>
0.02 g of iron (III) sulfate n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2). / 98, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.98 g. Then, after drying at 80 ° C. for 12 hours, the mixture was pulverized and classified to obtain a 0.2 wt% sample with a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例16>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.06gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.94gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量0.6重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 16>
0.06 g of iron (III) sulfate n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2). / 94, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.94 g. Then, after drying at 80 ° C. for 12 hours, the mixture was pulverized and classified to obtain a loaded sample having a particle diameter of 355 to 500 μm and a weight of 0.6% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例17>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)0.10gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.90gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量1.0重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 17>
0.10 g of iron (III) sulfate n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2). / 90, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.90 g. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a 1.0 wt% sample with a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例18>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)1.0gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)9.0gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量10重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 18>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (1.0 g) is dissolved in ion-exchanged water (9.0 g), and the aqueous solution and B-type silica gel (Toyota Chemical Industries, BET specific surface area of 531 m 2). / G, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 9.0 g. Then, after drying at 80 ° C. for 12 hours, the mixture was pulverized and classified to obtain a 10% by weight sample having a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例19>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)1.5gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)8.5gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量15重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 19>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 1.5 g is dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area 531 m 2). / G, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 8.5 g. Then, after drying at 80 ° C. for 12 hours, the mixture was pulverized and classified to obtain a 15 wt% sample with a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<実施例20>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)2.0gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)8.0gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量20重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Example 20>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (2.0 g) is dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2). / G, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 8.0 g. Then, after drying at 80 ° C. for 12 hours, the mixture was pulverized and classified to obtain a 20% by weight sample having a particle diameter of 355 to 500 μm. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<比較例6>
硫酸鉄(III)n水和物(和光純薬工業株式会社製)3.0gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)7.0gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量30重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Comparative Example 6>
Iron sulfate (III) n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (3.0 g) is dissolved in 9.0 g of ion-exchanged water, and the aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2). / G, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 7.0 g. Then, after drying at 80 degreeC conditions for 12 hours, it grind | pulverized and classified and the loading amount 30 weight% sample with a particle diameter of 355-500 micrometers was obtained. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<比較例7>
硫酸チタン(IV)24%含有溶液(キシダ化学株式会社製)10.4gとB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)7.0gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量25重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Comparative Example 7>
Titanium (IV) sulfate 24% solution (Kishida Chemical Co., Ltd.) 10.4 g and B-type silica gel (Toyota Kako Co., Ltd., BET specific surface area 531 m 2 / g, pore volume 0.86 cc / g, average pore 7.0 g (diameter 6.5 nm) was mixed with stirring. Then, after drying at 80 ° C. for 12 hours, pulverization and classification were performed to obtain a sample having a particle diameter of 355 to 500 μm and a supported amount of 25% by weight. The obtained sample was subjected to siloxane adsorption / desorption measurement.

<比較例8>
硫酸ジルコニウム(IV)4水和物(和光純薬工業株式会社製)3.0gをイオン交換水9.0gに溶解させ、その水溶液とB形シリカゲル(豊田化工株式会社製、BET比表面積531m/g、細孔容積0.86cc/g、平均細孔直径6.5nm)7.0gとを撹拌混合した。その後、80℃条件で12時間乾燥させた後、粉砕・分級し、粒子直径355〜500μmの担持量30重量%サンプルを得た。この得られたサンプルについてシロキサン吸着/脱離測定を行った。
<Comparative Example 8>
3.0 g of zirconium sulfate (IV) tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 9.0 g of ion-exchanged water, and the resulting aqueous solution and B-type silica gel (manufactured by Toyoda Chemical Co., Ltd., BET specific surface area of 531 m 2). / G, pore volume 0.86 cc / g, average pore diameter 6.5 nm) and 7.0 g. Then, after drying at 80 degreeC conditions for 12 hours, it grind | pulverized and classified and the loading amount 30 weight% sample with a particle diameter of 355-500 micrometers was obtained. The obtained sample was subjected to siloxane adsorption / desorption measurement.

実施例15〜20、比較例6〜9に関して、無機多孔質体のBET比表面積[m/g]、細孔容積[cc/g]、平均細孔径[nm]、および、酸性化合物担持サンプルのシロキサン吸着/脱離測定を行った結果を表3に示す。表3より明らかなように、本発明である実施例2、および、実施例15〜20は、金属塩の担持量が20重量%より大きい場合(比較例6〜8と比較して、シロキサン吸着容量が大きく、低脱離性に優れることが分かる。 Regarding Examples 15 to 20 and Comparative Examples 6 to 9, the BET specific surface area [m 2 / g], the pore volume [cc / g], the average pore diameter [nm], and the acidic compound-carrying sample of the inorganic porous body Table 3 shows the results of the siloxane adsorption / desorption measurement. As is apparent from Table 3, Example 2 and Examples 15 to 20 of the present invention have a siloxane adsorption rate when the amount of metal salt supported is larger than 20% by weight (compared to Comparative Examples 6 to 8). It can be seen that the capacity is large and the low desorption is excellent.

本発明によりシロキサン類ガスを効率的に除去することができ、一旦除去したシロキサン類ガスが環境変化により脱離する問題が少ないため、産業界への寄与大である。   According to the present invention, the siloxane gas can be efficiently removed, and since there is little problem that the once removed siloxane gas is desorbed due to environmental changes, the contribution to the industry is great.

Claims (3)

平均細孔直径が3〜20nmの無機多孔質体に金属塩を0.1〜20重量%担持させたシロキサン除去剤であって、前記金属塩が、第3イオン化エネルギーが30〜35eVである3価の金属元素、または、第4イオン化エネルギーが30〜55eVである4価以上の金属元素を含み、前記無機多孔質体がシリカゲルまたはメソポーラスシリカである、シロキサン除去剤。 A siloxane remover having a metal salt supported on an inorganic porous material having an average pore diameter of 3 to 20 nm in an amount of 0.1 to 20% by weight, wherein the metal salt has a third ionization energy of 30 to 35 eV 3 valent metallic element or a fourth ionization energy observed including the tetravalent or more metal elements is 30~55EV, the inorganic porous material is silica gel or mesoporous silica, siloxane removal agent. 前記金属元素が、Ti、V、Mn、Fe、Co、Ga、または、Zrである請求項に記載のシロキサン除去剤。 The siloxane remover according to claim 1 , wherein the metal element is Ti, V, Mn, Fe, Co, Ga, or Zr. 請求項1または2に記載のシロキサン除去剤を含有するシロキサン除去フィルタ。 Siloxane removing filter containing a siloxane removal agent according to claim 1 or 2.
JP2013243696A 2013-11-26 2013-11-26 Siloxane removal agent and siloxane removal filter using the same Active JP6264859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243696A JP6264859B2 (en) 2013-11-26 2013-11-26 Siloxane removal agent and siloxane removal filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243696A JP6264859B2 (en) 2013-11-26 2013-11-26 Siloxane removal agent and siloxane removal filter using the same

Publications (2)

Publication Number Publication Date
JP2015100753A JP2015100753A (en) 2015-06-04
JP6264859B2 true JP6264859B2 (en) 2018-01-24

Family

ID=53376952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243696A Active JP6264859B2 (en) 2013-11-26 2013-11-26 Siloxane removal agent and siloxane removal filter using the same

Country Status (1)

Country Link
JP (1) JP6264859B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11638895B2 (en) 2017-03-02 2023-05-02 Figaro Engineering Inc. Gas sensor and method for producing same
JP2018197700A (en) * 2017-05-24 2018-12-13 Nissha株式会社 Gas sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222144A (en) * 1984-04-20 1985-11-06 Matsushita Electric Works Ltd Gas filter
JP3977514B2 (en) * 1998-05-26 2007-09-19 高砂熱学工業株式会社 Air purification filter, method of manufacturing the same, and advanced cleaning device
JP2004295993A (en) * 2003-03-26 2004-10-21 Kyocera Corp Breathing filter
WO2011099616A1 (en) * 2010-02-15 2011-08-18 ニッタ株式会社 Chemical filter comprising acidic impregnating agent

Also Published As

Publication number Publication date
JP2015100753A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
Jafari et al. Adsorptive removal of toluene and carbon tetrachloride from gas phase using Zeolitic Imidazolate Framework-8: Effects of synthesis method, particle size, and pretreatment of the adsorbent
Han et al. Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous–macroporous structure for CO2 capture
Gadipelli et al. An ultrahigh pore volume drives up the amine stability and cyclic CO2 capacity of a solid-amine@ carbon sorbent
Chowdhury et al. Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites
Zheng et al. Activated carbon fiber composites for gas phase ammonia adsorption
Yan et al. Remarkable CO 2/CH 4 selectivity and CO 2 adsorption capacity exhibited by polyamine-decorated metal–organic framework adsorbents
Wang et al. Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability
Lemus et al. Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs)
US20090211453A1 (en) Filtration Media for the Removal of Basic Molecular Contaminants for Use in a Clean Environment
JP6552783B2 (en) Siloxane removing agent and siloxane removing filter using the same
Qasem et al. Synthesis, characterization, and CO2 breakthrough adsorption of a novel MWCNT/MIL-101 (Cr) composite
KR101597567B1 (en) Hierarchically porous amine-silica monolith and preparation method thereof
CN104907045B (en) High-efficiency carbon dioxide material for trapping
Ma et al. Efficient removal of low concentration methyl mercaptan by HKUST-1 membrane constructed on porous alumina granules
Kapica-Kozar et al. Alkali-treated titanium dioxide as adsorbent for CO2 capture from air
US20080006012A1 (en) Air filtration media comprising metal-doped silicon-base gel materials with oxidizing agents
Kong et al. Use of monolithic silicon carbide aerogel as a reusable support for development of regenerable CO 2 adsorbent
JP6264859B2 (en) Siloxane removal agent and siloxane removal filter using the same
Lee et al. Carbon dioxide absorption by hydroxyalkyl amidines impregnated into mesoporous silica: the effect of pore morphology and absorbent loading
Hameed et al. Kinetic and thermodynamics of methylene blue adsorption onto zero valent iron supported on mesoporous silica
JP6500353B2 (en) Siloxane removing agent and siloxane removing filter using the same
JP6663146B2 (en) Mesoporous zirconium hydroxide having carbon dioxide adsorption, method for producing the same, and carbon dioxide adsorbent comprising mesoporous zirconium hydroxide
WO2008079513A1 (en) Air filtration media comprising metal-doped silicon-based gel materials with nitric and/or potassium persulfate
Saaroni et al. CO2 adsorption using 3-triethoxysilylpropylamine (APTES)-modified commercial rice husk activated carbon
JP6500352B2 (en) Siloxane removing agent and siloxane removing filter using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R151 Written notification of patent or utility model registration

Ref document number: 6264859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350