JP6642606B2 - Cleaning method for membrane separation equipment - Google Patents

Cleaning method for membrane separation equipment Download PDF

Info

Publication number
JP6642606B2
JP6642606B2 JP2018038748A JP2018038748A JP6642606B2 JP 6642606 B2 JP6642606 B2 JP 6642606B2 JP 2018038748 A JP2018038748 A JP 2018038748A JP 2018038748 A JP2018038748 A JP 2018038748A JP 6642606 B2 JP6642606 B2 JP 6642606B2
Authority
JP
Japan
Prior art keywords
membrane
cleaning
water chamber
raw water
amphoteric surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018038748A
Other languages
Japanese (ja)
Other versions
JP2019150789A (en
Inventor
貴子 岩見
貴子 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018038748A priority Critical patent/JP6642606B2/en
Priority to CN201980007462.7A priority patent/CN111565825B/en
Priority to PCT/JP2019/006320 priority patent/WO2019171956A1/en
Priority to TW108107101A priority patent/TWI774933B/en
Publication of JP2019150789A publication Critical patent/JP2019150789A/en
Application granted granted Critical
Publication of JP6642606B2 publication Critical patent/JP6642606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、水処理に用いる膜分離装置の洗浄方法に係り、特にUF膜(限外濾過膜)やMF膜(精密濾過膜)を用いて水中の懸濁物や有機・無機コロイド、有機・無機溶存物を分離除去した膜分離装置(除濁膜装置)を効果的に洗浄する方法に関する。   The present invention relates to a method for cleaning a membrane separation device used for water treatment, and in particular, to a method using a UF membrane (ultrafiltration membrane) or a MF membrane (microfiltration membrane) to suspend or disperse organic or inorganic colloids, The present invention relates to a method for effectively cleaning a membrane separation device (separation membrane device) from which inorganic dissolved substances have been separated and removed.

除濁を目的にUF膜(限外濾過膜)やMF膜(精密濾過膜)を用いる膜分離装置(除濁膜装置)において、濾過中に分離膜に汚れが付着するため、通常30秒〜60分の濾過時間ごとに間欠的に洗浄流体(水及び/又は気体)を膜モジュールの原水室あるいは透過水室に供給して膜の物理洗浄が行われている。   In a membrane separation apparatus (a clarification membrane apparatus) using a UF membrane (ultrafiltration membrane) or an MF membrane (microfiltration membrane) for the purpose of turbidity, the dirt adheres to the separation membrane during filtration. The cleaning fluid (water and / or gas) is intermittently supplied to the raw water chamber or the permeated water chamber of the membrane module every 60 minutes of filtration time to physically clean the membrane.

しかし、この物理洗浄においても除去できない汚染が膜面や膜内に堆積するため、次第に膜の濾過能力が低下する。また、原水に濁質を含む場合や高い水回収率で装置を稼働する場合には、濁質等の固形分が膜間や膜とハウジングの間にケーキ状に堆積して、有効膜濾過面積が減少する。そのため、除濁膜装置においては定期的あるいは非定期的に薬品を用いた薬品洗浄や、排濁を目的とした強化物理洗浄が必要となる。   However, contamination that cannot be removed even by this physical cleaning accumulates on the surface of the film or in the film, so that the filtration ability of the film gradually decreases. In addition, when the raw water contains turbidity or when the device is operated with a high water recovery rate, solids such as turbidity accumulate in a cake between the membranes or between the membrane and the housing, and the effective membrane filtration area Decrease. Therefore, in the opaque membrane device, chemical cleaning using chemicals regularly or irregularly, and enhanced physical cleaning for the purpose of turbidity are required.

薬品洗浄には、一般的に酸剤(硫酸、塩酸、硝酸、クエン酸、シュウ酸)あるいはアルカリ剤(水酸化ナトリウム)、酸化剤(次亜塩素酸ナトリウム)などが使用され(非特許文献1)、いずれの薬剤を使用するかは膜の素材や膜のファウリング成分によって決定される。強化物理洗浄には、膜を振動させることを目的に膜モジュールの原水室側に激しく洗浄流体(水及び/又は気体)を吹き込むほか、超音波を当てる手段がある(非特許文献2)。これらの薬品洗浄と強化物理洗浄は単独で使用されることは稀であり、半日から数日かけて薬品洗浄と強化物理洗浄を組み合わせた洗浄を行うのが一般的である。特に、濁質等の固形分が膜面あるいはモジュール内部に堆積する濁質汚染が生じた場合、薬品洗浄のみでは洗浄効果が不十分であるため、強化物理洗浄との組み合わせが必須である。   For chemical cleaning, an acid agent (sulfuric acid, hydrochloric acid, nitric acid, citric acid, oxalic acid) or an alkali agent (sodium hydroxide), an oxidizing agent (sodium hypochlorite) and the like are generally used (Non-Patent Document 1). ), Which chemical to use depends on the material of the membrane and the fouling component of the membrane. In the enhanced physical cleaning, there is a method of vigorously blowing a cleaning fluid (water and / or gas) into the raw water chamber side of the membrane module for the purpose of vibrating the membrane, and applying ultrasonic waves (Non-Patent Document 2). The chemical cleaning and the enhanced physical cleaning are rarely used alone, and it is common to perform the cleaning combining the chemical cleaning and the enhanced physical cleaning over half a day to several days. In particular, when turbid contamination in which solids such as turbid solids accumulate on the film surface or the inside of the module occurs, the cleaning effect is insufficient with chemical cleaning alone, and therefore a combination with enhanced physical cleaning is essential.

しかしながら、除濁膜装置のうち、膜端部がモジュールハウジングに固定されている場合、強化物理洗浄を実施しても十分に膜が振動せず、十分な排濁効果が得られない場合がある。特に、内圧式の中空糸膜モジュールを使用した除濁膜装置は、原水室が直径約1mm程度の中空糸膜モジュール内であるため、原水室の濁質が膜モジュール外に排出されにくく、しかも原水室に空気を吹き込むことで膜を揺らす物理洗浄法を使用し得ない。このようなことから、内圧式中空糸膜モジュールは、濁質汚染を生じやすい構造である上に、濁質汚染の洗浄が困難であり、その洗浄方法について改善が望まれる。   However, in the case of the opaque membrane device, when the membrane end is fixed to the module housing, even when the enhanced physical cleaning is performed, the membrane does not sufficiently vibrate, and a sufficient turbidity effect may not be obtained. . In particular, in the turbidity membrane device using the internal pressure type hollow fiber membrane module, since the raw water chamber is inside the hollow fiber membrane module having a diameter of about 1 mm, the turbid matter in the raw water chamber is hardly discharged out of the membrane module, and A physical cleaning method in which the membrane is shaken by blowing air into the raw water chamber cannot be used. For these reasons, the internal pressure type hollow fiber membrane module has a structure that easily causes turbid contamination, and it is difficult to clean the turbid contamination. Improvements in the cleaning method are desired.

界面活性剤は膜分離装置の分離膜の製造過程において、原料樹脂の溶剤又は分散剤、開孔剤として使用されている(特許文献1)。   Surfactants are used as solvents or dispersants for raw material resins and pore-forming agents in the production process of separation membranes in membrane separation devices (Patent Document 1).

運転プロセスにおいて、膜分離装置の洗浄を目的に界面活性剤が使用されることは稀であるが、特許文献2では、超純水製造装置の洗浄に界面活性剤が使用されている。さらに、特許文献3では、両性界面活性剤を分離膜に抗菌性を付与する改質に利用する技術に関して記載があるが、特許文献2、3のいずれも除濁膜装置の洗浄を目的とした技術ではない。   In the operation process, a surfactant is rarely used for the purpose of cleaning the membrane separation device, but in Patent Document 2, the surfactant is used for cleaning the ultrapure water production device. Further, Patent Literature 3 describes a technique using an amphoteric surfactant for modifying the separation membrane so as to impart antibacterial properties. However, Patent Literatures 2 and 3 all aim at cleaning a turbidity membrane device. Not a technology.

両性界面活性剤を除濁膜装置の洗浄に用いた例として、特許文献4があり、特許文献4には、食品加工プロセスにおける除濁膜装置の洗浄剤としての使用が記載されている。しかし、特許文献4の洗浄液は、ホスホン酸塩、次亜塩素酸塩、アルカリ剤、重合リン酸塩を必須有効成分として含むことを特徴とするものであり、両性界面活性剤はこれらの必須有効成分に対して任意的に付加されるものである。しかして、特許文献4のように洗浄液にリンを使用した場合、洗浄排水や洗浄後の除濁膜濾過水に高濃度のリンが含まれるため、洗浄排水処理および洗浄後の立ち上げ時にバイオファウリングの発生リスクが高まる懸念がある。また、洗浄液に酸化剤を含む場合、洗浄後の通水時に後段装置を劣化させないため、大量のフラッシング水および時間を必要とする問題が生じる。   Patent Literature 4 discloses an example in which an amphoteric surfactant is used for cleaning a turbid membrane device. Patent Literature 4 describes use of the amphoteric surfactant as a detergent for a turbid membrane device in a food processing process. However, the cleaning liquid of Patent Document 4 is characterized by containing a phosphonate, a hypochlorite, an alkali agent, and a polymerized phosphate as essential active ingredients, and the amphoteric surfactant is an essential active ingredient. It is optionally added to the components. However, when phosphorus is used as a washing solution as in Patent Document 4, high concentration of phosphorus is contained in washing wastewater and filtered water of a turbidity membrane after washing, so that biofouling is performed during washing wastewater treatment and startup after washing. There is a concern that the risk of ringing increases. In addition, when the cleaning liquid contains an oxidizing agent, there is a problem that a large amount of flushing water and time are required because the post-stage apparatus is not deteriorated when water is passed after cleaning.

特開2005−146230号公報JP 2005-146230 A 特開2004−122020号公報JP-A-2004-122020 特開2009−112927号公報JP 2009-112927 A 特開2012−106160号公報JP 2012-106160 A

澤田繁樹著「現場で役立つ膜ろ過技術」(2006年)p120−121Shigeki Sawada, “Membrane Filtration Technology Useful in the Field” (2006) p120-121 澤田繁樹著「現場で役立つ膜ろ過技術」(2006年)p94−95Shigeki Sawada, “Membrane Filtration Technology Useful in the Field” (2006), p94-95

本発明は、リンおよび酸化剤を含まない洗浄液を用いて、内圧式中空糸膜モジュールを有する除濁膜装置においても、濁質汚染に対して有効な洗浄方法を提供することを目的とする。   An object of the present invention is to provide a cleaning method effective for turbid contamination even in a turbidity membrane device having an internal pressure type hollow fiber membrane module using a cleaning solution containing neither phosphorus nor an oxidizing agent.

本発明者は上記課題を解決すべく検討を重ねた結果、両性界面活性剤を含み、リンおよび酸化剤を含まない洗浄溶液によって、除濁膜装置の分離膜の濁質汚染を効果的に洗浄除去することができることを見出した。
即ち、本発明は以下を要旨とする。
As a result of repeated studies to solve the above problems, the present inventor has found that a cleaning solution containing an amphoteric surfactant and not containing phosphorus and an oxidizing agent can effectively clean turbid contamination of a separation membrane of a turbidity membrane device. It has been found that it can be removed.
That is, the present invention provides the following.

[1] 分離膜により内部が原水室と透過水室に仕切られた膜モジュールを備える膜分離装置を洗浄する方法において、該分離膜の原水室側膜表面に両性界面活性剤を含有する洗浄溶液を接触させる洗浄工程を含む膜分離装置の洗浄方法。 [1] A method for cleaning a membrane separation device including a membrane module in which the interior is partitioned into a raw water chamber and a permeated water chamber by a separation membrane, wherein the cleaning solution contains an amphoteric surfactant on the surface of the separation membrane on the raw water chamber side. A method for cleaning a membrane separation device, comprising a cleaning step of contacting the membrane.

[2] 前記洗浄溶液は、前記両性界面活性剤を0.01〜5重量%含有し、リンおよび酸化剤を含まない、[1]に記載の膜分離装置の洗浄方法。 [2] The method for cleaning a membrane separation device according to [1], wherein the cleaning solution contains 0.01 to 5% by weight of the amphoteric surfactant and does not contain phosphorus and an oxidizing agent.

[3] 前記原水室を空気に接触させることにより、前記該原水室側膜表面を乾燥させる工程を含み、該乾燥工程後に、前記洗浄工程を行う、[1]又は[2]に記載の膜分離装置の洗浄方法。 [3] The membrane according to [1] or [2], comprising a step of drying the surface of the raw water chamber side membrane by bringing the raw water chamber into contact with air, and performing the washing step after the drying step. A method for cleaning the separation device.

[4] 前記洗浄工程が、前記膜モジュールの透過水室側から原水室側に前記洗浄溶液を通水する工程と、前記膜モジュールの原水室側に前記洗浄溶液を循環させる工程のいずれか一方あるいは両方を含む、[1]〜[3]のいずれかに記載の膜分離装置の洗浄方法。 [4] The cleaning step is one of a step of passing the cleaning solution from the permeated water chamber side of the membrane module to the raw water chamber side and a step of circulating the cleaning solution to the raw water chamber side of the membrane module. Alternatively, the method for cleaning a membrane separation device according to any one of [1] to [3], including both.

[5] 前記膜モジュールが、内圧式の中空糸膜モジュールである、[1]〜[4]のいずれかに記載の膜分離装置の洗浄方法。 [5] The method for cleaning a membrane separation device according to any one of [1] to [4], wherein the membrane module is an internal pressure type hollow fiber membrane module.

本発明によれば、両性界面活性剤を含む洗浄溶液を原水室側膜表面に接触させることにより、膜表面の濁質汚染を効果的に浮かして系外に排出し、内圧式中空糸膜モジュールを有する除濁膜装置においても高い洗浄効果を得ることができる。
しかも、本発明の洗浄溶液は、リンや酸化剤を含まず、リンに起因するバイオファウリングや酸化剤排出のための過剰なフラッシング操作の問題もない。
特に、本発明において、洗浄溶液による洗浄工程に先立ち、原水室を空気に晒すことで原水室側膜表面を乾燥させる前処理を行うことで、より一層高い濁質除去効果を得ることができる。
According to the present invention, a cleaning solution containing an amphoteric surfactant is brought into contact with the membrane surface on the raw water chamber side, thereby effectively floating turbid contaminants on the membrane surface and discharging the same out of the system. A high cleaning effect can be obtained even in a turbidity membrane device having
Moreover, the cleaning solution of the present invention does not contain phosphorus or an oxidizing agent, and does not have the problem of biofouling or excessive flushing operation for discharging the oxidizing agent due to phosphorus.
In particular, in the present invention, prior to the washing step with the washing solution, a pretreatment for exposing the raw water chamber to the air to dry the surface of the raw water chamber-side membrane can provide a higher turbidity removing effect.

実施例1,2及び比較例1〜4の結果を示すグラフである。5 is a graph showing the results of Examples 1 and 2 and Comparative Examples 1 to 4. 実施例3で作成した内圧式ミニモジュール試験装置を示す構成図である。FIG. 10 is a configuration diagram illustrating an internal pressure type mini-module test device created in Example 3.

以下に本発明の膜分離装置の洗浄方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the method for cleaning a membrane separation device of the present invention will be described in detail.

<メカニズム>
本発明の膜分離装置の洗浄方法における両性界面活性剤を含む洗浄溶液による洗浄作用、洗浄前の乾燥操作による作用効果については、以下の通り考えられる。
<Mechanism>
The cleaning effect of the cleaning solution containing the amphoteric surfactant in the cleaning method of the membrane separation device of the present invention and the effect of the drying operation before cleaning are considered as follows.

界面活性剤はその浸透作用によって濁質汚染内部に浸潤し、さらに乳化・分散作用によって膜表面から浮かして除去する効果がある。特に、両性界面活性剤は、分子内親水部にアニオンおよびカチオン基を併せ持つため、隣接する両性界面活性剤分子同士の結合が強固かつ密になる。これにより、陽性、陰性、あるいは非イオン性の界面活性剤で形成したミセル体よりも、両性界面活性剤で形成したミセル体の方が、濁質をミセル体に内包したまま、ミセル体を崩すことなく系外に排出しやすい。
また、原水側膜表面を乾燥させることで、膜表面に付着したケーク状の濁質汚染を乾燥・収縮させて、濁質汚染と膜表面に隙間を生じさせる、あるいは濁質汚染間に亀裂を生じさせることができ、これにより、濁質と洗浄溶液との接触面積が増大し、濁質を膜表面から浮かせやすくする効果が得られる。
The surfactant infiltrates the inside of the turbid contaminant by its permeation action, and has an effect of being removed from the membrane surface by emulsification and dispersion action. In particular, since the amphoteric surfactant has both an anion and a cationic group in the hydrophilic part in the molecule, the bonding between adjacent amphoteric surfactant molecules becomes strong and dense. As a result, micelles formed with an amphoteric surfactant disintegrate micelles while turbidity is encapsulated in the micelles, compared to micelles formed with a positive, negative, or nonionic surfactant. It is easy to discharge out of the system without the need.
In addition, by drying the raw water side membrane surface, the cake-like turbid contamination adhering to the membrane surface is dried and shrunk, causing a gap between the turbid contamination and the membrane surface, or forming a crack between the turbid contamination. This can increase the contact area between the turbid substance and the washing solution, thereby obtaining an effect that the turbid substance is easily lifted from the membrane surface.

<洗浄溶液>
本発明において、洗浄溶液の有効成分として用いる両性界面活性剤としては、アミノ酸型両性界面活性剤[高級アルキル(炭素数12〜18)アミノプロピオン酸ナトリウムなど]、ベタイン型両性界面活性剤[アルキル(炭素数12〜18)ジメチルベタイン、アルキル(炭素数12〜18)ジヒドロキシエチルベタインなど]、硫酸エステル塩型両性界面活性剤[高級アルキル(炭素数8〜18)アミンの硫酸エステルナトリウム塩、ヒドロキシエチルイミダゾリン硫酸エステルナトリウム塩など]、スルホン酸塩型両性界面活性剤(ペンタデシルスルフォタウリン、イミダゾリンスルホン酸など)などが挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。これらのうち、好ましいのは、ベタイン型両性界面活性剤である。
<Cleaning solution>
In the present invention, examples of the amphoteric surfactant used as an active ingredient of the washing solution include an amino acid type amphoteric surfactant [higher alkyl (C12 to C18) sodium aminopropionate and the like] and a betaine type amphoteric surfactant [alkyl ( C12 to C18 dimethyl betaine, alkyl (C12 to C18) dihydroxyethyl betaine, etc.], sulfate ester type amphoteric surfactant [Sulfur ester of higher alkyl (C8 to C18) amine sodium salt, hydroxyethyl And sodium sulfonate-type amphoteric surfactants (such as pentadecylsulfotaurine and imidazolinesulfonic acid). These may be used alone or in combination of two or more. Of these, betaine-type amphoteric surfactants are preferred.

洗浄溶液の両性界面活性剤の含有量は0.01重量%以上、特に0.5重量%以上であることが好ましい。両性界面活性剤の含有量が少な過ぎると十分な洗浄効果を得ることができない場合がある。洗浄溶液中の両性界面活性剤含有量の上限は両性界面活性剤のミセル濃度に起因するものであり特に限定されないが、多過ぎると泡立ち、排水設備負荷の増加の問題が生じたり、洗浄後のフラッシング水及び時間が多くなるおそれがあることから、5重量%以下であることが好ましい。   The content of the amphoteric surfactant in the washing solution is preferably 0.01% by weight or more, particularly preferably 0.5% by weight or more. If the content of the amphoteric surfactant is too small, a sufficient cleaning effect may not be obtained. The upper limit of the content of the amphoteric surfactant in the cleaning solution is not particularly limited because it is attributable to the micelle concentration of the amphoteric surfactant. It is preferable that the content be 5% by weight or less, since the flushing water and time may be increased.

本発明の洗浄溶液は、基本的には両性界面活性剤の水溶液として、他の成分、特にリン及び酸化剤を含まないことが重要である。
また、本発明で用いる洗浄溶液のpHは11以上、特に12〜13程度の強アルカリ性であることが濁質の剥離、除去効果の面で好ましく、このpH調整のために、水酸化ナトリウム、水酸化カリウム等のアルカリ剤を含むものであってもよい。
It is important that the cleaning solution of the present invention is basically free of other components, particularly phosphorus and an oxidizing agent, as an aqueous solution of an amphoteric surfactant.
Further, the pH of the washing solution used in the present invention is preferably 11 or more, particularly preferably about 12 to 13 in terms of the effect of removing and removing turbidity. It may contain an alkali agent such as potassium oxide.

特に、本発明で用いる洗浄溶液はpH13以上の強アルカリ条件において濃度1〜5重量%の両性界面活性剤を含む洗浄溶液であることが好ましい。   In particular, the washing solution used in the present invention is preferably a washing solution containing an amphoteric surfactant having a concentration of 1 to 5% by weight under strong alkaline conditions of pH 13 or more.

<洗浄工程>
本発明においては、分離膜により内部が原水室と透過水室に仕切られた膜モジュールの原水室側膜表面に両性界面活性剤を含有する洗浄溶液を接触させることで分離膜を洗浄するが、この洗浄工程は、具体的には、下記(1)及び/又は(2)の工程により行うことが好ましい。
(1) 膜モジュールの透過水室側から原水室側に洗浄溶液を通水する工程
(2) 膜モジュールの原水室側に洗浄溶液を循環させる工程
なお、(1)と(2)の工程を行う場合、いずれを先に行ってもよいが、(1)の工程を先に行う方が好ましい。(1)の工程を先に行い、その後、(2)の工程を行うことで、膜表面の濁質汚染を取り除いてから原水室側膜表面を親水化することができ、洗浄液と原水側膜表面の接触効率が向上するため短時間での親水化処理が可能である。なお、(1)と(2)の工程を交互に繰り返し行ってもよい。
<Washing process>
In the present invention, the separation membrane is washed by bringing a washing solution containing an amphoteric surfactant into contact with the surface of the membrane on the side of the raw water chamber of the membrane module in which the inside is separated into the raw water chamber and the permeated water chamber by the separation membrane. Specifically, this washing step is preferably performed by the following steps (1) and / or (2).
(1) The step of passing the cleaning solution from the permeated water chamber side of the membrane module to the raw water chamber side (2) The step of circulating the cleaning solution to the raw water chamber side of the membrane module The steps (1) and (2) are performed When performing, any of them may be performed first, but it is more preferable to perform the step (1) first. By performing the step (1) first and then performing the step (2), it is possible to remove the turbid contamination on the membrane surface and then to hydrophilize the surface of the raw water chamber side membrane. Since the contact efficiency of the surface is improved, the hydrophilic treatment can be performed in a short time. The steps (1) and (2) may be repeated alternately.

洗浄時間や洗浄溶液の流通速度等の洗浄条件は、用いる洗浄溶液の両性界面活性剤濃度やpH、洗浄対象の分離膜の汚染の程度によっても異なるため、所望の洗浄効果が得られるように適宜設定すればよい。   Cleaning conditions such as the cleaning time and the flow rate of the cleaning solution also vary depending on the amphoteric surfactant concentration and pH of the cleaning solution to be used and the degree of contamination of the separation membrane to be cleaned. Just set it.

なお、洗浄後は常法に従ってフラッシングを行うことが好ましい。   After washing, it is preferable to perform flushing according to a conventional method.

<乾燥工程>
本発明においては、上記の洗浄工程に先立ち、膜モジュールの原水室を空気に接触させることにより、原水室側膜表面を乾燥させる乾燥工程を行うことが好ましく、この乾燥工程を行うことで、より一層高い濁質除去効果を得ることができる。
<Drying process>
In the present invention, prior to the above-described washing step, it is preferable to perform a drying step of drying the raw water chamber side membrane surface by bringing the raw water chamber of the membrane module into contact with air, and by performing this drying step, An even higher turbidity removing effect can be obtained.

この乾燥工程の具体的な方法には特に制限はなく、膜モジュールの原水室側に圧縮空気を吹き込む、膜モジュールが外気に触れるように静置するなどの方法を採用することができる。   The specific method of the drying step is not particularly limited, and a method of blowing compressed air into the raw water chamber side of the membrane module, or allowing the membrane module to stand still so as to come into contact with the outside air can be adopted.

<膜モジュール>
本発明の膜分離装置の洗浄方法の洗浄対象となる膜分離装置には特に制限はないが、本発明の洗浄方法は、特に濁質の除去効果に優れることから、水中の懸濁物や有機・無機コロイド、有機・無機溶存物などの分離除去に使用した除濁膜装置のUF膜やMF膜の洗浄に有効であり、このうち、特に、原水室内の濁質がモジュール外に排出されにくく、また、物理洗浄法を適用し難い内圧式中空糸モジュールの濁質除去に好適である。
<Membrane module>
There is no particular limitation on the membrane separation apparatus to be cleaned by the method for cleaning a membrane separation apparatus of the present invention.・ Effective for cleaning UF and MF membranes in turbidity membrane devices used to separate and remove inorganic colloids, organic and inorganic dissolved substances, etc. Of these, turbid substances in the raw water chamber are particularly difficult to be discharged out of the module Also, it is suitable for removing turbidity of an internal pressure type hollow fiber module to which a physical cleaning method is difficult to apply.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

なお、以下の実施例及び比較例で用いた界面活性剤は以下の通りである。   The surfactants used in the following Examples and Comparative Examples are as follows.

<両性界面活性剤>
両面界面活性剤A:三洋化成工業社製「レボンCIB」(下記構造式で表されるアルキルカルボキシメチルヒドロキシエチルイミダゾリウムベタイン)
<Amphoteric surfactant>
Double-sided surfactant A: "Lebon CIB" (alkyl carboxymethyl hydroxyethyl imidazolium betaine represented by the following structural formula) manufactured by Sanyo Chemical Industries, Ltd.

Figure 0006642606
Figure 0006642606

両性界面活性剤B:三洋化成工業社製「レボンMY−30」(下記構造式で表されるミスチリル酸アミドプロピルベタイン)   Amphoteric surfactant B: "LEBON MY-30" (manufactured by Sanyo Kasei Kogyo Co., Ltd.) (amidopropyl betaine mistyrylate represented by the following structural formula)

Figure 0006642606
Figure 0006642606

<非イオン性界面活性剤>
非イオン性界面活性剤A:三洋化成工業社製「ナロアクティーID−40」(ポリオキシエチレンアルキルエーテル)
非イオン性界面活性剤B:三洋化成工業社製「ナロアクティーID−60」(ポリオキシエチレンアルキルエーテル)
<Nonionic surfactant>
Nonionic surfactant A: "Naroacty ID-40" (polyoxyethylene alkyl ether) manufactured by Sanyo Chemical Industries, Ltd.
Nonionic surfactant B: "Naroacty ID-60" (polyoxyethylene alkyl ether) manufactured by Sanyo Chemical Industries, Ltd.

<陰性界面活性剤>
陰性界面活性剤A:三洋化成工業社製「サンデットEN」(ポリオキシエチレンアルキルエーテル硫酸ナトリウム)
<Negative surfactant>
Negative surfactant A: “Sandet EN” (Sodium polyoxyethylene alkyl ether sulfate) manufactured by Sanyo Chemical Industries, Ltd.

[実施例1,2、比較例1〜4]
以下の洗浄試験により、液晶工場排水由来の濁質の洗浄効果を調べた。
(1) 液晶工場排水を孔径0.45μmのMF膜に通水して、MF汚染膜を作成した。
(2) MF汚染膜に純水10mLを通水し、通水にかかった時間T0を求めた。
(3) MF汚染膜を洗浄溶液に3分浸漬させ、その後純水10mLを通水して、通水にかかった時間T1を求めた。
洗浄溶液としては各々表1に示すものを用いた。比較例1のブランクは、NaOHによりpH12に調整した水であり、その他は、各々の界面活性剤を1重量%濃度で溶解させ、NaOHによりpH12に調整したものである。
(4) MF膜に通水する排水量を変更し、T0にばらつきをもつMF汚染膜3検体において、上記(1)〜(3)を行った。
(5) 横軸T0、縦軸にT1をプロットし、3点の試験結果から導き出される傾きT1/T0によって洗浄効果を評価した。
すなわち、T1/T0が大きいほど洗浄効果は低く、T1/T0が小さいほど洗浄効果が高いと判断した。
[Examples 1 and 2, Comparative Examples 1 to 4]
The cleaning effect of the turbid matter derived from the liquid crystal factory effluent was examined by the following cleaning test.
(1) Water from a liquid crystal plant was passed through an MF membrane having a pore size of 0.45 μm to form an MF contaminated membrane.
(2) 10 mL of pure water was passed through the MF-contaminated membrane, and the time T0 required for passing water was determined.
(3) The MF-contaminated membrane was immersed in the cleaning solution for 3 minutes, and thereafter, 10 mL of pure water was passed through, and the time T1 required for passing water was determined.
The cleaning solutions shown in Table 1 were used. The blank of Comparative Example 1 was water adjusted to pH 12 with NaOH, and the other was prepared by dissolving each surfactant at a concentration of 1% by weight and adjusting the pH to 12 with NaOH.
(4) The above-mentioned (1) to (3) were performed for three samples of the MF-contaminated membrane having a variation in T0 by changing the amount of drainage passing through the MF membrane.
(5) The horizontal axis T0 and the vertical axis T1 were plotted, and the cleaning effect was evaluated by the slope T1 / T0 derived from the test results at three points.
That is, it was determined that the larger T1 / T0, the lower the cleaning effect, and the smaller T1 / T0, the higher the cleaning effect.

結果を表1及び図1に示す。   The results are shown in Table 1 and FIG.

Figure 0006642606
Figure 0006642606

表1及び図1より、洗浄効果は、両性界面活性剤>陰性界面活性剤≒非イオン性界面活性剤>ブランクであり、両性界面活性剤が最も優れた洗浄効果を示すことが分かる。   From Table 1 and FIG. 1, it can be seen that the cleaning effect is amphoteric surfactant> negative surfactant > nonionic surfactant> blank, and that the amphoteric surfactant exhibits the best cleaning effect.

[実施例3]
液晶工場排水回収設備において汚染した、内圧式中空糸膜モジュール(中空糸UF膜、孔径0.03μm、膜内径0.9mm、膜素材ポリエーテルスルホン)から中空糸膜を取り出し、以下の手順で洗浄試験を実施した。
洗浄溶液としては、両性界面活性剤Aを1重量%濃度に水に溶解し、NaOHでpH13に調整したものを用いた。
(1) 汚染膜(5本)で図2(a),(b)に示す内圧式ミニモジュール試験装置(膜長さ7.5cm、面積10.6cm)を作成した。
図2(a)中、1は汚染した中空糸膜、2はポッティング剤、3は透過水取出口、4はモジュールハウジングであり、内部に中空糸膜1が5本装填されている。
原水は、中空糸膜1の両端から膜内に導入し、膜を透過した透過水を取出口3より取り出した。
この内圧式ミニモジュール10に図2(b)の通り配管を接続して内圧式ミニモジュール試験装置とした。この試験装置では、バルブV,Vを開とし、バルブV,Vを閉とすることで配管11,12,13より中空糸膜1内に空気を導入することができる。また、ポンプPを作動し、バルブVを開とし、バルブV,V,Vを閉とすることで洗浄溶液タンク5内の洗浄溶液を配管14,12,13を循環させることができる。6は透過水タンクである。
(2) 原水室側に0.15MPaの圧縮空気を1時間通して膜を乾燥させた。
(3) 次いで、原水室側に洗浄溶液を6時間循環し、その後洗浄溶液タンク5内の洗浄溶液を純水に入れ替え、ポンプPを作動し、バルブVを開、バルブV,V,Vを閉とすることで、中空糸膜1内を純水で十分フラッシングを行い、洗浄液を取り除いた。
(4) 試験前の新膜の透水性、洗浄前の汚染膜及び洗浄後の膜について、ポンプPを作動させ、バルブVを開、バルブV,V,Vを閉とすることで、Flux(透過流束)2m/m/d相当の純水を全量濾過するように中空糸膜1内に送水するとともに、このときの圧力を圧力計PIで測定し、新膜、洗浄前の汚染膜および洗浄後の膜それぞれの透水性(操作圧力1バールに換算したときの透過流束、単位lmh)を算出し、更に、下記式より透水性回復率を算出した。
透水性回復率(%)
=洗浄後の透水性[lmh]/新膜の透水性[lmh]×100
結果を表2に示す。
[Example 3]
Take out the hollow fiber membrane from the internal pressure type hollow fiber membrane module (hollow fiber UF membrane, pore diameter 0.03 μm, membrane inner diameter 0.9 mm, membrane material polyether sulfone) contaminated in the liquid crystal plant wastewater recovery facility, and wash it by the following procedure The test was performed.
As the washing solution, a solution prepared by dissolving the amphoteric surfactant A in water at a concentration of 1% by weight and adjusting the pH to 13 with NaOH was used.
(1) An internal pressure type mini-module test device (film length 7.5 cm, area 10.6 cm 2 ) shown in FIGS. 2A and 2B was prepared using the five contaminant films.
In FIG. 2 (a), 1 is a contaminated hollow fiber membrane, 2 is a potting agent, 3 is a permeated water outlet, 4 is a module housing, and five hollow fiber membranes 1 are loaded inside.
Raw water was introduced into the membrane from both ends of the hollow fiber membrane 1, and permeated water that had passed through the membrane was taken out from the outlet 3.
As shown in FIG. 2B, pipes were connected to the internal pressure mini-module 10 to obtain an internal pressure mini-module test apparatus. In this test apparatus, by opening the valves V 1 and V 4 and closing the valves V 2 and V 3 , air can be introduced into the hollow fiber membrane 1 from the pipes 11, 12 and 13. Moreover, by operating the pump P, and valve V 3 is opened, be a cleaning solution cleaning solution tank 5 the valve V 1, V 2, V 4 by the closed circulating pipe 14,12,13 it can. 6 is a permeate tank.
(2) Compressed air of 0.15 MPa was passed through the raw water chamber for one hour to dry the membrane.
(3) The washed solution raw water chamber side circulated for 6 hours, then the cleaning solution the cleaning solution tank 5 replaced with pure water, to actuate the pump P, and the valve V 4 opened, the valve V 1, V 2 , by the V 3 is closed, after enough flushing hollow fiber membrane 1 with pure water to remove the cleaning solution.
(4) Permeability of the new film before the test, the contamination membranes and membrane after washing before washing, the pump P is operated, the valve V 2 opens, the a closing valve V 1, V 3, V 4 Then, the pure water equivalent to 2 m 3 / m 2 / d in flux (permeation flux) is fed into the hollow fiber membrane 1 so as to completely filter the pure water, and the pressure at this time is measured with a pressure gauge PI to obtain a new membrane. The water permeability of each of the contaminated membrane before washing and the membrane after washing (permeation flux when converted to an operating pressure of 1 bar, unit: lmh) was calculated, and the water permeability recovery rate was calculated from the following equation.
Permeability recovery rate (%)
= Water permeability after washing [lmh] / water permeability of new membrane [lmh] x 100
Table 2 shows the results.

[実施例4]
実施例3において、(2)の工程を省いた以外は同様に洗浄試験を行い結果を表2に示した。
[Example 4]
A cleaning test was performed in the same manner as in Example 3 except that the step (2) was omitted, and the results are shown in Table 2.

Figure 0006642606
Figure 0006642606

表2より、乾燥を行わずに洗浄した実施例4の透水性回復率は約30%であったのに対し、洗浄前に乾燥を施した実施例3の透水性回復率は99%であり、乾燥によって洗浄効果が格段に向上したことが分かる。
これは、乾燥によって膜表面に固着した濁質汚染が乾燥・収縮することで膜から剥がれ易くなり、両性界面活性剤の洗浄効果が増大したためであると考えられる。
From Table 2, the water permeability recovery rate of Example 4 washed without drying was about 30%, whereas the water permeability recovery rate of Example 3 dried before washing was 99%. It can be seen that the washing effect was significantly improved by drying.
This is considered to be due to the fact that the turbid contaminants fixed to the film surface due to the drying were dried and shrunk, so that they were easily peeled off from the film, and the washing effect of the amphoteric surfactant was increased.

1 中空糸膜
2 ポッティング剤
3 透過水取出口
4 モジュールハウジング
5 洗浄溶液タンク
6 透過水タンク
10 内圧式中空糸ミニモジュール
DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane 2 Potting agent 3 Permeate outlet 4 Module housing 5 Cleaning solution tank 6 Permeate tank 10 Internal pressure type hollow fiber mini module

Claims (4)

分離膜により内部が原水室と透過水室に仕切られた膜モジュールを備える膜分離装置を洗浄する方法において、該分離膜の原水室側膜表面に両性界面活性剤を含有する、pH11〜13のアルカリ性の洗浄溶液を接触させる洗浄工程と、前記原水室を空気に接触させることにより、前記該原水室側膜表面を乾燥させる乾燥工程とを含み、該乾燥工程後に、前記洗浄工程を行う、を含む膜分離装置の洗浄方法。 A method for cleaning a membrane separation device including a membrane module in which the interior is partitioned into a raw water chamber and a permeated water chamber by a separation membrane, wherein the separation membrane contains an amphoteric surfactant on the surface of the raw water chamber side membrane, and has a pH of 11 to 13. A washing step of contacting an alkaline washing solution, and a drying step of drying the raw water chamber side membrane surface by bringing the raw water chamber into contact with air, and performing the washing step after the drying step. A method for cleaning a membrane separation device including: 前記洗浄溶液は、前記両性界面活性剤を0.01〜5重量%含有し、該両性界面活性剤が、アルキルカルボキシメチルヒドロキシエチルイミダゾリウムベタイン及び/又はミスチリル酸アミドプロピルベタインであり、リンおよび酸化剤を含まない、請求項1に記載の膜分離装置の洗浄方法。 The cleaning solution contains 0.01 to 5% by weight of the amphoteric surfactant, wherein the amphoteric surfactant is alkylcarboxymethylhydroxyethyl imidazolium betaine and / or amidopropyl betaine mystyrylate, and The method for cleaning a membrane separation device according to claim 1, wherein the method does not contain an agent. 前記洗浄工程が、前記膜モジュールの透過水室側から原水室側に前記洗浄溶液を通水する工程と、前記膜モジュールの原水室側に前記洗浄溶液を循環させる工程のいずれか一方あるいは両方を含む、請求項1又は2に記載の膜分離装置の洗浄方法。 The cleaning step includes passing one or both of a step of passing the cleaning solution from the permeated water chamber side of the membrane module to the raw water chamber side and a step of circulating the cleaning solution through the raw water chamber side of the membrane module. including, cleaning method of the membrane separation apparatus according to claim 1 or 2. 前記膜モジュールが、液晶工場排水を通水した汚染膜の内圧式の中空糸膜モジュールである、請求項1〜のいずれか1項に記載の膜分離装置の洗浄方法。 The method for cleaning a membrane separation device according to any one of claims 1 to 3 , wherein the membrane module is a hollow fiber membrane module of an internal pressure type of a contaminated membrane through which liquid crystal plant wastewater is passed .
JP2018038748A 2018-03-05 2018-03-05 Cleaning method for membrane separation equipment Active JP6642606B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018038748A JP6642606B2 (en) 2018-03-05 2018-03-05 Cleaning method for membrane separation equipment
CN201980007462.7A CN111565825B (en) 2018-03-05 2019-02-20 Method for cleaning membrane separation device
PCT/JP2019/006320 WO2019171956A1 (en) 2018-03-05 2019-02-20 Method for cleaning membrane separation apparatus
TW108107101A TWI774933B (en) 2018-03-05 2019-03-04 Cleaning method of membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038748A JP6642606B2 (en) 2018-03-05 2018-03-05 Cleaning method for membrane separation equipment

Publications (2)

Publication Number Publication Date
JP2019150789A JP2019150789A (en) 2019-09-12
JP6642606B2 true JP6642606B2 (en) 2020-02-05

Family

ID=67845729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038748A Active JP6642606B2 (en) 2018-03-05 2018-03-05 Cleaning method for membrane separation equipment

Country Status (4)

Country Link
JP (1) JP6642606B2 (en)
CN (1) CN111565825B (en)
TW (1) TWI774933B (en)
WO (1) WO2019171956A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119804A (en) * 1981-01-20 1982-07-26 Nitto Electric Ind Co Ltd Regenerating method of selective permeable membrane
JPS5888089A (en) * 1981-11-17 1983-05-26 Nitto Electric Ind Co Ltd Purification of pulp mill waste liquor
JPH08126824A (en) * 1994-10-28 1996-05-21 Ebara Corp Washing of filter membrane
JPH09141068A (en) * 1995-11-27 1997-06-03 Matsushita Electric Works Ltd Cleaning method of hollow fiber membrane
JP2001300530A (en) * 2001-04-02 2001-10-30 Daicel Chem Ind Ltd Method of purifying natural water with membrane
JP2006198531A (en) * 2005-01-20 2006-08-03 Daicen Membrane Systems Ltd Operating method of hollow fiber membrane module
JP2007181773A (en) * 2006-01-06 2007-07-19 Daicen Membrane Systems Ltd Filtration film performance recovering method
JP5019370B2 (en) * 2007-07-12 2012-09-05 ルネサスエレクトロニクス株式会社 Substrate cleaning method and cleaning apparatus
CN101259379B (en) * 2007-12-13 2011-07-20 上海交通大学 Method for cleaning hollow fiber gas-liquid membrane contactor
JP2011067716A (en) * 2009-09-24 2011-04-07 Daicen Membrane Systems Ltd Water treatment method
CN102101019A (en) * 2009-12-21 2011-06-22 天津工业大学 Membrane distillation and cleaning method
CN102861514B (en) * 2012-09-25 2014-12-24 河北科技大学 Offline cleaning method for removing pollutants of SPG (shirasu porous glass) membrane used in biological wastewater treatment
WO2014208599A1 (en) * 2013-06-28 2014-12-31 三菱レイヨン株式会社 Method for cleaning filtration membrane
CN106552513B (en) * 2015-09-29 2020-04-21 东莞新科技术研究开发有限公司 Method for cleaning filtration membrane
CN106390756A (en) * 2016-11-28 2017-02-15 中国人民解放军空军勤务学院 Cleaning method of hollow fiber membrane module

Also Published As

Publication number Publication date
JP2019150789A (en) 2019-09-12
CN111565825B (en) 2021-09-10
TWI774933B (en) 2022-08-21
WO2019171956A1 (en) 2019-09-12
TW201938257A (en) 2019-10-01
CN111565825A (en) 2020-08-21

Similar Documents

Publication Publication Date Title
US7674382B2 (en) Method of cleaning fouled and/or scaled membranes
KR101589763B1 (en) Method for cleaning Filtering Membrane
JPH11309351A (en) Washing of hollow fiber membrane module
JP4135267B2 (en) Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus
KR101050418B1 (en) Intelligent High Efficiency Membrane Maintenance Cleaning System and Method
JP2002361054A (en) Method for washing membrane filtration apparatus
JP6642606B2 (en) Cleaning method for membrane separation equipment
US11117099B2 (en) Method of cleaning microfiltration and ultrafiltration membranes
JP2016049483A (en) Detergent for reverse osmosis membrane and cleaning method of reverse osmosis membrane
JP6540154B2 (en) Reverse osmosis membrane cleaning method
JP4631287B2 (en) Permeation membrane cleaning method
JP5119989B2 (en) Storage method of solid-liquid separation membrane
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP2017176951A (en) Method for cleaning separation membrane module
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP2019150790A (en) Washing method of membrane separator
JP2013034938A (en) Method for washing membrane module
JP2002113336A (en) Method of cleaning membrane filtration device and water treatment apparatus
KR20170011431A (en) Apparatus and method for cleaning membrane module using steam
JPH05168873A (en) Method for maintaining treating capacity of filter membrane
JP3866393B2 (en) Cleaning method for hollow fiber membrane module
JP2004130307A (en) Method for filtration of hollow fiber membrane
JP2007014829A (en) On-line washing method
KR20150005008A (en) Maintenance chemical cleaning method of separation membrane and Maintenance chemical cleaning system thereof
JP2003164737A (en) Washing method for separation membrane and washing apparatus adapted thereto

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6642606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250