JP6638828B2 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP6638828B2
JP6638828B2 JP2018552412A JP2018552412A JP6638828B2 JP 6638828 B2 JP6638828 B2 JP 6638828B2 JP 2018552412 A JP2018552412 A JP 2018552412A JP 2018552412 A JP2018552412 A JP 2018552412A JP 6638828 B2 JP6638828 B2 JP 6638828B2
Authority
JP
Japan
Prior art keywords
engine
combustion
combustion chamber
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018552412A
Other languages
English (en)
Other versions
JPWO2018096745A1 (ja
Inventor
井上 淳
淳 井上
賢也 末岡
賢也 末岡
浩太 松本
浩太 松本
漆原 友則
友則 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Publication of JPWO2018096745A1 publication Critical patent/JPWO2018096745A1/ja
Application granted granted Critical
Publication of JP6638828B2 publication Critical patent/JP6638828B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

ここに開示する技術は、エンジンの制御装置に関する。
特許文献1には、部分負荷領域において、燃焼室内の混合気が自己着火により燃焼するエンジンが記載されている。このエンジンは、部分負荷領域内の低負荷側の運転領域においては、熱い既燃ガスを燃焼室内に残すことによって、混合気の自己着火を促進する。また、このエンジンは、部分負荷領域内の高負荷側の運転領域においては、冷却した既燃ガスを燃焼室内に導入することによって自己着火を起こり難くすると共に、圧縮上死点の直前に、点火プラグが点火を行う。
特許第4082292号公報
ところで、圧縮着火による燃焼は、着火時の圧力変動が大きくなって、燃焼騒音が大きくなってしまう場合がある。
ここに開示する技術は、圧縮自己着火を行うエンジンにおいて、燃焼騒音を抑制する。
本願発明者らは、SI(Spark Ignition)燃焼とCI(Compression Ignition)燃焼(又は自己着火(Auto Ignition)燃焼)とを組み合わせる燃焼形態を考えた。SI燃焼は、燃焼室の中の混合気に強制的に点火を行うことにより開始する火炎伝播を伴う燃焼である。CI燃焼は、燃焼室の中の混合気が圧縮自己着火することにより開始する燃焼である。SI燃焼とCI燃焼とを組み合わせた燃焼形態は、点火プラグが、燃焼室の中の混合気に強制的に点火することによって、混合気が火炎伝播により燃焼すると共に、SI燃焼の発熱によって燃焼室の中の温度が高くなることによって、未燃混合気が自己着火により燃焼する形態である。火炎伝播による燃焼は、圧力変動が相対的に小さいため、燃焼騒音を抑制することが可能になる。また、CI燃焼を行うことにより、火炎伝播による燃焼よりも、燃焼期間が短縮し、燃費の向上に有利になる。SI燃焼とCI燃焼とを組み合わせた燃焼形態は、燃焼騒音を抑制しながら、燃費を向上させることができる。この燃焼形態は、SI燃焼がCI燃焼をコントロールするため、以下においては、SPCCI(SPark Controlled Compression Ignition)燃焼と呼ぶ。
本願発明者らは、SPCCI燃焼において、燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としての熱量比率を、エンジンの運転状態に応じて変更すれば、燃焼騒音を抑制することができる点を見出し、ここに開示する技術を完成するに至った。
具体的に、ここに開示する技術は、エンジンの制御装置に係る。このエンジンの制御装置は、燃焼室を有するエンジンと、前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、前記点火プラグに接続されかつ、前記点火プラグに制御信号を出力するよう構成されたコントローラーと、前記燃焼室の中への新気の導入量を調整するスロットル弁と、前記燃焼室の中への既燃ガスの導入量を調整するEGR弁と、前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成されると共に、前記燃焼室に導入するガスの過給圧を調整するエアバイパス弁を有する過給システムと、を備える。
そして、前記点火プラグが前記混合気に点火をして火炎伝播による燃焼が開始した後に、未燃混合気が自己着火により燃焼し、前記コントローラーは、前記燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としての熱量比率を、前記エンジンの運転状態に応じた前記スロットル弁の開度、前記EGR弁の開度、及び、前記エアバイパス弁の開度の調整により前記燃焼室の中の温度を調整することによって、変更する。
尚、ここでいう「燃焼室」は、ピストンが圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる。
この構成によると、点火プラグは、コントローラーの制御信号を受けて、燃焼室の中の混合気に強制的に点火する。混合気は火炎伝播による燃焼を開始し、その後、燃焼室の中の未燃混合気が自己着火により燃焼することによって燃焼が完了する。つまり、エンジンは、SPCCI燃焼を行う。
コントローラーは、熱量比率をエンジンの運転状態に応じて変更する。SPCCI燃焼は、熱量比率が100%未満になる。自己着火による燃焼が発生せずに火炎伝播による燃焼のみで燃焼が完了する燃焼形態は、熱量比率が100%になる。
SPCCI燃焼においてSI率を高くすると、SI燃焼の割合が高くなるから、燃焼騒音の抑制に有利になる。SPCCI燃焼においてSI率を低くすると、CI燃焼の割合が高くなるから、燃費の向上に有利になる。
熱量比率をエンジンの運転状態に応じて変更すれば、燃焼騒音を抑制することが可能になる。
前記コントローラーは、前記燃焼室の中に全燃料が供給された後、前記点火プラグに点火を実行させる、としてもよい。
前記コントローラーは、前記エンジンの負荷が高いときに、前記熱量比率を、負荷が低いときよりも高くする、としてもよい。
エンジンの負荷が高いときは、負荷が低いときよりも、燃焼室の中に供給する燃料量が増える。前記の構成は、燃料量が増えた分、SPCCI燃焼における熱量比率を高くする。これにより、燃焼騒音が抑制される。
記前記過給システムは、前記コントローラーの制御信号を受けて、前記エンジンが所定負荷以下で運転するときは過給を行わずかつ、前記エンジンが前記所定負荷よりも高い負荷で運転するときは過給を行い、前記コントローラーは、前記エンジンが所定負荷よりも高い負荷で運転しているときに、前記熱量比率を、前記エンジンの負荷が変化することに対して略一定にする、としてもよい。過給システムは、例えばエンジンによって駆動される機械式の過給機を含んで構成してもよい。
エンジンの負荷が高くなることに伴い燃料量が増えると、SPCCI燃焼においてSI燃焼による発熱も増えるため、未燃混合気の自己着火のタイミングが早まる。これは、熱量比率が低下すること意味し、この場合、燃焼騒音が増大してしまう。
過給を行うと、燃料量が増えることに対応して、燃焼室内に導入するガス量を増やすことができる。ガス量が増えると熱容量が増えるため、燃料量が増えても、SI燃焼による燃焼室の中の温度上昇を抑制することが可能になる。従って、過給を行うことにより、SPCCI燃焼において、未燃混合気の自己着火のタイミングが早まることを回避することができる。
燃料量の増大に対応して、例えば点火タイミングを進角すれば、SI燃焼による熱発生量と、CI燃焼による熱発生量とを共に増やすことが可能になる。このとき、SPCCI燃焼の熱量比率は、エンジンの負荷が変化することに対して略一定になる。
一方、燃料量及びガス量が増えると、SPCCI燃焼におけるCI燃焼の熱発生のピークが高くなる。しかしながら、負荷の高い領域においては、許容される燃焼騒音のレベルが、負荷の低い領域よりも高くなるため、燃焼騒音が許容レベルを超えてしまうことを回避することができる。
従って、エンジンの負荷が変化することに対し熱量比率を略一定にすることによって、燃焼騒音を抑制しながら、エンジンの負荷が高いときにSPCCI燃焼を行うことができるため、エンジンの燃費の向上に有利になる。
前記コントローラーは、前記エンジンが前記所定負荷以下で運転しているときに、前記熱量比率を、前記エンジンの負荷が高くなるに従い高くする、としてもよい。
エンジンの負荷が高くなることに伴い増える燃料量に対応して、熱量比率を高くすることによって、燃焼騒音が大きくなることを回避することができる。例えば燃焼室の中の圧縮開始前の温度を調整しながら、燃料量の増大に対応して、点火タイミングを進角すればよい。燃焼室の中の温度を調整することによって、燃料量が増えるに従って、熱量比率を維持もしくは高くしたとしても圧縮上死点での温度上昇を抑制することが可能になる。その結果、SPCCI燃焼において、未燃混合気の自己着火のタイミングを適切なタイミングに維持することができる。
エンジンの負荷が高くなることに対して、CI燃焼による熱発生量を増やさずに、SI燃焼による熱発生量を増やすと、SPCCI燃焼の熱量比率は、エンジンの負荷が高くなるに従い高くなる。燃焼騒音が大きくなることを回避しながら、エンジンの負荷が高いときにSPCCI燃焼を行うことができ、エンジンの燃費性能が向上する。
前記過給システムは、前記コントローラーの制御信号を受けて、過給と非過給とを切り替え、前記コントローラーは、前記過給システムが非過給のときには、前記熱量比率を、前記エンジンの負荷に応じて変化させ、前記コントローラーはまた、前記過給システムが過給しているときには、前記熱量比率を、前記エンジンの負荷の変化に応じて、前記非過給のときの変化率よりも小さい変化率で変化させる、としてもよい。
過給システムが非過給のときには、前述したように、エンジンの負荷が高くなることに従い熱量比率を高くすることにより、燃焼騒音を抑制することができる。
過給システムが過給しているときには、前述したように、エンジンの負荷に応じてガス量を増やすことができる。エンジンの負荷が高くなることに対して熱量比率を大きく変化させないことにより、燃焼騒音が許容値を超えることを防止することができる。
前記エンジンの制御装置は、前記エンジンに設けられかつ、前記コントローラーの制御信号を受けて、前記燃焼室の中に既燃ガスを導入するよう構成されたEGRシステムを備え、前記コントローラーは、前記熱量比率が前記エンジンの運転状態に応じて変更するよう前記EGRシステムに制御信号を出力することによって、前記燃焼室の中の全ガスと前記既燃ガスとの比率に関係する指標としてのEGR率を、前記エンジンの運転状態に応じて調整する、としてもよい。
EGR率を変更することによって、燃焼室の中の混合気がSI燃焼をするときの火炎伝播速度が変化する。その結果、SI燃焼による燃焼室の中の温度上昇率が変化するから、SPCCI燃焼において、火花点火から未燃混合気が自己着火に至るまでの時間(つまり、自己着火のタイミング)が変化すると共に、SI燃焼による熱発生量が変化する。従って、EGR率を変更することによって、熱量比率を変更することができる。
前記エンジンの制御装置は、前記エンジンに設けられかつ、前記コントローラーの制御信号を受けて、吸気弁及び排気弁の少なくとも一方のバルブタイミングを変更するよう構成された可変動弁機構を備え、前記コントローラーは、前記可変動弁機構に制御信号を出力することによって、前記吸気弁と前記排気弁とのオーバーラップ期間を、前記エンジンの運転状態に応じて変更する、としてもよい。
ここで、オーバーラップ期間の変更には、吸気弁及び排気弁が共に開弁するポジティブオーバーラップ期間を設けること、及び、そのポジティブオーバーラップ期間の長さを変更することの他に、排気上死点を挟んで吸気弁及び排気弁が共に閉弁したネガティブオーバーラップ期間を設けること、及び、ネガティブオーバーラップ期間の長さを変更することが含まれる。
吸気弁及び排気弁のポジティブオーバーラップ期間又はネガティブオーバーラップ期間を設けると、既燃ガスの一部が燃焼室の中に再導入される、又は、既燃ガスの一部が燃焼室の中に留まるため、燃焼室の中の圧縮開始前の温度が上がる。その結果、SPCCI燃焼において、自己着火のタイミングが変化すると共に、SI燃焼による熱発生量が変化する。
また、エンジンの吸気側と排気側との間に圧力差を有するときに、吸気弁及び排気弁のポジティブオーバーラップ期間を設けると、燃焼室の中の残留ガスが掃気されるため、燃焼室の中の圧縮開始前の温度が下がる。それによって、SI燃焼による燃焼室の中の温度上昇率が変化する。その結果、SPCCI燃焼において、自己着火のタイミングが変化すると共に、SI燃焼による熱発生量が変化する。
従って、オーバーラップ期間を変更することによって、熱量比率を変更することができる。
前記圧縮自己着火式エンジンの制御装置は、前記エンジンに取り付けられかつ、前記燃焼室の中への新気及び既燃ガスの導入を調整するよう構成された状態量設定デバイスと、前記エンジンに取り付けられかつ、前記燃焼室の中に供給する燃料を噴射するよう構成されたインジェクタと、を備え、前記コントローラーは、前記状態量設定デバイス及び前記インジェクタに制御信号を出力することによって、既燃ガスを含む前記燃焼室の中の全ガスと燃料との重量比に関係する指標としてのG/Fが18以上50以下に設定する、としてもよい。
本願発明者らの検討によると、SI燃焼とCI燃焼とを組み合わせるSPCCI燃焼においては、混合気のG/Fを18以上50以下にすることによって、SPCCI燃焼が適切に行われることがわかった。
また、燃焼室の中の状態を18≦G/Fにすることで、混合気の希釈率が高いため、エンジンの燃費性能が向上する。また、ノッキングの発生に伴う燃焼騒音が発生することを確実に回避することができる。
前記コントローラーは、前記状態量設定デバイス及び前記インジェクタに制御信号を出力することによって、前記混合気の空気過剰率λを1.0±0.2に設定する、としてもよい。
混合気のG/Fを、18以上50以下に設定しかつ、λを1.0±0.2に設定することによって、SPCCI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
SPCCI燃焼においては、圧縮開始前の燃焼室の中の温度にばらつきが生じても、SI燃焼の発熱量を調整することによって、圧縮開始前の温度のばらつきを吸収することができる。圧縮開始前の燃焼室の中の温度に応じて、例えば点火タイミングの調整によってSI燃焼の開始タイミングを調整すれば、目標のタイミングで、未燃混合気を自己着火させることができる。
ところが、SPCCI燃焼において、自己着火のタイミングを精度よくコントロールするためには、点火タイミングを変更することに対応して、自己着火のタイミングが変化しなければならない。点火タイミングの変更に対して、自己着火のタイミングが変化する感度が高いことが好ましい。
本願発明者らの検討によると、燃焼室の中の状態を、混合気のλが1.0±0.2でかつ、G/Fが18以上50以下とすれば、SI燃焼が安定化する結果、点火タイミングの変更に対して、自己着火のタイミングが変化することがわかった。つまり、SPCCI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
さらに、また、λを1.0±0.2に設定することによって、エンジンの排気通路に取り付けた三元触媒により、排気ガスを浄化することが可能になる。
従って、前記の構成によると、燃費性能を高くすると共に、排出ガス性能を良好にしながら、SI燃焼とCI燃焼とを組み合わせたSPCCI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
SI燃焼によって自己着火のタイミングをコントロールすることにより、圧縮開始前の燃焼室の中の温度がばらついても、燃焼騒音を抑制しながら、燃費に最適なタイミングで、未燃混合気を自己着火させることができる。
前記点火のタイミングにおける前記燃焼室の中の状態は、温度が570K以上800K以下、及び、圧力が400kPa以上920kPa以下、の少なくとも一方を満足する、としてもよい。
こうすることで、SPCCI燃焼を安定化させることができる。
前記点火のタイミングにおける前記燃焼室の中の状態は、スワール比が4以上を満足する、としてもよい。
燃焼室内のスワール流を強くすることによって、安定的にSPCCI燃焼を行うことができる。
前記エンジンの幾何学的圧縮比は、13以上である、としてもよい。SPCCI燃焼は、火花点火を行うため、混合気の自己着火のために、ピストンが圧縮上死点に至ったときの燃焼室内の温度を大幅に高めなくてもよい。幾何学的圧縮比を低めに設定することにより、エンジンの冷却損失の低減及び機械損失の低減に有利になる。
ここに開示するエンジンの制御装置は、
燃焼室を有するエンジンと、
前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
前記点火プラグに接続されかつ、前記点火プラグに制御信号を出力するよう構成されたコントローラーと、を備え、
前記点火プラグが前記混合気に点火をして火炎伝播による燃焼が開始した後に、未燃混合気が自己着火により燃焼し、
前記コントローラーは、前記燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としての熱量比率を、前記エンジンの運転状態に応じて変更し、
前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成された過給システムをさらに備え、
前記過給システムは、前記コントローラーの制御信号を受けて、前記エンジンが所定負荷以下で運転するときは過給を行わずかつ、前記エンジンが前記所定負荷よりも高い負荷
で運転するときは過給を行い、
前記コントローラーは、前記エンジンが前記所定負荷よりも高い負荷で運転しているときに、前記熱量比率を、前記エンジンの負荷が変化することに対して略一定にする。
ここに開示するエンジンの制御装置はさらに、
燃焼室を有するエンジンと、
前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
前記点火プラグに接続されかつ、前記点火プラグに制御信号を出力するよう構成されたコントローラーと、を備え、
前記点火プラグが前記混合気に点火をして火炎伝播による燃焼が開始した後に、未燃混合気が自己着火により燃焼し、
前記コントローラーは、前記燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としての熱量比率を、前記エンジンの運転状態に応じて変更し、
前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成された過給システムをさらに備え、
前記過給システムは、前記コントローラーの制御信号を受けて、過給と非過給とを切り替え、
前記コントローラーは、前記過給システムが非過給のときには、前記熱量比率を、前記エンジンの負荷に応じて変化させ、
前記コントローラーはまた、前記過給システムが過給しているときには、前記熱量比率を、前記エンジンの負荷の変化に応じて、前記非過給のときの変化率よりも小さい変化率で変化させる。
以上説明したように、前記のエンジンの制御装置によると、燃焼騒音を抑制することができる。
図1は、エンジンの構成を例示する図である。 図2は、燃焼室の構成を例示する図であり、上図は燃焼室の平面視相当図、下部はII−II断面図である。 図3は、燃焼室及び吸気系の構成を例示する平面図である。 図4は、エンジンの制御装置の構成を例示するブロック図である。 図5は、スワール比測定のためのリグ試験装置を例示する図である。 図6は、セカンダリ通路の開口比率とスワール比との関係を例示する図である。 図7の上図は、エンジンの運転領域マップを例示する図であり、下図は、上図と異なる運転領域マップを示す図である。 図8の上図は、SI燃焼とCI燃焼とを組み合わせたSPCCI燃焼の熱発生率の変化を概念的に示す図であり、中図は、SPCCI燃焼におけるSI率の定義を説明するための図であり、下図は、SPCCI燃焼におけるSI率の、別の定義を説明するための図である。 図9は、エンジンの負荷の高低に対する、SI率の変化、燃焼室の中の状態量の変化、吸気弁及び排気弁のオーバーラップ期間の変化、並びに、燃料の噴射タイミング及び点火タイミングの変化を説明する図である。 図10の上図は、非過給SPCCI燃焼において、エンジンの負荷が増大することに対する燃焼波形の変化を例示する図であり、図10の下図は、過給SPCCI燃焼において、エンジンの負荷が増大することに対する燃焼波形の変化を例示する図である。 図11は、ECUが実行するエンジンの制御の手順を示すフロー図である。 図12は、SI率の調整に係る制御概念を説明する図である。 図13の上図は、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係を示す図であり、中図は、上図に示す必要乱流エネルギを実現する燃焼室の中の温度と、混合気G/Fとの関係を示す図であり、下図は、上図に示す必要乱流エネルギを実現する燃焼室の中の圧力と、混合気G/Fとの関係を示す図である。 図14は、SPCCI燃焼において、点火タイミングの変化に対する自己着火タイミングの変化比率を例示する、縦軸を混合気のEGR率とし、横軸を混合気のA/Fとした平面上におけるコンター図である。 図15は、燃焼室の中で混合気のG/Fが成層化している状態においてSPCCI燃焼を成立させるために必要な、SI部の外部EGR率と、燃焼室全体のトータルEGR率との関係を求めるための検討手法を説明する図である。 図16は、燃焼室の中で混合気のG/Fが成層化している状態においてSPCCI燃焼を成立させるために必要な、SI部のG/Fと、燃焼室全体のG/Fとの関係を例示する図である。 図17は、図7の下図に示す運転領域マップにおいて、各運転状態における燃料噴射時期、点火時期、及び燃焼波形を例示する図である。
以下、エンジンの制御装置の実施形態を図面に基づいて詳細に説明する。以下の説明は、エンジンの制御装置の一例である。図1は、エンジンの構成を例示する図である。図2は、燃焼室の構成を例示する断面図であり、図2の上図は燃焼室の平面視相当図、下部はII−II断面図である。図3は、燃焼室及び吸気系の構成を例示する図である。尚、図1における吸気側は紙面左側であり、排気側は紙面右側である。図2及び図3における吸気側は紙面右側であり、排気側は紙面左側である。図4は、エンジンの制御装置の構成を例示するブロック図である。
エンジン1は、燃焼室17が吸気行程、圧縮行程、膨張行程及び排気行程を繰り返すことにより運転する4ストロークエンジンである。エンジン1は、四輪の自動車に搭載される。エンジン1が運転することによって、自動車は走行する。エンジン1の燃料は、この構成例においてはガソリンである。燃料は、バイオエタノール等を含むガソリンであってもよい。エンジン1の燃料は、少なくともガソリンを含む液体燃料であれば、どのような燃料であってもよい。
(エンジンの構成)
エンジン1は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを備えている。シリンダブロック12の内部に複数のシリンダ11が形成されている。図1及び図2では、1つのシリンダ11のみを示す。エンジン1は、多気筒エンジンである。
各シリンダ11内には、ピストン3が摺動自在に内挿されている。ピストン3は、コネクティングロッド14を介してクランクシャフト15に連結されている。ピストン3は、シリンダ11及びシリンダヘッド13と共に燃焼室17を区画する。尚、「燃焼室」は、ピストン3が圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる場合がある。つまり、「燃焼室」は、ピストン3の位置に関わらず、ピストン3、シリンダ11及びシリンダヘッド13によって形成される空間を意味する場合がある。
シリンダヘッド13の下面、つまり、燃焼室17の天井面は、図2に示すように、傾斜面1311と、傾斜面1312とによって構成されている。傾斜面1311は、吸気側から、後述するインジェクタ6の噴射軸心X2に向かって上り勾配となっている。傾斜面1312は、排気側から噴射軸心X2に向かって上り勾配となっている。燃焼室17の天井面は、いわゆるペントルーフ形状である。
ピストン3の上面は燃焼室17の天井面に向かって隆起している。ピストン3の上面には、キャビティ31が形成されている。キャビティ31は、ピストン3の上面から凹陥している。キャビティ31は、浅皿形状を有している。キャビティ31は、ピストン3が圧縮上死点付近に位置するときに、後述するインジェクタ6に向かい合う。
キャビティ31の中心は、シリンダ11の中心軸X1に対して排気側にずれている。キャビティ31の中心は、インジェクタ6の噴射軸心X2と一致している。キャビティ31は、凸部311を有している。凸部311は、インジェクタ6の噴射軸心X2上に設けられている。凸部311は、略円錐状である。凸部311は、キャビティ31の底部から、シリンダ11の天井面に向かって上向きに伸びている。
キャビティ31はまた、凸部311の周囲に設けられた凹陥部312を有している。凹陥部312は、凸部311の全周を囲むように設けられている。キャビティ31は、噴射軸心X2に対して対称な形状を有している。
凹陥部312の周側面は、キャビティ31の底面からキャビティ31の開口に向かって噴射軸心X2に対して傾いている。凹陥部312におけるキャビティ31の内径は、キャビティ31の底部からキャビティ31の開口に向かって次第に拡大する。
尚、燃焼室17の形状は、図2に例示する形状に限定されるものではない。例えばキャビティ31の形状、ピストン3の上面の形状、及び、燃焼室17の天井面の形状等は、適宜変更することが可能である。 エンジン1の幾何学的圧縮比は、13以上30以下に設定されている。後述するようにエンジン1は、一部の運転領域において、SI燃焼とCI燃焼とを組み合わせたSPCCI燃焼を行う。SPCCI燃焼は、SI燃焼による発熱と圧力上昇とを利用して、CI燃焼をコントロールする。このエンジン1は、混合気の自着火のためにピストン3が圧縮上死点に至った時の燃焼室17の温度(つまり、圧縮端温度)を高くする必要がない。つまり、エンジン1は、CI燃焼を行うものの、その幾何学的圧縮比を、比較的低く設定することが可能である。幾何学的圧縮比を低くすることによって、冷却損失の低減、及び、機械損失の低減に有利になる。エンジン1の幾何学的圧縮比は、一例として、レギュラー仕様(燃料のオクタン価が91程度)においては、14〜17とし、ハイオク仕様(燃料のオクタン価が96程度)においては、15〜18としてもよい。
シリンダヘッド13には、シリンダ11毎に、吸気ポート18が形成されている。吸気ポート18は、図3に示すように、第1吸気ポート181及び第2吸気ポート182の、二つの吸気ポートを有している。第1吸気ポート181及び第2吸気ポート182は、クランクシャフト15の軸方向、つまり、エンジン1のフロント−リヤ方向に並んでいる。吸気ポート18は、燃焼室17に連通している。吸気ポート18は、詳細な図示は省略するが、いわゆるタンブルポートである。つまり、吸気ポート18は、燃焼室17の中にタンブル流が形成されるような形状を有している。
吸気ポート18には、吸気弁21が配設されている。吸気弁21は、燃焼室17と吸気ポート18との間を開閉する。吸気弁21は動弁機構によって、所定のタイミングで開閉する。動弁機構は、バルブタイミング及び/又はバルブリフトを可変にする可変動弁機構とすればよい。この構成例では、図4に示すように、可変動弁機構は、吸気電動S−VT(Sequential-Valve Timing)23を有している。吸気電動S−VT23は、吸気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、吸気弁21の開弁時期及び閉弁時期は、連続的に変化する。尚、吸気動弁機構は、電動S−VTに代えて、油圧式のS−VTを有していてもよい。
シリンダヘッド13にはまた、シリンダ11毎に、排気ポート19が形成されている。排気ポート19も、図3に示すように、第1排気ポート191及び第2排気ポート192の、二つの排気ポートを有している。第1排気ポート191及び第2排気ポート192は、エンジン1のフロント−リヤ方向に並んでいる。排気ポート19は、燃焼室17に連通している。
排気ポート19には、排気弁22が配設されている。排気弁22は、燃焼室17と排気ポート19との間を開閉する。排気弁22は動弁機構によって、所定のタイミングで開閉する。この動弁機構は、バルブタイミング及び/又はバルブリフトを可変にする可変動弁機構とすればよい。この構成例では、図4に示すように、可変動弁機構は、排気電動S−VT24を有している。排気電動S−VT24は、排気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、排気弁22の開弁時期及び閉弁時期は、連続的に変化する。尚、排気動弁機構は、電動S−VTに代えて、油圧式のS−VTを有していてもよい。
詳細は後述するが、このエンジン1は、吸気電動S−VT23及び排気電動S−VT24によって、吸気弁21の開弁時期と排気弁22の閉弁時期とに係るオーバーラップ期間の長さを調整する。このことによって、燃焼室17の中の残留ガスを掃気する。また、オーバーラップ期間の長さを調整することによって、内部EGR(Exhaust Gas Recirculation)ガスを燃焼室17の中に導入する、又は、燃焼室17の中に閉じ込める。この構成例においては、吸気電動S−VT23及び排気電動S−VT24が、状態量設定デバイスの一つとしての、内部EGRシステムを構成している。尚、内部EGRシステムは、S−VTによって構成されるとは限らない。
シリンダヘッド13には、シリンダ11毎に、インジェクタ6が取り付けられている。インジェクタ6は、燃焼室17の中に燃料を直接噴射するよう構成されている。インジェクタ6は、吸気側の傾斜面1311と排気側の傾斜面1312とが交差するペントルーフの谷部に配設されている。インジェクタ6は、図2に示すように、その噴射軸心X2がシリンダ11の中心軸X1よりも排気側に配設されている。インジェクタ6の噴射軸心X2は、中心軸X1に平行である。インジェクタ6の噴射軸心X2と、前述したようにキャビティ31の凸部311の位置とは一致している。インジェクタ6は、キャビティ31に対向している。尚、インジェクタ6の噴射軸心X2は、シリンダ11の中心軸X1と一致していてもよい。その場合も、インジェクタ6の噴射軸心X2と、キャビティ31の凸部311の位置とは一致していることが望ましい。
インジェクタ6は、詳細な図示は省略するが、複数の噴口を有する多噴口型の燃料噴射弁によって構成されている。インジェクタ6は、図2に二点鎖線で示すように、燃料噴霧が、燃焼室17の中央から放射状に広がるように燃料を噴射する。インジェクタ6は、本構成例においては、十個の噴孔を有しており、噴孔は、周方向に等角度に配置されている。噴孔の軸は、図2の上図に示すように、後述する点火プラグ25に対して、周方向に位置がずれている。つまり、点火プラグ25は、隣り合う二つの噴孔の軸に挟まれている。これにより、インジェクタ6から噴射された燃料の噴霧が、点火プラグ25に直接当たって、電極を濡らしてしまうことが回避される。
後述するように、インジェクタ6は、ピストン3が圧縮上死点付近に位置するタイミングで燃料を噴射する場合がある。その場合、インジェクタ6が燃料を噴射すると、燃料噴霧は、新気と混ざり合いながら、キャビティ31の凸部311に沿って下向きに流れると共に、凹陥部312の底面及び周側面に沿って、燃焼室17の中央から、径方向の外方に放射状に広がって流れる。その後、混合気はキャビティ31の開口に至り、吸気側の傾斜面1311、及び、排気側の傾斜面1312に沿って、径方向の外方から、燃焼室17の中央に向かって流れる。
尚、インジェクタ6は、多噴口型のインジェクタに限らない。インジェクタ6は、外開弁タイプのインジェクタを採用してもよい。
インジェクタ6には、燃料供給システム61が接続されている。燃料供給システム61は、燃料を貯留するよう構成された燃料タンク63と、燃料タンク63とインジェクタ6とを互いに連結する燃料供給路62とを備えている。燃料供給路62には、燃料ポンプ65とコモンレール64とが介設している。燃料ポンプ65は、コモンレール64に燃料を圧送する。燃料ポンプ65は、この構成例においては、クランクシャフト15によって駆動されるプランジャー式のポンプである。コモンレール64は、燃料ポンプ65から圧送された燃料を、高い燃料圧力で蓄えるよう構成されている。インジェクタ6が開弁すると、コモンレール64に蓄えられていた燃料が、インジェクタ6の噴口から燃焼室17の中に噴射される。燃料供給システム61は、30MPa以上の高い圧力の燃料を、インジェクタ6に供給することが可能に構成されている。燃料供給システム61の最高燃料圧力は、例えば120MPa程度にしてもよい。インジェクタ6に供給する燃料の圧力は、エンジン1の運転状態に応じて変更してもよい。尚、燃料供給システム61の構成は、前記の構成に限定されない。
シリンダヘッド13には、シリンダ11毎に、点火プラグ25が取り付けられている。点火プラグ25は、燃焼室17の中の混合気に強制的に点火をする。点火プラグ25は、この構成例では、シリンダ11の中心軸X1よりも吸気側に配設されている。点火プラグ25は、2つの吸気ポート18の間に位置している。点火プラグ25は、上方から下方に向かって、燃焼室17の中央に近づく方向に傾いて、シリンダヘッド13に取り付けられている。点火プラグ25の電極は、図2に示すように、燃焼室17の中に臨んでかつ、燃焼室17の天井面の付近に位置している。尚、点火プラグ25の配設位置は、図2の構成例に限定されない。点火プラグ25は、シリンダ11の中心軸X1よりも排気側に配設してもよい。また、点火プラグ25を、シリンダ11の中心軸X1上に配設すると共に、インジェクタ6を、中心軸X1よりも吸気側又は排気側に配設してもよい。
エンジン1の一側面には吸気通路40が接続されている。吸気通路40は、各シリンダ11の吸気ポート18に連通している。吸気通路40は、燃焼室17に導入するガスが流れる通路である。吸気通路40の上流端部には、新気を濾過するエアクリーナー41が配設されている。吸気通路40の下流端近傍には、サージタンク42が配設されている。サージタンク42よりも下流の吸気通路40は、詳細な図示は省略するが、シリンダ11毎に分岐する独立通路を構成している。独立通路の下流端が、各シリンダ11の吸気ポート18に接続されている。
吸気通路40におけるエアクリーナー41とサージタンク42との間には、スロットル弁43が配設されている。スロットル弁43は、弁の開度を調整することによって、燃焼室17の中への新気の導入量を調整するよう構成されている。スロットル弁43は、状態量設定デバイスの一つを構成している。
吸気通路40にはまた、スロットル弁43の下流に、過給機44が配設されている。過給機44は、燃焼室17に導入するガスを過給するよう構成されている。この構成例において、過給機44は、エンジン1によって駆動される機械式の過給機である。機械式の過給機44は、例えばリショルム式としてもよい。機械式の過給機44の構成はどのような構成であってもよい。機械式の過給機44は、ルーツ式、ベーン式、又は遠心式であってもよい。尚、過給機は、電動式の過給機としてもよいし、排気エネルギによって駆動されるターボ過給機としてもよい。
過給機44とエンジン1との間には、電磁クラッチ45が介設している。電磁クラッチ45は、過給機44とエンジン1との間で、エンジン1から過給機44へ駆動力を伝達したり、駆動力の伝達を遮断したりする。後述するように、ECU10が電磁クラッチ45の遮断及び接続を切り替えることによって、過給機44はオンとオフとが切り替わる。つまり、このエンジン1は、過給機44が、燃焼室17に導入するガスを過給することと、過給機44が、燃焼室17に導入するガスを過給しないこととを切り替えることができるよう構成されている。
吸気通路40における過給機44の下流には、インタークーラー46が配設されている。インタークーラー46は、過給機44において圧縮されたガスを冷却するよう構成されている。インタークーラー46は、例えば水冷式に構成すればよい。
吸気通路40には、バイパス通路47が接続されている。バイパス通路47は、過給機44及びインタークーラー46をバイパスするよう、吸気通路40における過給機44の上流部とインタークーラー46の下流部とを互いに接続する。より具体的に、バイパス通路47は、サージタンク42に接続されている。バイパス通路47には、エアバイパス弁48が配設されている。エアバイパス弁48は、バイパス通路47を流れるガスの流量を調整する。
過給機44をオフにしたとき(つまり、電磁クラッチ45を遮断したとき)には、エアバイパス弁48を全開にする。これにより、吸気通路40を流れるガスは、過給機44をバイパスして、エンジン1の燃焼室17に導入される。エンジン1は、非過給、つまり自然吸気の状態で運転する。
過給機44をオンにしたとき(つまり、電磁クラッチ45を接続したとき)には、過給機44を通過したガスの一部は、バイパス通路47を通って過給機の上流に逆流する。エアバイパス弁48の開度を調整することによって、逆流量を調整することができるから、燃焼室17に導入するガスの過給圧を調整することができる。尚、過給時とは、サージタンク42内の圧力が大気圧を超える時をいい、非過給時とは、サージタンク42内の圧力が大気圧以下になる時をいう、と定義してもよい。
この構成例においては、過給機44とバイパス通路47とエアバイパス弁48とによって、過給システム49が構成されている。エアバイパス弁48は、状態量設定デバイスの一つを構成している。
エンジン1は、燃焼室17内にスワール流を発生させるスワール発生部を有している。スワール発生部は、図3に示すように、吸気通路40に取り付けられたスワールコントロール弁56である。スワールコントロール弁56は、第1吸気ポート181につながるプライマリ通路401と、第2吸気ポート182につながるセカンダリ通路402との内の、セカンダリ通路402に配設されている。スワールコントロール弁56は、セカンダリ通路の断面を絞ることができる開度調整弁である。スワールコントロール弁56の開度が小さいと、エンジン1の前後方向に並んだ第1吸気ポート181及び第2吸気ポート182の内、第1吸気ポート181から燃焼室17に流入する吸気流量が相対的に増えかつ、第2吸気ポート182から燃焼室17に流入する吸気流量が相対的に減るから、燃焼室17内のスワール流が強くなる。スワールコントロール弁56の開度が大きいと、第1吸気ポート181及び第2吸気ポート182のそれぞれから燃焼室17に流入する吸気流量が、略均等になるから、燃焼室17内のスワール流が弱くなる。スワールコントロール弁56を全開にすると、スワール流が発生しない。尚、スワール流は、白抜きの矢印で示すように、図3における反時計回り方向に周回する(図2の白抜きの矢印も参照)。
尚、スワール発生部は、吸気通路40にスワールコントロール弁56を取り付ける代わりに、又は、スワールコントロール弁56を取り付けることに加えて、二つの吸気弁21の開弁期間をずらし、一方の吸気弁21のみから燃焼室17の中に吸気を導入することができる構成を採用してもよい。二つの吸気弁21の内の一方の吸気弁21のみが開弁することによって、燃焼室17の中に吸気が不均等に導入するから、燃焼室17の中にスワール流を発生させることができる。さらに、スワール発生部は、吸気ポート18の形状を工夫することによって、燃焼室17の中にスワール流を発生させように構成してもよい。
ここで、燃焼室17内のスワール流の強さについて定義する。本構成例においては、燃焼室17内のスワール流の強さを、「スワール比」で表す。「スワール比」は、吸気流横方向角速度をバルブリフト毎に測定して積分した値を、エンジン角速度で除した値と定義することができる。吸気流横方向角速度は、図5に示すリグ試験装置を用いた測定に基づいて求めることができる。すなわち、同図に示す装置は、基台にシリンダヘッド13を上下反転して設置して、吸気ポート18を図外の吸気供給装置に接続する一方、そのシリンダヘッド13上にシリンダ36を設置すると共に、その上端にハニカム状ロータ37を有するインパルスメータ38を接続して構成されている。インパルスメータ38の下面は、シリンダヘッド13とシリンダブロックとの合わせ面から1.75D(尚、Dはシリンダボア径)の位置に位置づけている。吸気供給に応じてシリンダ36内に生じるスワール(図5の矢印参照)によって、ハニカム状ロータ37に作用するトルクをインパルスメータ38によって計測し、それに基づいて、吸気流横方向角速度を求めることができる。
図6は、このエンジン1におけるスワールコントロール弁56の開度と、スワール比との関係を示している。図6は、スワールコントロール弁56の開度を、セカンダリ通路402の全開断面に対する開口比率によって表している。スワールコントロール弁56が全閉のときに、セカンダリ通路402の開口比率は0%となり、スワールコントロール弁56の開度が大きくなると、セカンダリ通路402の開口比率が0%よりも大きくなる。スワールコントロール弁56が全開のときに、セカンダリ通路402の開口比率は100%となる。図6に例示するように、このエンジン1は、スワールコントロール弁56を全閉にすると、スワール比は6程度になる。スワール比を4以上にするならば、スワールコントロール弁56の開度は、開口比率が0〜15%となる範囲で調整すればよい。
エンジン1の他側面には、排気通路50が接続されている。排気通路50は、各シリンダ11の排気ポート19に連通している。排気通路50は、燃焼室17から排出された排気ガスが流れる通路である。排気通路50の上流部分は、詳細な図示は省略するが、シリンダ11毎に分岐する独立通路を構成している。独立通路の上流端が、各シリンダ11の排気ポート19に接続されている。
排気通路50には、1つ以上の触媒コンバーターを有する排気ガス浄化システムが配設されている。排気ガス浄化システムは、本構成例では、二つの触媒コンバーターを有している。上流の触媒コンバーターは、エンジンルーム内に配設されている。上流の触媒コンバーターは、三元触媒511と、GPF(Gasoline Particulate Filter)512とを有している。下流の触媒コンバーターは、エンジンルーム外に配設されている。下流の触媒コンバーターは、三元触媒513を有している。尚、排気ガス浄化システムは、図例の構成に限定されるものではない。例えば、GPFは省略してもよい。また、触媒コンバーターは、三元触媒を有するものに限定されない。さらに、三元触媒及びGPFの並び順は、適宜変更してもよい。
吸気通路40と排気通路50との間には、外部EGRシステムを構成するEGR通路52が接続されている。EGR通路52は、既燃ガスの一部を吸気通路40に還流させるための通路である。EGR通路52の上流端は、排気通路50における上流の触媒コンバーターと下流の触媒コンバーターとの間に接続されている。EGR通路52の下流端は、吸気通路40における過給機44の上流に接続されている。より具体的に、EGR通路52の下流端は、バイパス通路47の途中に接続されている。EGR通路52を流れるEGRガスは、バイパス通路47のエアバイパス弁48を通らずに、吸気通路40における過給機44の上流に入る。
EGR通路52には、水冷式のEGRクーラー53が配設されている。EGRクーラー53は、既燃ガスを冷却するよう構成されている。EGR通路52にはまた、EGR弁54が配設されている。EGR弁54は、EGR通路52を流れる既燃ガスの流量を調整するよう構成されている。EGR弁54の開度を調整することによって、冷却した既燃ガス、つまり外部EGRガスの還流量を調整することができる。
この構成例において、EGRシステム55は、EGR通路52及びEGR弁54を含んで構成されている外部EGRシステムと、前述した吸気電動S−VT23及び排気電動S−VT24を含んで構成されている内部EGRシステムとによって構成されている。EGR弁54はまた、状態量設定デバイスの一つを構成している。外部EGRシステムは、EGR通路52が触媒コンバーターよりも下流に接続されていると共に、EGRクーラー53を有しているため、内部EGRシステムよりも低温の既燃ガスを、燃焼室17に供給することができる。
エンジンの制御装置は、エンジン1を運転するためのECU(Engine Control Unit)10を備えている。ECU10は、周知のマイクロコンピュータをベースとするコントローラーである。ECU10は、プログラムを実行する中央演算処理装置(Central Processing Unit:CPU)101と、例えばRAM(Random Access Memory)やROM(Read Only Memory)により構成されてプログラム及びデータを格納するメモリ102と、電気信号の入出力をする入出力バス103と、を備えている。ECU10は、コントローラーの一例である。
ECU10には、図1及び図4に示すように、各種のセンサSW1〜SW16が接続されている。センサSW1〜SW16は、検知信号をECU10に出力する。センサには、以下のセンサが含まれる。
すなわち、吸気通路40におけるエアクリーナー41の下流に配置されかつ、吸気通路40を流れる新気の流量を検知するエアフローセンサSW1、及び、新気の温度を検知する第1吸気温度センサSW2、吸気通路40におけるEGR通路52の接続位置よりも下流でかつ、過給機44の上流に配置されかつ、過給機44に流入するガスの圧力を検知する第1圧力センサSW3、吸気通路40における過給機44の下流でかつ、バイパス通路47の接続位置よりも上流に配置されかつ、過給機44から流出したガスの温度を検知する第2吸気温度センサSW4、サージタンク42に取り付けられかつ、過給機44の下流のガスの圧力を検知する第2圧力センサSW5、各シリンダ11に対応してシリンダヘッド13に取り付けられかつ、各燃焼室17内の圧力を検知する指圧センサSW6、排気通路50に配置されかつ、燃焼室17から排出した排気ガスの温度を検知する排気温度センサSW7、排気通路50における上流の触媒コンバーターよりも上流に配置されかつ、排気ガス中の酸素濃度を検知するリニアOセンサSW8、上流の触媒コンバーターにおける三元触媒511の下流に配置されかつ、排気ガス中の酸素濃度を検知するラムダOセンサSW9、エンジン1に取り付けられかつ、冷却水の温度を検知する水温センサSW10、エンジン1に取り付けられかつ、クランクシャフト15の回転角を検知するクランク角センサSW11、アクセルペダル機構に取り付けられかつ、アクセルペダルの操作量に対応したアクセル開度を検知するアクセル開度センサSW12、エンジン1に取り付けられかつ、吸気カムシャフトの回転角を検知する吸気カム角センサSW13、エンジン1に取り付けられかつ、排気カムシャフトの回転角を検知する排気カム角センサSW14、EGR通路52に配置されかつ、EGR弁54の上流及び下流の差圧を検知するEGR差圧センサSW15、並びに、燃料供給システム61のコモンレール64に取り付けられかつ、インジェクタ6に供給する燃料の圧力を検知する燃圧センサSW16である。
ECU10は、これらの検知信号に基づいて、エンジン1の運転状態を判断すると共に、各デバイスの制御量を計算する。ECU100は、計算をした制御量に係る制御信号を、インジェクタ6、点火プラグ25、吸気電動S−VT23、排気電動S−VT24、燃料供給システム61、スロットル弁43、EGR弁54、過給機44の電磁クラッチ45、エアバイパス弁48、及び、スワールコントロール弁56に出力する。
例えば、ECU10は、アクセル開度センサSW12の検知信号と予め設定しているマップとに基づいて、エンジン1の目標トルクを設定すると共に、目標過給圧を決定する。そして、ECU10は、目標過給圧と、第1圧力センサSW3及び第2圧力センサSW5の検知信号から得られる過給機44の前後差圧とに基づいて、エアバイパス弁48の開度を調整することにより、過給圧が目標過給圧となるようにフィードバック制御を行う。
また、ECU10は、エンジン1の運転状態と予め設定したマップとに基づいて目標EGR率(つまり、燃焼室17の中の全ガスに対するEGRガスの比率)を設定する。そして、ECU10は、目標EGR率とアクセル開度センサSW12の検知信号に基づく吸入空気量とに基づき目標EGRガス量を決定すると共に、EGR差圧センサSW15の検知信号から得られるEGR弁54の前後差圧に基づいてEGR弁54の開度を調整することにより、燃焼室17の中に導入する外部EGRガス量が目標EGRガス量となるようにフィードバック制御を行う。
さらに、ECU10は、所定の制御条件が成立しているときに空燃比フィードバック制御を実行する。具体的にECU10は、リニアOセンサSW8、及び、ラムダOセンサSW9によって検知された排気中の酸素濃度に基づいて、混合気の空燃比が所望の値となるように、インジェクタ6の燃料噴射量を調整する。
尚、その他のECU10によるエンジン1の制御の詳細は、後述する。
(エンジンの運転領域)
図7の上図は、エンジン1の運転領域マップ701を例示している。運転領域マップ701は、負荷及び回転数によって定められている。運転領域マップ701は、負荷の高低に対し、3つの領域に分けられている。具体的に、3つの領域は、アイドル運転を含む低負荷領域(A)、全開負荷を含む高負荷領域(C)、及び、低負荷領域(A)と高負荷領域(C)との間の中負荷領域(B)である。運転領域マップ701において、エンジン1は、燃費の向上及び排出ガス性能の向上を主目的として、中負荷領域において、圧縮自己着火による燃焼を行う。以下、低負荷領域、中負荷領域、及び、高負荷領域の各領域における燃焼形態について、順に説明をする。
(低負荷領域)
エンジン1の運転状態が低負荷領域にあるとき(つまり、エンジン1が第1負荷よりも低負荷で運転するとき)の燃焼形態は、点火プラグ25が燃焼室17の中の混合気に点火を行うことによって混合気を火炎伝播により燃焼させるSI燃焼である。これは、燃焼安定性を確実に確保することを優先するためである。以下、低負荷領域における燃焼形態を、低負荷SI燃焼と呼ぶ場合がある。
エンジン1の運転状態が低負荷領域にあるときには、混合気の空燃比(A/F)は、理論空燃比である(A/F≒14.7)。尚、以下の説明において、混合気の空燃比、空気過剰率λ、及びG/Fの値は、点火タイミングにおける値を意味する。混合気の空燃比を理論空燃比にすると、三元触媒が燃焼室17から排出された排出ガスを浄化することができるから、エンジン1の排出ガス性能が良好になる。混合気のA/Fは、三元触媒の浄化ウインドウの中に収まるようにすればよい。混合気の空気過剰率λは、1.0±0.2としてもよい。
エンジン1の燃費性能を向上させるために、エンジン1の運転状態が低負荷領域にあるときに、EGRシステム55は、燃焼室17の中にEGRガスを導入する。混合気のG/F、つまり、燃焼室17の中の全ガスと燃料との重量比は18以上30以下に設定される。混合気のG/Fを、18以上50以下に設定してもよい。混合気は、EGRリーンである。混合気の希釈率は高い。混合気のG/Fを、例えば25にすれば、低負荷運転領域において、混合気が自己着火に至ることなく、SI燃焼を安定して行うことができる。低負荷領域において、混合気のG/Fは、エンジン1の負荷の高低に関わらず略一定に維持する。こうすることで、低負荷領域の全域において、SI燃焼は、安定化する。また、エンジン1の燃費が向上すると共に、排出ガス性能が良好になる。
エンジン1の運転状態が低負荷領域にあるときには、燃料量が少ないため、混合気のλを1.0±0.2にしかつ、G/Fを18以上50以下にするには、燃焼室17の中に導入するガスの充填量を100%よりも少なくしなければならない。具体的に、エンジン1は、スロットル弁43の開度を調整するスロットリング、及び/又は、吸気弁21の閉弁時期を吸気下死点以降に遅らせるミラーサイクルを実行する。
また、エンジン1は、運転状態が低負荷領域にあるときに、必要に応じてスワールコントロール弁56の開度を調整する。
尚、低負荷領域内における、低負荷低回転領域においては、ガスの充填量をさらに少なくすることによって、混合気の燃焼温度及び排気ガスの温度を高くするようにしてもよい。こうすると、触媒コンバーターを活性状態に維持する上で有利になる。
(中負荷領域)
エンジン1の運転状態が中負荷領域にあるときには、燃料の噴射量が多くなる。燃焼室17の温度が高くなるため、自己着火を安定して行うことが可能にある。燃費の向上及び排出ガス性能の向上を図るため、エンジン1は、中負荷領域において、CI燃焼を行う。
自己着火による燃焼は、圧縮開始前の燃焼室17の中の温度がばらつくと、自己着火のタイミングが大きく変化する。そこで、エンジン1は、中負荷領域において、SI燃焼とCI燃焼とを組み合わせたSPCCI燃焼を行う。SPCCI燃焼は、点火プラグ25が、燃焼室17の中の混合気に強制的に点火をすることによって、混合気が火炎伝播により燃焼すると共に、SI燃焼の発熱により燃焼室17の中の温度が高くなることによって、未燃混合気が自己着火により燃焼する形態である。SI燃焼の発熱量を調整することによって、圧縮開始前の燃焼室17の中の温度のばらつきを吸収することができる。圧縮開始前の燃焼室17の中の温度がばらついていても、例えば点火タイミングの調整によってSI燃焼の開始タイミングを調整すれば、未燃混合気を、目標のタイミングにおいて自己着火させることができる。
SPCCI燃焼において、自己着火のタイミングを精度よくコントロールするためには、点火タイミングを変更することに対応して、自己着火のタイミングが変化しなければならない。点火タイミングの変更に対して、自己着火のタイミングが変化する感度が高いことが好ましい。
本願発明者らの検討によると、混合気のG/Fが18以上50以下であれば、SPCCI燃焼を安定的に行うことができると共に、点火タイミングの変更に対して、自己着火のタイミングが変化することがわかった。エンジン1の運転状態が中負荷領域にあるときには、エンジン1は、燃焼室17の中の状態を、混合気のλが1.0±0.2でかつ、混合気のG/Fが18以上50以下にする。
また、エンジン1は、必要に応じて、スワールコントロール弁56の開度を調整する。エンジン1の運転状態が中負荷領域にあるときに、スワールコントロール弁56は、全閉又は閉じ側の所定の開度にされる。燃焼室17の中には、比較的強いスワール流が形成される。点火のタイミングにおいて、スワール比は4以上としてもよい。
SPCCI燃焼における自己着火のタイミングを精度よくコントロールすることによって、エンジン1の運転状態が中負荷領域にあるときに、燃焼騒音の増大を回避することができる。また、混合気の希釈率をできるだけ高くしてCI燃焼を行うことにより、エンジン1の燃費性能を高くすることが可能になる。さらに、混合気のλを1.0±0.2に設定することによって、三元触媒により、排気ガスを浄化することが可能になるため、エンジン1の排出ガス性能が良好になる。
前述したように、低負荷領域においては、混合気のG/Fを18以上50以下(例えば25)にしかつ、混合気のλを1.0±0.2にしている。エンジン1の運転状態が低負荷領域にあるときと、中負荷領域にあるときとの間において、燃焼室17の中の状態量が大きく変動しない。従って、エンジン1の負荷が変更することに対する、エンジン1の制御のロバスト性が高まる。
エンジン1の運転状態が中負荷領域にあるときには、低負荷領域にあるときとは異なり、燃料量が多くなるため、燃焼室17の中に導入するガスの充填量を調整する必要がない。スロットル弁43の開度は全開である。
エンジン1の負荷が高まり、燃料量がさらに増えたときに、混合気のλを1.0±0.2にしかつ、混合気のG/Fを18以上50以下にするには、自然吸気の状態であれば、燃焼室17の中に導入するガス量が不足する。そこで、中負荷領域における所定負荷(つまり、第3負荷)よりも負荷の高い領域においては、過給機44が、燃焼室17の中に導入するガスの過給を行う。中負荷領域(B)は、所定負荷よりも高負荷の領域であって、過給を行う第1中負荷領域(B1)と、所定負荷以下の領域であって、過給を行わない第2中負荷領域(B2)とに分けられる。所定負荷は、例えば1/2負荷である。第2中負荷領域は、第1中負荷領域よりも負荷の低い領域である。以下、第1中負荷領域における燃焼形態を、過給SPCCI燃焼と呼び、第2中負荷領域における燃焼形態を、非過給SPCCI燃焼と呼ぶ場合がある。
過給を行わない第2中負荷領域においては、燃料量が増えるに従い、燃焼室17の中に導入する新気が増える一方、EGRガスは減る。混合気のG/Fは、エンジン1の負荷が高くなると小さくなる。スロットル弁43の開度を全開にしているため、エンジン1は、燃焼室17の中に導入するEGRガスの量を調整することにより、燃焼室17の中に導入する新気の量を調整する。第2中負荷領域において燃焼室17の中の状態量は、例えば混合気のλは1.0で略一定になる一方、混合気のG/Fは25〜28の範囲で変更される。
これに対し、過給を行う第1中負荷領域において、エンジン1は、燃料量が増えるに従い、燃焼室17の中に導入する新気及びEGRガスを共に増やす。混合気のG/Fは、エンジン1の負荷が高くなっても略一定である。第1中負荷領域において燃焼室17の中の状態量は、例えば混合気のλは1.0で略一定になると共に、混合気のG/Fは25で略一定である。
(高負荷領域)
エンジン1の運転状態が高負荷領域にあるときの燃焼形態は、SI燃焼である。これは、燃焼騒音を確実に回避することを優先するためである。以下、高負荷領域における燃焼形態を、高負荷SI燃焼と呼ぶ場合がある。
エンジン1の運転状態が高負荷領域にあるときに、混合気のλは1.0±0.2である。また、混合気のG/Fは、18以上30以下に設定される。混合気のG/Fを、18以上50以下に設定してもよい。高負荷領域においては、スロットル弁43の開度は全開であり、過給機44は過給を行う。
高負荷領域において、エンジン1は、負荷が高まるに従いEGRガスの量を減らす。混合気のG/Fは、エンジン1の負荷が高くなると、小さくなる。EGRガスの量を減らした分、燃焼室17の中に導入する新気の量が増えるから、燃料量を増やすことができる。エンジン1の最高出力を高くする上で有利になる。
また、エンジン1は、必要に応じて、スワールコントロール弁56の開度を調整する。

エンジン1の運転状態が高負荷領域にあるときと、中負荷領域にあるときとの間において、燃焼室17の中の状態量が大きく変動しない。エンジン1の負荷が変更することに対する、エンジン1の制御のロバスト性が高まる。
前述の通り、エンジン1は、高負荷領域においては、SI燃焼を行うが、過早着火やノッキングといった異常燃焼が生じやすくなるという問題がある。
そこで、エンジン1は、高負荷領域において、燃料噴射の形態を工夫することにより異常燃焼を回避するよう構成されている。具体的に、ECU10は、30MPa以上の高い燃料圧力でかつ、圧縮行程後期から膨張行程初期までの期間(以下、この期間をリタード期間と呼ぶ)内のタイミングで、燃焼室17内に燃料を噴射するよう、燃料供給システム61及びインジェクタ6に制御信号を出力する。ECU10はまた、燃料の噴射後、圧縮上死点付近のタイミングで、混合気に点火を行うよう、点火プラグ25に制御信号を出力する。尚、以下においては、高い燃料圧力でかつ、リタード期間内のタイミングで、燃焼室17の中に燃料を噴射することを、高圧リタード噴射と呼ぶ。
高圧リタード噴射は、混合気が反応する時間を短くすることによって、異常燃焼を回避する。すなわち、混合気が反応する時間は、(1)インジェクタ6が燃料を噴射する期間(つまり、噴射期間)と、(2)燃料の噴射が終了した後、点火プラグ25の周りに可燃混合気が形成されるまでの期間(つまり、混合気形成期間)と、(3)点火によって開始されたSI燃焼が終了するまでの期間(つまり、燃焼期間)と、を足し合わせた時間である。
高い燃料圧力で、燃焼室17の中に燃料を噴射すると、噴射期間及び混合気形成期間は、それぞれ短くなる。噴射期間及び混合気形成期間が短くなると、燃料の噴射を開始するタイミングを点火タイミングに近づけることが可能になる。高圧リタード噴射は、高い圧力でかつ、燃焼室17の中に燃料を噴射するから、圧縮行程後期から膨張行程初期までのリタード期間内のタイミングで、燃料噴射を行う。
高い燃料圧力で燃焼室17の中に燃料を噴射すると、燃焼室17の中の乱流エネルギが高くなる。燃料噴射のタイミングを圧縮上死点に近づけると、燃焼室17の中の乱流エネルギが高い状態でSI燃焼を開始することができる。その結果、燃焼期間が短くなる。
高圧リタード噴射は、噴射期間、混合気形成期間、及び、燃焼期間をそれぞれ短くすることができる。吸気行程中に燃焼室17の中に燃料を噴射する場合と比較して、高圧リタード噴射は、混合気が反応する時間を大幅に短くすることができる。高圧リタード噴射は、混合気が反応する時間が短くなるから、異常燃焼を回避することが可能になる。
エンジン制御の技術分野においては、異常燃焼を回避するために、点火タイミングを遅角することが、従来から行われている。しかしながら、点火タイミングを遅らせると、燃費性能は低下する。高圧リタード噴射は、点火タイミングを遅角させなくてもよい。高圧リタード噴射を利用することによって、燃費性能は向上する。
燃料圧力を、例えば30MPa以上にすれば、噴射期間、混合気形成期間及び燃焼期間を効果的に短縮することができる。尚、燃料圧力は、燃料の性状に応じて適宜設定するのが好ましい。燃料圧力の上限値は、一例として、120MPaとしてもよい。
ここで、エンジン1の回転数が低いときには、クランク角度が同一角度だけ変化するときの時間が長いため、高圧リタード噴射によって混合気の反応可能時間を短縮することは、異常燃焼を回避する上で、特に有効である。一方、エンジン1の回転数が高くなると、クランク角度が同一角度だけ変化するときの時間が短くなる。このため、混合気の反応可能時間を短縮することは、異常燃焼を回避する上で、それほど有効ではない。
高圧リタード噴射はまた、圧縮上死点付近になって初めて、燃焼室17の中に燃料を噴射するため、圧縮行程において、燃焼室17の中では、燃料を含まないガス、言い換えると比熱比の高いガスが圧縮される。エンジン1の回転数が高いときに、高圧リタード噴射を行うと、圧縮上死点における燃焼室17の中の温度、つまり、圧縮端温度が高くなってしまう。圧縮端温度が高くなることによって、ノッキング等の異常燃焼を招く恐れがある。
そこで、このエンジン1は、高負荷領域(C)を、低回転側の第1高負荷領域(C1)と、第1高負荷領域(C1)よりも回転数の高い第2高負荷領域(C2)とに分けている。第1高負荷領域は、高負荷領域内を、低回転、中回転及び高回転の3つの領域に三等分したときの低回転及び中回転領域を含むとしてもよい。第2高負荷領域は、高負荷領域内を、低回転、中回転及び高回転の3つの領域に三等分したときの高回転領域を含むとしてもよい。
第1高負荷領域において、インジェクタ6は、ECU10の制御信号を受けて、前述した高圧リタード噴射を行う。第2高負荷領域において、インジェクタ6は、ECU10の制御信号を受けて、吸気行程中の所定タイミングで燃料噴射を行う。吸気行程中に行う燃料噴射は、高い燃料圧力が不要である。ECU10は、燃料圧力が、高圧リタード噴射の燃料圧力よりも低くなるよう(例えば燃料圧力が40MPa未満となるよう)、燃料供給システム61に制御信号を出力する。燃料圧力を下げることによって、エンジン1の機械抵抗損失が低下するから、燃費の向上に有利になる。
吸気行程中に燃焼室17の中に燃料を噴射することによって、燃焼室17の中のガスの比熱比が下がるから、圧縮端温度が低くなる。圧縮端温度が低くなるから、エンジン1は、異常燃焼を回避することができる。異常燃焼を回避するために、点火タイミングを遅角する必要がないため、第2高負荷領域において、点火プラグ25は、第1高負荷領域と同様に、圧縮上死点付近のタイミングで、混合気に点火する。
第1高負荷領域においては、高圧リタード噴射によって、混合気が自己着火に至らないため、エンジン1は、安定したSI燃焼を行うことができる。第2高負荷領域においては、吸気行程中の燃料噴射によって、混合気が自己着火に至らないため、エンジン1は、安定したSI燃焼を行うことができる。
(SPCCI燃焼)
ここで、SPCCI燃焼について説明をする。図8の上図は、SPCCI燃焼における、クランク角に対する熱発生率の変化を例示する波形801を示している。圧縮上死点付近、正確には、圧縮上死点よりも前の所定タイミングで、点火プラグ25が混合気に点火すると、火炎伝播による燃焼が開始する。SI燃焼時の熱発生は、CI燃焼時の熱発生よりも穏やかである。従って、熱発生率の波形は、傾きが相対的に小さくなる。図示はしないが、SI燃焼時の、燃焼室17の中における圧力変動(dp/dθ)も、CI燃焼時よりも穏やかになる。
SI燃焼によって、燃焼室17の中の温度及び圧力が高まると、未燃混合気が自己着火する。波形801の例では、圧縮上死点付近において、熱発生率の波形の傾きが、小から大へと変化している。つまり、熱発生率の波形は、CI燃焼が開始するタイミングで、変曲点を有している。
CI燃焼の開始後は、SI燃焼とCI燃焼とが並行して行われる。CI燃焼は、SI燃焼よりも熱発生が大きいため、熱発生率は相対的に大きくなる。但し、CI燃焼は、圧縮上死点後に行われるため、ピストン3がモータリングによって下降している。CI燃焼による、熱発生率の波形の傾きが大きくなりすぎることが回避される。CI燃焼時のdp/dθも比較的穏やかになる。
dp/dθは、燃焼騒音を表す指標として用いることができるが、前述の通りSPCCI燃焼は、dp/dθを小さくすることができるため、燃焼騒音が大きくなりすぎることを回避することが可能になる。燃焼騒音は、許容レベル以下に抑えることができる。
CI燃焼が終了することによって、SPCCI燃焼が終了する。CI燃焼は、SI燃焼に比べて、燃焼期間が短い。SPCCI燃焼は、SI燃焼よりも、燃焼終了時期が早まる。言い換えると、SPCCI燃焼は、膨張行程中の燃焼終了時期を、圧縮上死点に近づけることが可能である。SPCCI燃焼は、SI燃焼よりも、エンジン1の燃費性能の向上に有利である。
従って、SPCCI燃焼は、燃焼騒音の防止と、燃費性能の向上とを両立することができる。
ここで、SPCCI燃焼の特性を示すパラメータとして、SI率を定義する。SI率は、SPCCI燃焼により発生した全熱量に対し、SI燃焼により発生した熱量の割合に関係する指標と定義する。SI率は、燃焼形態の相違する二つの燃焼によって発生する熱量比率である。SI率は、SPCCI燃焼により発生した熱量に対する、SI燃焼により発生した熱量の比率としてもよい。例えば波形801においてSI率は、SI率=(SI燃焼の面積)/(SPCCI燃焼の面積)によって表すことができる。波形801においてSI燃焼によって燃焼をする燃料の割合の意味で、前記SI率を、SI燃料割合と呼んでもよい。
SI率は、SI燃焼とCI燃焼とを組み合わせたSPCCI燃焼において、SI燃焼とCI燃焼との比である。SI率が高いと、SI燃焼の割合が高く、SI率が低いと、CI燃焼の割合が高い。
SI率は、前述した定義に限定されるものではない。SI率は、様々な定義が考えられる。例えば、SI率は、CI燃焼により発生した熱量に対する、SI燃焼により発生した熱量の比率としてもよい。つまり、波形801においてSI率=(SI燃焼の面積)/(CI燃焼の面積)としてもよい。
また、SPCCI燃焼において、CI燃焼が開始したタイミングで、熱発生率の波形は変曲点を有している。そこで、図8の中図に符号802で示すように、熱発生率の波形における変曲点を境界にし、境界よりも進角側の範囲をSI燃焼、遅角側の範囲をCI燃焼としてもよい。この場合において、SI率は、波形802にハッチングを付して示すように、境界よりも進角側の範囲の面積QSI、遅角側の範囲の面積QCIから、SI率=QSI/(QSI+QCI)としてもよいし、SI率=QSI/QCIとしてもよい。また、境界よりも進角側の範囲の全面積ではなく一部の面積と、境界よりも遅角側の範囲の一部の面積とに基づいて、SI率を定義してもよい。
また、熱発生に基づいてSI率を定義するのではなく、境界よりも進角側の範囲のクランク角度ΔθSI、遅角側の範囲のクランク角度ΔθCIから、SI率=ΔθSI/(ΔθSI+ΔθCI)としてもよいし、SI率=ΔθSI/ΔθCIとしてもよい。
さらに、境界よりも進角側の範囲の熱発生率のピークΔPSI、遅角側の範囲の熱発生率のピークΔPCIから、SI率=ΔPSI/(ΔPSI+ΔPCI)としてもよいし、SI率=ΔPSI/ΔPCIとしてもよい。
加えて、境界よりも進角側の範囲における熱発生率の傾きφSI、遅角側の範囲における熱発生率の傾きφCIから、SI率=φSI/(φSI+φCI)としてもよいし、SI率=φSI/φCIとしてもよい。
また、ここでは、熱発生率の波形に基づいて、面積(つまり、熱発生量の大きさ)、横軸の長さ(つまり、クランク角度の大きさ)、縦軸の長さ(つまり、熱発生率の大きさ)、又は、傾き(つまり、熱発生率の変化率)から、SI率を定義している。図示は省略するが、燃焼室17の中の圧力(P)の波形に基づいて、同様に、面積、横軸の長さ、縦軸の長さ、又は、傾きから、SI率を定義してもよい。
また、SPCCI燃焼において、熱発生率又は圧力に係る燃焼波形の変曲点は、常に明確に現れるとは限らない。変曲点に基づかないSI率の定義として、次のような定義を用いてもよい。つまり、図8の下図に符号803で示すように、燃焼波形において、圧縮上死点(TDC)よりも進角側の範囲をSI燃焼とし、圧縮上死点よりも遅角側の範囲をCI燃焼としてもよい。その上で、前記と同様に、面積(QSI、QCI)、横軸の長さ(ΔθSI、ΔθCI)、縦軸の長さ(ΔPSI、ΔPCI)、又は、傾き(φSI、φCI)から、SI率を定義してもよい。
さらに、SI率は、燃焼室17の中で実際に行われた燃焼波形によって定義するのではなく、燃料量に基づいて定義してもよい。後述するように、SPCCI燃焼を行う中負荷領域においては、前段噴射と後段噴射とを含む分割噴射を行う場合がある。後段噴射によって燃焼室17の中に噴射された燃料は、噴射から点火までの時間が短いため、燃焼室17の中で拡散せずに、点火プラグ25の付近に位置するようになる。従って、後段噴射によって燃焼室17の中に噴射された燃料は、主にSI燃焼によって燃焼する。一方、前段噴射によって燃焼室17の中に噴射された燃料は、主にCI燃焼によって燃焼する。従って、前段噴射によって噴射する燃料量(m)と、後段噴射によって噴射する燃料量(m)とに基づいて、SI率を定義することが可能である。つまり、SI率=m/(m+m)としてもよいし、SI率=m/mとしてもよい。
(SPCCI燃焼の安定化)
ここで、SPCCI燃焼を安定して行うための条件について説明する。本願発明者らの検討によると、SPCCI燃焼を適切に行うためには、混合気が自己着火するまでの間に、火炎伝播によるSI燃焼を安定化させなければならないことが新たにわかった。SI燃焼が不安定であると、CI燃焼を含めた燃焼全体が安定化しない。
SI燃焼の安定性に関係する因子の一つは乱流燃焼速度である。乱流燃焼速度が高いと、SI燃焼は安定化する。乱流燃焼速度は、混合気の空燃比(又は空気過剰率λ)、混合気のEGR率(つまり、希釈率)、燃焼室の中の温度及び圧力、及び、燃焼室の中の乱流エネルギ等の影響を受ける。
本願発明者らは、SI燃焼の安定性確保に必要な乱流燃焼速度を実現するための、混合気の空気過剰率λ、混合気の希釈率(ここでは、燃焼室の中の全ガスと燃料との重量比であるG/F)、燃焼室の中の温度及び圧力、及び、燃焼室の中の乱流エネルギについて、シミュレーションによる検討を行った。このシミュレーションの条件は、エンジンが低負荷で運転しておりかつ、内部EGRガスのみを燃焼室の中に導入することによって、燃焼室の中の温度をできるだけ高くしている条件である。
ノッキングの発生に伴う大きな燃焼騒音を確実に回避する観点から、混合気のG/Fの下限は、18である。つまり、混合気のG/Fを下げると、未燃混合気の自己着火が発生したとしても、その現象はノッキングとみなすことができる。また、このようなリーン混合気の燃焼において、NOxの排出を防止すべく三元触媒を利用するのであれば、混合気の空気過剰率λは1.0±0.2である。
エンジンの燃費性能を高める観点からは、混合気のG/Fは大きい方が好ましい。そこで、本願発明者らは、図13の上図に示すように、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係を検討した(符号1301のグラフ)。尚、エンジンは、回転数が2000rpmでかつ、低負荷運転をしている。また、燃焼室の中に内部EGRガスを導入している。吸気弁の閉弁時期は91°ABDCである。エンジンの幾何学的圧縮比は18である。
グラフ1301によると、混合気のλが1.2のときのG/Fの特性線は、30付近で飽和する飽和曲線のようになる。一方、エンジンの回転数が2000rpmのときに、乱流エネルギは40m/sを実現することが可能である。40m/sを超える乱流エネルギを実現したとしても、混合気のG/Fは、30よりもほとんど大きくならないことが、新たにわかった。グラフ1301によると、SI燃焼の安定性を確保する上で、混合気のG/Fは30が上限である。
以上の検討から、混合気のG/Fは18以上30以下に設定する必要がある。グラフ1301から、混合気のλが1.0又は1.2でかつ、G/Fの範囲が18以上30以下のときに、SI燃焼の安定化のために必要な乱流エネルギの範囲は17〜40m/sである。
図13の中図は、グラフ1301と同条件において、所望の乱流燃焼速度を実現するために必要な燃焼室の中の、点火タイミングにおける温度と、混合気のG/Fと、の関係を示している(符号1302のグラフ)。グラフ1302によると、混合気のλが1.0又は1.2でかつ、G/Fの範囲が18以上30以下のときに、点火タイミングにおける燃焼室の中の必要温度TIg(K)は、570〜800Kである。
図13の下図は、グラフ1301と同条件において、所望の乱流燃焼速度を実現するために必要な燃焼室の中の、点火タイミングにおける圧力と、混合気のG/Fと、の関係を示している(符号1303のグラフ)。グラフ1303によると、混合気のλが1.0又は1.2でかつ、G/Fの範囲が18以上30以下のときに、点火タイミングにおける燃焼室の中の必要圧力PIg(kPa)は、400〜920kPaである。
尚、図示は省略するが、エンジンの幾何学的圧縮比を13〜20の範囲において変更しても、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係に対しては、ほとんど影響がなかった。
また、図13は、エンジンの回転数が2000rpmであるときのシミュレーション結果を示しているが、エンジンの回転数が高くなると、燃焼室内のガスの流動が強くなるため、所望の乱流燃焼速度が得られやすくなる。前述した混合気のG/F、燃焼室の中の必要温度TIg、及び、必要圧力PIgの数値範囲はそれぞれ、特定のエンジンの運転状態に限定されない。
SPCCI燃焼は、前述したように、SI燃焼によって自己着火のタイミングをコントロールするが、目標のタイミングにおいて未燃混合気が自己着火をするように、自己着火のタイミングを精度よくコントロールするためには、点火タイミングを変更することに対応して、自己着火のタイミングが変化しなければならない。点火タイミングの変更に対して、自己着火のタイミングが変化する感度が高いことが好ましい。
図14は、実験によって得られた、点火タイミングの変化に対する自己着火タイミングの変化比率(=(自己着火タイミングのクランク角変化)/(点火タイミングのクランク角変化))を示すコンター図1401である。変化比率は、点火タイミングをクランク角において1°だけ変更したときの、自己着火タイミングのクランク角変化の大きさを示す。変化比率の値が大きいほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が高く、変化比率の値が小さいほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が低いことを示す。
コンター図1401の縦軸は、混合気のEGR率、横軸は混合気のA/Fである。図の右上ほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が低く、図の左下ほど、自己着火のタイミングの変化感度が高い。コンター図1401から、混合気のλが1.0±0.2でかつ、G/Fの範囲が18以上30以下である破線で囲んだ範囲は、点火タイミングの変更に対して、自己着火のタイミングが、感度よく変化することがわかる。尚、EGR率の上限は、燃焼安定性の観点から、40%であることが好ましい。
すなわち、燃焼室の中の状態を、混合気のλが1.0±0.2でかつ、G/Fが18以上30以下とすれば、SI燃焼が安定化する結果、SPCCI燃焼において、未燃混合気を目標のタイミングで正確に自己着火させることができる。
前記の検討では、混合気のG/Fは30が最大である。これに対し、本願発明者らは、燃費性能をさらに向上させるべく、混合気の希釈度を高くすることを検討した。
本願発明者らは、SPCCI燃焼がSI燃焼とCI燃焼との組み合わせであることから、燃焼室内において混合気のG/Fを成層化することに着目した。つまり、SPCCI燃焼におけるSI燃焼は点火プラグ25によって点火される混合気の燃焼である。点火プラグ25の近傍の混合気は主に、SI燃焼により燃焼する。一方、SPCCI燃焼におけるCI燃焼は、SI燃焼が開始した後の、未燃混合気の自己着火による燃焼である。点火プラグ25から離れた周囲の混合気は主に、CI燃焼により燃焼する。
例えば燃焼室17内に強いスワール流を発生させると、ピストン3の頂面のキャビティ31内に溜まっていた残留ガス(つまり、既燃ガス)を、キャビティ31外に追い出すことができる。燃焼を燃焼室17の全体に略均等に分布させていると、点火プラグ25の近傍の混合気のG/Fは、キャビティ31内に残留ガスがなくなる分、相対的に小さくなり、点火プラグ25から離れた周囲の混合気のG/Fは、残留ガスを含む分、相対的に大きくなる。燃焼室17内の混合気のG/Fを成層化することができる。
本願発明者らは、図15に示す手順によって、混合気のG/Fを成層化した状態でSPCCI燃焼が安定化する条件について、シミュレーションによる検討を行った。このシミュレーションにおいては、図15に符号1506において模式的に示すように、燃焼室17の中を、点火プラグ25の近傍のSI部と、SI部の周囲のCI部とに仮想的に区分けをし、SI部及びCI部のそれぞれについて、混合気のG/Fを定める。但し、SI部の混合気の空気過剰率λ、及び、CI部の混合気の空気過剰率λは共に1である。また、SI部のG/Fは、CI部のG/Fよりも小さいとする。
シミュレーションに際し、本願発明者らは先ず、SPCCI燃焼が安定的に行われるための制約条件として、以下の三つの制約条件(1)〜(3)を仮定した。
制約条件(1):SI燃焼を安定的に行う条件として、図13の上図の結果を利用することにより、SI部の混合気のG/Fを22以下とする。SI部は、前述したように、残留ガスを含まずに、外部EGRガスを含む混合気であるため、SI部の混合気のG/Fを22以下にするという制約条件(1)は、外部EGR率を34%以下にすると言い換えることができる。
制約条件(2):CI部の混合気のG/Fは100未満でありかつ、燃焼室が圧縮上死点に至ったときの、CI部の温度は1050Kを超えるとする。CI燃焼は、SI燃焼に比べると、混合気が希釈されていても安定して燃焼する。しかしながら、混合気の希釈度には限度があり、本願発明者らが行った実験によると、混合気のG/Fが100未満であれば、CI燃焼において、圧縮上死点から上死点後10°CAまでの範囲に燃焼重心が存在した状態で、所望の燃焼安定性を確保することができる。
また、ガソリンを含有する燃料の自着火温度は一般的に1050Kとされており、これは、本願発明者らが行った実験においても確認されている。よって、CI部の混合気のG/Fは100未満でありかつ、圧縮上死点におけるCI部の温度が1050Kを超えると、安定したCI燃焼が実現する。
制約条件(3):SPCCI燃焼は、SI燃焼とCI燃焼とを組み合わせているため、SI燃焼の割合が高くなると、CI燃焼の割合が低くなり、SI燃焼の割合が低くなると、CI燃焼の割合が高くなる。SI燃焼の割合が低くなり過ぎると、CI燃焼の割合が高くなり過ぎる結果、燃焼騒音が大きくなってしまう。SPCCI燃焼におけるSI燃焼の割合(つまり、前述したSI率)を、SI燃焼により燃焼する燃料の割合としての「SI燃料割合」で表す。SPCCI燃焼においてSI燃焼のみが行われると、SI燃料割合は1になる。SPCCI燃焼においてSI燃焼の割合が少なくなるに従い、I燃料割合は1よりも次第に小になる。
図15の符号1504のグラフは、エンジン1の圧縮比とSI燃料割合との関係において、SPCCI燃焼において燃焼騒音が許容値以下になる領域と、SPCCI燃焼における燃焼騒音が許容値を超える領域とを示している。グラフ1504に示すように、エンジンの圧縮比に関わらず、SPCCI燃焼においては、SI燃料割合をある程度以上大きくしないと燃焼騒音を許容値以下に抑えることができない。燃焼騒音の許容値の具体的な値は、適宜の値に定めることができる。尚、グラフ1504によると、エンジンの圧縮比が高いほど圧縮上死点における燃焼室内の温度が高くなってCI燃焼が急峻になる恐れがあるため、SI燃料割合を大きくしなければ、燃焼騒音を許容値以下に抑えることができなくなる。エンジンの圧縮比が低くなれば圧縮上死点における燃焼室内の温度が低くなってCI燃焼が急峻にならないから、SI燃料割合を小さくしても、燃焼騒音を許容値以下に抑えることができる。
本検討においては、図15の符号1501のマトリックスに示すように、SI部のEGR率と、燃焼室全体のトータルEGR率との二つのパラメータをそれぞれ変更し、前述した制約条件(1)〜(3)を満足する範囲を探索する。図例では、外部EGR率を5%ずつ変更すると共に、トータルのEGR率を10%ずつ変更する。尚、これらのEGR率の変更幅はそれぞれ、適宜の幅に定めることができる。探索は、例えば、外部EGR率を、ある値に固定した上で、トータルEGR率を変更しながら、制約条件(1)〜(3)を満足するトータルEGR率の範囲を探索する。そして、外部EGR率の値を変更しながら、探索を繰り返す。
ここで、SI部のEGR率とトータルEGR率との関係は変えないで、SPCCI燃焼におけるSI燃料割合を変更することにより、前述した制約条件(1)〜(3)を満足させることが可能である。そこで、符号1502のマトリックスに示すように、マトリックス1501の縦一列に対して(つまり、外部EGR率の値毎に)、SI燃料割合を変更することによって、制約条件(1)〜(3)を満足するトータルEGR率の範囲を探索する。
図15の符号1503のグラフは、マトリックス1502の探索結果を例示している。グラフ1503は、エンジンの圧縮比が16でかつ、外部EGR率が20%のときの探索結果の例である。横軸がSI燃料割合、縦軸がトータルEGR率で表されるグラフ1503において、領域(II)は、一点鎖線よりも左側の領域であって、SI燃料割合が0.5以下の領域である。この領域は、グラフ1504に示すように、エンジンの圧縮比16のときに、SPCCI燃焼において燃焼騒音が許容されるSI燃料割合の下限に相当する。つまり、領域(II)は、制約条件(3)を満足しない領域である。領域(II)は、SPCCI燃焼においてSI燃焼の割合が小さいため、燃焼騒音が許容値を超えてしまう領域に相当する。
領域(III)は、グラフ1503において破線よりも上側の領域である。この領域は、トータルEGR率が大きい領域である。領域(III)は、CI部の混合気のG/Fが大きすぎるため、SPCCI燃焼におけるCI燃焼の燃焼安定性が確保できない領域である。つまり、領域(III)は、制約条件(2)を満足しない領域である。
領域(IV)は、グラフ1503において実線よりも下側の領域である。この領域は、トータルEGR率が小さい領域である。領域(IV)は、圧縮上死点におけるCI部の温度が低くなって、SPCCI燃焼においてCI部の混合気が安定して自己着火しなくなる領域である。つまり、領域(IV)も、制約条件(2)を満足しない領域である。
グラフ1503の領域(I)は、制約条件(2)及び(3)を満足する領域である。
以上説明したように、マトリックス1501、マトリックス1502及びグラフ1503に基づいて、外部EGR率毎に、SI燃料割合を変更しながら、制約条件を満足するトータルEGR率の範囲を探索する。その結果、マトリックス1501の探索結果の一例として、図15の符号1505のグラフが得られる。グラフ1505は、横軸をSI部の外部EGR率とし、縦軸をトータルEGR率とした平面において、制約条件(1)〜(3)を満足する領域を示している。グラフ1503とグラフ1505とは、図15に両端矢印で示すように、ある特定の外部EGR率(図例では、EGR率が20%)において制約条件を満足するトータルEGR率の範囲を示している。
図16は、混合気のG/Fを成層化した状態において安定したSPCCI燃焼を実現する、SI部のG/F(横軸)と、燃焼室全体のトータルG/F(縦軸)との関係を例示している。図16のグラフ1601は、図15のグラフ1505における縦軸及び横軸のそれぞれを、EGR率からG/Fに書き換えたグラフである。グラフ1601においてハッチングを付した領域内が、制約条件を満足する領域である。SI部のG/Fと燃焼室内のトータルG/Fとの関係が、この領域内に含まれていると、SPCCI燃焼が安定する。
グラフ1601に示す領域の上側のライン1602は、それ以上ではCI部が希釈化し過ぎてCI燃焼が安定しなくなる限度において、燃焼騒音を回避することができるSI燃料割合を確保するためのラインに相当する。また、当該領域の右側のライン1603は、SI部のSI燃焼の安定性確保のための限界ラインに相当する(つまり、制約条件(1)を満足するためのラインである)。当該領域の下側のライン1604は、CI部の温度を確保して自己着火を安定させるためのラインである。このラインは、グラフ1601において右上がりの直線である。このラインは、エンジンの圧縮比εが高くなると、一点鎖線で示すように上側にシフトし、エンジンの圧縮比εが低くなると、二点鎖線で示すように、下側にシフトする。
グラフ1601には、さらにライン1605が追加されている。このライン1605は、ノッキングの発生に伴う大きな燃焼騒音を回避するためのラインであり、図13にも示したG/F=18に相当するラインである。このライン1605は、前述したライン1604と交差している。前述したように、ライン1604よりも上であれば、SPCCI燃焼において、平均的な燃焼騒音は許容値を満足することになるが、ライン1605よりもトータルEGR率が小さいと、ノッキング(異常燃焼)が発生する恐れがあるため、当該ライン1605を優先しなければならなくなる。
以上の検討から、燃焼室内のG/Fを成層化することによって、SPCCI燃焼を安定化させるためのトータルG/Fの範囲は18以上50以下になる。このときに、SI部のG/Fの範囲は14以上22以下である。SI部のG/Fが大きくなると、SPCCI燃焼を安定化させるためには、トータルG/Fを大きくしなければならない。また、エンジン1の圧縮比εが高いと、SPCCI燃焼を安定化させるためには、トータルG/Fを、圧縮比εが低いときよりも大きくしなければならない。
G/Fを成層化すると、図13に示したG/Fの範囲よりも混合気をさらに希釈することが可能になるから、エンジンの燃費性能の向上に有利になる。G/Fの成層化は、例えば、燃焼室17内に強いスワール流を発生させたり、燃焼室17の形状を工夫したり、それらを組み合わせたりすることにより、実現することが可能である。
尚、燃焼室内のG/Fを成層化する場合、SI部の混合気は空気過剰率λが1.0±0.2でかつ、EGR率は34%以下に設定される。図14に二点鎖線で囲むように、混合気の空気過剰率λ≒1でかつ、EGR率が34%以下であれば、点火タイミングの変更に対する自己着火のタイミングの変化感度が高い。つまり、燃焼室内のG/Fを成層化する場合に、トータルG/Fを18以上50以下、SI部のG/Fを14以上22以下にしかつ、燃焼室内全体の空気過剰率λ≒1にすれば、SPCCI燃焼において、点火タイミングの変更に対して、自己着火のタイミングを精度よく変化させることができる。
(エンジンの運転制御)
エンジン1は、運転領域マップ701において、運転状態に応じてSI燃焼とSPCCI燃焼とを切り替える。エンジン1はまた、エンジン1の運転状態に応じてSI率を変更する。これにより、燃焼騒音の発生を抑制することと、燃費の向上を図ることとが両立する。
図9は、エンジン1の負荷の高低に対する、SI率の変化、燃焼室17の中の状態量の変化、吸気弁の開弁期間及び排気弁の開弁期間の変化、並びに、燃料の噴射タイミング及び点火タイミングの変化を例示している。図9は、図7の運転領域マップ701に対応する。以下、所定の回転数で、エンジン1の負荷が次第に高くなる想定において、エンジン1の運転制御を説明する。
(低負荷領域(低負荷SI燃焼))
低負荷領域(A)において、エンジン1は、低負荷SI燃焼を行う。エンジン1の運転状態が低負荷領域にあるときに、SI率は100%で一定である。
低負荷領域においては、前述したように、混合気のG/Fを、18〜50の間で一定にする。エンジン1は、燃焼室17の中に、燃料量に応じた量の新気及び既燃ガスを導入する。新気の導入量は、前述したように、スロットリング、及び/又は、ミラーサイクルによって調整する。希釈率が高いため、SI燃焼を安定化させるために、燃焼室17の中の温度を高める。エンジン1は、低負荷領域においては、内部EGRガスを、燃焼室17の中に導入する。スワールコントロール弁56の開度は、適宜、調整される。
内部EGRガスは、排気上死点を挟んで吸気弁21及び排気弁22が共に閉弁したネガティブオーバーラップ期間を設けることによって、燃焼室17の中に導入する(つまり、既燃ガスを燃焼室17の中に閉じ込める)。内部EGRガス量の調整は、吸気電動S−VT23により吸気弁21の開弁時期を調整することと、排気電動S−VT24により排気弁22の開弁時期を調整することと、によって、ネガティブオーバーラップ期間の長さを適宜設定することにより行う。尚、吸気弁21及び排気弁22を共に開弁するポジティブオーバーラップ期間を設けることによって、内部EGRガスを燃焼室17の中に導入するようにしてもよい。
低負荷領域においては、燃焼室17の中に導入する充填量が100%未満に調整される。燃料量が増大するに従い、燃焼室17の中に導入する新気の量、及び、内部EGRガスの量が次第に増える。低負荷領域におけるEGR率は、例えば40%である。
インジェクタ6は、吸気行程中に、燃焼室17の中に燃料を噴射する。燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18〜50になった、均質な混合気が形成される。空気過剰率λは、好ましくは、1.0〜1.2である。圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、自己着火に至らずに、火炎伝播により燃焼する。
(第2中負荷領域(非過給SPCCI燃焼))
エンジン1の負荷が高くなって、運転状態が第2中負荷領域(B2)に入ると、エンジン1は、低負荷SI燃焼から非過給SPCCI燃焼に切り替える。SI率は、100%未満になる。エンジン1の負荷が高まるに従い燃料量が増える。第2中負荷領域の中において負荷が低いときには、燃料量の増大に従って、CI燃焼の割合を増やす。SI率は、エンジン1の負荷が高くなる従って、次第に小さくなる。SI率は、図9の例では、50%以下の所定値(最小値)にまで減少する。
燃料量が増えるため、第2中負荷領域においては、燃焼温度が高くなる。燃焼室17の中の温度が高くなりすぎると、CI燃焼が開始するときの熱発生が激しくなってしまう。そうなると、燃焼騒音が増大してしまう。
そこで、第2中負荷領域においては、燃焼室17の中の圧縮開始前の温度を調整するために、エンジン1の負荷が変化することに対して、内部EGRガスと、外部EGRガスとの割合を変更する。つまり、エンジン1の負荷が高くなるに従い、熱い内部EGRガスを次第に減らし、冷却した外部EGRガスを次第に増やす。ネガティブオーバーラップ期間は、第2中負荷領域において、負荷が高くなるに従い、最大からゼロになるまで変更される。内部EGRガスは、第2中負荷領域において最も負荷が高くなるとゼロになる。尚、吸気弁21及び排気弁22のポジティブオーバーラップ期間を設ける場合も、同様である。オーバーラップ期間の調整によって、燃焼室17の中の温度を調整する結果、SPCCI燃焼のSI率を調整することができる。
EGR弁54の開度は、第2中負荷領域において、負荷が高くなるに従い、外部EGRガスが増えるよう変更される。燃焼室17の中に導入される外部EGRガスの量は、EGR率で表すと、例えば0〜30%の間において調整される。第2中負荷領域においては、エンジン1の負荷が高くなるに従い、EGRガスが、内部EGRガスから外部EGRガスへと置換される。EGR率の調整によっても、燃焼室17の中の温度を調整されるため、SPCCI燃焼のSI率を調整することができる。
尚、低負荷領域と第2中負荷領域との間で、燃焼室17の中に導入するEGRガス量は連続している。第2中負荷領域における負荷の低い領域においては、低負荷領域と同じように、内部EGRガスが燃焼室17の中に、大量に導入されている。燃焼室17の中の温度が高くなるため、エンジン1の負荷が低いときに、混合気が確実に自己着火する。第2中負荷領域における負荷の高い領域においては、外部EGRガスが燃焼室17の中に導入されている。燃焼室17の中の温度が低くなるため、エンジン1の負荷が高いときに、CI燃焼に伴う燃焼騒音を抑制することができる。
第2中負荷領域においては、燃焼室17の中に導入する充填量が100%にされる。スロットル弁43の開度は、全開である。内部EGRガスと外部EGRガスとを合わせたEGRガス量を調整することによって、燃焼室17の中に導入する新気の量を、燃料量に対応する量に調整する。
非過給SPCCI燃焼においてCI燃焼の割合が大きくなるに従い、自己着火のタイミングが早くなる。自己着火のタイミングが圧縮上死点よりも早くなると、CI燃焼が開始するときの熱発生が激しくなってしまう。そうなると、燃焼騒音が増大してしまう。そこで、エンジン1は、エンジン1の負荷が所定負荷L1に到達すれば、エンジン1の負荷が高まることに従い、SI率を次第に大きくする。
つまり、エンジン1は、燃料量の増大に従ってSI燃焼の割合を増やす。具体的には、図10の上図に示すように、非過給SPCCI燃焼においては、燃料量が増えるに従い、点火タイミングを次第に進角させる。前述したように、内部EGRガスの導入量を減らしかつ、外部EGRガスの導入量を増やすことによって、燃焼室17の中の温度の調整を行っているから、燃料量が増えるに従って、SI率を高くしたとしても、圧縮上死点での温度上昇を抑制することが可能になる。SI燃焼の熱発生率の傾きは、負荷が高くなっても、ほとんど変わらない。点火タイミングを進角すると、SI燃焼の開始が早まる分、SI燃焼の熱発生量が増える。
SI燃焼による燃焼室17の中の温度上昇が抑制される結果、未燃混合気は、圧縮上死点以降のタイミングで自己着火する。CI燃焼による熱発生は、SI燃焼の熱発生量が増えているから、エンジン1の負荷が高くなっても、ほぼ同じになる。従って、エンジン1の負荷が高くなることに応じて、SI率を次第に高く設定することにより、燃焼騒音が増大してしまうことを回避することができる。尚、非過給SPCCI燃焼の燃焼重心は、負荷が高くなるほど遅角する。
第2中負荷領域において、スワールコントロール弁56は、全閉又は閉じ側の所定開度に設定される。燃焼室17の中には、スワール比が4以上の強いスワール流が形成される。これにより、キャビティ31内に溜まっていた残留ガスは、キャビティ31の外に追い出される。
第2中負荷領域において、インジェクタ6は、圧縮行程中に、前段噴射と後段噴射との2回に分けて、燃焼室17の中に燃料を噴射する。前段噴射は、点火タイミングから離れたタイミングで燃料を噴射し、後段噴射は、点火タイミングに近いタイミングで燃料を噴射する。インジェクタ6が、前段噴射を行うときには、ピストン3が上死点から離れているため、噴射した燃料噴霧は、上死点に向かって上昇しているピストン3の上面の、キャビティ31の外に到達する。キャビティ31の外の領域は、スキッシュエリア171を形成している(図2参照)。前段噴射によって噴射された燃料は、ピストン3が上昇する間にスキッシュエリア171に留まり、スキッシュエリア171において混合気を形成する。
インジェクタ6が後段噴射を行うときには、ピストン3が上死点に近いため、噴射した燃料噴霧は、キャビティ31の中に入る。後段噴射によって噴射された燃料は、キャビティ31の内の領域において混合気を形成する。ここで、「キャビティ31の内の領域」とは、キャビティ31の開口を燃焼室17のルーフに投影した投影面からキャビティ31の開口までの領域と、キャビティ31の中の領域とを合わせた領域を意味する、としてもよい。キャビティ31の内の領域は、燃焼室17の中においてスキッシュエリア171以外の領域ということもできる。燃料は、燃焼室17の全体に略均等に分布する。
後段噴射によってキャビティ31の中に燃料を噴射することに伴い、キャビティ31の内の領域において、ガスの流動が発生する。燃焼室17の中の乱流エネルギは、点火タイミングまでの時間が長いと、圧縮行程の進行に従い減衰してしまう。ところが、後段噴射の噴射タイミングは、前段噴射よりも点火タイミングに近いため、キャビティ31の中の乱流エネルギが高い状態のまま、点火プラグ25は、キャビティ31の内の領域の混合気に点火することができる。これにより、SI燃焼の燃焼速度が高まる。SI燃焼の燃焼速度が高まると、SI燃焼が安定化するから、SI燃焼によるCI燃焼のコントロール性は高まる。
燃焼室17の全体において、混合気は、空気過剰率λが1.0±0.2でかつ、G/Fが18〜50になる。残留ガスがキャビティ31から追い出されているため、点火プラグ25の近傍の混合気のG/Fは、14〜22になる。燃焼室17の中のG/Fは、成層化している。その一方で、燃料が略均等に分布するため、未燃損失の低減による燃費の向上、及び、スモークの発生回避による排出ガス性能の向上を図ることができる。尚、燃焼室17の全体において空気過剰率λは、好ましくは、1.0〜1.2である。
圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。その後、未燃混合気が、目標タイミングで自己着火して、CI燃焼する。後段噴射によって噴射された燃料は、主にSI燃焼する。前段噴射によって噴射された燃料は、主にCI燃焼する。前段噴射を圧縮行程中に行うため、前段噴射により噴射した燃料が過早着火等の異常燃焼を誘発することを防止することができる。また、後段噴射により噴射した燃料を、安定的に火炎伝播により燃焼させることができる。燃焼室17内の混合気のG/Fを成層化すると共に、燃焼室17全体のG/Fを18〜50にすることで、SPCCI燃焼を安定的に行うことが可能になる。
(第1中負荷領域(過給SPCCI燃焼))
エンジン1の負荷がさらに高まり、エンジン1の運転状態が第1中負荷領域(B1)に入ると、過給機44が、新気及び外部EGRガスの過給を行う。燃焼室17の中に導入する新気の量、及び、外部EGRガスの量は共に、エンジン1の負荷が高くなるに従い増える。燃焼室17の中に導入される外部EGRガスの量は、EGR率で表すと、例えば30%である。EGR率は、エンジン1の負荷の高低に関わらず略一定である。従って、混合気のG/Fも、エンジン1の負荷の高低に関わらず略一定である。尚、第2中負荷領域と第1中負荷領域との間で、燃焼室17の中に導入するEGRガス量は連続している。
SI率は、100%未満の所定値で、エンジン1の負荷の高低に対して一定又は略一定にする。第2中負荷領域のSI率、特に所定負荷L1よりも負荷が高く、エンジン1の負荷が高まることに従い次第に大きくなるSI率と、第1中負荷領域のSI率とを比較したときに、エンジン1の負荷が高い第1中負荷領域のSI率の方が、第2中負荷領域のSI率よりも高い。第1中負荷領域と第2中負荷領域との境界において、SI率は連続している。
ここで、第1中負荷領域において、エンジン1の負荷が変化することに対して、SI率を多少変化させてもよい。第1中負荷領域における、エンジン1の負荷の変化に対するSI率の変化率は、第2中負荷領域の高負荷側におけるSI率の変化率よりも小にすればよい。
図10の下図に示すように、過給SPCCI燃焼においても、燃料量が増えることに伴い、点火タイミングを次第に進角させる。前述したように、過給によって燃焼室17の中に導入する新気及びEGRガス量を増やしているため、熱容量が大きい。燃料量が増えても、SI燃焼による燃焼室の中の温度上昇を抑制することが可能になる。過給SPCCI燃焼の熱発生率の波形は、負荷が高くなるに従い、相似形で大きくなる。
つまり、SI燃焼の熱発生率の傾きが、ほとんど変わらずに、SI燃焼の熱発生量が増える。圧縮上死点以降の、ほぼ同じタイミングで、未燃混合気が自己着火をする。CI燃焼による熱発生量は、エンジン1の負荷が高くなると、多くなる。その結果、第1中負荷領域においては、SI燃焼の熱発生量とCI燃焼の熱発生量とが共に増えるから、エンジン1の負荷の高低に対してSI率が一定になる。CI燃焼の熱発生のピークが高くなると、燃焼騒音が大きくなるが、第1中負荷領域は、エンジン1の負荷が比較的高いため、ある程度の大きさの燃焼騒音は許容することができる。尚、過給SPCCI燃焼の燃焼重心は、負荷が高くなるほど遅角する。
第1中負荷領域においては、排気上死点を挟んで、吸気弁21と排気弁22とが共に開弁するポジティブオーバーラップ期間を設ける。燃焼室17の中に残留する既燃ガスを、過給圧によって掃気する。これにより、燃焼室17の中の温度が低くなるため、エンジン1の負荷が比較的高いときに、異常燃焼が発生してしまうことを抑制することができる。また、燃焼室17の中の温度を下げることによって、エンジン1の負荷が比較的高い領域において、自己着火のタイミングを適切なタイミングにすることができ、SI率を所定のSI率に維持することが可能になる。つまり、オーバーラップ期間の調整によってSI率を調整することができる。さらに、既燃ガスを掃気することによって、燃焼室17の中の新気の充填量を高めることができる。
第2中負荷領域において、スワールコントロール弁56は、全閉又は閉じ側の所定開度に設定される。燃焼室17の中には、スワール比が4以上の強いスワール流が形成される。これにより、キャビティ31内に溜まっていた残留ガスは、キャビティ31の外に追い出される。
第1中負荷領域において、インジェクタ6は、第2中負荷領域と同様に、圧縮行程中に、前段噴射と後段噴射との2回に分けて、燃焼室17の中に燃料を噴射する。前段噴射は、点火タイミングから離れたタイミングで燃料を噴射し、後段噴射は、点火タイミングに近いタイミングで燃料を噴射する。燃料は、燃焼室17の全体に略均等に分布する。燃焼室17の全体において、混合気は、空気過剰率λが1.0±0.2でかつ、G/Fが18〜50になる。残留ガスがキャビティ31から追い出されているため、点火プラグ25の近傍の混合気のG/Fは、14〜22になる。燃焼室17の中のG/Fは、成層化している。その一方で、燃焼室17内の全体に燃料は略均等に分布しているため、未燃損失の低減による燃費の向上、及び、スモークの発生回避による排出ガス性能の向上を図ることができる。尚、燃焼室17の全体において空気過剰率λは、好ましくは、1.0〜1.2である。
圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。その後、未燃混合気が、目標タイミングで自己着火して、CI燃焼する。後段噴射によって噴射された燃料は、主にSI燃焼する。前段噴射によって噴射された燃料は、主にCI燃焼する。前段噴射を圧縮行程中に行うため、前段噴射により噴射した燃料が過早着火等の異常燃焼を誘発することを防止することができる。また、後段噴射により噴射した燃料を、安定的に火炎伝播により燃焼させることができる。燃焼室17内の混合気のG/Fを成層化すると共に、燃焼室17全体のG/Fを18〜50にすることで、SPCCI燃焼を安定的に行うことが可能になる。
(高負荷領域(高負荷SI燃焼))
エンジン1の負荷がさらに高まり、エンジン1の運転状態が高負荷領域(C)に入ると、エンジン1は、高負荷SI燃焼を行う。従って、高負荷領域においてSI率は、100%になる。
スロットル弁43は、全開である。過給機44は、高負荷領域においても、新気及び外部EGRガスの過給を行う。EGR弁54は、開度を調整することによって、エンジン1の負荷が高くなるに従い、外部EGRガスの導入量を次第に減少させる。そうすることによって、燃焼室17の中に導入される新気が、エンジン1の負荷が高くなると増える。新気の量が増えると、燃料量を増やすことができるため、エンジン1の最高出力を高くする上で、有利になる。尚、第1中負荷領域と高負荷領域の間で、燃焼室17の中に導入するEGRガス量は連続している。
高負荷領域においても、第1中負荷領域と同様に、排気上死点を挟んで、吸気弁21と排気弁22とが共に開弁するポジティブオーバーラップ期間を設ける。燃焼室17の中に残留する既燃ガスを、過給圧によって掃気する。これにより、異常燃焼の発生が抑制される。また、燃焼室17の中の新気の充填量を高めることができる。
高負荷領域の低回転側の領域(つまり、第1高負荷領域(C1))において、インジェクタ6は、前述したように、リタード期間内に、燃焼室17の中に燃料を噴射する。高負荷領域の高回転側の領域(つまり、第2高負荷領域(C2))においては、インジェクタ6は、吸気行程中に、燃焼室17の中に燃料を噴射する。いずれにおいても、燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18〜50になった、略均質な混合気が形成される。最高負荷において、空気過剰率λは、例えば0.8にしてもよい。また、混合気のG/Fは、最高負荷において、例えば17としてもよい。圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。高負荷領域においては、高圧リタード噴射、又は、吸気行程中の燃料噴射によって、混合気は、自己着火に至らずにSI燃焼する。
(SI率の調整)
図11は、ECU10が実行するエンジンの運転制御に係るフローを示している。ECU10は、各センサSW1〜SW16の検知信号に基づいて、エンジン1の運転状態を判断すると共に、燃焼室17の中の燃焼が、運転状態に応じたSI率の燃焼となるよう、燃焼室17の中の状態量の調整、噴射量の調整、噴射タイミングの調整、及び、点火タイミングの調整を行う。ECU10はまた、各センサの検知信号に基づいて、SI率の調整が必要と判断したときに、SI率の調整を行う。
ECUは先ず、ステップS1において、各センサSW1〜SW16の検知信号を読み込む。次いで、ECU10は、ステップS2において、検知信号に基づいてエンジン1の運転状態を判断すると共に、目標SI率を設定する。目標SI率は、図9に示した通りである。
ECU10は、続くステップS3において、予め設定している燃焼モデルに基づいて、設定した目標SI率を実現するための目標筒内状態量を設定する。具体的には、燃焼室17の中の目標温度及び目標圧力、並びに、目標状態量を設定する。ECU10は、ステップS4において、目標筒内状態量を実現するために必要な、EGR弁54の開度、スロットル弁43の開度、エアバイパス弁48の開度、スワールコントロール弁56の開度、並びに、吸気電動S−VT23及び排気電動S−VT24の位相角を設定する。ECU10は、これらのデバイスの制御量を、予め設定しかつ、ECU10に記憶しているマップに基づいて設定する。ECU10は、設定した制御量に基づいて、EGR弁54、スロットル弁43、エアバイパス弁48、スワールコントロール弁56、並びに、吸気電動S−VT23及び排気電動S−VT24に制御信号を出力する。ECU10の制御信号に基づいて各デバイスが動作をすることによって、燃焼室17の中の状態量が目標状態量になる。
ECU10はさらに、設定した各デバイスの制御量に基づいて、燃焼室17の中の状態量の予測値、及び、推定値をそれぞれ算出する。状態量予測値は、吸気弁21が閉弁する前の燃焼室17の中の状態量を予測した値であり、後述するように、吸気行程における燃料の噴射量の設定に用いる。状態量推定値は、吸気弁21が閉弁した後の燃焼室17の中の状態量を推定した値であり、後述するように、圧縮行程における燃料の噴射量の設定、及び、点火タイミングの設定に用いる。状態量推定値はまた、後述するように、実際の燃焼状態との比較による状態量誤差の計算にも用いる。
ECU10は、ステップS5において、状態量予測値に基づいて、吸気行程中における燃料の噴射量を設定する。尚、吸気行程中に燃料の噴射を行わないときは、燃料の噴射量はゼロである。ステップS6において、ECU10はインジェクタ6の噴射を制御する。つまり、所定の噴射タイミングで、燃焼室17の中に燃料を噴射するよう、インジェクタ6に制御信号を出力する。
ECU10は、ステップS7において、状態量推定値と、吸気行程中の燃料の噴射結果と、に基づいて、圧縮行程中における燃料の噴射量を設定する。尚、圧縮行程中に燃料の噴射を行わないときは、燃料の噴射量はゼロである。圧縮行程中に分割噴射を行うときには、前段噴射の噴射量及び後段噴射の噴射量をそれぞれ設定する。ECU10は、ステップS8において、予め設定されているマップに基づく噴射タイミングで、燃焼室17の中に燃料を噴射するよう、インジェクタ6に制御信号を出力する。
ECU10は、ステップS9において、状態量推定値と、圧縮行程中の燃料の噴射結果と、に基づいて、点火タイミングを設定する。ECU10は、ステップS10において、設定した点火タイミングで、燃焼室17の中の混合気に点火をするよう、点火プラグ25に制御信号を出力する。
点火プラグ25が混合気に点火をすることにより、燃焼室17の中でSI燃焼又はSPCCI燃焼が行われる。ステップS11において、ECU10は、指圧センサSW6が検知した燃焼室17の中の圧力の変化を読み込み、それに基づいて、燃焼室17の中の混合気の燃焼状態を判断する。ECU10はまた、ステップS12において、燃焼状態の検出結果と、ステップS4において推定をした状態量推定値とを比較し、状態量推定値と、実際の状態量との誤差を計算する。計算した誤差は、今回以降のサイクルにおいて、ステップS4の推定に利用される。ECU10は、状態量誤差が無くなるように、スロットル弁43、EGR弁54、スワールコントロール弁56、及び/又は、エアバイパス弁48の開度、並びに、吸気電動S−VT23及び排気電動S−VT24の位相角を調整する。それによって、燃焼室17に導入される新気及びEGRガス量が調整される。この状態量誤差のフィードバックは、ECU10が、目標SI率と実際のSI率との誤差に基づいて、SI率の調整が必要と判断したときに、SI率を調整することに相当する。
ECU10はまた、ステップS8において、状態量推定値に基づき燃焼室17の中の温度が目標温度よりも低くなると予想したときには、点火タイミングを進角することが可能になるよう、圧縮行程中の噴射タイミングを、マップに基づく噴射タイミングよりも進角させる。一方、ECU10は、ステップS8において、状態量推定値に基づき燃焼室17の中の温度が目標温度よりも高くなると予想したときには、点火タイミングを遅角することが可能になるよう、圧縮行程中の噴射タイミングを、マップに基づく噴射タイミングよりも遅角させる。
つまり、図12のP2に示すように、燃焼室17の中の温度が低いと、火花点火によってSI燃焼が開始した後、未燃混合気が自己着火するタイミングθCIが遅れてしまい、SI率が、目標のSI率(P1参照)からずれてしまう。この場合、未燃燃料の増大や、排出ガス性能の低下を招く。
そこで、燃焼室17の中の温度が目標温度よりも低くなると予想したときには、ECU10は、噴射タイミングを進角すると共に、図11のステップS10において、点火タイミングθIGを進角する。図12のP3に示すように、SI燃焼の開始が早まることによってSI燃焼により十分な熱発生が可能になるから、燃焼室17の中の温度が低いときに、未燃混合気の自己着火のタイミングθCIが遅れることを防止することができる。その結果、SI率は、目標のSI率に近づく。未燃燃料の増大や、排出ガス性能の低下が防止される。
また、図12のP4に示すように、燃焼室17の中の温度が高いと、火花点火によってSI燃焼が開始して直ぐに、未燃混合気が自己着火してしまい、SI率が、目標のSI率(P1参照)からずれてしまう。この場合、燃焼騒音が増大してしまう。
そこで、燃焼室17の中の温度が目標温度よりも高くなると予想したときには、ECU10は、噴射タイミングを遅角すると共に、図11のステップS10において、点火タイミングθIGを遅角する。図12のP5に示すように、SI燃焼の開始が遅くなるから、燃焼室17の中の温度が高いときに、未燃混合気の自己着火のタイミングθCIが早くなることを防止することができる。その結果、SI率は、目標のSI率に近づく。燃焼騒音が増大してしまうことが回避される。
これらの噴射タイミングの調整、及び、点火タイミングの調整は、ECU10が、SPCCI燃焼におけるSI率の調整が必要と判断したときに、SI率を調整することに相当する。噴射タイミングを調整することによって、進角又は遅角される点火タイミングにおいて、燃焼室17の中に適切な混合気を形成することができる。点火プラグ25は、確実に、混合気に点火することが可能になると共に、未燃混合気は、適切なタイミングで、自己着火することができる。
尚、図12において、実際の燃焼状態に基づいて、スロットル弁43、EGR弁54、エアバイパス弁48、スワールコントロール弁56、吸気電動S−VT23、及び排気電動S−VT24の制御を通じて燃焼室17の中の状態量を調整する点は、図11のステップS12及びステップS4において説明した通りである。
このエンジン1は、スロットル弁43、EGR弁54、エアバイパス弁48、スワールコントロール弁56、吸気電動S−VT23、及び排気電動S−VT24を含む状態量設定デバイスによって、SI率を調整する。燃焼室17の中の状態量を調整することによって、SI率の大まかな調整が可能である。それと共に、エンジン1は、燃料の噴射タイミング及び点火タイミングを調整することによって、SI率を調整する。噴射タイミング及び点火タイミングの調整によって、例えば気筒間差の補正を行ったり、自己着火タイミングの微調整を行ったりすることができる。SI率の調整を二段階に行うことによって、エンジン1は、運転状態に対応する狙いのSPCCI燃焼を正確に実現することができる。
尚、ECU10が行うエンジン1の制御は、前述した燃焼モデルに基づく制御に限定されない。
(エンジンの運転領域マップの別の構成例)
図7の下図は、エンジン1の運転領域マップの別の構成例を示している。エンジン1の運転領域マップ702は、負荷の高低及び回転数の高低に対し、五つの領域に分けられている。具体的に、五つの領域は、アイドル運転を含みかつ、低回転及び中回転の領域に広がる低負荷領域(1)−1、低負荷領域よりも負荷が高くかつ、低回転及び中回転の領域に広がる中負荷領域(1)−2、中負荷領域(1)−2よりも負荷が高い領域でかつ、全開負荷を含む高負荷領域の中回転領域(2)、高負荷領域において中回転領域(2)よりも回転数の低い低回転領域(3)、及び、低負荷領域(1)−1、中負荷領域(1)−2、高負荷中回転領域(2)、及び、高負荷低回転領域(3)よりも回転数の高い高回転領域(4)である。ここで、低回転領域、中回転領域、及び、高回転領域はそれぞれ、エンジン1の全運転領域を回転数方向に、低回転領域、中回転領域及び高回転領域の略三等分にしたときの、低回転領域、中回転領域、及び、高回転領域とすればよい。図7の例では、回転数N1未満を低回転、回転数N2以上を高回転、回転数N1以上N2未満を中回転としている。回転数N1は、例えば1200rpm程度、回転数N2は、例えば4000rpm程度としてもよい。
運転領域マップ702においては、燃費の向上及び排出ガス性能の向上を主目的として、低負荷領域(1)−1、中負荷領域(1)−2、及び、高負荷中回転領域(2)において、エンジン1は、圧縮自己着火による燃焼を行う。エンジン1が低負荷で運転するとき、及び、エンジン1が高負荷で運転するときにも、SPCCI燃焼を行う点が、運転領域マップ701と相違する。エンジン1はまた、その他の領域、具体的には、高負荷低回転領域(3)及び高回転領域(4)においては、火花点火による燃焼を行う。以下、各領域におけるエンジン1の運転について、図17に示す燃料噴射時期及び点火時期を参照しながら詳細に説明をする。
(低負荷領域(1)−1)
エンジン1が低負荷領域(1)−1において運転しているときに、エンジン1は、SPCCI燃焼を行う。
図17の符号601は、エンジン1が低負荷領域(1)−1において、符号601の運転状態にて運転しているときの燃料噴射時期(符号6011、6012)及び点火時期(符号6013)、並びに、燃焼波形(つまり、クランク角に対する熱発生率の変化を示す波形、符号6014)それぞれの一例を示している。
エンジン1が低負荷領域(1)−1において運転しているときには、燃焼室17の中には、強いスワール流が形成される。エンジン1が低負荷領域(1)−1において運転するときに、スワール比は4以上になる。スワール流は、燃焼室17の外周部において強く、中央部において弱くなる。スワールコントロール弁(SCV)56は、全閉又は閉じ側の所定の開度である。前述したように、吸気ポート18はタンブルポートであるため、燃焼室17の中には、タンブル成分とスワール成分とを有する斜めスワール流が形成される。
エンジン1が低負荷領域(1)−1において運転するときに、混合気の空燃比(A/F)は、燃焼室17の全体において理論空燃比よりもリーンである。つまり、燃焼室17の全体において、混合気の空気過剰率λは1を超える。より詳細に、燃焼室17の全体において混合気のA/Fは30以上である。こうすることで、RawNOxの発生を抑制することができ、排出ガス性能を向上させることができる。
EGRシステム55は、エンジン1が低負荷領域(1)−1において運転しているときに、必要に応じて燃焼室17の中にEGRガスを導入する。
エンジン1が低負荷領域(1)−1において運転するときに、燃焼室17内の中央部と外周部との間において、混合気は成層化している。燃焼室17内の中央部は、点火プラグ25が配置されている部分であり、外周部は、中央部の周囲であって、シリンダ11のライナーに接する部分である。燃焼室17内の中央部は、スワール流が弱い部分、外周部は、スワール流が強い部分、と定義してもよい。
中央部の混合気の燃料濃度は、外周部の燃料濃度よりも濃い。具体的に、中央部の混合気のA/Fは、20以上30以下であり、外周部の混合気のA/Fは、35以上である。
エンジン1が低負荷領域(1)−1において運転するときに、インジェクタ6は、基本的には、圧縮行程中において燃料を、複数回に分けて、燃焼室17の中に噴射する。燃料の分割噴射と、燃焼室17の中の強いスワール流と、によって、燃焼室17の中央部と外周部とにおいて、混合気が成層化する。
燃料噴射の終了後、圧縮上死点前の所定のタイミングで、点火プラグ25は、燃焼室17の中央部の混合気に点火をする(符号6013参照)。中央部の混合気は燃料濃度が相対的に高いため、着火性が向上すると共に、火炎伝播によるSI燃焼が安定化する。SI燃焼が安定化することによって、適切なタイミングで、CI燃焼が開始する。SPCCI燃焼において、CI燃焼のコントロール性が向上する。その結果、エンジン1が低負荷領域(1)−1において運転するときに、燃焼騒音の発生の抑制と、燃焼期間の短縮による燃費性能の向上とが両立する。
(中負荷領域(1)−2)
エンジン1が中負荷領域(1)−2において運転しているときも、低負荷領域(1)−1と同様に、エンジン1は、SPCCI燃焼を行う。中負荷領域(1)−2は、運転領域マップ701における中負荷領域(B)に対応する。
図17の符号602は、エンジン1が中負荷領域(1)−2において、符号602の運転状態にて運転しているときの燃料噴射時期(符号6021、6022)及び点火時期(符号6023)、並びに、燃焼波形(符号6024)それぞれの一例を示している。
EGRシステム55は、エンジン1の運転状態が中負荷領域(1)−2にあるときに、燃焼室17の中にEGRガスを導入する。
エンジン1が中負荷領域(1)−2において運転するときにも、低負荷領域(1)−1と同様に、燃焼室17の中には、スワール比が4以上の、強いスワール流が形成される。スワールコントロール弁(SCV)56は、全閉又は閉じ側の所定の開度である。スワール流を強くすることによって、キャビティ31の中に溜まった残留ガスをキャビティ31の中から追い出すことができる。その結果、点火プラグ25の近傍のSI部の混合気のG/Fと、SI部の周囲のCI部の混合気のG/Fと、を異ならせることができる。そのことによって、前述したように、燃焼室17全体のトータルG/Fを、18以上50以下にすれば、SPCCI燃焼を安定化させることができる。
また、スワール流を強くすることにより、燃焼室17内の乱流エネルギが高くなるから、エンジン1が中負荷領域(1)−2において運転するときに、SI燃焼の火炎が速やかに伝播してSI燃焼が安定化する。SI燃焼が安定することによってCI燃焼のコントロール性が高まる。SPCCI燃焼におけるCI燃焼のタイミングが適正化することによって、燃焼騒音の発生を抑制することができると共に、燃費性能の向上が図られる。また、サイクル間におけるトルクのばらつきを抑制することができる。
エンジン1が中負荷領域(1)−2において運転するときに、混合気の空燃比(A/F)は、燃焼室17の全体において理論空燃比(A/F≒14.7)である。三元触媒が、燃焼室17から排出された排出ガスを浄化することによって、エンジン1の排出ガス性能は良好になる。混合気のA/Fは、三元触媒の浄化ウインドウの中に収まるようにすればよい。従って、混合気の空気過剰率λは、1.0±0.2とすればよい。
エンジン1が中負荷領域(1)−2において運転するときに、インジェクタ6は、吸気行程中の燃料噴射(符号6021)と、圧縮行程中の燃料噴射(符号6022)とを行う。吸気行程中に第1噴射6021を行うことによって、燃焼室17の中に燃料を略均等に分布させることができる。圧縮行程中に第2噴射6022を行うことによって、燃料の気化潜熱によって燃焼室17の中の温度を低下させることができる。第1噴射6021によって噴射した燃料を含む混合気が過早着火してしまうことを防止することができる。
インジェクタ6が、吸気行程中の第1噴射6021と圧縮行程中の第2噴射6022とを行うことによって、燃焼室17の中には、全体として、空気過剰率λが1.0±0.2になった混合気が形成される。混合気の燃料濃度が略均質であるため、未燃損失の低減による燃費の向上、及び、スモークの発生回避による排出ガス性能の向上を図ることができる。空気過剰率λは、好ましくは、1.0〜1.2である。また、燃焼室17全体のトータルG/Fは18以上50以下であり、点火プラグ25の近傍のSI部のG/Fは14〜22である。
圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって(符号6023)、混合気は、火炎伝播により燃焼する。火炎伝播による燃焼の開始後、未燃混合気が、目標タイミングで自己着火して、CI燃焼する。後段噴射によって噴射された燃料は、主にSI燃焼する。前段噴射によって噴射された燃料は、主にCI燃焼する。燃焼室17全体のトータルG/Fを18以上50以下とし、点火プラグ25の近傍のSI部のG/Fを14〜22とすることにより、SPCCI燃焼を安定化させることができる。
ここで、図7の下図に示すように、過給機44がオフにされる領域(S/C OFF参照)は、低負荷領域(1)−1の一部、及び、中負荷領域(1)−2の一部である。詳細には、低負荷領域(1)−1における低回転側の領域においては、過給機44がオフにされる。低負荷領域(1)−1における高回転側の領域においては、エンジン1の回転数が高くなることに対応して必要な吸気充填量を確保するために、過給機44がオンにされて、過給圧を高くする。また、中負荷領域(1)−2における低負荷低回転側の領域においては、過給機44がオフにされ、中負荷領域(1)−2における高負荷側の領域においては、燃料噴射量が増えることに対応して必要な吸気充填量を確保するために、過給機44がオンにされ、高回転側の領域においては、エンジン1の回転数が高くなることに対応して必要な吸気充填量を確保するために、過給機44がオンになる。
尚、高負荷中回転領域(2)、高負荷低回転領域(3)、及び、高回転領域(4)の各領域においては、その全域に亘って過給機44がオンになる。
(高負荷中回転領域(2))
エンジン1が高負荷中回転領域(2)において運転しているときも、低負荷領域(1)−1及び中負荷領域(1)−2と同様に、エンジン1は、SPCCI燃焼を行う。
図17の符号603は、エンジン1が高負荷中回転領域(2)において、符号603の運転状態にて運転しているときの燃料噴射時期(符号6031、6032)及び点火時期(符号6033)、並びに、燃焼波形(符号6034)それぞれの一例を示している。また、図17の符号604は、符号603の運転状態よりも回転数が高いときの燃料噴射時期(符号6041)及び点火時期(符号6042)、並びに、燃焼波形(符号6043)それぞれの一例を示している。
EGRシステム55は、エンジン1の運転状態が高負荷中回転領域(2)にあるときに、燃焼室17の中にEGRガスを導入する。エンジン1は、負荷が高まるに従いEGRガスの量を減らす。全開負荷では、EGRガスをゼロにしてもよい。
また、エンジン1が高負荷中回転領域(2)において運転するときにも、低負荷領域(1)−1と同様に、燃焼室17の中には、スワール比が4以上の、強いスワール流が形成される。スワールコントロール弁(SCV)56は、全閉又は閉じ側の所定の開度である。
エンジン1が高負荷中回転領域(2)において運転するときに、混合気の空燃比(A/F)は、燃焼室17の全体において理論空燃比又は理論空燃比よりもリッチである(つまり、混合気の空気過剰率λは、λ≦1)。
エンジン1が高負荷中回転領域(2)における低回転側で運転するときに、インジェクタ6は、吸気行程において燃料を噴射する(符号6031)と共に、圧縮行程の終期に燃料を噴射する(符号6032)。圧縮行程の終期とは、圧縮行程を初期、中期、及び、終期に三等分したときの終期としてもよい。
吸気行程に開始する前段噴射6031は、吸気行程の前半に燃料噴射を開始してもよい。吸気行程の前半は、吸気行程を前半と後半とに二等分したときの前半としてもよい。具体的に前段噴射は、上死点前280°CAで燃料噴射を開始してもよい。
前段噴射6031の噴射開始を、吸気行程の前半にすると、図示は省略するが、燃料噴霧がキャビティ31の開口縁部に当たることによって、一部の燃料は、燃焼室17のスキッシュエリア171に入り、残りの燃料は、キャビティ31の内の領域に入る。スワール流は、燃焼室17の外周部において強く、中央部において弱くなっている。そのため、スキッシュエリア171に入った一部の燃料はスワール流に入り、キャビティ31の内の領域に入った残りの燃料は、スワール流の内側に入る。スワール流に入った燃料は、吸気行程から圧縮行程の間、スワール流の中に留まり、燃焼室17の外周部においてCI燃焼用の混合気を形成する。スワール流の内側に入った燃料も、吸気行程から圧縮行程の間、スワール流の内側に留まり、燃焼室17の中央部においてSI燃焼用の混合気を形成する。
エンジン1が高負荷中回転領域(2)において運転するときには、点火プラグ25が配置されている中央部の混合気は、好ましくは空気過剰率λが1以下であり、外周部の混合気は、空気過剰率λが1以下、好ましくは1未満である。中央部の混合気の空燃比(A/F)は、例えば13以上、理論空燃比(14.7)以下としてもよい。中央部の混合気の空燃比は、理論空燃比よりもリーンであってもよい。また、外周部の混合気の空燃比は、例えば11以上、理論空燃比以下、好ましくは11以上、12以下としてもよい。燃焼室17の外周部の空気過剰率λを1未満にすると、外周部は混合気中の燃料量が増えるため、燃料の気化潜熱によって温度を低下させることができる。燃焼室17の全体の混合気の空燃比は、12.5以上、理論空燃比以下、好ましくは12.5以上、13以下としてもよい。
圧縮行程の終期に行う後段噴射6032は、例えば上死点前10°CAで燃料噴射を開始してもよい。上死点の直前で後段噴射を行うことにより、燃料の気化潜熱によって燃焼室内の温度を低下させることができる。前段噴射6031によって噴射された燃料は、圧縮行程の間に低温酸化反応が進み、上死点前において高温酸化反応に移行するようになるが、上死点の直前で後段噴射6032を行い、燃焼室内の温度を低下させることにより、低温酸化反応から高温酸化反応へ移行することを抑制することができ、過早着火が発生してしまうことを抑制することができる。尚、前段噴射の噴射量と後段噴射の噴射量との割合は、一例として、95:5としてもよい。
点火プラグ25は、圧縮上死点付近において、燃焼室17の中央部の混合気に点火をする(符号6033)。点火プラグ25は、例えば圧縮上死点以降に点火を行う。点火プラグ25は燃焼室17の中央部に配置されているため、点火プラグ25の点火によって、中央部の混合気が火炎伝播によるSI燃焼を開始する。
高負荷領域においては、燃料噴射量が多くなると共に、燃焼室17の温度も高くなるため、CI燃焼が早期に開始しやすい状況になる。言い換えると、高負荷領域においては、混合気の過早着火が発生しやすい。しかしながら、前述の通り、燃焼室17の外周部の温度が、燃料の気化潜熱によって低下しているから、混合気に火花点火をした後、CI燃焼がすぐに開始してしまうことを回避することができる。
前述したように、点火プラグ25が中央部の混合気に点火をすると、SI燃焼は高い乱流エネルギによって、燃焼速度が高くなって安定化すると共に、SI燃焼の火炎は、燃焼室17内の強いスワール流れに乗って、周方向に伝播する。そうして、燃焼室17の外周部における、周方向の所定の位置において、未燃混合気が圧縮着火をし、CI燃焼が開始する。
このSPCCI燃焼のコンセプトでは、燃焼室17の中において混合気を成層化することと、燃焼室17の中に強いスワール流を発生させることとによって、CI燃焼の開始までにSI燃焼を十分に行うことができる。その結果、燃焼騒音の発生を抑制することができると共に、燃焼温度が高くなりすぎることがなくてNOxの生成も抑制される。また、サイクル間におけるトルクのばらつきを抑制することができる。
また、外周部の温度が低いため、CI燃焼が緩やかになり、燃焼騒音の発生を抑制することができる。さらに、CI燃焼によって燃焼期間が短くなるから、高負荷領域においてトルクの向上、及び、熱効率の向上が図られる。よって、このエンジン1は、負荷が高い領域においてSPCCI燃焼を行うことにより、燃焼騒音を回避しながら、燃費性能を向上させることができる。
エンジン1が高負荷中回転領域(2)における高回転側で運転するときに、インジェクタ6は、吸気行程において燃料噴射を開始する(符号6041)。
吸気行程に開始する前段噴射6041は、前記と同様に、吸気行程の前半に燃料噴射を開始してもよい。具体的に前段噴射6041は、上死点前280°CAで燃料噴射を開始してもよい。前段噴射の終了は、吸気行程を超えて圧縮行程中になる場合がある。前段噴射6041の噴射開始を、吸気行程の前半にすることによって、燃焼室17の外周部においてCI燃焼用の混合気を形成すると共に、燃焼室17の中央部においてSI燃焼用の混合気を形成することができる。点火プラグ25が配置されている中央部の混合気は、前記と同様に、好ましくは空気過剰率λが1以下であり、外周部の混合気は、空気過剰率λが1以下、好ましくは1未満である。中央部の混合気の空燃比(A/F)は、例えば13以上、理論空燃比(14.7)以下としてもよい。中央部の混合気の空燃比は、理論空燃比よりもリーンであってもよい。また、外周部の混合気の空燃比は、例えば11以上、理論空燃比以下、好ましくは11以上、12以下としてもよい。燃焼室17の全体の混合気の空燃比は、12.5以上、理論空燃比以下、好ましくは12.5以上、13以下としてもよい。
エンジン1の回転数が高くなると、前段噴射6041によって噴射された燃料が反応する時間が短くなる。そのため、混合気の酸化反応を抑制するための後段噴射を省略することができる。
点火プラグ25は、圧縮上死点付近において、燃焼室17の中央部の混合気に点火をする(符号6042)。点火プラグ25は、例えば圧縮上死点以降に点火を行う。
前述したように、混合気を成層化することによって、高負荷中回転領域(2)において、燃焼騒音を抑制すると共に、SPCCI燃焼を安定化することができる。
(高負荷低回転領域(3))
エンジン1が高負荷低回転領域(3)において運転しているときに、エンジン1は、SPCCI燃焼ではなく、SI燃焼を行う。高負荷低回転領域(3)は、運転領域マップ701にける第1高負荷領域(C1)に対応する。
図17の符号605は、エンジン1が高負荷低回転領域(3)において、符号605の運転状態にて運転しているときの燃料噴射時期(符号6051、6052)及び点火時期(符号6053)、並びに、燃焼波形(符号6054)それぞれの一例を示している。
EGRシステム55は、エンジン1の運転状態が高負荷低回転領域(3)にあるときに、燃焼室17の中にEGRガスを導入する。エンジン1は、負荷が高まるに従いEGRガスの量を減らす。全開負荷では、EGRガスをゼロにすればよい。
エンジン1が高負荷低回転領域(3)において運転しているときに、混合気の空燃比(A/F)は、燃焼室17の全体において理論空燃比(A/F≒14.7)である。混合気のA/Fは、三元触媒の浄化ウインドウの中に収まるようにすればよい。従って、混合気の空気過剰率λは、1.0±0.2とすればよい。混合気の空燃比を、理論空燃比にすることにより、高負荷低回転領域(3)において、燃費性能が向上する。尚、エンジン1が高負荷低回転領域(3)において運転するときに、燃焼室17の全体の混合気の燃料濃度を、空気過剰率λにおいて1以下でかつ、高負荷中回転領域(2)における空気過剰率λ以上、好ましくは高負荷中回転領域(2)における空気過剰率λよりも大にしてもよい。
運転領域マップ702においては、エンジン1が高負荷低回転領域(3)において運転するときに、インジェクタ6は、吸気行程中と、圧縮行程終期から膨張行程初期までのリタード期間とのそれぞれのタイミングで、燃焼室17内に燃料を噴射する(符号6051、6052)。二回に分けて燃料を噴射することにより、リタード期間内に噴射する燃料量を少なくすることができる。吸気行程中に燃料を噴射することにより(符号6051)、混合気の形成時間を十分に確保することができる。また、リタード期間に燃料を噴射することにより(符号6052)、点火直前に、燃焼室17の中の流動を高めることができ、SI燃焼の安定化に有利になる。
点火プラグ25は、燃料の噴射後、圧縮上死点付近のタイミングで、混合気に点火を行う(符号6053)。点火プラグ25は、例えば圧縮上死点後に点火を行ってもよい。混合気は、膨張行程においてSI燃焼をする。SI燃焼が膨張行程において開始するため、CI燃焼は開始しない。
エンジン1は、高負荷低回転領域(3)において運転するときには、高負荷中回転領域(2)において運転するときよりもスワール流を弱くする。高負荷低回転領域(3)において運転するときに、スワールコントロール弁(SCV)56の開度は、高負荷中回転領域(2)において運転するときよりも大きい。スワールコントロール弁56の開度は、例えば50%程度(つまり、半開)とすればよい。
図2の上図に一点鎖線の矢印で示すように、インジェクタ6の噴孔の軸は、点火プラグ25に対し周方向に位置がずれている。噴孔から噴射された燃料は、燃焼室17の中のスワール流によって周方向に流れる。スワール流によって、燃料を点火プラグ25の付近に速やかに輸送することができる。燃料は、点火プラグ25の付近に輸送される間に、気化することができる。
一方、スワール流が強すぎると、燃料が周方向に流されてしまい、点火プラグ25の付近から離れてしまって、点火プラグ25の付近に燃料を速やかに輸送することができなくなる。そこで、エンジン1は、高負荷低回転領域(3)において運転するときには、高負荷中回転領域(2)において運転するときよりもスワール流を弱くする。これによって、点火プラグ25の付近に燃料を速やかに輸送することができるから、混合気の着火性の向上及びSI燃焼の安定化を図ることができる。
(高回転領域(4))
エンジン1の回転数が高いと、クランク角が1°変化するのに要する時間が短くなる。そのため、例えば高負荷領域における高回転領域において、前述したように、燃焼室17内において混合気の成層化をすることが困難になる。エンジン1の回転数が高くなると、前述したSPCCI燃焼を行うことが困難になる。
そのため、エンジン1が高回転領域(4)において運転しているときには、エンジン1は、SPCCI燃焼ではなく、SI燃焼を行う。尚、高回転領域(4)は、低負荷から高負荷まで負荷方向の全域に広がっている。
図17の符号606は、エンジン1が高回転領域(4)において、符号606の運転状態にて運転しているときの燃料噴射時期(符号6061)及び点火時期(符号6062)、並びに、燃焼波形(符号6063)それぞれの一例を示している。
EGRシステム55は、エンジン1の運転状態が高回転領域(4)にあるときに、燃焼室17の中にEGRガスを導入する。エンジン1は、負荷が高まるに従いEGRガスの量を減らす。全開負荷では、EGRガスをゼロにすればよい。
エンジン1は、高回転領域(4)において運転するときには、スワールコントロール弁(SCV)56を全開にする。燃焼室17内にはスワール流が発生せず、タンブル流のみが発生する。スワールコントロール弁56を全開にすることによって、高回転領域(4)において充填効率を高めることができると共に、ポンプ損失を低減することが可能になる。
エンジン1が高回転領域(4)において運転するときに、混合気の空燃比(A/F)は、基本的には、燃焼室17の全体において理論空燃比(A/F=14.7)である。混合気の空気過剰率λは、1.0±0.2とすればよい。尚、高回転領域(4)内の、全開負荷を含む高負荷領域においては、混合気の空気過剰率λを1未満にしてもよい。
エンジン1が高回転領域(4)において運転するときに、インジェクタ6は、吸気行程に燃料噴射を開始する(符号6061参照)。インジェクタ6は、燃料を一括で噴射する。吸気行程中に燃料噴射を開始することによって、燃焼室17の中に、均質又は略均質な混合気を形成することが可能になる。また、エンジン1の回転数が高いときに、燃料の気化時間をできるだけ長く確保することができるため、未燃損失の低減及び煤の発生の抑制を図ることもできる。
点火プラグ25は、燃料の噴射終了後、圧縮上死点前の適宜のタイミングで、混合気に点火を行う(符号6062参照)。
(他の実施形態)
尚、ここに開示する技術は、前述した構成のエンジン1に適用することに限定されない。エンジン1の構成は、様々な構成を採用することが可能である。
例えばキャビティ31は、点火プラグ25に向かい合う箇所に、凹陥部312よりも底が浅い浅底部を設けてもよい。インジェクタ6が噴射した燃料の一部は、浅底部によって案内されて点火プラグ25の付近に到達する。浅底部によって案内される燃料噴霧は、相対的に短い輸送経路を通って点火プラグ25に到達することができる。前述した運転領域マップ701の第1高負荷領域(C1)や、運転領域マップ702の高負荷低回転領域(3)においては、圧縮行程の終期に噴射した燃料を、速やかに点火プラグ25の付近に輸送することができる。
1 エンジン
10 ECU(コントローラー)
17 燃焼室
23 吸気電動S−VT(状態量設定デバイス、可変動弁機構)
24 排気電動S−VT(状態量設定デバイス、可変動弁機構)
25 点火プラグ
49 過給システム(状態量設定デバイス)
44 過給機
43 スロットル弁(状態量設定デバイス)
48 エアバイパス弁(状態量設定デバイス)
54 EGR弁(状態量設定デバイス)
55 EGRシステム(状態量設定デバイス)
56 スワールコントロール弁(状態量設定デバイス)
6 インジェクタ

Claims (15)

  1. 燃焼室を有するエンジンと、
    前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
    前記点火プラグに接続されかつ、前記点火プラグに制御信号を出力するよう構成されたコントローラーと、
    前記燃焼室の中への新気の導入量を調整するスロットル弁と、
    前記燃焼室の中への既燃ガスの導入量を調整するEGR弁と、
    前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成されると共に、前記燃焼室に導入するガスの過給圧を調整するエアバイパス弁を有する過給システムと、を備え、
    前記点火プラグが前記混合気に点火をして火炎伝播による燃焼が開始した後に、未燃混合気が自己着火により燃焼し、
    前記コントローラーは、前記燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としての熱量比率を、前記エンジンの運転状態に応じた前記スロットル弁の開度、前記EGR弁の開度、及び、前記エアバイパス弁の開度の調整により前記燃焼室の中の温度を調整することによって、変更するエンジンの制御装置。
  2. 請求項1に記載のエンジンの制御装置において、
    前記コントローラーは、前記燃焼室の中に全燃料が供給された後、前記点火プラグに点火を実行させるエンジンの制御装置。
  3. 請求項1又は2に記載のエンジンの制御装置において、
    前記コントローラーは、前記エンジンの負荷が高いときに、前記熱量比率を、負荷が低いときよりも高くするエンジンの制御装置。
  4. 請求項1〜3のいずれか1項に記載のエンジンの制御装置において、
    記過給システムは、前記コントローラーの制御信号を受けて、前記エンジンが所定負荷以下で運転するときは過給を行わずかつ、前記エンジンが前記所定負荷よりも高い負荷で運転するときは過給を行い、
    前記コントローラーは、前記エンジンが所定負荷よりも高い負荷で運転しているときに、前記熱量比率を、前記エンジンの負荷が変化することに対して略一定にするエンジンの制御装置。
  5. 請求項4に記載のエンジンの制御装置において、
    前記コントローラーは、前記エンジンが前記所定負荷以下で運転しているときに、前記熱量比率を、前記エンジンの負荷が高くなるに従い高くするエンジンの制御装置。
  6. 請求項1〜3のいずれか1項に記載のエンジンの制御装置において、
    記過給システムは、前記コントローラーの制御信号を受けて、過給と非過給とを切り替え、
    前記コントローラーは、前記過給システムが非過給のときには、前記熱量比率を、前記エンジンの負荷に応じて変化させ、
    前記コントローラーはまた、前記過給システムが過給しているときには、前記熱量比率を、前記エンジンの負荷の変化に応じて、前記非過給のときの変化率よりも小さい変化率で変化させるエンジンの制御装置。
  7. 請求項1〜6のいずれか1項に記載のエンジンの制御装置において、
    前記エンジンに設けられかつ、前記コントローラーの制御信号を受けて、前記燃焼室の中に既燃ガスを導入するよう構成されたEGRシステムを備え、
    前記コントローラーは、前記熱量比率が前記エンジンの運転状態に応じて変更するよう前記EGRシステムに制御信号を出力することによって、前記燃焼室の中の全ガスと前記既燃ガスとの比率に関係する指標としてのEGR率を、前記エンジンの運転状態に応じて調整するエンジンの制御装置。
  8. 請求項1〜7のいずれか1項に記載のエンジンの制御装置において、
    前記エンジンに設けられかつ、前記コントローラーの制御信号を受けて、吸気弁及び排気弁の少なくとも一方のバルブタイミングを変更するよう構成された可変動弁機構を備え、
    前記コントローラーは、前記可変動弁機構に制御信号を出力することによって、前記吸気弁と前記排気弁とのオーバーラップ期間を、前記エンジンの運転状態に応じて変更するエンジンの制御装置。
  9. 請求項1〜8のいずれか1項に記載のエンジンの制御装置において、
    前記エンジンに取り付けられかつ、前記燃焼室の中への新気及び既燃ガスの導入を調整するよう構成された状態量設定デバイスと、
    前記エンジンに取り付けられかつ、前記燃焼室の中に供給する燃料を噴射するよう構成されたインジェクタと、を備え、
    前記コントローラーは、前記状態量設定デバイス及び前記インジェクタに制御信号を出力することによって、既燃ガスを含む前記燃焼室の中の全ガスと燃料との重量比に関係する指標としてのG/Fを、18以上50以下に設定するエンジンの制御装置。
  10. 請求項9に記載のエンジンの制御装置において、
    前記コントローラーは、前記状態量設定デバイス及び前記インジェクタに制御信号を出力することによって、前記混合気の空気過剰率λを1.0±0.2に設定するエンジンの制御装置。
  11. 請求項9又は10に記載のエンジンの制御装置において、
    前記点火のタイミングにおける前記燃焼室の中の状態は、
    温度が570K以上800K以下、及び、
    圧力が400kPa以上920kPa以下、
    の少なくとも一方を満足するエンジンの制御装置。
  12. 請求項8〜11のいずれか1項に記載のエンジンの制御装置において、
    前記点火のタイミングにおける前記燃焼室の中の状態は、スワール比が4以上を満足するエンジンの制御装置。
  13. 請求項8〜12のいずれか1項に記載のエンジンの制御装置において、
    前記エンジンの幾何学的圧縮比は、13以上であるエンジンの制御装置。
  14. 燃焼室を有するエンジンと、
    前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
    前記点火プラグに接続されかつ、前記点火プラグに制御信号を出力するよう構成されたコントローラーと、を備え、
    前記点火プラグが前記混合気に点火をして火炎伝播による燃焼が開始した後に、未燃混合気が自己着火により燃焼し、
    前記コントローラーは、前記燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としての熱量比率を、前記エンジンの運転状態に応じて変更し、
    前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成された過給システムをさらに備え、
    前記過給システムは、前記コントローラーの制御信号を受けて、前記エンジンが所定負荷以下で運転するときは過給を行わずかつ、前記エンジンが前記所定負荷よりも高い負荷で運転するときは過給を行い、
    前記コントローラーは、前記エンジンが前記所定負荷よりも高い負荷で運転しているときに、前記熱量比率を、前記エンジンの負荷が変化することに対して略一定にするエンジンの制御装置。
  15. 燃焼室を有するエンジンと、
    前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
    前記点火プラグに接続されかつ、前記点火プラグに制御信号を出力するよう構成されたコントローラーと、を備え、
    前記点火プラグが前記混合気に点火をして火炎伝播による燃焼が開始した後に、未燃混合気が自己着火により燃焼し、
    前記コントローラーは、前記燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としての熱量比率を、前記エンジンの運転状態に応じて変更し、
    前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成された過給システムをさらに備え、
    前記過給システムは、前記コントローラーの制御信号を受けて、過給と非過給とを切り替え、
    前記コントローラーは、前記過給システムが非過給のときには、前記熱量比率を、前記エンジンの負荷に応じて変化させ、
    前記コントローラーはまた、前記過給システムが過給しているときには、前記熱量比率を、前記エンジンの負荷の変化に応じて、前記非過給のときの変化率よりも小さい変化率で変化させるエンジンの制御装置。
JP2018552412A 2016-11-22 2017-08-24 エンジンの制御装置 Active JP6638828B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/084609 2016-11-22
PCT/JP2016/084609 WO2018096584A1 (ja) 2016-11-22 2016-11-22 圧縮自己着火式エンジンの制御装置
PCT/JP2017/030339 WO2018096745A1 (ja) 2016-11-22 2017-08-24 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JPWO2018096745A1 JPWO2018096745A1 (ja) 2018-12-27
JP6638828B2 true JP6638828B2 (ja) 2020-01-29

Family

ID=62194859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018552412A Active JP6638828B2 (ja) 2016-11-22 2017-08-24 エンジンの制御装置

Country Status (5)

Country Link
US (1) US10648409B2 (ja)
EP (1) EP3418539B1 (ja)
JP (1) JP6638828B2 (ja)
CN (1) CN109072793B (ja)
WO (2) WO2018096584A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096586A1 (ja) * 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
WO2018096587A1 (ja) * 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
US10760519B2 (en) * 2018-05-22 2020-09-01 Mazda Motor Corporation Control device of compression-ignition engine
JP7334444B2 (ja) 2019-04-01 2023-08-29 マツダ株式会社 エンジンシステム
JP7183928B2 (ja) * 2019-04-10 2022-12-06 トヨタ自動車株式会社 車両
JP2020186717A (ja) * 2019-05-17 2020-11-19 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2020186716A (ja) * 2019-05-17 2020-11-19 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2021021337A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2021021339A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2021021340A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2021021338A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
KR102276496B1 (ko) * 2020-12-16 2021-07-12 비테스코 테크놀로지스 게엠베하 전동식 슈퍼차져 시스템의 공기량 추정 방법
JP2022124166A (ja) 2021-02-15 2022-08-25 マツダ株式会社 内燃機関

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951515B2 (ja) * 1999-09-13 2007-08-01 日産自動車株式会社 圧縮自己着火式内燃機関
JP4253426B2 (ja) * 1999-09-14 2009-04-15 日産自動車株式会社 圧縮自己着火式ガソリン機関
JP3945152B2 (ja) * 2000-11-21 2007-07-18 日産自動車株式会社 内燃機関の燃焼制御装置
JP3975702B2 (ja) * 2001-08-02 2007-09-12 日産自動車株式会社 自己着火式エンジンの制御装置
US6651432B1 (en) * 2002-08-08 2003-11-25 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Controlled temperature combustion engine
JP4082292B2 (ja) 2003-06-25 2008-04-30 マツダ株式会社 火花点火式エンジンの制御装置
US6968825B2 (en) * 2003-06-06 2005-11-29 Mazda Motor Corporation Control device for spark-ignition engine
JP4172340B2 (ja) * 2003-06-25 2008-10-29 マツダ株式会社 火花点火式エンジンの制御装置
EP1705358B1 (en) * 2005-03-22 2007-11-14 Ford Global Technologies, LLC Internal combustion engine and method for performing a mode switch in said engine
US7703438B2 (en) * 2006-06-16 2010-04-27 Ford Global Technologies, Llc System and method for facilitating homogeneous charge compression ignition
JP2009108778A (ja) * 2007-10-30 2009-05-21 Toyota Motor Corp 圧縮着火式内燃機関の燃料噴射装置
JP2009108777A (ja) * 2007-10-30 2009-05-21 Toyota Motor Corp 圧縮着火式内燃機関
WO2010003136A1 (en) * 2008-07-03 2010-01-07 Fuel Saving Technologies, Llc Fuel conservation systems and methods
US8434450B2 (en) * 2010-01-27 2013-05-07 GM Global Technology Operations LLC Method for operating a direct-injection spark-assisted compression-ignition engine
JP5540729B2 (ja) * 2010-01-27 2014-07-02 マツダ株式会社 過給機付エンジンの制御方法および制御装置
US8627804B2 (en) * 2010-11-16 2014-01-14 GM Global Technology Operations LLC Transient control strategy in spark-assisted HCCI combustion mode
US8689767B1 (en) * 2011-01-26 2014-04-08 Sandia Corporation Method for operating homogeneous charge compression ignition engines using conventional gasoline
JP5423717B2 (ja) * 2011-03-31 2014-02-19 マツダ株式会社 火花点火式ガソリンエンジン
EP2657490B1 (de) * 2012-04-23 2019-04-03 Ford Global Technologies, LLC Verfahren zum Betreiben einer fremdgezündeten Brennkraftmaschine mit mindestens zwei Zylindern
DE112013005906B4 (de) * 2012-12-11 2019-10-31 Mazda Motor Corporation Mit Turbolader ausgestatteter Motor
JP6249668B2 (ja) * 2013-08-07 2017-12-20 本田技研工業株式会社 内燃機関の制御装置
US9745914B2 (en) * 2014-10-27 2017-08-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Also Published As

Publication number Publication date
WO2018096584A1 (ja) 2018-05-31
EP3418539A1 (en) 2018-12-26
WO2018096745A1 (ja) 2018-05-31
JPWO2018096745A1 (ja) 2018-12-27
US10648409B2 (en) 2020-05-12
EP3418539A4 (en) 2019-07-17
US20190112989A1 (en) 2019-04-18
CN109072793A (zh) 2018-12-21
EP3418539B1 (en) 2021-10-27
CN109072793B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
JP6638827B2 (ja) エンジンの制御装置
JP6558408B2 (ja) 圧縮自己着火式エンジンの制御装置
JP6638829B2 (ja) エンジンの制御装置
JP6638828B2 (ja) エンジンの制御装置
JP6558407B2 (ja) 圧縮自己着火式エンジンの制御装置
JP6562165B2 (ja) エンジンの制御装置
JP6562164B2 (ja) エンジンの制御装置
JP6562167B2 (ja) エンジンの制御装置
JP6562166B2 (ja) エンジンの制御装置
JP6614218B2 (ja) 予混合圧縮着火式エンジンの制御装置
JP6558427B2 (ja) 圧縮着火式エンジンの制御装置
JP6601481B2 (ja) 圧縮着火式エンジンの制御装置
JP6493504B2 (ja) 圧縮着火式エンジンの制御装置
JP6614216B2 (ja) 予混合圧縮着火式エンジンの制御装置
JP6558425B2 (ja) 圧縮着火式エンジンの制御装置
JP6558426B2 (ja) 圧縮着火式エンジンの制御装置
JP2019039391A (ja) 過給機付き圧縮自己着火式エンジン
JP6558403B2 (ja) エンジンの制御装置
JP6555308B2 (ja) 圧縮着火式エンジンの制御装置
JP6614217B2 (ja) 予混合圧縮着火式エンジンの制御装置
JP2019039390A (ja) 圧縮自己着火式エンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181203

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150