JP6629522B2 - Pinダイオード・ベースのrf振幅変調器に関するマルチ・ステップ駆動信号 - Google Patents

Pinダイオード・ベースのrf振幅変調器に関するマルチ・ステップ駆動信号 Download PDF

Info

Publication number
JP6629522B2
JP6629522B2 JP2015108424A JP2015108424A JP6629522B2 JP 6629522 B2 JP6629522 B2 JP 6629522B2 JP 2015108424 A JP2015108424 A JP 2015108424A JP 2015108424 A JP2015108424 A JP 2015108424A JP 6629522 B2 JP6629522 B2 JP 6629522B2
Authority
JP
Japan
Prior art keywords
pulse
pulses
envelope
examples
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015108424A
Other languages
English (en)
Other versions
JP2015233277A5 (ja
JP2015233277A (ja
Inventor
デーヴィッド・ラーセン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2015233277A publication Critical patent/JP2015233277A/ja
Publication of JP2015233277A5 publication Critical patent/JP2015233277A5/ja
Application granted granted Critical
Publication of JP6629522B2 publication Critical patent/JP6629522B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C1/00Amplitude modulation
    • H03C1/08Amplitude modulation by means of variable impedance element
    • H03C1/14Amplitude modulation by means of variable impedance element the element being a diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/02Generating pulses having essentially a finite slope or stepped portions having stepped portions, e.g. staircase waveform
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/94Generating pulses having essentially a finite slope or stepped portions having trapezoidal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Description

[0001] 本開示は、P−真性−N(PIN)ダイオードを有するRF変調器に関連する。
[0002] P−真性−Nダイオード(PIN)ダイオードは、典型的PNダイオードのP型半導体とN型半導体との領域の間に真性半導体領域を含む。真性領域は、PINダイオードを高速スイッチングに適するようにするので、真性領域は通常のPNダイオードとは異なる。PINダイオードの真性領域は、「P」および「N」領域から注入された電荷キャリアを受け取ることにより動作するものであり、PINの真性領域が平衡に到達した後(すなわち、真性領域において電子の数がホールの数と等しいとき)、PINダイオードは電流を伝導する。他のアプリケーションの中でも、PINダイオードは、無線周波数(RF)スイッチ、減衰器および光検出器として一般に作用される。
[0003] 一般に、この開示のさまざまな例は、PINダイオード・ベースのRF振幅変調器にのための多段駆動信号に向けたものでる。この開示のさまざまな例は、RFパルスの立上がり時間、立下がり時間、および幅の独立的調節を可能にする。この開示のさまざまな例はまた、立上がり及び立下がりの時間の仕様へ到達する能力を、望まれるRFパルスの他の仕様とともに、強化することもできる。
[0004] ある例では、開示は、一つ以上のP−真性−N(PIN)ダイオードを駆動することに向けたものであり、
入力を受け取り、
入力に基づいて複数のパルスを生成し、複数のパルスの第1のパルスはRFインタフェースにより生成されるRFエンベロープの立上がり時間を制御し、複数のパルスの第2のパルスはRFインタフェースにより生成されるRFエンベロープの立下がり時間を制御し、
駆動信号を生成するために複数のパルスを組み合わせ、
一つ以上のPINダイオードを含むRFインタフェースへ駆動信号を送り、
駆動信号を用いて一つ以上のPINダイオードを駆動することによりRFエンベロープを生成する
ものであり、第1のパルスの振幅またはパルス幅の少なくとも一つは、第2のパルスの振幅またはパルス幅から、独立して調節可能である。
[0005] 更に別の例は、RFエンベロープを生成するために一つ以上のP―真性―N(PIN)ダイオードを駆動するRF変調デバイスに向けたものであり、RF変調デバイスは、入力を受受け取り、入力に基づいて複数のパルスを生成するように構成される第1の回路を含み、複数のパルスの第1のパルスは、RFインタフェースにより生成されるRFエンベロープの立上がり時間を制御し、複数のパルスの第2のパルスは、RFインタフェースにより生成されるRFエンベロープの立下がり時間を制御し、第1のパルスの振幅またはパルス幅の少なくとも1つは、第2のパルスの振幅またはパルス幅から、独立的に調節可能である。RF変調デバイスは更に、駆動信号を生成するために、複数のパルスを受信して組み合わせるように構成される第2の回路を含む。RF変調デバイスは更に、一つ以上のPINダイオードを含む第3の回路を含み、第2の回路が、一つ以上のPINダイオードを駆動するために駆動信号を送り、一つ以上のPINダイオードが、RFエンベロープを生成する。
[0006] 本開示の一つ以上の例の詳細は、添付の図面および下記の説明において述べられる。本開示の他の特徴、目的、および利点は、説明および図面から、そして特許請求の範囲から、明らかとなる。
[0007] 図1は、多段パルス生成モジュール、駆動信号モジュール、RFインタフェース、および入力を含むRFパルス変調器を例示しているブロック図である。 [0008] 図2Aは、多段パルス生成モジュールの例を示している回路図である。 図2Bは、多段パルス生成モジュールの例を示している回路図である。 [0009] 図3は、電荷キャリアがPおよびNの半導体領域へ、およびそれらの半導体領域どれだけ速く移動するかを制御するために、ダイオード(1または複数)の電流を設定するパルスの重畳を含む、理想的な駆動信号の例を示している概念図である。 [0010] 図4は、駆動信号、反転駆動信号、RFエンベロープ、および入力の例を示している概念図である。 [0011] 図5Aは、多段パルス生成モジュールにより生成される複数のパルスからの例示的なパルスを示している概念図である。 図5Bは、多段パルス生成モジュールにより生成される複数のパルスからの例示的なパルスを示している概念図である。 図5Cは、多段パルス生成モジュールにより生成される複数のパルスからの例示的なパルスを示している概念図である。 図5Dは、多段パルス生成モジュールにより生成される複数のパルスからの例示的なパルスを示している概念図である。 図5Eは、多段パルス生成モジュールにより生成される複数のパルスからの例示的なパルスを示している概念図である。 図5Fは、多段パルス生成モジュールにより生成される複数のパルスからの例示的なパルスを示している概念図である。 図5Gは、多段パルス生成モジュールにより生成される複数のパルスからの例示的なパルスを示している概念図である。 [0012] 図6は、駆動信号モジュールの例を示している回路図である。 [0013] 図7は、RF変調器のRFエンベロープの仕様の例を示している図である。 [0014] 図8は、RFエンベロープを生成するためにPINダイオードを駆動するための駆動信号を生成する例示のプロセスを示しているフロー図である。
[0015] 多くのパルス変調器で使用されるPINダイオードは、それらの特性におけるかなりの固有のロットとロットの間での及び温度に依存する変動がある。PINダイオードを用いるパルス変調器がロット・コードおよび温度の全体にわたって一貫性をもって動くことを確実にするために、これらのダイオードの変動を追跡するために、制御信号を変化させなければならない。例えば、いくつかの空中衝突防止システム(TCAS)などのような幾つかの応用において、RF変調器の立上がり時間、立下がり時間、パルス幅、パルス遅延、およびオン/オフのアイソレーションは、比較的厳しい仕様を満たさなければならない。一貫してこれらの仕様に適合させるために、PINダイオードに対する制御信号は、自動または手動の手順により調整される。問題は、現在のタイプの駆動信号が同時にこれらのパラメータの全てを調整する(すなわち、RFパルスのエンベロープが所与の立上がり時間を満たすように駆動信号が調整されると、立下がり時間およびパルス幅も変わってしまう)ということである。これは仕様を目標とすることを難しくし、一般には、PINダイオードをそれらの最適値にするのではなく、それぞれの仕様をトレードオフさせる結果となる。
[0016] PINダイオードは、製造、幾何学的形状、および半導体のドーピングからの変動を含む。これらの変動のため、制御(すなわち、駆動)信号は、何れの2つのPINダイオードとも、完全に同じ形で相互作用しない。一般に、無線周波数(RF)変調器のPINダイオードに対する駆動信号は、ガウシアン、台形、または矩形のパルス形状を有する。駆動信号の立上がりおよび立下がり時間、振幅、パルス遅延、および/またはDCオフセットは、製造および温度関連の変動により生じる異なるPINダイオード特性を補償するように、調整される。しかしながら、駆動信号の立上がりおよび立下がり時間、振幅、および/またはDCオフセットに対して行われる調節は、互いに依存しており、独立して制御および/または調節されることができない。
[0017] 一般に、RF変調器のRFインタフェースは、RFインタフェースのPINダイオードの直列制御および短絡制御を使用するように構築できる。いくつかの例において、直列制御は、直列の及びRF信号の経路のPINダイオード(1以上)を制御するために用いることができる。他の例において、短絡制御は、直列のPINダイオード(1以上)の後で接地に接続されるPINダイオード(1以上)を制御するために用いることができ、また、RF信号を、RF信号の経路のPINダイオード(1以上)によるいかなる漏れからも分離するために用いることができる。製造からの変動に対して調整を行うために、直列および短絡制御のDCオフセットを変えることは、PINダイオード(1以上)の立上がりおよび立下がり時間を設定する。DCオフセットを増加させると、より急速にPINダイオードをオンにし(すなわち、立上がり時間を減少させる)、よりゆっくりとPINダイオードをオフにする(すなわち、立下がり時間を増加させる)。反対に、DCオフセットを減少させると、よりゆっくりとPINダイオードをオンにし(すなわち、立上がり時間を増加させる)、より急速にPINダイオードをオフにする(すなわち、立下がり時間を減少させる)。このように、立上がり時間と立下がり時間とは互いに依存しており、DCオフセットを変えることは、PINダイオードが完全に「オン」か「オフ」かにかかわらず、アイソレーションまたは挿入の損失の量も変える。アイソレーションにより、直列および短絡の制御信後側にひずみを生じさせ得る。
[0018] この開示は、駆動信号信号のサブセクションを変化させる手段を提供し、それは、立上がり時間と立下がり時間との間の依存性を取り除くことができる。空中衝突防止システムなどのような、RF伝送の応用に関して一貫して立上がり時間および立下がり時間の仕様を一貫して満たすために、駆動信号のサブセクションを、各パルスの振幅および/またはパルス幅を独立して調節することにより、変化させる。駆動信号のサブセクションを変化させることは、製造プロセス、幾何学的形状、および半導体のドーピングからのPINダイオードにおける変動による影響を低減させることもできる。駆動(すなわち、「制御」)信号の各サブセクションは、PINダイオード(1以上)に適用するそれ自体の機能を有しており、駆動信号全体を作るために組み合わされる。
[0019] PINダイオード・パルス変調器を駆動するためにパルスを組み合わせることにより、駆動信号を生成するために「重畳(superpositioned)させた」複数のパルスを使用するプロセスの一つの潜在的利点は、駆動信号が、望ましいRFエンベロープ(ガウシアン、台形、矩形など)のように見えるように設計されず、むしろ、RFエンベロープの形状を制御するようにPINダイオード(1以上)の真性領域へ電荷キャリアが移る及び去るレートを調節することに焦点を合わせるということである。
[0020] 図1は、マルチ・ステップ(多段)パルス生成モジュール4と、駆動信号モジュール6と、RFインタフェース8と、入力10とを含むRFパルス変調器2を例示するブロック図である。図1の例において、望ましい立上がり時間および望ましい立下がり時間に基づいて、多段パルス生成モジュール4などのように第1の回路は、以下で説明する入力10などのような入力を受けて複数のパルスを生成し、複数のパルスは、駆動信号モジュール6などのような第2の回路へ送られ、RFインターフェース回路8などのような第3の回路を駆動するために必要な電流ソース/シンク能力を持つ駆動信号全体をバッファするものであり、RFインターフェース回路8は、RF伝送および/またはRFパルスを生成するために用いる少なくとも一つのPINダイオードを含む。この開示において、第1の回路、第2の回路、および第3の回路という用語は、異なる回路機能を説明することを意図しており、必ずしも個別の回路であるということは意図していない。幾つかの場合において、第1、第2、および、第3の回路は個別の回路に対応し得るが、いくつかの実装では、第1、第2、および第3の回路が高密度にまたは部分的に集積され得ることも考えられる。
[0021] RFパルス変調器2において、多段パルス生成モジュール4は、入力10を受けて、入力10に基づいて複数のパルスを生成する。駆動信号モジュール6は、複数のパルスを受け取って組み合わせて、駆動信号を生成する。駆動信号モジュール6は駆動信号をRFインタフェース・モジュール8へ渡し、RFインタフェース・モジュール8は一つ以上のPINダイオードを含む。RFインタフェース8は、一つ以上のPINダイオードを駆動信号で駆動することによって、RFエンベロープを生成する。複数のパルスのうちの第1のパルスは、RFインタフェース・モジュール8により生成されるRFエンベロープの立上がり時間を制御でき、複数のパルスのうちの第2のパルスは、インタフェース・モジュール8により生成されるRFのエンベロープの立下がり時間を制御できる。第1のパルスと第2のパルスとの振幅とパルス幅との少なくとも1つは、独立的に調節可能(すなわち、チューン可能)である。
[0022] 多段生成モジュール4は、互いに独立した望ましい立上がり時間と望ましい立下がり時間とを作るための複数のパルスを生成する、アナログ・コンポーネントおよび/またはデジタル・コンポーネントを含むことができる。ある例では、後に図2Aおよび2Bで説明するように、多段パルス生成モジュール4は、インバータ、ANDゲートおよびNORゲートなどのような個別のデジタル論理コンポーネントとともに、抵抗器、ポテンショメータ、サーミスタ、コンデンサ、および演算増幅器などのようなアナログ・コンポーネントを含み得る。いくつかの例において、デジタル・コンポーネントは、アナログ・デジタル変換器やプログラマブル論理デバイスを含み得る。
[0023] いくつかの例において、多段パルス生成モジュール4は、2つのパルスを生成し、それらは、RFパルス(すなわち、図4に記載のRFエンベロープ62などのようなRFエンベロープ)の立上がり時間を制御する第1のパルスと、RFパルスの立下がり時間を表す第2のパルスとである。いくつかの例において、多段パルス生成モジュール4により生成される2つのパルスは、RFエンベロープの望ましい立上がり時間および望ましい立下がり時間を達成するために、多段パルス生成モジュール4のアナログ回路および/またはデジタル・コンポーネントにより振幅および/または幅を調節(すなわち、「チューン」)することができる。いくつかの例において、第1のパルスは第2のパルスから独立させることができ、第1のパルスについての振幅と幅とのそれぞれを、第2のパルスの振幅および幅から分離して独立的に調節することができる。第1のパルスおよび第2のパルスが複数の更なるパルスを含むことができると考えられる。この開示において用いられている第1のパルス、第2のパルスなどの用語は、異なるパルスを区別することを目的としており、パルス間での又は他のパルスとの順序的または時間的な関係を必ずしも意味するものではない。
[0024] いくつかの例において、マルチ・ステップ・パルス生成モジュール4は、望ましい立上がり時間および望ましい立下がり時間を表す第1のパルスおよび第2のパルスに加えて、複数のオプションのパルスを生成することもできる。いくつかの例において、複数のオプションのパルスは、第1および第2のパルスが独立的に調節可能であるのと同様に、独立的に調節可能とすることができる。例えば、多段パルス生成モジュール4は、望ましい立上がり時間および望ましい立下がり時間のためのパルスを生成することに加えて、RFパルスの望ましいオン時間(例えば、駆動信号の望ましいパルス幅)を達成するための他のパルスを生成することができ、生成された望ましいオン時間パルスもまた、多段パルス生成モジュール4のアナログ回路および/またはデジタル・コンポーネントにより振幅および/または幅を独立的に調節(例えば、「チューン」)されることができる。他の例では、多段パルス生成モジュール4は、望ましい立上がり時間の生成されたパルスの前の初期パルスを表すウォームアップ・パルスを生成することができ、生成された望ましいウォームアップ・パルスもまた、多段パルス生成モジュール4のアナログ回路および/またはデジタル・コンポーネントにより振幅および/または幅を独立的に調節(例えば、「チューン」)されることができる。いくつかの例において、多段パルス生成モジュール4は、PINダイオードが完全にオンであることを確実にするために、PINダイオードを流れるピークの電流を駆動するためのオンサージ(on-surge)・パルスを更に生成することができ、生成された望ましいオンサージ・パルスもまた、多段パルス生成モジュール4のアナログ回路および/またはデジタル・コンポーネントにより振幅および/または幅が独立的に調節(例えば「チューン」)され得る。いくつかの例において、多段パルス生成モジュール4は、望ましい立下がり時間を達成するための支援を行うためにPINダイオードからできるだけ多くの電荷を取り出すためのオフサージ(off-surge)・パルスを生成することもでき、生成された望ましいオフサージ・パルスもまた、多段パルス生成モジュール4のアナログ回路および/またはデジタル・コンポーネントにより振幅および/または幅が独立的に調節(例えば「チューン」)され得る。いくつかの例において、多段パルス生成モジュール4は、PINダイオードが完全にオフになって急速にそれらの最大アイソレーション状態になるように、PINダイオードから残留する電荷を取り除くためのクールダウン・パルスを生成することもできる。生成された望ましいクールダウン・パルスもまた、多段パルス生成モジュール4のアナログ回路および/またはデジタル・コンポーネントにより振幅および/または幅が独立的に調節(例えば、「チューン」)され得る。この開示では、任意のパルスのいずれもが複数の更なるパルスを含み得ることが、企図される。
[0025] この開示において用いられている独立的に調節可能とは、複数のパルスの各々の間での相関が著しく少ないということを意味する。いくつかの例において、多段パルス生成モジュール4は、複数のパルス間での相関が最小である複数のパルスを生成するための入力を必要とする別々のデジタル論理コンポーネントを含むことができる。いくつかの例において、多段パルス生成モジュール4は、複数のパルス間での相関が最小である複数のパルスを生成するための入力を必要とするアナログ・デジタル変換器を含むことができる。この開示では、独立的に調節可能ということは、完全に独立していることを意味せず、機能的に独立していることを意味し、1つのパルスを独立的に調節することは別のパルスに影響を及ぼし得るが、その影響は、上記のように、影響を受けたパルスの機能が、影響を及ぼすパルスに応じた影響を受けるというほどではない。
[0026] 駆動信号モジュール6は、多段生成モジュール4から複数のパルスを受け取り、その複数のパルスを組み合わせて駆動信号を生成するアナログ回路および/またはデジタル・コンポーネントを含む。ある例では、後に図2A−2Bに記載のように、多段パルス生成モジュール4は、抵抗器、コンデンサ、および演算増幅器などのようなアナログ・コンポーネントを含むことができる。いくつかの例において、駆動信号モジュール6は、反転した駆動信号を生成することもできる。いくつかの例において、駆動信号モジュール6は、RFインタフェース8を駆動する電流要求を満たすために、電流の増加を提供する。いくつかの例において、反転した駆動信号は、RFインタフェース8のPINダイオードに対する短絡制御であり得る。
[0027] RFインタフェース・モジュール8は、コンデンサ、インダクタ、および抵抗器などのようなアナログ・コンポーネントとともに、複数のPINダイオード(すなわち、PINダイオード減衰器)を含む。RFインタフェース・モジュール8は、望ましい立上がり時間および望ましい立下がり時間を有するRFエンベロープを生成するためにPINダイオードを「オン」と「オフ」とに駆動するように、駆動信号モジュール6から駆動信号および/または反転駆動信号を受け取ることができる。いくつかの例において、RFエンベロープの立上がり時間は、PINダイオードが「オフ」から「オン」になるのにかかる時間である。他の例において、RFエンベロープの立下がり時間は、PINダイオードが「オン」から「オフ」になるのにかかる時間とすることができる。いくつかの例において、RFインタフェース・モジュール8は、無反射スイッチまたは減衰器とすることができ、それは、エネルギーを負荷(ほとんどは熱として放散される)に転換することができ、コンポーネントに有害であり得るか又は高い不必要な放射を行うことになり得る高い電圧定在波比(VSWR)を示さない。いくつかの例において、RFインタフェース・モジュール8は、RFバイパスおよびアイソレーション回路エレメントを含むこともできる。
[0028] 多段パルス生成モジュール4の入力10は、0〜5Vの間の相補型金属酸化物半導体(CMOS)の入力信号またはトランジスタ・トランジスタ論理(TTL)の入力信号であり得る。いくつかの例において、入力10は、PINダイオード(1以上)をオンにするトリガ入力であり得る。
[0029] RFインタフェース・モジュール8の出力11は、望ましいRFパルス(例えば、RFエンベロープ)であり得る。いくつかの例において、出力11は、オンとオフとになるPINダイオード(1以上)からのRFパルスであり得る。
[0030] 図2A−2Bは、多段パルス生成モジュール4の例を示す回路図である。図2Aは、多段パルス生成モジュール4を含む回路の第1の部分を表し、図2Bは、多段パルス生成モジュール4を含む回路の第2の部分を表す。図2Aに示す回路は、接続点A−Gで図2Bに示す回路に接続し、図2Aの接続Aは図2Bの接続Aに接続し、図2Aの接続Bは図2Bの接続Bに接続し、以下同様である。図2A−2Bの例において、インバータ12A−12D、ANDゲート16−16E、およびNORゲート18A−18Bなどのような個別のデジタル論理コンポーネントは、正の電力供給ピン(例えば、Vcc)から供給を受け、接地に接続される。いくつかの例において、Vccは、5ボルト(V)または個々の論理ゲートにより使われ得る任意の電圧とすることができる。
[0031] 多段パルス生成モジュール4は、図1に記載の入力10、インバータ12A−12D、演算増幅器14A−14C、抵抗器R1−R27、ポテンショメータP1−P2、サーミスタT1−T2、コンデンサC1−C25、ANDゲート16A−16EおよびNORゲート18A−18Bを含む。
[0032] NOTゲートとしても知られているインバータ12A−12Dは、論理的否定を実装する論理ゲートであり、その入力の逆の論理レベルを表す電圧を出力する。例えば、インバータ12A−12Dの一つが論理的1または「ハイ」の入力を受信すると、それは論理的0または「ロー」の出力を生成し、インバータ12A−12Dの一つが、論理的0または「ロー」の入力を受信すると、それは論理的1または「ハイ」の出力を生成する。いくつかの例において、インバータ12A−12Dは、「ロー」状態か「ハイ」状態かを提供するために入力10をフィルタリングするために用いることができる。
[0033] 演算増幅器14A−14Cのそれぞれは、V+およびV−入力を有し、理想的には、演算増幅器(op-amp)は2つの間の電圧差だけを増幅し、それは差動入力電圧と呼ばれる。演算増幅器14A−14Cはコンパレータ(例えば、電圧スレッショルド検出器)として働き、5ボルト(V)のパルスを送出する前に入力がV−閾値を横切ったときに、それを検出する。図2Aの例において、V−は2Vで供給されて、コンデンサC4およびC5経由で接地に接続され、Vs+は6Vで供給されて、コンデンサC2およびC3経由で接地に接続される。他の実施では、V−およびV+に関し他の電圧を使うことができる。図2Aの例において、演算増幅器14AのV+は、NOTゲート12Aからの出力を、直列の抵抗器R1およびR2と、抵抗器R1とR2との間にあり接地に接続されたコンデンサC1とを介して受け取るものであり、それらは入来する論理パルスを滑らかにするローパス・フィルタとして働く。入力する論理パルスを滑らかにすることにより、コンパレータは遅延回路として働くが、その理由は、コンパレータ回路をトリガーするために必要なスレッショルド電圧を発生させるのにより長くかかるからである。図2Aの例において、演算増幅器14BのV+は、演算増幅器14Aからの出力を、直列の抵抗器R3およびR4と、抵抗器R3とR4との間にあり接地に接続されたコンデンサC6とを介して受け取るものであり、それらは、演算増幅器14Bの入力に到達するパルスを滑らかにするローパス・フィルタとして働き、従って、14Bから出て行くパルスは遅延される。いくつかの例において、演算増幅器14A−14Cは、ハイ入力と比べて、ハイ出力の振幅を増加させることができる。いくつかの例において、演算増幅器14A−14Cは、ハイ入力と比べて、ハイ出力のパルス幅をシフトする(即ち、「遅延させる」)こともできる。いくつかの例において、ハイ出力のシフトは、多段パルス生成モジュール4が、パルスの複数部分を変化させた複数のパルスを生成するために別々のロジック・コンポーネントを使用することを、可能にする。
[0034] 抵抗器R1−R33は、例えば、回路エレメントとして電気抵抗を実装する受動的な2端子の電気的要素であり得る。抵抗器は、極めて大きい範囲の値にわたって指定および製造されるので、導き出されたミリオーム(1mΩ=10-3Ω)やキロオーム(1kΩ=10Ω)の単位が一般的に用いられる。抵抗器に加えて、例えばサーミスタT1−T2も1つのタイプの抵抗器であり、その抵抗は、抵抗器R1−R33などのような標準の抵抗器と比較して、温度により著しく変化する。サーミスタは、PINダイオード切り替え温度の特性として用いられることが可能である。特に、駆動信号は、一貫したRFエンベロープを維持するために、温度に基づいて調節されることを必要とと得る。サーミスタT1−T2は、温度にわたってのPINダイオードの特性を示すことができ、それは、温度にわたっての立上がりパルスおよび立下がりパルスの振幅を調整するために用いることができる。
[0035] ポテンショメータP1−P2は、例えば、調節可能な分圧器を形成するスライド型接点を有する受動的なアナログの3端子の抵抗器とすることができる。いくつかの例において、ポテンショメータP1−P2はデジタル・ポテンショメータとすることができ、これはアナログ・ポテンショメータの機能を模倣する電子構成部品であり、デジタル入力を通じて2つの端子の間の抵抗を調整することなどを行える。後に詳しく述べるように、RFインタフェース8などのようなRFインタフェースの一つ以上のPINダイオードにより生成されるRFエンベロープの立上がり時間および立下がり時間は、P1および/またはP2の抵抗を変化させることにより、独立的に調整されることができる。いくつかの例において、RFエンベロープの立上がり時間は、PINダイオードが「オフ」から「オン」になるのに要する時間であり得る。他の例において、RFエンベロープの立下がり時間は、PINダイオードが「オン」から「オフ」になるのに要する時間であり得る。
[0036] コンデンサC1−C25は、例えば、静電的に電界のエネルギーを格納するために用いる受動的な2端子の電気的要素であり得る。例えば、一つの一般的な構造は、絶縁フィルムの薄層により分離される金属フォイルを含む。表1−4は、図2Aおよび2Bに示される各種のコンポーネントに関する例示的な値の組を示す。一般に、コンデンサは、高周波数RF信号をフィルタリングするために用いられる。いくつかの例において、RF信号は、約1ギガヘルツ(GHz)であり得る。図2Aおよび2Bに記載されている例と類似の効果を達成するために、他の値を有する他の各種コンポーネントを同様の様式で用いることが可能であると考えられる。
Figure 0006629522
表1−図2A及び2Bの抵抗の値
Figure 0006629522
表2−図2A及び2Bのコンデンサの値
Figure 0006629522
表3―図2A及び2Bのサーミスタの値
Figure 0006629522
表4−図2A及び2Bのポテンショメータの値
[0037] ANDゲート16A−16Eは論理積を実施する基礎的なデジタル論理ゲートであり、ANDゲートへの両方の入力がHIGH(1)である場合のみ、HIGH出力(1)を生じさせる。もし、ANDゲートへのいずれもの又は一つのみの入力がHIGHであるならば、LOW出力を生じる。別の意味では、ANDの関数は、2つの2進数字の間での最小のものを効果的に見つける。従って、すべての入力が1である場合を除き、出力は常に0である。
[0038] NORゲート18A−18Bは論理的NORを実施するデジタル論理ゲートであり、ゲートへの両方の入力がLOW(0)である場合にHIGH出力(1)を生じさせる。NORゲートの一方または両方の入力がHIGH(1)である場合、LOW出力(0)を生じさせる。NORは、OR演算子の否定の結果である。NORゲートはまた、すべての入力が反転されたANDゲートとみなすこともできる。
[0039] 図2Aと図2Bとの例の間には7つの接続A−Gがあり、それらは、図2Aの多段生成モジュール4の第1の部分が図2Bの多段生成モジュール4の第2の部分に接続する点を表す。上記のように、図2Aおよび2Bは、多段生成モジュール4の2つの異なる部分を表す。多段パルス生成モジュール4は、示されるコンポーネントの数が原因で、2つの別々の図に分けられている。接続A−Gは、2つの部分がどのように接続するかを示すことを意図しており、実際の回路コンポーネントを表すものではない。
[0040] 図2Bの例において、ウォームアップ回路22Aは、接続A−Bからの入力を有するANDゲート16Aからの出力を受け取ることができる。ANDゲート16Aは、接続A−Bからのハイ及びローの信号を乗算する。図2Aの例において、接続Aはインバータ12Aからのハイ−ロー出力信号であり、入力10が反転されたものである。図2Aの例において、接続Bはインバータ12Bから、演算増幅器14Aを介し且つインバータ12Aを介したハイ−ロー出力信号である。いくつかの例において、接続Bのハイ−ロー出力信号は、演算増幅器14Aによりシフトされ得る。いくつかの例において、演算増幅器14Aによるシフトの量は、ANDゲート16Aによる乗算の後の、ウォームアップ回路22Aからのウォームアップ・パルスのパルス幅であり得る。
[0041] 図2Bの例において立上がり時間回路24Aは、接続C−Dからの入力を有するANDゲート16Bから、出力を受け取ることができる。ANDゲート16Bは、接続C−Dからのハイ及びローの信号を乗算する。図2Aの例において、接続Cは、インバータ12Aからの、演算増幅器14Aを介してのハイ−ロー出力信号である。いくつかの例において、接続Cのハイ−ロー出力信号は、演算増幅器14Aにりシフトされ得る。図2Aの例において、接続Dは、インバータ12Cからの、演算増幅器14Aおよび14Bを介し且つインバータ12Cを介しての、ハイ−ロー出力信号である。いくつかの例において、接続Dのハイ−ロー出力信号は、演算増幅器14A、14Bによりシフトされ得る。いくつかの例において、演算増幅器14A、14Bによるシフトの量は、ANDゲート16Bによる乗算の後の、立上がり時間回路24Aからの立上がり時間パルスのパルス幅である。いくつかの例において、ANDゲート16Bからのハイ−ロー出力信号の振幅は、ポテンショメータP2により増加させることができる。
[0042] 図2Bの例において、オンサージ回路26Aは、ANDゲート16C、インバータ12D、および接続E−Fからの入力を有するANDゲート16Dからの出力を受け取ることができる。図2Aの例において、接続Eはインバータ12Aからのハイ−ロー出力信号であり、それは入力10の反転されたものである。図2Aの例において、接続Fは、インバータ12Aからの、演算増幅器14A、14Bを介しての、ハイ−ロー出力信号である。いくつかの例において、接続Fのハイ−ロー出力信号は、演算増幅器14A、14Bによりシフトされ得る。いくつかの例において、ANDゲート16Cは、インバータ12DとANDゲート16Dとからのハイ−ロー出力信号を乗算する。インバータ12Dは、ANDゲート16Dから出力信号を反転させる。ANDゲート16Dは、接続EとFとからのハイ−ロー信号を乗算する。
[0043] 図2Bの例において、オン時間回路28Aは、上記のように接続E−Fからの入力を有するANDゲート16Dから、出力を受け取ることができる。いくつかの例において、接続Fのハイ−ロー出力信号は、演算増幅器14A、14Bによりシフトされ得る。いくつかの例において、演算増幅器14A、14Bによるシフトの量は、ANDゲート16Dによる乗算の後の、オン時間回路28Aからのオン時間パルスのパルス幅であり得る。
[0044] 図2Bの例において、立下がり時間回路30Aは、接続GおよびNORゲート18Aからの入力を有するANDゲート16Eから出力を受け取り、NORゲート18Aは、ANDゲート16B、16Dからのその入力を受け取る。ANDゲート16Eは、接続GとNORゲート18Aとからのハイ及びロー信号を乗算する。図2Aの例において、接続Gは、インバータ12Aからの、演算増幅器14Aを介し且つ演算増幅器14Cを介しての、ハイ−ロー出力信号である。図2Aの例において、接続Gのハイ−ロー出力信号は、演算増幅器14A、14Cによりシフトされ得る。図2Aの例において、NORゲート18Aからのハイ−ロー出力信号は、ANDゲート16Bと16Dとのハイ−ロー出力信号の反転加算である。ANDゲート16Bは、上記の通りに、接続CとDとのハイ−ロー信号を乗算する。ANDゲート16Cは、上記の通りに、接続EとFとのハイ−ロー信号を乗算する。いくつかの例において、演算増幅器14A、14B、14Cによるシフトの量は、ANDゲート16Eによる乗算の後の、立下がり時間回路30Aからの立下がり時間パルスのパルス幅であり得る。いくつかの例において、ANDゲート16Eからのハイ−ロー出力信号の振幅は、ポテンショメータP1により増加されることができる。
[0045] 図2Bの例において、オフサージ/クールダウン回路32Aは、NORゲート18Bから出力を受け取り、ANDゲート16Eは、上記のように、接続Gからの入力と、ANDゲート16Bおよび16Dからの入力を有するNORゲート18Aからの入力とを有する。ANDゲート16Eは、接続GとNORゲート18Aとからのハイ及びロー信号を乗算する。図2Aの例において、接続Gは、インバータ12Aからの、演算増幅器を介し且つ演算増幅器14Cを介しての、ハイ−ロー出力信号である。図2Aの例において、接続Gのハイ−ロー出力信号は、演算増幅器14A、14Cによりシフトされ得る。図2Aの例において、NORゲート18Aからのハイ−ロー出力信号は、ANDゲート16B、16Dのハイ−ロー出力信号の反転加算である。ANDゲート16Bは、上記の通りに、接続CとDとのハイ−ロー信号を乗算する。ANDゲート16Cは、上記の通りに、接続EとFとのハイ−ロー信号を乗算する。いくつかの例において、演算増幅器14A、14B、14Cによるシフトの量は、NORゲート18BによるANDゲート16Eのハイ−ロー出力信号の反転加算の後の、オフサージ/クールダウン回路32Aからのオフサージ/クールダウン・パルスのパルス幅であり得る。
[0046] 図2Bの一つの例において、立上がり時間回路24Aおよび立下がり時間回路30Aからの複数のパルスを、出力20として、信号モジュール6を駆動するために出力できる。図2Bのいくつかの例において、ウォームアップ回路22A、オンサージ回路26A、オン時間回路28A、およびオフサージ/クールダウン回路32Aなどのようなオプションの回路からの複数のパルスも、出力20として、信号モジュール6を駆動するために出力することができる。個別の論理コンポーネントが、出力20の複数のパルスを生成するたように入力10を操作(すなわち、「重畳」)することが、この開示で企図されている。個別の論理による操作(すなわち、「重畳」)がデジタル/アナログ変換器やプログラムマブル論理デバイスと置き換えられることが可能であることも、この開示で企図されている。
[0047] 図3は、電荷キャリアがPとNとの半導体領域へおよび半導体領域からどれだけ迅速に移動するかを制御するための、ダイオード(1以上)の電流をを設定するパルスの重畳を含む理想的な駆動信号40の例を示す概念図である。図3の例において、組み合わされた理想的な駆動信号40は、オンとオフとのアイソレーションを変えずに、立上がり時間パルス24B、オンサージ・パルス26B、オン・パルス28B、立下がり時間パルス30B、オフサージ・パルス32B、およびクールダウン・パルス32Cなどのような、RFエンベロープの正確な制御を提供する。図3の例において、この開示の各パルスは、単一のパルスとすることができる。各パルスがパルスの組み合わせから成ることができることも、この開示の一部で企図されている。加えて、「ハイ」パルスが、電荷キャリアをPおよびNの半導体領域から真性領域へと動かすこと、および「ロー」パルスが、電荷キャリアを真性領域からPおよびNの半導体領域へ戻すように動かすことも、この開示の一部で企図されている。
[0048] 図3の一例において、理想的な駆動信号40は、2つのパルスの組み合わせであり得る。立上がり時間パルス24Bなどのような第1のパルスは、ユーザによって、または自動化した手段によって、例えば、図1−2Bにて説明した対応する立上がり時間回路24Aなどのような制御回路を用いて、独立的に調節可能とすることができるものであり、RFエンベロープの立ち上がり時間を設定する。立下がり時間パルス32Bなどのような第2のパルスは、ユーザによって、または自動化した手段によって、例えば、図1−2Bにて説明した対応する立下がり時間回路30Aなどのような制御回路を用いて、独立的に調節可能とすることができるものであり、RFエンベロープの立下がり時間を設定する。
[0049] いくつかの例において、理想的な駆動信号40は、オン・パルス28Bなどのようなオプションの第3のパルスを有することができ、これは、ユーザによって、または自動化した手段によって、例えば、制御回路を用いて、独立的に調節可能であり得る。例えば、演算増幅器は一以上のパルスを遅延させ、図1−2Bにて説明した対応するオン時間回路28Aなどのような個別の論理は、一つ以上のパルスを特定のパルス幅になるように操作し、RFエンベロープのパルス幅を設定する。いくつかの例において、理想的な駆動信号は、オンサージ・パルス26Bなどのようなオプションの第4のパルスを有し、これは、ユーザによって、または自動化した手段によって、例えば、図1−2Bにて説明した対応するオンサージ回路26Aなどのような制御回路を用いて、独立的に制御することができ、PINダイオードが完全にオンであることを確実にするために、PINダイオードを流れるピーク電流を駆動する。いくつかの例において、理想的な駆動信号40は、オフサージ・パルス32Aなどのようなオプションの第5のパルスを有することができ、これは、ユーザによって、または自動化した手段によって、例えば、図1−2Bにて説明した対応するオフサージ/クールダウン回路32Aなどのような制御回路を用いて、独立的に調節することができるものであり、短い期間を有し、格納された電荷の一部を引き出すことにより急速に低下するものであり、それにより、Rエンベロープの短いパルス幅を実現することができる。いくつかの例において、理想的な駆動信号40は、クールダウン・パルス32Cなどのようなオプションの第6のパルスを有することができ、それは、ユーザによって、または自動化した手段によって、例えば、対応するオフサージ/クールダウン回路32Aなどのような制御回路を用いて、独立的に調節することができるものであり、真性領域から何れの残っている電荷も引き出し、PINダイオードが高アイソレーション状態にあることを確実にする。
[0050] 立上がり時間パルス24Bは、駆動信号のシーケンスにおける第1のパルスであり得、PINダイオードをターン・オンするように駆動する。いくつかの例において、このパルスの振幅および/またはパルス幅は、ユーザによって、または自動化した手段によって、例えば、図2A−2Bにて説明したポテンショメータP1−P2などのようなアナログ回路および/またはデジタル・コンポーネントを用いる制御回路を介して、独立的に調節することができる。立上がり時間パルス24Bの振幅が高いほど、PINダイオードへの初期の電流が高くなり、I領域へのホールおよび電子の注入が速くなり、ダイオードのターン・オンが速くなり、結果として、RFエンベロープに関しての立上がり時間が増加する。
[0051] オンサージ・パルス26Bは、立上がり時間パルス24Bの直後に来るようにすることができて、後述するように、オン・パルス28Bより高い振幅を有することができる。いくつかの例において、オンサージ・パルス26Bは、追加の電荷を印加することにより「ハイ」パルスとすることができ、PINダイオードが完全にオンにされることを確実にする。いくつかの例において、オンサージ・パルス26Bは、PINダイオードへの電流の追加のブーストを提供することができ、ホールと電子との完全な再結合を確実なものとする。いくつかの例において、パルスは、オプションであるが、RFエンベロープの段階的な立上がりエッジを除去する。
[0052] オン・パルス28Bは、図4にて説明したRFエンベロープ62などのようなRFエンベロープの望ましいパルス幅を達成するために、要求される狭さまたは広さに、例えば、ユーザによってまたは自動化した手段によって独立的に調節することができる。いくつかの例において、オン・パルス28Bはオプションとすることができる。いくつかの例において、オン・パルス28Bは「ハイ」パルスとすることができ、PINダイオードが特定のパルス幅および/または時間の間は完全にターン・オンされることを確実にする。いくつかの例において、オン・パルス28Bの振幅は、例えば、車両交通衝突システム(vehicle traffic collision system)に関してのRF伝送などのような特定の応用に関して、ダイオードを順バイアスに保つように設計されていてもよい。
[0053] オフサージ・パルス32Bは、オンサージ・パルス26Bと似た機能を有するが、逆に、立下がり時間パルス30Bを支援するためにできるだけ多くの電荷を引き出すように設計されることができ、RFエンベロープのターン・オフ時間を改善する。いくつかの例において、オフサージ・パルス32Bはオプションとすることができる。いくつかの例において、オフサージ・パルス32Bは、PINダイオードから電荷を取り除くことによって、「ロー」パルスとすることができる。
[0054] 立下がり時間パルス30Bは、ホールおよび電子がPINダイオード(1以上)のI領域を離れるレートを設定することができる。いくつかの例において、立下がり時間パルス30Bの振幅および/またはパルス幅は、ユーザによって、または自動化した手段によって、例えば、図2A−2Bにて説明したポテンショメータP1−P2などのようなアナログ回路またはデジタル・コンポーネント)を用いる制御回路を介して、独立的に調節することができる。立下がり時間パルス30Bの振幅が低いほど、ホールおよび電子はより急速にI領域から取り除かれ、より急速にダイオードがターン・オフし、結果としてRFエンベロープに関しての立下がり時間が速くなる。かくして、ポテンショメータP1の抵抗を増加させることによって、立下がり時間パルス82の振幅を増加させることができ、これは、PINダイオード(1以上)を、より遅くターン・オフにし、RFエンベロープ62などのようなRFエンベロープの立下がり時間を増加させる。いくつかの例において、ポテンショメータP1の抵抗を減少させることは、立下がり時間パルス82の振幅を減少させることになり得、それは、PINダイオード(1以上)を、より速くターン・オフにし、RFエンベロープ62などのようなRFエンベロープの立下がり時間を減少させる。
[0055] クールダウン・パルス32Cは、I領域でオフのいかなる残留する電荷も取り除くことができ、PINダイオードが完全にオフとなることを確実にする。オプションではあるが、クールダウン・パルス32Cは、パルスが完了した直後にPINダイオード(1以上)のオフのアイソレーションを改善することができる。いくつかの例において、クールダウン・パルス32Cはオプションとすることができる。いくつかの例において、クールダウン・パルス32Cは、いかなる残留する電荷も取り除くことにより「ロー」パルスとすることができ、PINダイオードが完全にターン・オフにされることを確実にする。
[0056] 図3に示される複合パルス波形40の全体は、図1にて説明したRF変調器2の「オフ」アイソレーションを改良するために、負のDCオフセット電圧へとバイアスすることができる。この負のオフセットは、ダイオード(1以上)がそれらの任意のアイソレーション状態にあることを確実にするために、ダイオードの「パンチスルー」電圧よりも大きくすべきである。
[0057] 図4は、駆動信号66、反転駆動信号68、RFエンベロープ62、および入力64の例を示している概念図である。図4の例において、駆動信号66および反転駆動信号68は、後に図6で説明する駆動信号モジュール6の出力であり、多段パルス生成モジュール4からの複数のパルスの組み合わせを含む。図4の例において、入力64はRF変調器2への一つの入力であり得、RFエンベロープ62はRF変調器2の出力であり得る。
[0058] 駆動信号66は、RFインタフェース8のPINダイオード(1以上)に対しての一連の制御を提供するために多段パルス生成モジュール4により生成される複数のパルスの組み合わせに基づくことができる。いくつかの例において、駆動信号66は、立上がり時間回路24Aおよび立下がり時間回路30Aを含む出力の組み合わせに基づくことができる。いくつかの例において、駆動信号66はまた、オン時間回路28Aを含む出力の組み合わせに基づくことができる。いくつかの例において、駆動信号66はまた、ウォームアップ回路22Aを含む出力の組み合わせに基づくことができる。いくつかの例において、駆動信号66はまた、オンサージ回路26Aを含む出力の組み合わせに基づくことができる。いくつかの例において、駆動信号66はまた、オフサージ/クールダウン回路32Aを含む出力の組み合わせに基づくことができる。反転駆動信号68は、駆動信号66を反転したものであり、RFインタフェース8のPINダイオード(1以上)への短絡制御を提供する。RFエンベロープ62は、PINダイオード(図示せず)により生成されるRFエンベロープを表し、それは、図1にて説明した出力11でのRFエンベロープに対応し得る。いくつかの例において、RFエンベロープ62は、駆動信号66および反転駆動信号68が原因で生成されたRFエンベロープを表す。入力64は、RF変調器2へ提供され、多段パルス生成モジュール4により受け取られる入力電圧を表す。
[0059] 図5A−5Gは、多段パルス生成モジュール4により生成される複数のパルスからの例示のパルスを示している概念図である。図5A−5Gの各図は、図4にて説明した駆動信号66、RFエンベロープ62、および入力64を含み、図5A−5Gの複数のパルスからの各パルスに対してのコンテキストを提供する。更に、図5A−5Gのそれぞれは、駆動信号66のそれぞれのセクションを含む。セクション22−32は駆動信号66の各セクションを例示するために提供されており、それは、図2Bにて説明した回路22A−32Aにより生成される出力72−82の組み合わせから成る信号である。いくつかの例において、セクション22−32は、出力72−82からのそれぞれの出力から成ることができる。いくつかの例において、セクション22−32は、出力72−82からの一つ以上の出力(すなわち、回路22A−32Aからの出力は特定のセクションで重なり得る)から成ることができる。例えば、図5Fの駆動信号66のセクション30は、回路22A−32Aからの一つより多い出力の組み合わせから成る。図5Fの例において、セクション30は、回路30A(例えば、出力82)および回路32A(例えば、図5Eおよび5Gに示す出力80の一部)からの出力の組み合わせから成ることができる。換言すれば、セクション30は、回路30Aの出力82と、図5Eおよび5Gにて説明したセクション32に関する回路32Aの出力80における部分(例えば、80Aおよび80B)となどのような、重なる出力の組み合わせから成ることができる。
[0060] 図5Aの例において、ウォームアップ・パルス72は、図1にて説明したウォームアップ・パルスを表し得るものであり、固定のパルス幅でとすることができる。ウォームアップ・パルス72は、図2A−2Bにて説明した多段パルス生成モジュール4のウォームアップ回路22Aにより生成される。いくつかの例において、ウォームアップ・パルス72のパルス幅および/または振幅は、ユーザによって、または自動化した手段によって、例えば、立上がり時間回路24Aを調節することにより、独立的に調節することができる。いくつかの例において、ウォームアップ・パルス72は、「ハイ・パルス」とすることができる。
[0061] 図5Bの例において、立上がり時間パルス74は、図1および3にて説明した立上がり時間パルス24B(すなわち、「立上がり時間」)などのような立上がり時間に対応するものであり得、固定のパルス幅とすることができる。立上がり時間パルス74は、図2A−2Bにて説明した多段パルス生成モジュール4の立上がり時間回路24Aにより生成される。図5Aの例において、立上がり時間パルス74の振幅は、ユーザによって、または自動化した手段によって、図2A−2Bにて説明した多段パルス生成モジュール4の立上がり時間回路24AのポテンショメータP2を調節することにより、独立的に調節(すなわち、「チューン」)することができる。いくつかの例において、ポテンショメータP2の抵抗を増加させることは、立上がり時間パルス24Bの振幅を増加させ、それは、PINダイオード(1以上)をより速くターン・オンし、RFエンベロープ62などのようなRFエンベロープの立上がり時間を減少させる。いくつかの例において、ポテンショメータP2の抵抗を減少させることは、立上がり時間パルス24Bの振幅を減少させ、それは、PINダイオード(1以上)をより遅くターン・オンし、RFエンベロープ62などのようなRFエンベロープの立上がり時間を増加させる。いくつかの例において、立上がり時間パルス74のパルス幅および/または振幅は、ユーザによって、または自動化した手段によって、例えば、立上がり時間回路24Aを調節することにより、独立的に調節(すなわち、「チューン」)することができる。
[0062] 図5Cの例において、オンサージ・パルス76は、図1および3にて説明したオンサージ・パルス26B(すなわち、「オン・アイソレーション」)などのようなオンサージ・パルスに対応するものであり得、固定のパルス幅とすることができる。オンサージ・パルス76は、図2A−2Bにて説明した多段パルス生成モジュール4のオンサージ回路26Aにより生成される。いくつかの例において、オンサージ・パルス76は、すべてのホールと電子とが結合したことを保証する。いくつかの例において、オンサージ・パルス76の振幅は、ユーザによって、または自動化した手段によって、例えば、オンサージ回路26Aを調節することにより、独立的に調節(すなわち、「チューン」)することができる。いくつかの例において、オンサージ・パルス76のパルス幅および/または振幅は、ユーザによって、または自動化した手段によって、例えば、オンサージ回路26Aを調節することにより、独立的に調節(すなわち、「チューン」)することができる。いくつかの例において、オンサージ・パルス76は、「ハイ」パルスとすることができる。
[0063] 図5Dの例において、オン・パルス78は、図1および3にて説明したオン・パルス28B(すなわち、「パルス幅」)などのようなオン・パルスに対応し得る。オン・パルス78は、図2A−2Bにて説明した多段パルス生成モジュール4のオン時間回路28Aにより生成される。図5Dの例において、オンサージ・パルス76のパルス幅は、PINダイオード(1以上)の望まれるオン時間に応じて、必要な長さ、例えば、200ナノ秒と2ミリ秒(ms)とに等しく、または、それらの間の長さに調節されることができる。いくつかの例において、オン・パルス78の振幅は、ユーザによって、または自動化した手段によって、例えば、オン時間回路28Aを調節することにより、独立的に調節(すなわち、「チューン」)することができる。いくつかの例において、オン・パルス78は、「ハイ」パルスとすることができる。
[0064] 図5Eの例において、オフサージ・パルス80Aは、オフサージ/クールダウン・パルス80の一部であり、図1および3にて説明したオフサージ・パルス32B(すなわち、「オフ・アイソレーション」)などのようなオフサージ・パルスに対応するものであり得、固定のパルス幅とすることができる。オフサージ・パルス80Aは、図2A−2Bにて説明した多段パルス生成モジュール4のオフサージ/クールダウン回路32Aにより生成されるオフサージ/クールダウン・パルス80の一部である。いくつかの例において、オフサージ・パルス80Aは、PINダイオード(1以上)の真性領域から、電荷の幾らかを急速に取り除く。いくつかの例において、オフサージ・パルス80Aのパルス幅および/または振幅は、ユーザによって、または自動化した手段によって、例えば、オフサージ/クールダウン回路32Aを調節することにより、独立的に調節(すなわち、「チューン」)することができる。いくつかの例において、オフサージパルス80Aは、「ロー」パルスとすることができる。
[0065] 図5Fの例において、立下がり時間パルス82は、図1および3にて説明した立下がり時間パルス30B(すなわち、「立下がり時間」)などのような立下がり時間パルスに対応するものであり得、固定のパルス幅とすることができる。立下がり時間パルス82は、図2A−2Bにて説明した多段パルス生成モジュール4の立下がり時間回路30Aにより生成される。図5Dの例において、立下がり時間パルス82の振幅は、ユーザによって、または自動化した手段によって、例えば、図2A−2Bにて説明した多段パルス生成モジュール4の立下がり時間回路30AのポテンショメータP1を調節することにより、独立的に調節(すなわち、「チューン」)することができる。いくつかの例において、立下がり時間パルス82のパルス幅は、ユーザによって、または自動化した手段によって、例えば、立下がり時間回路30Aを調節することにより、独立的に調節することができる。いくつかの例において、ポテンショメータP1の抵抗を増加させることは、立下がり時間パルス82の振幅を増加させ得、それは、PINダイオード(1以上)を、よりゆっくりとターン・オフし、RFエンベロープ62などのようなRFエンベロープの立下がり時間を増加させる。いくつかの例において、ポテンショメータP1の抵抗を減少させることは、立下がり時間パルス82の振幅を減少させ得、それは、PINダイオード(1以上)を、より急速にターン・オフし、RFエンベロープ62などのようなRFエンベロープの立ち下がり時間を減少させる。
[0066] 図5Gの例において、クールダウン・パルス80Bは、オフサージ/クールダウン・パルス80の一部であり、図1および3にて説明したクールダウン・パルス32C(すなわち、「オフ・アイソレーション」)などのようなクールダウン・パルスに対応するものであり得、固定のパルス幅とすることができる。クールダウン・パルス80Bは、図2A−2Bにて説明した多段パルス生成モジュール4のオフサージ/クールダウン回路32Aにより生成されるオフサージ/クールダウン・パルス80の一部である。いくつかの例において、クールダウン・パルス80Bは、PINダイオード(1以上)の真性領域から、いかなる残留する電荷も取り除くことができる。いくつかの例において、クールダウン・パルス80Bのパルス幅および/または振幅は、ユーザによって、または自動化した手段によって、例えば、オフサージ/クールダウン回路32Aを調節することにより、独立的に調節することができる。いくつかの例において、クールダウン・パルス80Bは、「ロー」パルスであり得る。
[0067] 図6は、駆動信号モジュール6の例を示している回路図である。図6の例において、駆動信号モジュール6は、多段パルス生成モジュール4から複数のパルスを含む出力20を受け取り、駆動信号を生成するために複数のパルスを組み合わせる。いくつかの例において、駆動信号モジュール6は、駆動信号がPINダイオードを駆動できるように、電流を増加させることにより駆動信号を増幅する。いくつかの例において、駆動信号モジュール6は、電圧の急激なスパイクを防止して、電圧のより段階的な変化を提供するために、一つ以上の低域通過フィルタを用いて駆動信号をフィルタリングする。図6の例において、多段パルス生成モジュール4からの出力20は、複数のパルスを含むものであり、駆動信号モジュール6の加算演算増幅器54Aへ送られ、その複数のパルスが組み合わされ、電流が増加させられて、図1について述べたようにRFインタフェース8のPINダイオード(1以上)を駆動するようにされる。
[0068] 加算演算増幅器54A−54Bは、いくつかの重み付けされた電圧を組み合わせるために用いることができる。各々はV+およびV−入力を有することができ、抵抗が各電圧に関して同じである一例では、加算演算増幅器は電圧の反転合計を出力する。
[0069] 図6の一つの例において、V+は多段パルス生成モジュール4から出力20を供給され、Vs+は6Vを供給され、コンデンサC26(C27)経由で接地に接続される。図6の例において、加算演算増幅器54AのV−は、R28とR29との間に接続され、R28は接地に接続され、R29は加算演算増幅器54Aの出力に接続される。図6の例において、加算演算増幅器54AのVs−は、負の電源ピン(すなわち、VEE)により出力され、コンデンサC28、C29により接地に接続される。
[0070] 図6の例において、加算演算増幅器54BのV−は、抵抗器R32を介して加算演算増幅器54Aから出力を受け取るものであり、抵抗器R31に接続しており、抵抗器31は加算演算増幅器54Bの出力に接続している。図6の例において、加算演算増幅器54BのV+は、加算演算増幅器54Bを反転加算演算増幅器にするように、接地に接続している。図6の例において、加算演算増幅器54AのVs−は、負の電源ピン(すなわち、VEE)に接続されるものであり、コンデンサC31、C32により接地に接続している。図6の例において、加算演算増幅器54BのVs+は、6Vが供給され、コンデンサC33、C34により接地に接続している。いくつかの例において、加算演算増幅器54A−54Bは、出力20と比較して、駆動信号66の電流を増加(すなわち、駆動信号を「バッファ」)させることができる。
[0071] 図6の例において、演算増幅器54Aは、非反転加算演算増幅器とすることができ、複数のパルスを組み合わせて、駆動信号66を生成し、図1および4にて説明したようにRFインタフェース8に一連の制御を提供する。図6の例において、演算増幅器54Bは、反転加算演算増幅器とすることができ、複数のパルスを組み合わせて、反転駆動信号68を生成し、図1および4にて説明したようにRFインタフェース8に短絡制御を提供する。いくつかの例において、R30およびC30、および/またはR33およびC35は、高周波数ノイズがRFインタフェース8へ送られるのを防止するローパス・フィルタであり得る。
Figure 0006629522
表5−図6の抵抗の値
Figure 0006629522
表6−図6のコンデンサの値

[0072] ある例では、加算演算増幅器54Aは、多段パルス生成モジュール4から受け取られる複数のパルスを含む出力20を組み合わせて、図4−5Gにて説明した信号66などのような駆動信号を生成する。他の例では、加算演算増幅器54Aはまた、図1にて説明したRFインタフェース8のPINダイオード(1以上)を駆動するために、出力20の電流レベルを増加させることもできる。いくつかの例では、反転加算演算増幅器54Bなどのような第2の演算増幅器は、駆動信号モジュール6の演算増幅器54Aから、生成された駆動信号を受け取り、駆動信号66を反転させて、図4−5Gにて説明した反転駆動信号68などのような反転駆動信号を生成する。いくつかの例において、駆動信号モジュール6の駆動信号66は、図1にて説明したように、RFインタフェース8へ届けられる。いくつかの例において、駆動信号モジュール6の反転駆動信号68は、図1にて説明したように、RFインタフェース8へ届けられる。いくつかの例において、駆動信号モジュール6はまた、出力20から高周波数ノイズを取り除くためにオプションの低域通過フィルタを含むこともできる。いくつかの例において、RFインタフェース8は、駆動信号66および反転駆動信号68を受け取り、図1にて説明した出力11に対応し得る出力84で、RFエンベロープ(例えば、図4にて説明したRFエンベロープ62)を生成することができる。
[0073] 図7は、RF変調器2のRFエンベロープ62に関しての例示の仕様90を示している図である。図7の例において、図4にて説明したRFエンベロープ62などのようなRF出力の、図3および5Bにて説明した立上がり時間パルス24B、74に対応する立上がり時間92は、50〜100ナノ秒(ns)の間であり得る。図7の例において、RFエンベロープ62などのようなRF出力の、図3および5Fにて説明した立下がり時間パルス30B、82に対応する立下がり時間94は、50ナノ秒と200ナノ秒との間とすることができる。図7の例において、RFエンベロープ62などのようなRF出力の、図3および5Dにて説明したオン・パルス28B、78に対応するパルス幅96(すなわち、オン・パルス)は、700ナノ秒と900ナノ秒との間とすることができる。いくつかの例において、図1にて説明した入力10と、図4にて説明したRFエンベロープ62などのようなRF出力との間のパルス遅延98は、150ナノ秒以下とすることができる。いくつかの例において、RFエンベロープ62などのようなRF出力の最大ドループ100は、プラスマイナス0.5デシベル(dB)であり得る。いくつかの例において、RFエンベロープ62などのようなRF出力の、図3および5Dにて説明したオン・パルス28B、78に対応する最大パルス幅102は、30マイクロ秒(μs)とすることができる。いくつかの例において、図4にて説明したRFエンベロープ62などのようなRF出力の、図3および5Dにて説明したオンパルス28B、78に対応する最小パルス幅104は、0.45μsとすることができる。いくつかの例において、図1にて説明したRF変調器2の温度範囲106は、摂氏マイナス55度と摂氏85度との間にある。いくつかの例において、図4にて説明したRFエンベロープ62などのようなRF出力の周波数範囲108は、1030から1090メガヘルツ(MHz)の間とすることができる。いくつかの例において、この開示の駆動信号は、例えば75デシベル(dB)という極めて高いアイソレーションを有することができる。
[0074] 図8は、RFエンベロープを生成するためにPINダイオードを駆動するために駆動信号を生成する例示的プロセス120を示すフロー図である。図8は、図1−3のコンテキストの範囲内で説明される。図8の例において、RFモジュレータ2の多段パルス生成モジュール4は、入力10(122)を受け取り、入力10に基づいて複数のパルス24−32を生成することができ、複数のパルスの第1のパルス24Bは、RFインタフェース8により生成されるRFエンベロープの立上がり時間を制御し、複数のパルスの第2のパルス30Bは、RFインタフェース8(124)により生成されるRFエンベロープの立下がり時間を制御する。図8の例において、RF変調器2の駆動信号モジュール8は、複数のパルス24−32を組み合わせて駆動信号40(126)を生成し、駆動信号40を、一つ以上のPINダイオード(128)を含むRFインタフェース8へ送る。図8の例において、RF変調器2のRFインタフェース8は、駆動信号で一つ以上のPINダイオードを駆動することによりRFエンベロープを生成することができ、第1のパルス24Bの振幅またはパルス幅の少なくとも1つは、第2のパルス30Bの振幅またはパルス幅から独立的に調節可能である。
[0075] いくつかの例において、複数のパルスは、一つ以上のPINダイオードによって生成されたRFエンベロープのパルス幅を制御するための第3のパルスを含むことができ、第4のパルスの振幅またはパルス幅の少なくとも一つは、独立的に調整可能である。いくつかの例において、第3のパルスは、RFエンベロープのパルス幅を700−900ナノ秒(ns)の間にするように制御することができる。いくつかの例において、複数のパルスの振幅は一つ以上のポテンショメータにより調整されることができ、複数のパルスのパルス幅は一つ以上の演算増幅器により調整されることができる。いくつかの例において、複数のパルスは、一つ以上のPINダイオードのアイソレーションを制御するための一つ以上のハイ・パルスを更に含むことができ、1以上のハイ・パルスの振幅またはパルス幅の少なくとも一つは独立的に調節可能である。いくつかの例において、複数のパルスは、一つ以上のPINダイオードのオフ・アイソレーションを制御するための一つ以上のロー・パルスを更に含むことができ、一つ以上のロー・パルスの振幅またはパルス幅の少なくとも一つは独立的に調整可能である。いくつかの例において、複数のパルスを生成することは、アナログ・デジタル変換器により複数のパルスを生成することを含むことができる。いくつかの例において、第1のパルスは、RFエンベロープの立上がり時間を50−100ナノ秒(ns)の間にするように制御することができる。いくつかの例において、第2のパルスは、RFエンベロープの立下がり時間を50−200ナノ秒(ns)の間にするように制御することができる。いくつかの例において、RFエンベロープの周波数は、1030−1090メガヘルツ(MHz)の間とすることができる。いくつかの例において、入力と、RFインタフェースによるRFエンベロープの生成との間のパルス遅延は、150ナノ秒(ns)以下とすることができる。
[0076] 一つ以上の例において、記載された機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組み合わせで実装されることができる。ソフトウェアで実装される場合、機能は、一つ以上の命令またはコードとして、コンピュータ可読媒体に記憶されるか又はそれを介して送られ、ハードウェア・ベースの処理ユニットにより実行されることができる。コンピュータ可読媒体は、コンピュータ可読記憶媒体を含むことができ、それは、データ記憶媒体などのような実体的な媒体や、例えば、通信プロトコルに従ってコンピュータ・プログラムを或る場所から別の場所へ転送することを容易にするいかなる媒体も含む通信媒体に、対応する。このように、コンピュータ可読媒体は、一般に、(1)非一時的である有形のコンピュータ可読記憶媒体、または(2)信号や搬送波などのような通信媒体に、対応し得る。データ記憶媒体は、この開示に記載された技術の実装のために命令、コード、および/またはデータ構造を取り出すために、一つ以上のコンピュータまたは一つ以上のプロセッサによりアクセスされることができる使用可能な任意の媒体とすることができる。コンピュータ・プログラム製品は、コンピュータ可読媒体を含み得る。
[0077] 例えば、かかるコンピュータ可読記憶媒体は、RAM、ROM、EEPROM、CD−ROMまたは他の光学的ディスク記憶装置、磁気ディスク・ストレージ、または他の磁気記憶デバイス、フラッシュ・メモリ、または命令またはデータ構造の形で所望のプログラム・コードを記憶すること及びコンピュータによりアクセスされることができる他の任意媒体を含むことができるが、これらには限定されない。また、いかなる接続も、当然、コンピュータ可読媒体と称される。例えば、命令が、同軸ケーブル、光ファイバー・ケーブル、ツイスト・ペア、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのようなワイヤレス技術を用いて、ウェブサイト、サーバ、または他のリモート・ソースから送られる場合には、同軸ケーブル、光ファイバー・ケーブル、ツイスト・ペア、DSL、または赤外線、無線、およびマイクロ波などのようなワイヤレス技術は、媒体の定義に含まれる。しかしながら、コンピュータ可読記憶媒体およびデータ記憶媒体は、接続、搬送波、信号、または他の一時的媒体を含まず、それらは、非一時的な実体的な記憶媒体に関するものであることを、理解すべきである。ここでのディスク(diskおよびdisc)とは、コンパクト・ディスク(CD)、レーザー・ディスク(登録商標)、光ディスク、デジタル多用途ディスク(DVD)、フロッピー(登録商標)ディスク、およびブルーレイ(Blu−ray(登録商標))・ディスクを含むものであり、disk(ディスク)は通常は磁気的にデータを再生するものであり、disc(ディスク)はレーザーを用いて光学的にデータを再生するものである。上記のものの組み合わせも、コンピュータ可読媒体の範囲内に含まれるべきである。
[0078] 命令は、一つ以上のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ロジック・アレイ(FPGAs)、または他の等価の集積回路や個別の論理回路などのような、1以上のプロセッサにより実行されることができる。したがって、ここで用いられる「プロセッサ」という用語は、ここで説明した技術の実装に適した前述の構造または他の任意の構造も指すものであり得る。更に、いくつかの態様では、ここで説明した機能は、エンコードおよびデコードするように構成される専用のハードウェアおよび/またはソフトウェア・モジュール内で提供されることができるか、または複合コーデックに組み込むことが可能である。また、これらの技術は、一つ以上の回路または論理エレメントで完全に実装されることができる。
[0079] この開示の技術は、多種多様なデバイスまたは装置、集積回路(IC)、または一組のIC(例えば、チップ・セット)で実装されることができる。この開示では、各種のコンポーネント、モジュール、またはユニットは、開示された技術を実行するように構成されるデバイスの機能的な面を強調するように記載されているが、必ずしも異なるハードウェア・ユニットにより実現することを必要とするというわけではない。むしろ、上記のように、適切なソフトウェアおよび/またはファームウェアと関連して、さまざまなユニットは、コーデック・ハードウェア・ユニットにおいて組み合わせることができ、また、上記の一つ以上のプロセッサを含む相互運用ハードウェア・ユニットのコレクションにより提供されることができる。
[0080] 本開示のさまざまな例を記載した。これらおよび他の例は、以下の特許請求の範囲の範囲内にある。

Claims (3)

  1. 一つ以上のP−真性−N(PIN)ダイオードを駆動する方法であって、
    入力を受け取るステップと、
    前記入力に基づいて複数のパルスを生成するステップであって、前記複数のパルスの第1のパルスはRFインタフェースにより生成されるRFエンベロープの立上がり時間を制御し、前記複数のパルスの第2のパルスは前記RFインタフェースにより生成されるRFエンベロープの立下がり時間を制御し、前記複数のパルスの第3のパルスは前記RFエンベロープのパルス幅を制御するものである、複数のパルスを生成するステップと、
    駆動信号を生成するように前記複数のパルスを組み合わせるステップと、
    前記一つ以上のPINダイオードを含む前記RFインタフェースへ前記駆動信号を送るステップと、
    前記駆動信号で前記一つ以上のPINダイオードを駆動することによって、前記RFエンベロープを生成するステップと、
    を含み、前記第1のパルスの振幅またはパルス幅の少なくとも一つは、前記第2のパルスの振幅またはパルス幅から独立的に調節可能である、
    方法。
  2. RFエンベロープを生成するために一つ以上のP−真性−N(PIN)ダイオードを駆動する無線周波数(RF)変調器デバイスであって、
    入力を受け取り、前記入力に基づいて複数のパルスを生成するように構成される第1の回路であって、前記複数のパルスの第1のパルスは前記RFエンベロープの立上がり時間を制御し、前記複数のパルスの第2のパルスは前記RFエンベロープの立下がり時間を制御し、前記第1のパルスの振幅またはパルス幅の少なくとも1つは、前記第2のパルスの振幅またはパルス幅から独立的に調節可能であり、前記複数のパルスの第3のパルスは前記一つ以上のPINダイオードにより生成される前記RFエンベロープのパルス幅を制御する、第1の回路と、
    前記複数のパルスを受け取り、組み合わせて、駆動信号を生成するように構成される第2の回路と、
    前記一つ以上のPINダイオードを包含している第3の回路と
    を含み、前記第2の回路は前記第3の回路に包含される前記一つ以上のPINダイオードを駆動するために駆動信号を送り、前記一つ以上のPINダイオードは前記RFエンベロープを生成する、
    RF変調器デバイス。
  3. 請求項2に記載のRF変調器デバイスであって、前記第3のパルスの振幅またはパルス幅の少なくとも1つは独立的に調整可能である、RF変調器デバイス。
JP2015108424A 2014-06-02 2015-05-28 Pinダイオード・ベースのrf振幅変調器に関するマルチ・ステップ駆動信号 Active JP6629522B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/293,945 2014-06-02
US14/293,945 US9882529B2 (en) 2014-06-02 2014-06-02 Multi-step drive signal for PIN diode based RF amplitude modulators

Publications (3)

Publication Number Publication Date
JP2015233277A JP2015233277A (ja) 2015-12-24
JP2015233277A5 JP2015233277A5 (ja) 2018-07-05
JP6629522B2 true JP6629522B2 (ja) 2020-01-15

Family

ID=53276722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108424A Active JP6629522B2 (ja) 2014-06-02 2015-05-28 Pinダイオード・ベースのrf振幅変調器に関するマルチ・ステップ駆動信号

Country Status (3)

Country Link
US (1) US9882529B2 (ja)
EP (1) EP2953263A1 (ja)
JP (1) JP6629522B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819728B (zh) 2018-01-11 2022-01-04 先进工程解决方案全球控股私人有限公司 低功率pin二极管驱动器
CN109331337B (zh) * 2018-11-12 2022-03-11 吴军发 一种变幅值及变脉宽的对称脉冲波经颅刺激装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131613A (ja) * 1984-11-29 1986-06-19 Mitsubishi Electric Corp 駆動回路
DE3708759A1 (de) 1987-03-18 1988-09-29 Licentia Gmbh Variabel einstellbares daempfungsglied
FR2618620B1 (fr) * 1987-07-24 1989-11-24 Trt Telecom Radio Electr Dispositif interrupteur pour signaux a haute frequence
US5003195A (en) * 1989-03-10 1991-03-26 Honeywell Inc. Pin diode attenuator RF pulse generator with pulse rise and fall time control
US5214315A (en) 1991-04-23 1993-05-25 Cornell Research Foundation, Inc. Nanosecond RF switch driver
US5204551A (en) * 1991-07-01 1993-04-20 Motorola, Inc. Method and apparatus for high power pulse modulation
JP5508729B2 (ja) * 2009-01-28 2014-06-04 日本無線株式会社 電力増幅器

Also Published As

Publication number Publication date
US9882529B2 (en) 2018-01-30
US20150349713A1 (en) 2015-12-03
JP2015233277A (ja) 2015-12-24
EP2953263A1 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6332842B2 (ja) 可変減衰器を有する電子回路およびそれらの動作方法
KR102544761B1 (ko) 데드-타임 제어를 위한 타이밍 제어기
US9548722B2 (en) Apparatus and methods for reducing glitches in digital step attenuators
KR20210010964A (ko) 나노초 펄스를 이용한 임의의 파형 발생
JP5377578B2 (ja) 高効率オーディオ増幅器システム
US9231535B2 (en) Silent start class-D amplifier
JP6323938B2 (ja) 過渡電磁波耐性を向上させるためのトリガ回路および方法
JP2012005122A (ja) 高効率、バランスを保たれた出力増幅器システム
JP6629522B2 (ja) Pinダイオード・ベースのrf振幅変調器に関するマルチ・ステップ駆動信号
WO2018148708A1 (en) High speed pin diode driver circuit
EP3278450B1 (en) Envelope tracking circuits and methods with adaptive switching frequency
US9813055B2 (en) Gate driver that drives with a sequence of gate resistances
JP2015233277A5 (ja)
US9748927B2 (en) Peaking inductor array for peaking control unit of transceiver
JP6532146B2 (ja) スイッチモード増幅器
US3959750A (en) Microwave diode switch wherein first diode carries greater control signal current than second diode
KR20210008456A (ko) 저전압 스트레스의 멀티레벨 디지털 앰프
WO2016051210A1 (en) Pulse modulator
US9621149B2 (en) Bootstrapped switch with a highly linearized resistance
Yeap Ultra wideband signal generation
CN102164103B (zh) 一种可编程差动连续时间预加重驱动器
Wang et al. Time-varying matching network for antennas in pulse-based systems
Gjurovski et al. Exploiting the Marx generator as a 100 MHz high-speed multilevel supply modulator
US20240048128A1 (en) Control of inductor switching
KR101187784B1 (ko) 임펄스 발생 장치

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20180528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191205

R150 Certificate of patent or registration of utility model

Ref document number: 6629522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250