JP6628071B2 - Low-density lipoprotein oxidation inhibitor - Google Patents

Low-density lipoprotein oxidation inhibitor Download PDF

Info

Publication number
JP6628071B2
JP6628071B2 JP2015091804A JP2015091804A JP6628071B2 JP 6628071 B2 JP6628071 B2 JP 6628071B2 JP 2015091804 A JP2015091804 A JP 2015091804A JP 2015091804 A JP2015091804 A JP 2015091804A JP 6628071 B2 JP6628071 B2 JP 6628071B2
Authority
JP
Japan
Prior art keywords
ldl
water
oxidation
soluble nucleoprotein
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015091804A
Other languages
Japanese (ja)
Other versions
JP2016204340A (en
Inventor
淑萍 惠
淑萍 惠
晴治 武田
晴治 武田
佐藤 浩志
浩志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS CORPORATION CO.,LTD.
Hokkaido University NUC
Original Assignee
LS CORPORATION CO.,LTD.
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS CORPORATION CO.,LTD., Hokkaido University NUC filed Critical LS CORPORATION CO.,LTD.
Priority to JP2015091804A priority Critical patent/JP6628071B2/en
Publication of JP2016204340A publication Critical patent/JP2016204340A/en
Application granted granted Critical
Publication of JP6628071B2 publication Critical patent/JP6628071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、水溶性核タンパク質を含有することを特徴とする低密度リポタンパク質(Low-density Lipoprotein:LDL)酸化抑制剤に関する。水溶性核タンパク質は、LDL酸化防止作用を有しており、抗アテローム性動脈硬化の予防・改善剤として使用することができる。   The present invention relates to a low-density lipoprotein (LDL) oxidation inhibitor comprising a water-soluble nucleoprotein. The water-soluble nucleoprotein has an LDL antioxidant effect and can be used as an agent for preventing / ameliorating anti-atherosclerosis.

近年、動脈硬化症は過脂肪食や運動不足を主な要因とするメタボリックシンドロームの下流に位置する症状であるとの認識がコンセンサスになりつつあり、この動脈硬化症がさらに進行することにより血栓を形成し、心疾患・脳血管疾患の原因となる。   In recent years, there has been a consensus that arteriosclerosis is a symptom that is located downstream of metabolic syndrome, which is mainly caused by a high-fat diet and lack of exercise. It forms and causes heart disease and cerebrovascular disease.

日本国厚生労働省の最近の人口動態統計によると、日本における疾患別死亡者の1位が悪性新生物(腫瘍及び癌)、2位が心疾患、3位が肺炎、4位が脳血管疾患となっているが、心疾患と脳血管疾患による死亡者の合計は全体の約25%であり、これは悪性新生物の死亡者割合である約29%にほぼ匹敵する割合である(平成25年(2013年))。悪性新生物の対処方法に関しては、その発症プロセスから考慮すると早期発見・早期治療が重要であり、臨床学的なアプローチが望ましいとされる。しかしながら、上述のメタボリックシンドロームの起因となるアテローム性動脈硬化症の下流に位置する心疾患・脳血管疾患については、日常的に摂取する食品により予防可能で、このような食品摂取による対処方法が望ましいと考えられている。   According to recent demographic statistics of the Ministry of Health, Labor and Welfare of Japan, malignant neoplasms (tumors and cancers) rank first in disease-related deaths in Japan, heart disease in third, pneumonia in third, and cerebrovascular disease in fourth. However, the total number of deaths due to heart disease and cerebrovascular disease is about 25% of the total, which is almost the same as the death rate of malignant neoplasms of about 29% (2013 (2013)). Regarding the method of coping with malignant neoplasms, early detection and early treatment are important in view of the onset process, and a clinical approach is considered desirable. However, heart disease and cerebrovascular disease located downstream of atherosclerosis, which causes the above-mentioned metabolic syndrome, can be prevented by daily intake of food, and a method of coping with such food intake is desirable. It is believed that.

アテローム性動脈硬化症において、食生活を含めた食品学的なアプローチが重要であることは上述の通りであるが、複雑・多岐なプロセスにおいてどの作用機序をターゲットにするかは重要である。アテローム性動脈硬化症は酸化ストレス等によるLDLの酸化、酸化LDLの血管内皮細胞への取り込みによる血管内皮機能障害を発症の端緒としており、その後のマクロファージや血管平滑筋の分化・脱分化による泡沫化現象を呈する。そして最終的には狭窄性病変を経て血栓形成となる。   As mentioned above, in atherosclerosis, a food-based approach including diet is important, but it is important to determine which mechanism of action is targeted in complex and diverse processes. Atherosclerosis is triggered by the onset of LDL oxidation due to oxidative stress and vascular endothelial dysfunction due to the incorporation of oxidized LDL into vascular endothelial cells, followed by foaming due to differentiation and dedifferentiation of macrophages and vascular smooth muscle. Exhibit a phenomenon. Eventually, thrombus is formed through a stenotic lesion.

動脈硬化症の発症及び進行は、LDLの酸化変性と深く関連することが知られている。アテローム性動脈硬化症の初期原因の一つとされる血管内皮細胞の機能障害は、酸化LDLが酸化LDL受容体であるLOX−1(レクチン様酸化低密度リポプロテインレセプター−1:Lectin-like oxidized low-density lipoprotein receptor-1)を介して血管内皮細胞に取り込まれることに依存するという報告がある(非特許文献1参照)   It is known that the onset and progression of arteriosclerosis is closely related to oxidative degeneration of LDL. Dysfunction of vascular endothelial cells, which is considered to be one of the early causes of atherosclerosis, is due to LOX-1 (Lectin-like oxidized low lipoprotein receptor-1), which is an oxidized LDL receptor. There is a report that it depends on being taken up into vascular endothelial cells via -density lipoprotein receptor-1) (see Non-Patent Document 1).

予防学的観点から考えれば、初期病変である酸化ストレス等によるLDLの酸化、あるいは酸化LDLが血管内皮細胞に取り込まれることによる機能障害を抑制することが重要である。   From a preventive point of view, it is important to suppress LDL oxidation due to oxidative stress or the like, which is an initial lesion, or to suppress dysfunction due to incorporation of oxidized LDL into vascular endothelial cells.

LDL酸化抑制効果のある素材としては、ジヒドロリポ酸(非特許文献2参照)、ブドウ種子エキスの主成分であるプロアントシアニジン(非特許文献3参照)、ビタミンE(非特許文献4参照)、リコピン及びビタミンE(特許文献1参照)、アスタキサンチン(特許文献2参照)、2”−O−グルコシルイソビテキシン(特許文献3参照)、乳酸菌もしくは当該乳酸菌で乳培地を発酵させた発酵乳(特許文献4参照)、単細胞緑藻類の藻体もしくはその抽出物(特許文献5参照)、ショウガオールおよびジンゲロールと類似の化学構造を有する化合物(特許文献6及び7参照)、ビタミンCとカカオ抽出成分(特許文献8参照)、羅布麻抽出物およびビタミンC類を併用(特許文献9参照)、ミリシトシン(特許文献10参照)、α−リポ酸、ビタミンE、ブドウ種子エキス含有素材(特許文献11参照)等が知られている。   Materials having an LDL oxidation inhibitory effect include dihydrolipoic acid (see Non-Patent Document 2), proanthocyanidin (see Non-Patent Document 3) which is a main component of grape seed extract, vitamin E (see Non-Patent Document 4), lycopene and Vitamin E (see Patent Document 1), astaxanthin (see Patent Document 2), 2 ″ -O-glucosylisovitexin (see Patent Document 3), lactic acid bacteria or fermented milk obtained by fermenting a milk medium with the lactic acid bacteria (Patent Document 4) ), An algal body of a single-cell green algae or an extract thereof (see Patent Document 5), a compound having a chemical structure similar to shogaol and gingerol (see Patent Documents 6 and 7), and vitamin C and cocoa extract components (Patent Document 8) Combined use of Rabo-hima extract and vitamin C (see Patent Document 9), myricytosine (see Patent Document 10), α-li Acid, vitamin E, grape seed extract-containing material (Patent Document 11 reference) are known.

他方、魚類の白子から得られる水溶性核タンパク質に関しては、当該水溶性核タンパク質が遺伝子の酸化損傷を著しく低減させる効果を有することが報告されているが(特許文献12参照)、LDLの酸化を抑制する効果のあることに関してはこれまで知られていない。   On the other hand, regarding water-soluble nucleoprotein obtained from milt of fish, it has been reported that the water-soluble nucleoprotein has an effect of significantly reducing oxidative damage of genes (see Patent Document 12). There is no known effect of suppressing the effect.

特表2002−504928号公報JP-T-2002-504928 特開平10−155459号公報JP-A-10-155449 特開平9−67255号公報JP-A-9-67255 特開2001-302523号公報JP 2001-302523 A 特開2002−114703号公報JP-A-2002-114703 特開2005−272384号公報JP 2005-272384A 特開2005−306829号公報JP 2005-306829 A 特開2006−87352号公報JP-A-2006-87352 特開2006−160667号公報JP 2006-160667 A 特開2006−219389号公報JP 2006-219389 A 特開2006−306820号公報JP 2006-306820 A 特開2003−325149号公報JP 2003-325149 A

Sawamura, T. et al., Nature, 6;386(6620), 73-7, 1997.Sawamura, T. et al., Nature, 6; 386 (6620), 73-7, 1997. Lodge, J. K. et al., Free Radic. Biol. Med., 25(3), 287-97 1998.Lodge, J.K. et al., Free Radic. Biol. Med., 25 (3), 287-97 1998. Yamakoshi, Y. et. al., Atherosclerosis, 142(1), 139-49, 1999.Yamakoshi, Y. et.al., Atherosclerosis, 142 (1), 139-49, 1999. Toshima, A. et al., Arterioscler. Thromb. Vasc. Biol., 20(10), 2243-7, 2000.Toshima, A. et al., Arterioscler. Thromb. Vasc. Biol., 20 (10), 2243-7, 2000.

動脈硬化の予防には、LDL酸化抑制効果を有する素材を、日常的かつ継続的に摂取することにより十分な効果を発揮することができると考えられる。従って、本発明が解決しようとする課題は、長期間服用しても安全であり、LDLの酸化を効果的に防止することのでき、抗アテローム性動脈硬化の予防・改善効果を奏する、医薬品や機能性食品の形態のLDL酸化抑制剤を提供することにある。   In order to prevent arteriosclerosis, it is considered that a sufficient effect can be exerted by daily and continuous ingestion of a material having an LDL oxidation inhibitory effect. Therefore, the problem to be solved by the present invention is to provide a medicine or a drug which is safe even if taken for a long period of time, can effectively prevent the oxidation of LDL, and has an effect of preventing and improving anti-atherosclerosis. It is to provide an LDL oxidation inhibitor in the form of a functional food.

本発明者は、上記課題について鋭意検討した結果、長期間服用しても安全である水溶性核タンパク質にLDLの酸化を抑制する効果があることを見いだし、本発明を完成するに至った。すなわち、本発明は以下の通りである。
(1)水溶性核タンパク質を有効成分として含有することを特徴とする低密度リポタンパク質(LDL)酸化抑制剤。
(2)水溶性核タンパク質が魚類の白子由来の水溶性核タンパク質であることを特徴とする上記(1)に記載のLDL酸化抑制剤。
(3)水溶性核タンパク質が、分子量3000以下の画分を50〜100%含む低分子化された水溶性核タンパク質であることを特徴とする上記(1)または(2)に記載のLDL酸化抑制剤。
(4)機能性食品の形態であることを特徴とする上記(1)〜(3)のいずれかに記載のLDL酸化抑制剤。
As a result of intensive studies on the above problems, the present inventors have found that a water-soluble nucleoprotein which is safe even if taken for a long period of time has an effect of suppressing the oxidation of LDL, and completed the present invention. That is, the present invention is as follows.
(1) A low-density lipoprotein (LDL) oxidation inhibitor comprising a water-soluble nucleoprotein as an active ingredient.
(2) The LDL oxidation inhibitor according to the above (1), wherein the water-soluble nucleoprotein is a water-soluble nucleoprotein derived from milt of fish.
(3) The LDL oxidation according to (1) or (2), wherein the water-soluble nucleoprotein is a low-molecular-weight water-soluble nucleoprotein containing 50 to 100% of a fraction having a molecular weight of 3000 or less. Inhibitors.
(4) The LDL oxidation inhibitor according to any one of the above (1) to (3), which is in the form of a functional food.

本発明によれば、生体内LDLの酸化抑制、さらにアテローム性動脈硬化症の予防、治療を、副作用を伴うことなく効率的に実施できる。本発明に用いられる水溶性核タンパク質は、安全性には全く問題がなく機能性食品又は医薬品の形態に自由に調製することができるため、健常者はもとより、老齢者、病弱者、病後の人等も長期間に亘って摂取することができる。   ADVANTAGE OF THE INVENTION According to this invention, oxidation suppression of LDL in a living body, and prevention and treatment of atherosclerosis can be implemented efficiently, without accompanying a side effect. Since the water-soluble nucleoprotein used in the present invention can be freely prepared in the form of a functional food or a medicament without any problem in safety, it can be prepared not only from healthy subjects, but also from the elderly, the sick, and post-sick. Etc. can be taken over a long period of time.

カーボンナノチューブ(CNT)電極法により測定したLDLの酸化状態(電位変化)を示す図である。(A)は酸化前のnative−LDL(未酸化LDL)の電位変化を、(B)はnative−LDLと水溶性核タンパク質の共存下で酸化処理を行ったときの電位変化を、(C)は水溶性核タンパク質非共存下でnative−LDLの酸化処理を行ったときの電位変化をそれぞれ示す。It is a figure which shows the oxidation state (potential change) of LDL measured by the carbon nanotube (CNT) electrode method. (A) shows the potential change of native-LDL (unoxidized LDL) before oxidation, (B) shows the potential change when oxidation treatment is performed in the presence of native-LDL and water-soluble nucleoprotein, (C) Indicates potential changes when native-LDL is oxidized in the absence of a water-soluble nucleoprotein. 水溶性核タンパク質の添加濃度を変え、native−LDLと共存させたときのnative−LDLの酸化の進行状態を、TBARS法及びCNT電極法により測定した結果を示す図である。水溶性核タンパク質無添加のときの酸化状態を100%として示す。白丸はTBARS法の、黒丸はCNT電極法の結果を示す。It is a figure which shows the result of having measured the progress state of the oxidation of native-LDL when the addition density | concentration of the water-soluble nucleoprotein was changed and coexisted with native-LDL by the TBARS method and the CNT electrode method. The oxidation state when no water-soluble nucleoprotein was added is shown as 100%. Open circles show the results of the TBARS method, and black circles show the results of the CNT electrode method.

以下に本発明の実施の形態を詳細に説明するが、以下の説明は、本発明の実施の形態の一例であり、本発明は、以下の記載内容に限定されるものではない。なお、本明細書において「〜」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。   Hereinafter, embodiments of the present invention will be described in detail. However, the following description is an example of the embodiments of the present invention, and the present invention is not limited to the following description. It should be noted that, when the expression “to” is used in this specification, it is used as an expression including numerical values or property values before and after the expression.

本発明のLDL酸化抑制剤としては、水溶性核タンパク質を有効成分として含有する医薬又は機能性食品の形態の製剤であれば特に制限されず、本発明のLDL酸化抑制剤は、アテローム性動脈硬化の予防・改善剤として有用である。ここで製剤とは、錠剤、カプセル、顆粒、ドリンク等の通常の食品とは異なる形状のものをいい、また、機能性食品とは、体の調子を整える機能があることを強調した食品であって、食品には病気予防や老化防止の助けになる成分が微量ながら色々と含まれており、これらを抽出して効果的に摂取できるように開発された、体の調子を整える機能があることを強調した食品をいい、栄養機能食品、保健機能食品、サプリメントも機能性食品に含まれる。   The LDL oxidation inhibitor of the present invention is not particularly limited as long as it is a preparation in the form of a medicament or a functional food containing a water-soluble nucleoprotein as an active ingredient. The LDL oxidation inhibitor of the present invention includes atherosclerosis. It is useful as a preventive / ameliorating agent. Here, the formulation refers to tablets, capsules, granules, drinks, and other forms different from ordinary foods, and functional foods refer to foods that emphasize the function of regulating body tone. In addition, foods contain a small amount of various ingredients that help prevent disease and prevent aging, and have a function to condition the body that has been developed so that they can be extracted and consumed effectively. Foods that emphasize nutrition, nutritional foods, health foods, and supplements are also included in functional foods.

本発明において用いられる水溶性核タンパク質は、後述する実施例において具体的に示すとおり、LDLの酸化を確実に抑制することができる。したがって、この水溶性核タンパク質を用いることで、酸化ストレス等によるLDLの酸化、酸化LDLの血管内皮細胞への取り込みによる血管内皮機能障害を発症の端緒としているアテローム性動脈硬化症の初期病変であるLDLの酸化を抑制することができる。また、LDLの酸化にともなって引き起こされるアテローム性動脈硬化及びその他の疾患の予防及び治療に適用できる。また、水溶性核タンパク質を摂取させることによりLDLの酸化を抑制する方法(ただし、人に対する医療行為を除く。)にも適用できる。   The water-soluble nucleoprotein used in the present invention can surely suppress the oxidation of LDL as specifically shown in Examples described later. Therefore, by using this water-soluble nucleoprotein, it is an early lesion of atherosclerosis, which is caused by oxidization of LDL by oxidative stress or the like, and vascular endothelial dysfunction due to incorporation of oxidized LDL into vascular endothelial cells. Oxidation of LDL can be suppressed. Further, the present invention can be applied to prevention and treatment of atherosclerosis and other diseases caused by oxidation of LDL. In addition, the present invention can be applied to a method of suppressing oxidation of LDL by ingesting a water-soluble nucleoprotein (however, excluding medical practice for humans).

本発明において、水溶性核タンパク質は、好ましくは魚類の白子(精巣)より調製されたものである。魚類としては特に制限されないが、サケ、マス、ニシン、及びタラからなる群より選択される魚類が好ましい。これらの中で、原料入手等の点からはサケの白子が好ましい。   In the present invention, the water-soluble nucleoprotein is preferably prepared from fish milt (testis). The fish is not particularly limited, but is preferably a fish selected from the group consisting of salmon, trout, herring, and cod. Among them, salmon milt is preferable from the viewpoint of obtaining raw materials.

本発明において用いられる水溶性核タンパク質は、例えば、特開2003−325149号公報、特開2004−16143号公報に記載の方法に準じて調製することができる。また、水溶性核タンパク質は市販品を利用することもできる。   The water-soluble nucleoprotein used in the present invention can be prepared, for example, according to the methods described in JP-A-2003-325149 and JP-A-2004-16143. In addition, a commercially available water-soluble nucleoprotein can also be used.

水溶性核タンパク質は、例えば、上記魚類の白子から皮、筋、血管等を必要に応じて除去した後、さらに必要に応じて精製して油分を除き、続いてプロテアーゼ及びヌクレアーゼでの処理を行うことより調製することができる。用いるプロテアーゼの性質に特に制限はないが、トリプシン等のセリンプロテアーゼが好ましい。セリンプロテアーゼは、アルギニン及びリジンのカルボキシル側でペプチド結合を選択的に加水分解するので、アルギニンを多く含むプロタミンの加水分解に適している。また、用いるヌクレアーゼの性質に特に制限はないが、例えば5’にリン酸基を残して切断するヌクレアーゼ等が好ましく、ある程度の熱安定性を備えることが好ましい。これらプロテアーゼやヌクレアーゼは、市販品を適宜選択して用いればよい。これらの酵素処理物は、そのまま、或いは必要に応じて噴霧乾燥等により粉体の形態で、本発明における水溶性核タンパク質として用いることができる。また、必要であればさらに精製して使用することもできる。   The water-soluble nucleoprotein is, for example, after removing skins, muscles, blood vessels and the like from the milt of the fish as required, and further purifying as necessary to remove the oil, and then performing a treatment with a protease and a nuclease. Can be prepared. There are no particular restrictions on the nature of the protease used, but serine proteases such as trypsin are preferred. Serine proteases are suitable for hydrolyzing arginine-rich protamine because they selectively hydrolyze peptide bonds on the carboxyl side of arginine and lysine. The nature of the nuclease to be used is not particularly limited. For example, a nuclease that cleaves while leaving a phosphate group at 5 'is preferable, and preferably has a certain degree of thermostability. As these proteases and nucleases, commercially available products may be appropriately selected and used. These enzyme-treated products can be used as the water-soluble nucleoprotein in the present invention as it is, or in the form of a powder by spray drying or the like, if necessary. If necessary, it can be used after further purification.

水溶性核タンパク質の分子量等は特に制限されないが、分子量5000以下、好ましくは3000以下の画分を50〜100%程度まで含む低分子化されたものが好ましい。なお、分子量分布の測定は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)で試料を分子量に基づいて分別した後にUV検出器によって定量することにより行うことができる。   The molecular weight and the like of the water-soluble nucleoprotein are not particularly limited, but those having a low molecular weight containing a fraction having a molecular weight of 5,000 or less, preferably 3000 or less, up to about 50 to 100% are preferable. The molecular weight distribution can be measured by gel permeation chromatography (GPC), by quantifying the sample with a UV detector after fractionating the sample based on the molecular weight.

本発明におけるLDL酸化抑制のために用いる機能性食品は、LDL酸化抑制という用途が付された機能性食品であり、機能性食品の形態としては、例えば、粉末剤、カプセル剤、錠剤、顆粒剤、散剤の他、飲料、食品などの通常の食品の形態を採用することができる。また、機能性食品の形態の製剤としては、摂取量を調節しやすいカプセル剤、錠剤、顆粒剤、ドリンク等の製剤の形態を好適に例示することができる。   The functional food used for suppressing LDL oxidation in the present invention is a functional food to which the use of LDL oxidation suppression is applied. Examples of the form of the functional food include powders, capsules, tablets, and granules. In addition to powders, ordinary food forms such as beverages and foods can be employed. Further, as a preparation in the form of a functional food, a form of a preparation such as a capsule, a tablet, a granule, a drink, and the like, whose intake amount is easily adjusted, can be suitably exemplified.

また、LDL酸化抑制剤の剤型は、従来から知られている通常の製剤方法で製造することができる。例えば、製剤の製造上許可される担体、賦形剤、香料、乳化剤、防腐剤、分散剤等と混合して成型することができる。また、本発明のLDL酸化抑制剤には、発明の効果を損なわない範囲において、生薬、ビタミン、ミネラルなどの他に、乳糖、デンプン、セルロース、マルチトール、デキストリンなどの賦形剤、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどの界面活性剤、ゼラチン、プルラン、シェラック、ツェインなどの被膜剤、小麦胚芽油、米胚芽油、サフラワー油などの油脂類、ミツロウ、米糠ロウ、カルナウバロウなどのワックス類、ショ糖、ブドウ糖、果糖、ステビア、サッカリン、スクラロースなどの甘味料、並びにクエン酸、リンゴ酸、グルコン酸などの酸味料などを適宜配合することができる。生薬としては、高麗人参、アメリカ人参、田七人参、霊芝、プロポリス、アガリクス、ブルーベリー、イチョウ葉及びその抽出物などを挙げることができる。ビタミンとしては、ビタミンD、Kなどの油溶性ビタミン、ビタミンB1、B2、B6、B12、C、ナイアシン、パントテン酸、葉酸、ビオチンなどの水溶性ビタミンを挙げることができる。   Further, the dosage form of the LDL oxidation inhibitor can be produced by a conventionally known ordinary preparation method. For example, it can be molded by mixing with carriers, excipients, flavors, emulsifiers, preservatives, dispersants and the like that are permitted in the production of the preparation. Further, the LDL oxidation inhibitor of the present invention includes, in addition to crude drugs, vitamins and minerals, lactose, starch, cellulose, maltitol, dextrin and other excipients, glycerin fatty acid esters, as long as the effects of the present invention are not impaired. , Surfactants such as sucrose fatty acid esters, coating agents such as gelatin, pullulan, shellac, zein, oils and fats such as wheat germ oil, rice germ oil and safflower oil, waxes such as beeswax, rice bran wax, carnauba wax, Sweeteners such as sucrose, glucose, fructose, stevia, saccharin, and sucralose, and acidulants such as citric acid, malic acid, gluconic acid, and the like can be appropriately added. Examples of crude drugs include ginseng, American ginseng, seven ginseng, reishi, propolis, agaricus, blueberries, ginkgo biloba and extracts thereof. Examples of vitamins include oil-soluble vitamins such as vitamins D and K, and water-soluble vitamins such as vitamins B1, B2, B6, B12, C, niacin, pantothenic acid, folic acid, and biotin.

上記のとおり、水溶性核タンパク質を用いて、各種の剤型とすることができる。すなわち、本発明によれば、LDL酸化抑制のために用いる機能性食品の製造における水溶性核タンパク質の使用、及びLDL酸化抑制剤の製造における水溶性核タンパク質の使用も提供される。   As described above, various dosage forms can be prepared using the water-soluble nucleoprotein. That is, according to the present invention, use of a water-soluble nucleoprotein in the production of a functional food used for suppressing LDL oxidation and use of a water-soluble nucleoprotein in the production of an LDL oxidation inhibitor are also provided.

本発明の水溶性核タンパク質を有効成分として含有するLDL酸化抑制剤や該LDL酸化抑制剤をアテローム性動脈硬化症の予防・改善剤、あるいはLDL酸化抑制用又はアテローム性動脈硬化症の予防・改善用の機能性食品の摂取量は、年齢、治療効果及び病態等により異なり、特に限定されないが、水溶性核タンパク質乾燥重量換算で一日当たり、通常20mg以上、好ましくは50mg以上、より好ましくは100mg以上、また通常2000mg以下、好ましくは1500mg以下、より好ましくは1000mg以下の範囲で調整することができる。   An LDL oxidation inhibitor containing the water-soluble nucleoprotein of the present invention as an active ingredient, a prophylactic / ameliorating agent for atherosclerosis using the LDL oxidation inhibitor, or a prophylactic / ameliorating agent for inhibiting LDL oxidation or for atherosclerosis The amount of functional food to be taken depends on age, therapeutic effect, disease state, etc., and is not particularly limited, but is usually 20 mg or more, preferably 50 mg or more, more preferably 100 mg or more per day in terms of dry weight of water-soluble nucleoprotein. In addition, it can be adjusted in the range of usually 2000 mg or less, preferably 1500 mg or less, more preferably 1000 mg or less.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples.

(1)血清の調製
2名のボランティア(20代の男1名、女1名)よりプレーン採血管を用いて空腹時採血を行った。採血後、室温で1時間放置した。3,500rpm、10分間遠心分離を行い、血清を得た。
(1) Preparation of Serum Two volunteers (one male and one female in their 20s) collected blood on an empty stomach using plain blood collection tubes. After blood collection, it was left at room temperature for 1 hour. Centrifugation was performed at 3,500 rpm for 10 minutes to obtain serum.

(2)超遠心法によるリポ蛋白の分離
血清から超遠心分離法により以下の方法でLDL画分を分離した。超遠心機はhimac CP60E ultracentrifuge(Hitachi社製)、ローターはRPV−50T rotor(Hitachi社製)を使用した。
d=1.006kg/L溶液(0.20mol/L NaCl、0.27mmol/L EDTA−2Na(pH7.4)、1mmol/L NaOH)に臭化カリウム(KBr、関東化学社製)を加えて、d=1.023kg/L及び1.160kg/Lの比重液をそれぞれ調製した。
血清とd=1.023kg/L溶液を混合してd=1.019kg/Lに調整し、これを超遠心用チューブ(Hitachi社製)に満たした後、40,000rpm、20時間、4℃で遠心分離した。遠心分離終了後、上層のCM−IDL(chylomicron-intermediate density lipoprotein)画分(d<1.019kg/L)を取り除いた。
(2) Separation of lipoprotein by ultracentrifugation The LDL fraction was separated from serum by ultracentrifugation by the following method. The ultracentrifuge used was Himac CP60E ultracentrifuge (Hitachi), and the rotor used was RPV-50T rotor (Hitachi).
d = 1.006 kg / L solution (0.20 mol / L NaCl, 0.27 mmol / L EDTA-2Na (pH 7.4), 1 mmol / L NaOH) and potassium bromide (KBr, manufactured by Kanto Chemical Co., Ltd.) , D = 1.023 kg / L and 1.160 kg / L, respectively.
The serum was mixed with a solution of d = 1.023 kg / L to adjust d = 1.019 kg / L, filled in an ultracentrifuge tube (manufactured by Hitachi, Ltd.), and then subjected to 40,000 rpm for 20 hours at 4 ° C. And centrifuged. After completion of the centrifugation, the upper layer of CM-IDL (chylomicron-intermediate density lipoprotein) fraction (d <1.019 kg / L) was removed.

下層をd=1.160kg/L溶液にてd=1.063kg/Lに調整し、これをチューブに満たした後、50,000rpm、18時間、4℃で遠心分離した。遠心分離終了後、上層のLDL画分(d=1.019−1.063kg/L)を回収した。回収したLDLはエッペンドルフチューブに分注し、4℃で5分間脱気した後、Arガスで封入し4℃で遮光保存した。   The lower layer was adjusted to d = 1.63 kg / L with a d = 1.160 kg / L solution, filled in a tube, and centrifuged at 50,000 rpm for 18 hours at 4 ° C. After the completion of the centrifugation, the upper layer LDL fraction (d = 1.019-1.063 kg / L) was collected. The collected LDL was dispensed into an Eppendorf tube, degassed at 4 ° C. for 5 minutes, sealed with Ar gas, and stored at 4 ° C. protected from light.

(3)native−LDLの調製
1×Dulbecco’s Phosphate-Buffered Salines(DPBS)を満たして5分間放置した分子量10万の限外ろ過フィルターを使用して、回収したEDTA含有LDLよりEDTAを除去し、native−LDL(n−LDL:未酸化LDL)を調製した。測定の度にEDTA含有LDLを、同様の方法でDPBSにより6回洗浄してEDTAを除去して使用した。
(3) Preparation of native-LDL EDTA was removed from the collected EDTA-containing LDL using an ultrafiltration filter having a molecular weight of 100,000 filled with 1 × Dulbecco's Phosphate-Buffered Salines (DPBS) and allowed to stand for 5 minutes. -LDL (n-LDL: unoxidized LDL) was prepared. After each measurement, EDTA-containing LDL was washed 6 times with DPBS in the same manner to remove EDTA before use.

(4)native−LDLの蛋白定量
以下に詳述するLowry変法により、n−LDLの蛋白濃度を測定した。
A液(2%炭酸ナトリウム、0.4%水酸化ナトリウム、0.16%酒石酸塩、1%SDS(sodium dodecyl sulfate)水溶液)とB液(4%硫酸銅水溶液)を100:1の割合で混合した溶液3mlをn−LDL又は標準液(bovine serum albumin、BSA)1mLに加えて室温で30分間インキュベートした。
次にフェノール試薬(Folin&Ciocalteu’s試薬、和光純薬社製)と脱イオン水を等量混合した溶液を各サンプル及び標準液に強く撹拌しながら300μLずつ添加して室温で45分間インキュベートした。
分光光度計で吸光度(660nm)を測定し、標準液(BSA)の濃度と吸光度をプロットして描出された標準曲線からn−LDLの蛋白濃度を算出した。
(4) Protein quantification of native-LDL The protein concentration of n-LDL was measured by the modified Lowry method described in detail below.
Solution A (2% sodium carbonate, 0.4% sodium hydroxide, 0.16% tartrate, 1% aqueous sodium dodecyl sulfate (SDS)) and solution B (4% aqueous copper sulfate solution) at a ratio of 100: 1. 3 ml of the mixed solution was added to 1 ml of n-LDL or a standard solution (bovine serum albumin, BSA) and incubated at room temperature for 30 minutes.
Next, a solution obtained by mixing equal amounts of a phenol reagent (Folin &Ciocalteu's reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and deionized water was added to each sample and standard solution while vigorously stirring, and the mixture was incubated at room temperature for 45 minutes.
The absorbance (660 nm) was measured with a spectrophotometer, and the protein concentration of n-LDL was calculated from the standard curve drawn by plotting the concentration of the standard solution (BSA) and the absorbance.

(5)native−LDLの酸化
アポタンパク質濃度として0.36mg/mLのn−LDLに、硫酸銅を0.8μM(終濃度)になるように添加し、37℃で1時間インキュベーションすることによりn−LDLの酸化を行い、酸化LDL(ox−LDL)を生成させた。
(5) Oxidation of native-LDL Copper sulfate was added to n-LDL having an apoprotein concentration of 0.36 mg / mL to a concentration of 0.8 μM (final concentration), followed by incubation at 37 ° C. for 1 hour. -LDL was oxidized to produce oxidized LDL (ox-LDL).

(6)水溶性核タンパク質によるnative−LDLの酸化抑制
水溶性核タンパク質によるn−LDLの酸化抑制は、以下の方法で確認した。
0.5mg/mLになるようPBSに溶解させた水溶性核タンパク質(日生バイオ株式会社製)と、アポタンパク質濃度で0.36mg/mLのn−LDLとを事前に混和し、37℃で1時間保温した。保温後、硫酸銅を添加し、n−LDLを酸化させた。生成されたox−LDLと水溶性核タンパク質とを限外濾過フィルターを用い分離し、下記方法でox−LDL量を測定した。
水溶性核タンパク質無添加の場合のox−LDL量と比較することにより、水溶性核タンパク質によるn−LDLの酸化の抑制効果を確認した。
(6) Suppression of native-LDL oxidation by water-soluble nucleoprotein Suppression of oxidation of n-LDL by water-soluble nucleoprotein was confirmed by the following method.
A water-soluble nucleoprotein (manufactured by Nissei Bio Co., Ltd.) dissolved in PBS so as to have a concentration of 0.5 mg / mL and n-LDL having an apoprotein concentration of 0.36 mg / mL are mixed in advance, and then mixed at 37 ° C. Incubated for hours. After keeping the temperature, n-LDL was oxidized by adding copper sulfate. The produced ox-LDL and the water-soluble nucleoprotein were separated using an ultrafiltration filter, and the amount of ox-LDL was measured by the following method.
By comparing with the amount of ox-LDL in the case where no water-soluble nucleoprotein was added, the effect of suppressing the oxidation of n-LDL by the water-soluble nucleoprotein was confirmed.

(7)カーボンナノチューブ(CNT)電極の作製とCNT電極法によるox−LDL量の測定
電極基板とその上に添加するCNT溶液の作製は、Sensors and Actuators B: Chemical 166-167, 833-836, 2012.に記載の方法に従って作製した。作用電極にはガラス基板上に作製したCNT電極、参照電極には銀−塩化銀電極を用いた。参照電極をCNT電極の真上にくる位置に合わせ、両者の間に挟み込ませるように30μLのDPBSを注入し、電極安定化のために10分間平衡化を行った。CNT電極上のDPBSのうち7μLを除去し、新たに7μLのDPBSを注入して200秒間測定し、ベースラインを測定した。同様に7μLを除去し、水溶性核タンパク質を7μL注入してピペッティングにより撹拌した。水溶性核タンパク質を注入から500秒間測定した。
(7) Preparation of Carbon Nanotube (CNT) Electrode and Measurement of ox-LDL Amount by CNT Electrode Method The preparation of the electrode substrate and the CNT solution to be added thereon is described in Sensors and Actuators B: Chemical 166-167, 833-836, Prepared according to the method described in 2012. A CNT electrode prepared on a glass substrate was used as a working electrode, and a silver-silver chloride electrode was used as a reference electrode. The reference electrode was positioned right above the CNT electrode, 30 μL of DPBS was injected so as to be sandwiched between the two, and equilibration was performed for 10 minutes to stabilize the electrode. 7 μL of DPBS on the CNT electrode was removed, 7 μL of DPBS was newly injected, the measurement was performed for 200 seconds, and the baseline was measured. Similarly, 7 μL was removed, 7 μL of a water-soluble nucleoprotein was injected, and the mixture was stirred by pipetting. Water soluble nucleoprotein was measured for 500 seconds after injection.

解析は、測定時間(s)を横軸に、電位(mV)を縦軸にプロットし、ベースラインの近似曲線を作成した。ox−LDLへの置換開始から500秒後の測定電位とその時点での近似曲線上の電位の差を求め、その値をox−LDLによる電位差として定義した。酸化が進行するに従い電位変化が大きくなることがわかっている。   In the analysis, the measurement time (s) was plotted on the horizontal axis and the potential (mV) was plotted on the vertical axis, and an approximate curve of the baseline was created. The difference between the measured potential 500 seconds after the start of substitution with ox-LDL and the potential on the approximate curve at that time was determined, and the value was defined as the potential difference due to ox-LDL. It is known that the potential change increases as the oxidation proceeds.

図1にn−LDLと水溶性核タンパク質の共存下及び非共存下での、n−LDLの酸化による電位変化曲線の一例を示す。酸化前のLDLの電位変化を電位変化量(A)、水溶性核タンパク質共存下でのLDLの電位変化を電位変化量(B)、水溶性核タンパク質非共存下でのLDLの電位変化を電位変化量(C)として示した。   FIG. 1 shows an example of a potential change curve due to oxidation of n-LDL in the presence and absence of n-LDL and a water-soluble nucleoprotein. The potential change of LDL before oxidation is represented by the potential change (A), the potential change of LDL in the presence of the water-soluble nucleoprotein is represented by the potential change (B), and the potential change of LDL in the absence of the water-soluble nucleoprotein is represented by the potential It was shown as the change (C).

水溶性核タンパク質非共存下(抗酸化剤が無い状況)での電位変化量(C)では大きな電位変化量が観察された。一方、水溶性核タンパク質共存下(抗酸化剤がある状況)での電位変化量(B)は(C)より減少しており、n−LDLの酸化が抑制されていることが確認された。電位差B−Aを電位差C−Aで割って100を乗じたものをLDL酸化進行度(%)として定義した。   A large potential change was observed in the potential change (C) in the absence of a water-soluble nucleoprotein (in the absence of an antioxidant). On the other hand, the potential change (B) in the presence of the water-soluble nucleoprotein (in the presence of an antioxidant) was smaller than (C), confirming that the oxidation of n-LDL was suppressed. The potential difference BA divided by the potential difference CA and multiplied by 100 was defined as the degree of LDL oxidation progress (%).

TBARS法によるox−LDLの測定
ox−LDL中の過酸化脂質量をMDA(malondialdehyde)濃度として、市販のTBARS測定キット(Cayman Chemical.社製)用いて以下のように測定した。
チオバルビツール酸の濃度が36.8mMになるように、酢酸と水酸化ナトリウム水溶液の等量混合液に溶解して反応試薬を作製した。ox−LDL又はMDA標準物質25μLにSDS 25μLと反応試薬500μLを混和した。90℃で1時間インキュベートし、その後10分間氷冷した。生成した赤色物質の蛍光強度を分光蛍光光度計(FP−6500;Jasco Corp.社製)で測定した(励起波長530nm、測定波長550nm)。水溶性核タンパク質非共存下で得られたox−LDLのTBARSを、水溶性核タンパク質共存下で得られたox−LDLのTBARSの値で割って100を乗じ、TBARS法によるLDLの酸化進行度を算出した。水溶性核タンパク質は0から0.5mg/mLの範囲でLDLに添加した。
Measurement of ox-LDL by TBARS method The amount of lipid peroxide in ox-LDL was measured as MDA (malondialdehyde) concentration using a commercially available TBARS measurement kit (manufactured by Cayman Chemical Co.) as follows.
A reaction reagent was prepared by dissolving thiobarbituric acid in an equal volume mixture of acetic acid and an aqueous solution of sodium hydroxide such that the concentration of thiobarbituric acid became 36.8 mM. 25 μL of ox-LDL or MDA standard was mixed with 25 μL of SDS and 500 μL of reaction reagent. The mixture was incubated at 90 ° C. for 1 hour, and then cooled on ice for 10 minutes. The fluorescence intensity of the generated red substance was measured with a spectrofluorometer (FP-6500; manufactured by Jasco Corp.) (excitation wavelength: 530 nm, measurement wavelength: 550 nm). TBARS of ox-LDL obtained in the absence of a water-soluble nucleoprotein was divided by the value of TBARS of ox-LDL obtained in the presence of a water-soluble nucleoprotein, multiplied by 100, and the degree of oxidation of LDL by the TBARS method was calculated. Was calculated. Water-soluble nucleoprotein was added to LDL in the range of 0 to 0.5 mg / mL.

実施例1で記載したCNT電極を用いたヒトLDLの酸化抑制能評価法でもLDLの酸化進行度を評価した。結果を図2に示す。TBARS法及びCNT電極法のどちらの方法でも水溶性核タンパク質の濃度依存的に酸化進行度が減少しており、LDLの酸化が抑制されていることが示唆された。サンプル濃度が0.08mg/mLで約50%の酸化進行度であることが確認された。   The degree of oxidation progression of LDL was also evaluated by the method for evaluating the ability of human LDL to inhibit oxidation using the CNT electrode described in Example 1. FIG. 2 shows the results. In both the TBARS method and the CNT electrode method, the degree of oxidation progression was reduced in a concentration-dependent manner of the water-soluble nucleoprotein, suggesting that LDL oxidation was suppressed. At a sample concentration of 0.08 mg / mL, it was confirmed that the degree of oxidation progress was about 50%.

本発明の水溶性核タンパク質を有効成分として含有する低密度リポタンパク質(LDL)酸化抑制剤は、アテローム性動脈硬化症の予防剤や改善剤として、医薬品や機能性食品(サプリメント)の分野において有用である。   The low-density lipoprotein (LDL) oxidation inhibitor containing the water-soluble nucleoprotein of the present invention as an active ingredient is useful in the field of pharmaceuticals and functional foods (supplements) as a preventive or ameliorating agent for atherosclerosis. It is.

Claims (2)

水溶性核タンパク質を有効成分として含有し、前記水溶性核タンパク質が、魚類の白子の加水分解物であって、分子量5000以下の画分を50〜100%含む低分子化された水溶性核タンパク質であることを特徴とする低密度リポタンパク質(LDL)酸化抑制剤。 A water-soluble nucleoprotein containing a water-soluble nucleoprotein as an active ingredient , wherein the water-soluble nucleoprotein is a hydrolyzate of a milt of fish, and contains 50 to 100% of a fraction having a molecular weight of 5,000 or less. low density lipoprotein (LDL) oxidation inhibitor, characterized in that it. 機能性食品の形態であることを特徴とする請求項1に記載のLDL酸化抑制剤。 The LDL oxidation inhibitor according to claim 1, which is in the form of a functional food.
JP2015091804A 2015-04-28 2015-04-28 Low-density lipoprotein oxidation inhibitor Active JP6628071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015091804A JP6628071B2 (en) 2015-04-28 2015-04-28 Low-density lipoprotein oxidation inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015091804A JP6628071B2 (en) 2015-04-28 2015-04-28 Low-density lipoprotein oxidation inhibitor

Publications (2)

Publication Number Publication Date
JP2016204340A JP2016204340A (en) 2016-12-08
JP6628071B2 true JP6628071B2 (en) 2020-01-08

Family

ID=57488801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015091804A Active JP6628071B2 (en) 2015-04-28 2015-04-28 Low-density lipoprotein oxidation inhibitor

Country Status (1)

Country Link
JP (1) JP6628071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428991B2 (en) 2021-05-24 2024-02-07 国立大学法人北海道大学 Sugar absorption inhibitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978716B2 (en) * 2002-04-18 2007-09-19 日生バイオ株式会社 Gene oxidative damage inhibitor
JP2003325148A (en) * 2002-05-09 2003-11-18 Nissei Bio Kk Healthy drink
EP2292260A1 (en) * 2009-08-13 2011-03-09 Institut Pasteur Use of mycobacterium bovis BCG killed by extended freeze drying (EFD) for preventing or treating atherosclerosis

Also Published As

Publication number Publication date
JP2016204340A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6998929B2 (en) Noble gas-rich liquids and methods for their preparation and use
JP6449571B2 (en) Oral composition
KR20190007412A (en) And compositions for improving weight loss and cardiovascular health after eating and exercise
JP5965916B2 (en) Kiwifruit-derived cardioprotectant
JP6393425B2 (en) Pharmaceutical composition for prevention or treatment of metabolic diseases, comprising Bacteroides acifaciens as an active ingredient
JP2013241354A (en) Phosphodiesterase 2 inhibitor
JP2019081807A (en) Marine oil formulations comprising resveratrol or derivatives thereof for use in treating, delaying and/or preventing alzheimer&#39;s disease
JP5594819B2 (en) Composition for improving lipid metabolism
JP2006347927A (en) Fatigue-improving agent
JP6628071B2 (en) Low-density lipoprotein oxidation inhibitor
JP6133471B2 (en) Xanthine oxidase inhibitor
JP2002226368A (en) Inhibitor against oxidative damage to erythrocyte
JP2011504464A (en) Novel blood pressure lowering composition
JP4818637B2 (en) Low density lipoprotein (LDL) oxidation inhibitor
JP2013249260A (en) Senescence retardant
JP2010105946A (en) Muscle protein enhancer and drug or food containing the same
JP6083085B2 (en) Angiotensin converting enzyme inhibitor and use thereof
JP2015529470A (en) Composition containing β-hydroxy-β-methylbutyric acid (METHYLBUTRYICACID) and use thereof
JP2014009214A (en) Amyloid precursor protein expression inhibitor
JP2012067041A (en) Ace activity inhibitor
EP3441062B1 (en) Seawater and salt powder balancing formulations and nutritional and pharmaceutical compositions
EP1433500A2 (en) Blood fluidity-improving health foods
JP2002029984A (en) Oral composition
JP2006063021A (en) Hypotensive agent and food having hypotensive action
JP2009007256A (en) Nadh/nadph oxidase inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191120

R150 Certificate of patent or registration of utility model

Ref document number: 6628071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250