JP6627479B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
JP6627479B2
JP6627479B2 JP2015243377A JP2015243377A JP6627479B2 JP 6627479 B2 JP6627479 B2 JP 6627479B2 JP 2015243377 A JP2015243377 A JP 2015243377A JP 2015243377 A JP2015243377 A JP 2015243377A JP 6627479 B2 JP6627479 B2 JP 6627479B2
Authority
JP
Japan
Prior art keywords
urea water
urea
exhaust passage
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015243377A
Other languages
Japanese (ja)
Other versions
JP2017110506A (en
Inventor
慶忠 伊東
慶忠 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015243377A priority Critical patent/JP6627479B2/en
Publication of JP2017110506A publication Critical patent/JP2017110506A/en
Application granted granted Critical
Publication of JP6627479B2 publication Critical patent/JP6627479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本発明は、選択還元触媒を備えた排気浄化装置に関する。   The present invention relates to an exhaust purification device provided with a selective reduction catalyst.

内燃機関であるディーゼルエンジンから排出されるリーン排気中の窒素酸化物(以下「NOx」と記す)を浄化するものとして、選択還元触媒(以下「SCR触媒」と記す)を排気通路に設けて使用する排気浄化装置が知られている。SCR触媒は、同触媒よりも排気上流から排気通路内に供給した尿素水を触媒上で加水分解させてアンモニア(NH)を生成させ、そのアンモニア(NH)により排気のリーン雰囲気下でNOxを選択還元・浄化するものである。このようなSCR触媒を用いる場合、SCR触媒よりも排気上流側に配置した尿素水供給部から尿素水を排気通路内に噴射し、尿素水供給手段とSCR触媒との間に配置した分散部材を用いて尿素水を分散させ、排熱による気化による排気との混合や霧化を促進させてSCR触媒に供給している(例えば特許文献1)。 A selective reduction catalyst (hereinafter, referred to as "SCR catalyst") is provided in an exhaust passage for purifying nitrogen oxides (hereinafter, referred to as "NOx") in lean exhaust discharged from a diesel engine which is an internal combustion engine. Exhaust gas purifying devices are known. SCR catalyst, than the catalyst is hydrolyzed urea water supplied into the exhaust passage from the exhaust upstream over a catalyst to form ammonia (NH 3) and, NOx in lean atmosphere exhaust by the ammonia (NH 3) Is selectively reduced and purified. When such an SCR catalyst is used, urea water is injected into the exhaust passage from a urea water supply unit disposed on the exhaust upstream side of the SCR catalyst, and a dispersion member disposed between the urea water supply means and the SCR catalyst is used. Urea water is dispersed using the urea water to promote mixing and atomization with exhaust gas due to vaporization by exhaust heat and supply the SCR catalyst to the SCR catalyst (for example, Patent Document 1).

特開2014−202099号公報JP 2014-202099 A

排気通路内に噴射された尿素水は分散部材によって分散されるものもあるが、分散されずに排気通路内に付着してSCR触媒に供給されないものもある。
本発明は、排気通路内に噴射された尿素水を効率よく選択還元触媒に供給可能にすることを、その目的とする。
Some urea water injected into the exhaust passage is dispersed by the dispersing member, while others are not dispersed and adhere to the exhaust passage and are not supplied to the SCR catalyst.
An object of the present invention is to make it possible to efficiently supply urea water injected into an exhaust passage to a selective reduction catalyst.

本発明に係る排気浄化装置は、内燃機関から排出される排気が流れる排気通路内に尿素水を供給する尿素水供給部と、尿素水供給部よりも排気下流側に配置され、尿素水供給部から供給された尿素水を還元剤として排気に含まれている窒素酸化物を選択還元する選択還元触媒と、尿素水供給部と選択還元触媒との間の排気通路に配置され、尿素水供給部から噴射された尿素水を分散する分散部材と、分散部材と選択還元触媒の間の排気通路に配置され、排気通路内で液状の尿素水を前記排気中に再供給する尿素水再供給部材を備え、尿素水再供給部材は、排気通路の内面に、該内面と空隙を有するように接触して取り付けられる接触部と、接触部から排気通路の中心方向に向かって傾斜した傾斜部とを有し、傾斜部は、該傾斜部に切り込み、又は孔を設けることにより尿素水を上昇させる尿素上昇部が形成されることを特徴としている。 An exhaust gas purification apparatus according to the present invention includes a urea water supply unit that supplies urea water into an exhaust passage through which exhaust gas discharged from an internal combustion engine flows, and a urea water supply unit that is disposed downstream of the urea water supply unit. A selective reduction catalyst for selectively reducing nitrogen oxides contained in exhaust gas using urea water supplied from the urea water as a reducing agent; and a urea water supply unit disposed in an exhaust passage between the urea water supply unit and the selective reduction catalyst. exhaust is disposed in the passage, an exhaust passage of resupplying the urea water resupply member in said exhaust urea water in a liquid state at between the dispersion member, the selective reduction catalyst and the dispersion member for dispersing the injected urea water from A contact portion attached to the inner surface of the exhaust passage so as to have a gap with the inner surface, an inclined portion inclined from the contact portion toward the center of the exhaust passage. The inclined portion has a cut in the inclined portion , Or it is characterized by urea ascender raising the urea water by providing a hole.

本発明によれば、排気通路内の液状の尿素水が、分散部材と選択還元触媒との間に配置された尿素水再供給部材によって、排気通路の中心方向に向かって上昇されることで、排気の熱によって気化されて排気中に混合されるので、排気通路内に噴射された尿素水を効率よく選択還元触媒に供給することができる。   According to the present invention, the liquid urea water in the exhaust passage is raised toward the center direction of the exhaust passage by the urea water re-supply member disposed between the dispersion member and the selective reduction catalyst. Since it is vaporized by the heat of the exhaust gas and mixed into the exhaust gas, the urea water injected into the exhaust passage can be efficiently supplied to the selective reduction catalyst.

本発明に係る排気浄化装置の第1の実施形態の概略構成を示す図。FIG. 1 is a diagram showing a schematic configuration of a first embodiment of an exhaust gas purification device according to the present invention. 排気浄化装置が備えている尿素水再供給部材の構成を説明する図であって、(a)は平面視図、(b)は側面図。It is a figure explaining composition of a urea water re-supply member with which an exhaust gas purification device is provided, (a) is a top view and (b) is a side view. 尿素水再供給部材による液状の尿素水の上昇状態を示す拡大断面図。FIG. 4 is an enlarged cross-sectional view showing a rising state of liquid urea water by a urea water re-supply member. 複数の板状部材が接合されて形成された尿素水再供給部材を示す図であり、(a)は平面視図、(b)は断面図。It is a figure which shows the urea water re-supply member formed by joining several plate-shaped members, (a) is a top view, (b) is sectional drawing. 尿素水が溜まり易い部位での密度が高められた尿素上昇部を備えた尿素水再供給部材の構成を示す平面視図。The top view which shows the structure of the urea water re-supply member provided with the urea rising part with which the density in the part which urea water tends to accumulate easily was raised. 尿素水が溜まり易い部位での密度が低められた尿素上昇部を備えた尿素水再供給部材の構成を示す平面視図。The top view which shows the structure of the urea water re-supply member provided with the urea rising part with which the density in the site | part which urea water easily accumulates was reduced. 尿素水再供給部材の配置場所を変更した本発明に係る排気浄化装置の第2の実施形態の概略構成を示す図。The figure which shows the schematic structure of 2nd Embodiment of the exhaust gas purification device which concerns on this invention which changed the arrangement | positioning position of the urea water re-supply member. 尿素水再供給部材を複数備えた本発明に係る排気浄化装置の第3の実施形態の概略構成を示す図。The figure which shows schematic structure of 3rd Embodiment of the exhaust gas purification device which concerns on this invention provided with the several urea-water re-supply member. 尿素水再供給部材の複数の変形例の一覧を示す図。The figure which shows the list of several modification of a urea water re-supply member. (a)、(b)は尿素水再供給部材の取付構造を示す拡大図。(A), (b) is an enlarged view which shows the mounting structure of the urea water re-supply member.

以下、本発明の実施形態について図面を用いて説明する。なお、図面の見やすさを考慮して、構成要件を部分的に省略あるいは破断等して記載することもある。
本実施形態に係る排気浄化装置30は、車両に搭載された内燃機関である多気筒のディーゼルエンジン(以下「エンジン」と記す)1に適用される。図1には、エンジン1に設けられる複数のシリンダ2のうちの一つを示すが、他のシリンダ2も同様の構成である。エンジン1のシリンダ2内には、頂面にキャビティが形成されたピストン3が上下方向に往復摺動するように、シリンダ2内に配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in consideration of legibility of the drawings, constituent elements may be partially omitted or broken.
The exhaust gas purification device 30 according to the present embodiment is applied to a multi-cylinder diesel engine (hereinafter referred to as “engine”) 1 that is an internal combustion engine mounted on a vehicle. FIG. 1 shows one of a plurality of cylinders 2 provided in the engine 1, but the other cylinders 2 have the same configuration. In the cylinder 2 of the engine 1, a piston 3 having a cavity formed on a top surface is disposed in the cylinder 2 so as to reciprocate vertically.

シリンダ2の上部に位置するシリンダヘッドには、燃料噴射用のインジェクタである筒内噴射弁4が設けられている。筒内噴射弁4にはコモンレールで所定の燃圧に調整された高圧の燃料が供給される。この燃料は炭化水素(HC)の混合物である軽油である。筒内噴射弁4は、その先端部がシリンダ2の筒内空間に突出して設けられていて、高圧の燃料を筒内空間に噴射する。   An in-cylinder injection valve 4 which is an injector for fuel injection is provided in a cylinder head located above the cylinder 2. High-pressure fuel adjusted to a predetermined fuel pressure by a common rail is supplied to the in-cylinder injection valve 4. This fuel is light oil, which is a mixture of hydrocarbons (HC). The in-cylinder injection valve 4 is provided with its tip protruding into the in-cylinder space of the cylinder 2 and injects high-pressure fuel into the in-cylinder space.

シリンダヘッドには、シリンダ2の筒内空間と連通する吸気ポート5及び排気ポート6と、これら吸気ポート5と排気ポート6を開閉するための吸気弁7及び排気弁8が設けられている。吸気ポート5よりも吸気上流側には、インテークマニホールド(以下、「インマニ」と記す)9が接続されている。インマニ9よりも吸気上流端には、吸気通路12が接続されている。吸気通路12には、電子制御式のスロットルバルブ11が設けられている。インマニ9側へと流通する空気量は、このスロットルバルブ11の開度(スロットル開度)に応じて調節される。吸気通路12の最上流には、エアフィルタ13が設けられていて、エアフィルタ13で濾過された新気(空気)が吸気通路12に導入される。   The cylinder head is provided with an intake port 5 and an exhaust port 6 communicating with the in-cylinder space of the cylinder 2, and an intake valve 7 and an exhaust valve 8 for opening and closing the intake port 5 and the exhaust port 6. An intake manifold (hereinafter, referred to as “in manifold”) 9 is connected to the intake upstream side of the intake port 5. An intake passage 12 is connected to an intake upstream end of the intake manifold 9. An electronically controlled throttle valve 11 is provided in the intake passage 12. The amount of air flowing to the intake manifold 9 is adjusted according to the opening of the throttle valve 11 (throttle opening). An air filter 13 is provided at the uppermost stream of the intake passage 12, and fresh air (air) filtered by the air filter 13 is introduced into the intake passage 12.

排気ポート6よりも排気下流側には、複数のシリンダ2から合流するように形成されたエキゾーストマニホールド(以下、「エキマニ」という)15が接続されている。エキマニ15よりも排気下流側には、エンジン1から排出される白矢印で示す排気Gが流れる排気通路16が接続されている。排気通路16には、排気浄化装置30が設けられている。排気通路16を流通する排気Gは、排気浄化装置30において浄化された後、図示しないマフラーなどを介して車外へと排出される。   An exhaust manifold (hereinafter, referred to as “exhaust manifold”) 15 formed so as to join from the plurality of cylinders 2 is connected to the exhaust downstream side of the exhaust port 6. An exhaust passage 16 through which the exhaust G indicated by the white arrow discharged from the engine 1 flows is connected to the exhaust downstream of the exhaust manifold 15. An exhaust purification device 30 is provided in the exhaust passage 16. The exhaust gas G flowing through the exhaust passage 16 is purified by the exhaust gas purification device 30 and then discharged out of the vehicle via a muffler (not shown).

本実施形態に係る排気浄化装置30は、尿素SCR(Selective Catalytic Reduction)システム40を備えている。尿素SCRシステム40は、尿素水供給部としての尿素水噴射弁41、選択還元触媒としてのSCR触媒42、尿素水噴射弁41から噴射するための尿素水46を液状で貯留する尿素水タンク45、分散部材としてのミキサ47、尿素水再供給部材48を備えている。
尿素水噴射弁41は、還元剤(添加剤)として尿素水46を、その先端ノズルから噴射して噴霧状にして排気通路16内の排気中に供給するものである。尿素水噴射弁41には、尿素水46が貯留されている尿素水タンク45が供給ライン43を介して接続されている。尿素水タンク45には尿素水ポンプ44が設けられていて、尿素水ポンプ44の駆動により尿素水噴射弁41まで尿素水46が供給される。
The exhaust purification device 30 according to the present embodiment includes a urea SCR (Selective Catalytic Reduction) system 40. The urea SCR system 40 includes a urea water injection valve 41 as a urea water supply unit, an SCR catalyst 42 as a selective reduction catalyst, a urea water tank 45 for storing urea water 46 to be injected from the urea water injection valve 41 in a liquid state, A mixer 47 as a dispersion member and a urea water re-supply member 48 are provided.
The urea water injection valve 41 is configured to inject urea water 46 as a reducing agent (additive) from its tip nozzle and supply the urea water 46 to the exhaust gas in the exhaust passage 16 in the form of a spray. A urea water tank 45 storing urea water 46 is connected to the urea water injection valve 41 via a supply line 43. The urea water tank 45 is provided with a urea water pump 44, and the urea water pump 44 is driven to supply urea water 46 to the urea water injection valve 41.

SCR触媒42は、排気Gに含まれる窒素酸化物であるNOxを、尿素水46から生成されるアンモニア(NH)を利用して低減するための周知のものである。SCR触媒42は、セラミックスや酸化チタンなどで形成されたハニカム構造の担持体に、活性触媒成分として、バナジウム、モリブデン、タングステン、ゼオライトあるいは貴金属を付着させた周知のものである。SCR触媒42は、排気通路16A内に尿素水噴射弁41から噴射されてミキサ47で拡散された尿素水46が、排気の熱により加水分解および熱分解される(CO(NH→NH+HOCN、HOCN+HO→NH+CO)ことで生成されるアンモニア(NH)を還元剤としている。そして、SCR触媒42は、触媒上で排気中のNOxと反応し、NOxを窒素(N)と水(HO)に還元(浄化)するものである。 The SCR catalyst 42 is a well-known one for reducing NOx, which is a nitrogen oxide contained in the exhaust gas G, by using ammonia (NH 3 ) generated from the urea water 46. The SCR catalyst 42 is a well-known one in which vanadium, molybdenum, tungsten, zeolite, or a noble metal is adhered as an active catalyst component to a carrier having a honeycomb structure formed of ceramics, titanium oxide, or the like. In the SCR catalyst 42, the urea water 46 injected from the urea water injection valve 41 into the exhaust passage 16A and diffused by the mixer 47 is hydrolyzed and thermally decomposed by the heat of the exhaust gas (CO (NH 2 ) 2 → NH). 3 + HOCN, HOCN + H 2 O → NH 3 + CO 2 ), and ammonia (NH 3 ) generated as a reducing agent. The SCR catalyst 42 reacts with NOx in the exhaust gas on the catalyst, and reduces (purifies) NOx to nitrogen (N 2 ) and water (H 2 O).

ミキサ47は、尿素水噴射弁41とSCR触媒42の間の排気通路16A内に配置されている。ミキサ47は、尿素水噴射弁41から噴射された尿素水46を受けて排気通路16の内面16Aaに向かって放射状に分散するものである。   The mixer 47 is disposed in the exhaust passage 16A between the urea water injection valve 41 and the SCR catalyst 42. The mixer 47 receives the urea water 46 injected from the urea water injection valve 41 and radially disperses the urea water 46 toward the inner surface 16Aa of the exhaust passage 16.

尿素水噴射弁41から排気通路16内に噴霧状に噴射される尿素水46は、ミキサ47で拡散されることにより、霧化を促進され、排気中に蒸発して気化及び微粒子となって混合されてSCR触媒42に均等に流入されてSCR触媒42に接触し、NOx還元に利用される。尿素水噴射弁41から排気通路16A内に噴霧状に噴射される尿素水46は、全てがSCR触媒42まで搬送されるものばかりでなく、排気通路16Aの内面16Aaに噴霧が付着して気化しきれずに液状になるものや、ミキサ47に付着して分散されきれずに液状になるものがあり、排気通路16内に液状に溜まってしまう。つまり、尿素水噴射弁41から噴射された尿素水46は、SCR触媒42に供給されないものもある。
このため、この液状の尿素水46を還元剤として再利用することは、排気通路16A内に噴射された尿素水46を効率よくSCR触媒42に供給することになるとともに、尿素水46の消費量の低減になる。また車両の使用地域によっては、尿素タンク45内の尿素水46の残量が少なくなると、ドライバーに警告を行うことや、エンジン再始動を禁止させなければならないため、このような観点からも尿素水46の消費量を抑制することが要望されている。さらに、液状の尿素水46が排気通路16A内に残留していると、エンジン停止時に排気通路16Aの熱(排気管の有する熱)によって気化してアンモニア(NH)となって一部がそのまま大気中に排出されるというアンモニアスリップの要因や、デポジットの要因にもなってしまう。
The urea water 46 sprayed from the urea water injection valve 41 into the exhaust passage 16 is diffused by the mixer 47 to promote atomization, evaporate in the exhaust gas and mix as vapor and fine particles. Then, it is evenly flowed into the SCR catalyst 42 and comes into contact with the SCR catalyst 42 to be used for NOx reduction. All of the urea water 46 sprayed from the urea water injection valve 41 into the exhaust passage 16A is not only transported to the SCR catalyst 42, but also becomes vaporized by spray attached to the inner surface 16Aa of the exhaust passage 16A. Some of them become liquid without being separated, and others become liquid without being completely dispersed and attached to the mixer 47, and are collected in the liquid in the exhaust passage 16. That is, the urea water 46 injected from the urea water injection valve 41 is not supplied to the SCR catalyst 42 in some cases.
Therefore, reusing the liquid urea water 46 as a reducing agent allows the urea water 46 injected into the exhaust passage 16A to be efficiently supplied to the SCR catalyst 42 and the consumption of the urea water 46 to be reduced. Is reduced. Also, depending on the area where the vehicle is used, when the remaining amount of the urea water 46 in the urea tank 45 becomes low, the driver must be warned or the engine must be prohibited from restarting. It is desired to reduce the consumption of 46. Further, if the liquid urea water 46 remains in the exhaust passage 16A, when the engine is stopped, it is vaporized by the heat of the exhaust passage 16A (heat of the exhaust pipe) and becomes ammonia (NH 3 ), and a part thereof remains as it is. It is a factor of ammonia slip which is discharged into the atmosphere and a factor of deposit.

そこで、本実施形態に係る排気浄化装置30では、ミキサ47とSCR触媒42の間の排気通路16A内に尿素水再供給部材48を配置している。本実施形態において、排気通路16Aは略水平に配置されているものとする。尿素水再供給部材48は、排気通路16A内に溜まっている液状の尿素水46を排気G中に再供給するものである。本実施形態において、排気通路16Aは断面円形の排気管によって形成されている。このため、排気通路16A内の液状の尿素水46は、排気通路16Aの最下部となる底部16Abに溜まってしまう。 Therefore, the exhaust gas purification device 30 according to this embodiment, are arranged urea water resupply member 48 into the exhaust passage 16A between the mixer 47 and the SCR catalyst 42. In the present embodiment, it is assumed that the exhaust passage 16A is disposed substantially horizontally. The urea water resupply member 48 resupplies the liquid urea water 46 stored in the exhaust passage 16A into the exhaust gas G. In the present embodiment, the exhaust passage 16A is formed by the exhaust pipe of the cross-sectional plane circular. Therefore, the liquid urea water 46 in the exhaust passage 16A accumulates in the bottom 16Ab, which is the lowermost portion of the exhaust passage 16A.

尿素水再供給部材48は、図2(a)、図2(b)に示すように、排気通路16Aの内面16Aaに接触して取り付けられる接触部481と、接触部481から排気通路16Aの中心方向(矢印A方向)に向かって上り傾斜した傾斜部482を有している。傾斜部482は、液状の尿素水46を上昇させる尿素上昇部483を有する。
尿素水再供給部材48は、ステンレスなどの耐腐食性や耐熱性に優れる金属製の板状部材であって、その一部を屈曲することで、接触部481と傾斜部482とを一体的に形成している。尿素水再供給部材48は、排気通路16A内で尿素水46が溜まり易い排気通路16Aの底部16Abに、接触部481を溶接、ビスなどによって固定することで取付けられている。
As shown in FIGS. 2A and 2B, the urea water re-supply member 48 has a contact portion 481 that is attached in contact with the inner surface 16Aa of the exhaust passage 16A, and a center of the exhaust passage 16A from the contact portion 481. It has an inclined portion 482 that is inclined upward in the direction (the direction of arrow A). The inclined portion 482 has a urea rising portion 483 for raising the liquid urea water 46.
The urea water re-supply member 48 is a metal plate-like member having excellent corrosion resistance and heat resistance such as stainless steel, and a part thereof is bent to integrally form the contact portion 481 and the inclined portion 482. Has formed. The urea water re-supply member 48 is attached to the bottom 16Ab of the exhaust passage 16A where the urea water 46 easily accumulates in the exhaust passage 16A by fixing the contact portion 481 by welding, screws, or the like.

本実施形態において、尿素水再供給部材48は、接触部481よりも傾斜部482が排気下流側に位置するように配置している。無論、接触部481よりも傾斜部482が排気上流側に位置するように配置してもよい。
接触部481に対する傾斜部482の折り曲げ角度θは、5〜60°前後としている。これは、折り曲げ角度θが大きくなると、排気通路16A内を塞ぐ領域が大きくなって排気Gの流れを阻害するおそれがあるからである。排気Gの流れが阻害されると、尿素水46が充分にSCR触媒42に供給できないだけでなく、排気抵抗も大きくなってしまう。このため、本実施形態では、折り曲げ角度θを上記の値に規定している。
In the present embodiment, the urea water re-supply member 48 is disposed such that the inclined portion 482 is located on the exhaust downstream side of the contact portion 481. Of course, the inclined portion 482 may be disposed so as to be located on the exhaust upstream side of the contact portion 481.
The bending angle θ of the inclined portion 482 with respect to the contact portion 481 is about 5 to 60 °. This is because, if the bending angle θ is increased, the area that blocks the exhaust passage 16A is increased, which may obstruct the flow of the exhaust gas G. If the flow of the exhaust gas G is hindered, not only can the urea water 46 not be sufficiently supplied to the SCR catalyst 42, but also the exhaust resistance increases. For this reason, in the present embodiment, the bending angle θ is set to the above value.

図2に示した尿素水再供給部材48の尿素上昇部483は、傾斜部482と接触部481とに跨るように形成された複数の切り込み(スリット)486で構成されている。各スリット486は、底部16Abに溜まっている液状の尿素水46を、毛細管現象によって上昇可能な幅で、尿素水再供給部材48の幅方向Bに等間隔で形成されている。本実施形態において、各スリット486幅は0.1〜3.0mmとしている。尿素上昇部483は、その一端483aが接触部481まで延びていて、他端483bが傾斜部482の先端482aまで延びて開放されている。   The urea rising portion 483 of the urea water re-supplying member 48 shown in FIG. 2 includes a plurality of cuts (slits) 486 formed so as to straddle the inclined portion 482 and the contact portion 481. The slits 486 are formed at equal intervals in the width direction B of the urea water re-supply member 48 with a width that allows the liquid urea water 46 stored in the bottom 16Ab to rise by capillary action. In the present embodiment, the width of each slit 486 is set to 0.1 to 3.0 mm. The urea rising portion 483 has one end 483a extending to the contact portion 481, and the other end 483b extending to the tip 482a of the inclined portion 482, and is open.

本実施形態において、尿素水再供給部材48の接触部481は、尿素水46が溜まる底部16Abに配置しているので、接触部481と傾斜部482の接合位置となる折り曲げ位置485は、尿素上昇部483の切り込み加工部分(スリット486)の途中に形成している。このため、複数のスリット486で構成された尿素上昇部483の一端483aが、尿素水46が溜まっている底部16Ab側まで位置することになるので、尿素水46が尿素上昇部483に対して導入され易くなる。   In the present embodiment, since the contact portion 481 of the urea water re-supply member 48 is disposed on the bottom 16Ab where the urea water 46 accumulates, the bending position 485, which is the joining position of the contact portion 481 and the inclined portion 482, It is formed in the middle of the cut portion (slit 486) of the portion 483. For this reason, one end 483 a of the urea rising portion 483 constituted by the plurality of slits 486 is positioned up to the bottom 16 Ab where the urea water 46 is stored, so that the urea water 46 is introduced into the urea rising portion 483. It is easy to be done.

このような構成の尿素水再供給部材48を備えていると、排気通路16Aの底部16Abに溜まった液状の尿素水46が、図3に示すように、尿素水再供給部材48の接触部481から傾斜面482に形成された複数のスリット486で構成された尿素上昇部483を毛細管現象の作用によって一端483aから他端483bに向かって上昇する。この際、排気Gによって尿素水再供給部材48自体が加熱されるとともに、尿素上昇部483を上昇する尿素水46は、底部16Abに溜まっている状態よりも質量が少なくなっているため、排気Gの熱によって気化し易くなる。また、液状の尿素水46は、底部16Abに溜まっている状態よりも、排気Gの流速の早い排気通路16Aの中央部側(中心側)へと尿素上昇部483で搬送されるため、気流と混合され易くなる。   When the urea water re-supplying member 48 having such a configuration is provided, the liquid urea water 46 collected in the bottom 16Ab of the exhaust passage 16A becomes the contact portion 481 of the urea water re-supplying member 48 as shown in FIG. The urea rising portion 483 constituted by a plurality of slits 486 formed on the inclined surface 482 rises from one end 483a to the other end 483b by the action of capillary action. At this time, the urea water re-supply member 48 itself is heated by the exhaust gas G, and the urea water 46 rising in the urea rising portion 483 has a smaller mass than the state where it is accumulated in the bottom 16Ab. It is easy to evaporate due to the heat. Further, since the liquid urea water 46 is conveyed by the urea rising portion 483 to the center portion (center side) of the exhaust passage 16A where the flow rate of the exhaust gas G is faster than the state where it is accumulated in the bottom portion 16Ab, It becomes easier to mix.

このため、液状の尿素水46を還元剤として再利用することができ、排気通路16内に噴射された尿素水46を効率よくSCR触媒42に供給することが可能となるとともに、尿素水46の消費量の低減につながる。尿素水46の消費量の低減は、運転者が尿素水不足による、エンジン1の再始動停止や尿素水46の補充作業をすることを抑制することになり、ドライバビリティの向上につながる。
さらに、液状の尿素水46が排気通路16A内に残留し難くなるので、デポジットの発生を抑制することができるとともに、エンジン停止時におけるアンモニアスリップも抑制することができる。
Therefore, the liquid urea water 46 can be reused as a reducing agent, and the urea water 46 injected into the exhaust passage 16 can be efficiently supplied to the SCR catalyst 42. This leads to a reduction in consumption. The reduction in the consumption of the urea water 46 suppresses the driver from stopping and restarting the engine 1 or replenishing the urea water 46 due to the shortage of the urea water, leading to improvement in drivability.
Further, since the liquid urea water 46 is less likely to remain in the exhaust passage 16A, it is possible to suppress the generation of deposits and to suppress the ammonia slip when the engine is stopped.

図4(a)、図4(b)は尿素水再供給部材の変形例1を示す。
図3に示した尿素水再供給部材48は一枚の板状部材で構成したが、図4(a)、図4(b)に示すように、同一形状に加工した複数の板状部材を互いに接合して尿素水再供給部材48Aとして形成したものであっても良い。複数の板状部材を互いに接合する場合、互いの対向面の間に隙間484が形成されるように接合する。この隙間484の幅は、毛細管現象で尿素水46が隙間484を上昇可能な寸法とするのが好ましい。また、複数の板状部材を互いに接合する場合、各板状部材の傾斜部482にそれぞれ形成した尿素上昇部483、483が幅方向Bにずれて配置するように接合する。このように接合すると、単位面積当たりに形成される尿素上昇部(スリット486)483の数が増えるので、溜まっている液状の尿素水46を効率よく吸い上げて上昇させて排気G中に戻すことができるので好ましい。
FIGS. 4A and 4B show a first modification of the urea water re-supply member.
Although the urea water re-supply member 48 shown in FIG. 3 is constituted by one plate-like member, as shown in FIGS. 4A and 4B, a plurality of plate-like members processed into the same shape are used. The urea water re-supply member 48A may be formed by joining together. When joining a plurality of plate members together, they are joined so that a gap 484 is formed between the opposing surfaces. It is preferable that the width of the gap 484 is set so that the urea water 46 can move up the gap 484 by capillary action. When a plurality of plate members are joined to each other, the urea rising portions 483 and 483 formed on the inclined portion 482 of each plate member are joined so as to be shifted in the width direction B. By joining in this way, the number of urea rising portions (slits 486) 483 formed per unit area increases, so that the accumulated liquid urea water 46 can be efficiently sucked up and raised to return to the exhaust gas G. It is preferable because it is possible.

図5は、尿素水再供給部材の変形例2を示すものである。上記の尿素水再供給部材48、48Aでは、複数のスリット486で構成された尿素上昇部483を、幅方向Bに等間隔で形成した。しかし、本変形例2に係る、尿素水再供給部材48Bでは、幅方向Bにおいて尿素水46が溜まり易い排気通路16Aの底部16Abよりに位置する傾斜部482の中央部482cにおいて尿素上昇部483(スリット486)の密度を高くし、傾斜部482の側部482d、482e側において中央部482cよりも(スリット486)が疎になるように形成した。
このように尿素水46が溜まり易い部位に位置する尿素上昇部483(スリット486)の密度を高くすると、溜まっている液状の尿素水46を効率よく吸い上げて上昇させて排気G中に戻すことができるので好ましい。
FIG. 5 shows a second modification of the urea water re-supply member. In the urea water re-supply members 48 and 48A, the urea rising portions 483 formed by the plurality of slits 486 are formed at equal intervals in the width direction B. However, in the urea water re-supplying member 48B according to the second modification, the urea rising portion 483 (at the center portion 482c of the inclined portion 482 located closer to the bottom 16Ab of the exhaust passage 16A where the urea water 46 easily accumulates in the width direction B). The slits 486) were formed to have a higher density so that the (slits 486) on the side portions 482d and 482e side of the inclined portion 482 were sparser than the central portion 482c.
By increasing the density of the urea rising portion 483 (slit 486) located in a portion where the urea water 46 easily accumulates, the accumulated liquid urea water 46 can be efficiently sucked up, raised and returned to the exhaust gas G. It is preferable because it is possible.

図6は、尿素水再供給部材の変形例3を示すものである。上記の尿素水再供給部材48、48Aでは、複数のスリット486で構成された尿素上昇部483を幅方向Bに等間隔で形成した。
排気通路16A内の液状の尿素水46は、排気通路16Aの内面16Aaを伝わって底面16Abへと流れるが、その流れる位置や流れる量によっては底部16Abに溜まる量が少ない場合や、接触部481によって傾斜部482側へ回り込む量が少ない場合も想定される。
FIG. 6 shows a third modification of the urea water re-supply member. In the urea water re-supply members 48 and 48A, the urea rising portions 483 constituted by the plurality of slits 486 are formed at equal intervals in the width direction B.
The liquid urea water 46 in the exhaust passage 16A flows along the inner surface 16Aa of the exhaust passage 16A to the bottom surface 16Ab. However, depending on the flowing position and the amount of the urea water 46, the amount stored in the bottom 16Ab is small. A case where the amount of wraparound to the inclined portion 482 side is small is also assumed.

このため、本変形例3に係る尿素水再供給部材48Cでは、幅方向Bにおいて尿素水46の流れの上流側の部位となる傾斜部482の側部482d、482e側におい尿素上昇部483(スリット486)の密度を高くし、傾斜部482の中央部482cにおいて側部482d、482eよりも尿素上昇部483(スリット486)が疎になるように形成した。
このように尿素水46の流れの上流側の部位に位置する尿素上昇部483(スリット486)の密度を高くすると、内面16Aaを底部16Abに向かって流れる尿素水46や、底部16Abにおいて接触部481から傾斜部482側に流れる尿素水46を、より早く尿素上昇部483に導入して上昇させることができる。このため、底部16Abに溜まっている液状の尿素水46だけでなく、排気通路16A内を流れる尿素水46をも効率よく吸い上げて上昇させて、排気G中に戻すことができるので好ましい。
For this reason, in the urea water re-supply member 48C according to the third modification, the urea rising portions 483 (slits) are provided on the side portions 482d and 482e of the inclined portion 482 that is the upstream portion of the flow of the urea water 46 in the width direction B. 486), and the urea rising portion 483 (slit 486) is formed to be less dense in the central portion 482c of the inclined portion 482 than in the side portions 482d and 482e.
When the density of the urea rising portion 483 (slit 486) located on the upstream side of the flow of the urea water 46 is increased, the urea water 46 flowing on the inner surface 16Aa toward the bottom 16Ab and the contact portion 481 on the bottom 16Ab are formed. The urea water 46 flowing from the urea to the inclined portion 482 side can be introduced into the urea rising portion 483 more quickly and raised. Therefore, not only the liquid urea water 46 accumulated in the bottom portion 16Ab but also the urea water 46 flowing in the exhaust passage 16A can be efficiently sucked and raised, and returned to the exhaust gas G, which is preferable.

図7は、尿素水再供給部材48の配置場所を変更した本発明に係る排気浄化装置30の第2の実施形態の概略構成を示す図である。第1の実施形態では、尿素水再供給部材48をSCR触媒42よりも排気上流側で水平に配置された排気通路16A内に配置した。
しかし、排気通路16Aは傾斜して配置する場合もあり、ミキサ47も傾斜した排気通路16Aに配置する場合もある。このような配置において尿素水噴射弁41から尿素水46が排気通路16A内に噴射されると、ミキサ47によって分散されきれなかった噴霧状の尿素水46は、液状の尿素水46となって排気通路16A内をSCR触媒42に向かって流れおちる。デポジットの発生を抑制することを優先に考えると、液状で流れる尿素水46の距離は短いに越したことはない。
そこで、本実施形態では、傾斜した排気通路16A内に配置されたミキサ47の直下流の底部16Abに、尿素水再供給部材48を配置した。このような位置に尿素水再供給部材48を配置することで、傾斜した底部16Abを流れる尿素水46を効率よく吸い上げて上昇させて排気G中に戻すことができるので好ましい。
FIG. 7 is a diagram illustrating a schematic configuration of an exhaust gas purification device 30 according to a second embodiment of the present invention in which the arrangement location of the urea water re-supply member 48 is changed. In the first embodiment, the urea water re-supply member 48 is disposed in the exhaust passage 16A that is disposed horizontally at the exhaust upstream side of the SCR catalyst 42.
However, the exhaust passage 16A may be arranged at an angle, and the mixer 47 may be arranged at the inclined exhaust passage 16A. When the urea water 46 is injected into the exhaust passage 16A from the urea water injection valve 41 in such an arrangement, the spray-like urea water 46 that cannot be dispersed by the mixer 47 becomes a liquid urea water 46 and is discharged. It flows down toward the SCR catalyst 42 in the passage 16A. When giving priority to suppressing the generation of the deposit, the distance of the urea water 46 flowing in a liquid state is not short.
Therefore, in the present embodiment, the urea water re-supply member 48 is disposed on the bottom 16Ab immediately downstream of the mixer 47 disposed in the inclined exhaust passage 16A. Arranging the urea water re-supplying member 48 at such a position is preferable because the urea water 46 flowing through the inclined bottom portion 16Ab can be efficiently sucked up, raised and returned to the exhaust gas G.

図8は、本発明に係る排気浄化装置30の第3の実施形態の概略構成を示す図である。第1及び第2の実施形態において、尿素水再供給部材は、ミキサ47とSCR触媒42の間に排気通路16Aに1つを配置した。しかし、排気通路16Aに噴霧状に噴射されて排気G中に混合されずに底部16Abに溜まった液状の尿素水46の量が多い場合、1つの尿素水再供給部材では、不十分であることも想定される。   FIG. 8 is a diagram showing a schematic configuration of an exhaust gas purification device 30 according to a third embodiment of the present invention. In the first and second embodiments, one urea water re-supply member is disposed between the mixer 47 and the SCR catalyst 42 in the exhaust passage 16A. However, when the amount of the liquid urea water 46 injected in the form of a spray into the exhaust passage 16A and not mixed in the exhaust gas G but accumulated in the bottom 16Ab is large, one urea water re-supply member is not sufficient. Is also assumed.

このため、本実施形態では、尿素水再供給部材を、排気通路16A内に、排気流れ方向において間隔を空けて複数配置した。本実施形態では、同一形状の尿素水再供給部材48を2つ配置した。
このように複数の尿素水再供給部材48を配置することで、排気通路16A内に噴射された尿素水46をより効率よくSCR触媒42に供給することが可能となるとともに、尿素水46の消費量の低減にもつながる。尿素水46の消費量の低減は、運転者が尿素水不足による、エンジン1の再始動停止や尿素水46の補充作業をすることを抑制することになり、よりドライバビリティの向上につながる。
さらに、液状の尿素水46が排気通路16A内により残留し難くなるので、デポジットの発生を抑制することができるとともに、エンジン停止時におけるアンモニアスリップもより抑制することができる。
For this reason, in this embodiment, a plurality of urea water re-supply members are arranged in the exhaust passage 16A at intervals in the exhaust gas flow direction. In the present embodiment, two urea water re-supply members 48 having the same shape are arranged.
By arranging the plurality of urea water re-supply members 48 in this manner, the urea water 46 injected into the exhaust passage 16A can be more efficiently supplied to the SCR catalyst 42, and the consumption of the urea water 46 It also leads to a reduction in volume. The reduction in the consumption of the urea water 46 suppresses the driver from stopping and restarting the engine 1 or replenishing the urea water 46 due to the shortage of the urea water, which leads to further improvement in drivability.
Further, since the liquid urea water 46 is less likely to remain in the exhaust passage 16A, it is possible to suppress the generation of deposits and to further suppress the ammonia slip when the engine is stopped.

図9は、尿素水再供給部材の複数の変形例の一覧を示す図である。図9(a)、図9(b)に示す尿素水再供給部材は、既に説明した尿素水再供給部材48及び尿素水再供給部材48Aである。これら尿素水再供給部材48及び尿素水再供給部材48Aは、便宜的にスリットタイプと称す。
図9(c)、図9(d)は、接触部481と傾斜部482を備え、傾斜部482に形成される尿素上昇部483を複数の溝487で構成した尿素水再供給部材48D、48Eを示す。各溝487の幅は、尿素水再供給部材48、48Aよりも幅方向Bに広く形成した。尿素水再供給部材48Dは1枚の板状部材で構成されているのに対し、尿素水再供給部材48Eは尿素水再供給部材48Aと同様に、尿素水再供給部材48Dと同一形状に加工した複数の板状部材を互いに接合したものである。つまり、ここでは尿素水再供給部材48Dを2枚重ねて尿素水再供給部材48Eを構成している。これら尿素水再供給部材48D、48Eは、便宜的に櫛歯タイプと称す。
FIG. 9 is a diagram showing a list of a plurality of modified examples of the urea water re-supply member. 9A and 9B are the urea water re-supply member 48 and the urea water re-supply member 48A described above. The urea water re-supply member 48 and the urea water re-supply member 48A are conveniently referred to as a slit type.
9 (c) and 9 (d) show urea water re-supply members 48D and 48E including a contact portion 481 and an inclined portion 482, and a urea rising portion 483 formed on the inclined portion 482 constituted by a plurality of grooves 487. Is shown. The width of each groove 487 was formed wider in the width direction B than the urea water re-supply members 48 and 48A. The urea water re-supply member 48D is formed of a single plate-like member, whereas the urea water re-supply member 48E is processed into the same shape as the urea water re-supply member 48D, similarly to the urea water re-supply member 48A. A plurality of plate-like members are joined together. That is, here, the urea water re-supply member 48E is configured by stacking two urea water re-supply members 48D. These urea water re-supply members 48D and 48E are referred to as a comb type for convenience.

図9(e)、図9(f)は、接触部481と傾斜部482を備え、傾斜部482に形成される尿素上昇部483の複数の孔488で構成した尿素水再供給部材48F、48Gを示す。尿素水再供給部材48Fは1枚の板状部材で構成されているのに対し、尿素水再供給部材48Gは、尿素水再供給部材48Aと同様に、尿素水再供給部材48Gを同一形状に加工した複数の板状部材を互いに接合したものである。つまり、ここでは尿素水再供給部材48Fを2枚重ねて尿素水再供給部材48Gを構成している。これら尿素水再供給部材48F、48Gは、便宜的に孔タイプと称す。各孔488の直径は2mmから10mm前後の範囲としている。無論同一径の孔488を多数形成しても良いし、異なる径の孔488を組み合わせて形成しても良い。尿素水再供給部材48Fの場合、接触部481から傾斜面482へと流れた尿素水46は、毛細管現象で尿素上昇部483を上昇するというよりは、最下位の孔488内に溜まって表面張力で滴状に形成された尿素水46が、順次隣接する孔488へと移動して傾斜面482の先端482aに向かって上昇するものであると推察される。このため、尿素上昇部483を構成する孔488同士の間隔は、表面張力で滴状になった尿素水46が移動可能な間隔とするのが好ましい。
あるいは、傾斜面482上に複数の孔488を形成し、少なくとも隣接する孔488同士を連通する様にスリットを形成して尿素上昇部483としても良い。この場合には、液状の尿素水46を毛細管現状で傾斜面482の先端482aに向かって上昇することができる。
尿素水再供給部材48Gでは、同一の板状部材である尿素水再供給部材48Fが2枚重ねて接合されているので、互いの間に毛細管現象が生じる隙間484を形成することで、液状の尿素水46を毛細管現状で傾斜面482の先端482aに向かって上昇することができる。
FIGS. 9E and 9F show urea water re-supply members 48F and 48G each including a contact portion 481 and an inclined portion 482, and constituted by a plurality of holes 488 of a urea rising portion 483 formed in the inclined portion 482. Is shown. The urea water re-supply member 48F is formed of a single plate-like member, whereas the urea water re-supply member 48G has the same shape as the urea water re-supply member 48A. A plurality of processed plate members are joined together. That is, here, the urea water re-supply member 48G is configured by stacking two urea water re-supply members 48F. These urea water re-supply members 48F and 48G are referred to as a hole type for convenience. The diameter of each hole 488 ranges from 2 mm to about 10 mm. Of course, a large number of holes 488 having the same diameter may be formed, or holes 488 having different diameters may be formed in combination. In the case of the urea water resupplying member 48F, the urea water 46 flowing from the contact portion 481 to the inclined surface 482 accumulates in the lowermost hole 488 rather than rises in the urea rising portion 483 by capillary action, and has a surface tension. It is presumed that the urea water 46 formed in the form of a droplet moves sequentially to the adjacent hole 488 and rises toward the tip 482a of the inclined surface 482. For this reason, it is preferable that the interval between the holes 488 constituting the urea rising portion 483 is an interval at which the urea water 46 which has been dropped due to surface tension can move.
Alternatively, a plurality of holes 488 may be formed on the inclined surface 482, and a slit may be formed so that at least the adjacent holes 488 communicate with each other to form the urea rising portion 483. In this case, the liquid urea water 46 can rise toward the tip 482a of the inclined surface 482 at the current state of the capillary.
In the urea water re-supply member 48G, since two urea water re-supply members 48F, which are the same plate-shaped member, are overlapped and joined, a gap 484 where a capillary phenomenon occurs between the urea water re-supply members 48F is formed. The urea water 46 can rise toward the tip 482a of the inclined surface 482 at the current state of the capillary.

図9(g)、図9(h)は、接触部481と傾斜部482を備え、傾斜部482を複数の突起489で形成し、各突起489の間を尿素上昇部483として形成した尿素水再供給部材48H、48Iを示す。各突起489は傾斜面482の先端482aに向かうに従い先細りとなる山形に形成されたものである。尿素水再供給部材48Hは1枚の板状部材で構成されているのに対し、尿素水再供給部材48Iは、尿素水再供給部材48Aと同様に、同一形状に加工した複数の板状部材を互いに接合したものである。つまり、ここでは尿素水再供給部材48Hを2枚重ねて尿素水再供給部材48Iを構成している。これら尿素水再供給部材48H、48Iは、便宜的に樹木タイプと称す。   9 (g) and 9 (h) show a urea solution including a contact portion 481 and an inclined portion 482, in which the inclined portion 482 is formed by a plurality of projections 489, and a urea rising portion 483 is formed between the projections 489. The resupply members 48H and 48I are shown. Each projection 489 is formed in a mountain shape that tapers toward the tip 482a of the inclined surface 482. The urea water re-supply member 48H is made up of a single plate-like member, whereas the urea water re-supply member 48I is made of a plurality of plate-like members processed into the same shape as the urea water re-supply member 48A. Are joined to each other. That is, here, the urea water re-supply member 48I is configured by stacking two urea water re-supply members 48H. These urea water resupply members 48H and 48I are referred to as a tree type for convenience.

このような山形に形成された複数の突起489で傾斜面482を形成し、隣接する突起489の間の空間を尿素上昇部483として構成すると、折り曲げ位置485から尿素上昇部483に導入された尿素水46が表面張力や毛細管現象などによって突起489の先端に向かって上昇する。また、突起489は先端が細く形成されているため、排気で加熱された場合、尿素水46が気化され易くなるので好ましい。   When the inclined surface 482 is formed by the plurality of protrusions 489 formed in such a mountain shape and the space between the adjacent protrusions 489 is configured as the urea rising portion 483, the urea introduced into the urea rising portion 483 from the bending position 485. The water 46 rises toward the tip of the projection 489 due to surface tension, capillary action, or the like. In addition, since the projection 489 has a thin tip, it is preferable that the urea water 46 be easily vaporized when heated by exhaust gas.

これら図9(c)〜図9(h)に示した各尿素水再供給部材の場合でも、尿素水再供給部材48A、48Bのように、溝487や孔488、山形の突起489の密度を変更しても無論構わない。   Even in the case of each of the urea water re-supply members shown in FIGS. 9C to 9H, the density of the groove 487, the hole 488, and the chevron projection 489 is reduced as in the urea water re-supply members 48A and 48B. Of course, you can change it.

各実施形態及び変形例においては、接触部481をそれぞれ排気通路16Aの底部16Abに密着するように取り付けているが、図10(a)に示すように、接触部481と排気通路16Aの底部16Abとの間に空隙490が形成されるように取付けてもよい。この場合、底部16Abに溜まった尿素水46が接触面481側から傾斜面482側へ移動する際に、図6に示したように、傾斜面482の側部482d、482e側を経由させることなく、案内することができるので好ましい。また、空隙490ではなく、図10(b)に示すように、接触部481と排気通路16Aの底部16Abとの間に、耐熱性のある浸透部材491を介装すると、底部16Abに溜まっている液状の尿素水46が浸透部材491を伝わって傾斜面482側へと案内することができるので好ましい。   In each of the embodiments and the modifications, the contact portion 481 is attached so as to be in close contact with the bottom portion 16Ab of the exhaust passage 16A. However, as shown in FIG. 10A, the contact portion 481 and the bottom portion 16Ab of the exhaust passage 16A are provided. May be attached so that a gap 490 is formed between the two. In this case, when the urea water 46 accumulated in the bottom 16Ab moves from the contact surface 481 to the inclined surface 482, as shown in FIG. 6, without passing through the side portions 482d and 482e of the inclined surface 482. It is preferable because it can be guided. Also, as shown in FIG. 10B, when a heat-resistant penetrating member 491 is interposed between the contact portion 481 and the bottom 16Ab of the exhaust passage 16A, as shown in FIG. 10B, the heat accumulates at the bottom 16Ab. This is preferable because the liquid urea water 46 can be guided to the inclined surface 482 side through the osmotic member 491.

また、各尿素水再供給部材を含侵性のある金属や、セラミックスのような多孔質性の部材で構成し、排気通路16A内の尿素水46が溜まる場所(底部16Ab)に、接触部481を取り付けることで、底部16Abに溜まった液状の尿素水46が尿素水再供給部材自体に浸透して傾斜面482を伝わって上昇することができる。このように尿素水再供給部材そのものが含侵性の材質や多孔質性の部材の場合、傾斜面482そのものが尿素上昇部として機能するようになるので、スリット486、溝487、孔488、山形の突起489などの加工が不要となるので好ましい。   Further, each urea water re-supply member is made of a porous material such as impregnable metal or ceramic, and a contact portion 481 is formed in a place (bottom part 16Ab) where the urea water 46 is stored in the exhaust passage 16A. By attaching the urea water, the liquid urea water 46 accumulated in the bottom portion 16Ab can permeate the urea water re-supply member itself and travel along the inclined surface 482 to rise. In the case where the urea water re-supply member itself is an impregnable material or a porous member as described above, the inclined surface 482 itself functions as a urea rising portion, so that the slit 486, the groove 487, the hole 488, and the chevron are provided. This is preferable because the processing of the projection 489 and the like becomes unnecessary.

以上本発明の好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、上述の説明で特に限定していない限り、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更が可能である。
本発明の実施の形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施の形態に記載されたものに限定されるものではない。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to such specific embodiments, and unless otherwise specified in the above description, the present invention described in the claims Various modifications and changes are possible within the scope of the gist.
The effects described in the embodiments of the present invention merely enumerate the most preferable effects resulting from the present invention, and the effects according to the present invention are limited to those described in the embodiments of the present invention. is not.

1・・・内燃機関、16・・・排気通路内、41・・・尿素水供給部、42・・・選択還元触媒、46・・・尿素水、47・・・分散部材、48、48(A〜I)・・・尿素水再供給部材、481・・・接触部、482・・・傾斜部、482d、482e・・・尿素水の流れの上流側の部位、483・・・尿素上昇部、486・・・切り込み、488・・・孔、A・・・排気通路の中心方向、482c・・・尿素水が溜まり易い部位、G・・・排気   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 16 ... In an exhaust passage, 41 ... Urea water supply part, 42 ... Selective reduction catalyst, 46 ... Urea water, 47 ... Dispersing member, 48, 48 ( A to I) urea water re-supply member, 481 contact part, 482 inclined part, 482d, 482e part upstream of urea water flow, 483 urea rising part , 486, cut, 488, hole, A, central direction of exhaust passage, 482c, part where urea water easily accumulates, G, exhaust

Claims (8)

内燃機関から排出される排気が流れる排気通路内に尿素水を供給する尿素水供給部と、
前記尿素水供給部よりも排気下流側に配置され、前記尿素水供給部から供給された前記尿素水を還元剤として前記排気に含まれている窒素酸化物を選択還元する選択還元触媒と、
前記尿素水供給部と前記選択還元触媒との間の排気通路に配置され、前記尿素水供給部から噴射された尿素水を分散する分散部材と、
前記分散部材と前記選択還元触媒の間の排気通路に配置され、前記排気通路内で液状の尿素水を前記排気中に再供給する尿素水再供給部材を備え、
前記尿素水再供給部材は、
前記排気通路の内面に、該内面と空隙を有するように接触して取り付けられる接触部と、
前記接触部から前記排気通路の中心方向に向かって傾斜した傾斜部と、を有し、
前記傾斜部は、
該傾斜部に切り込み、又は孔を設けることにより尿素水を上昇させる尿素上昇部が形成されることを特徴とする排気浄化装置。
A urea water supply unit that supplies urea water into an exhaust passage through which exhaust gas discharged from the internal combustion engine flows,
A selective reduction catalyst disposed on the exhaust downstream side of the urea water supply unit and selectively reducing nitrogen oxides contained in the exhaust gas using the urea water supplied from the urea water supply unit as a reducing agent;
A dispersing member that is disposed in an exhaust passage between the urea water supply unit and the selective reduction catalyst and disperses the urea water injected from the urea water supply unit;
The dispersion member and disposed in the exhaust passage between said selective reduction catalyst, and a re-supplying the urea water resupply member urea water liquid in said exhaust in said exhaust passage,
The urea water re-supply member,
A contact portion attached to an inner surface of the exhaust passage so as to have a gap with the inner surface ;
Anda inclined oblique portion inclined toward the center of the exhaust passage from said contact portion,
The inclined portion,
Cut in the inclined portion, or an exhaust gas purification apparatus characterized by urea ascender raising the urea water by providing a hole.
前記尿素上昇部は、前記傾斜部と前記接触部とに跨るように形成されていることを特徴とする請求項1に記載の排気浄化装置。   The exhaust gas purification apparatus according to claim 1, wherein the urea rising portion is formed so as to straddle the inclined portion and the contact portion. 前記尿素水再供給部材は、前記分散部材よりも排気下流側の直後に配置されていることを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust gas purification apparatus according to claim 1, wherein the urea water re-supply member is disposed immediately downstream of the dispersion member on the exhaust gas downstream side. 前記尿素上昇部は、前記排気通路内で前記尿素水が溜まり易い部位で、該尿素上昇部の密度が高められていることを特徴とする請求項1〜3の内の何れか1項に記載の排気浄化装置。   The urea rising portion is a portion where the urea water easily accumulates in the exhaust passage, and the density of the urea rising portion is increased, and the urea rising portion has a high density. Exhaust purification equipment. 前記尿素上昇部は、前記排気通路内において前記液状の尿素水の流れの上流側の部位で、該尿素上昇部の密度が高められていることを特徴とする請求項1〜3の内の何れか1項に記載の排気浄化装置。   The density of the urea rising part is raised in the part of the urea rising part in a part of the exhaust passage which is on the upstream side of the flow of the liquid urea water. The exhaust gas purification apparatus according to claim 1. 前記尿素水再供給部材は、複数の板状部材が互いに接合して形成されていることを特徴とする請求項1〜5の内の何れか1項に記載の排気浄化装置。   The exhaust gas purification apparatus according to any one of claims 1 to 5, wherein the urea water re-supply member is formed by joining a plurality of plate members together. 前記尿素水再供給部材は、前記分散部材と前記選択還元触媒の間の排気通路に複数配置されていることを特徴とする請求項1〜6の内の何れか1項に記載の排気浄化装置。 The urea water resupply member, an exhaust gas purification according to any one of claims 1 to 6, characterized in that arranged in plural and in the exhaust passage between said selective reduction catalyst and the dispersion member apparatus. 内燃機関から排出される排気が流れる排気通路内に尿素水を供給する尿素水供給部と、A urea water supply unit that supplies urea water into an exhaust passage through which exhaust gas discharged from the internal combustion engine flows,
前記尿素水供給部よりも排気下流側に配置され、前記尿素水供給部から供給された前記尿素水を還元剤として前記排気に含まれている窒素酸化物を選択還元する選択還元触媒と、A selective reduction catalyst disposed on the exhaust downstream side of the urea water supply unit and selectively reducing nitrogen oxides contained in the exhaust gas using the urea water supplied from the urea water supply unit as a reducing agent;
前記尿素水供給部と前記選択還元触媒との間の排気通路に配置され、前記尿素水供給部から噴射された尿素水を分散する分散部材と、A dispersing member that is disposed in an exhaust passage between the urea water supply unit and the selective reduction catalyst and disperses the urea water injected from the urea water supply unit;
前記分散部材と前記選択還元触媒との間の排気通路に配置され、前記排気通路内で液状の尿素水を前記排気中に再供給する尿素水再供給部材とを備え、A urea water re-supply member disposed in an exhaust passage between the dispersion member and the selective reduction catalyst, and re-supplying liquid urea water into the exhaust gas in the exhaust passage;
前記尿素水再供給部材は、The urea water re-supply member,
前記排気通路の内面に接触して取り付けられる接触部と、A contact portion that is attached in contact with the inner surface of the exhaust passage;
前記接触部から前記排気通路の中心方向に向かって傾斜した傾斜部と、を有し、An inclined portion inclined from the contact portion toward a center direction of the exhaust passage,
前記傾斜部は、The inclined portion,
該傾斜部に切り込み、又は孔を設けることにより尿素水を上昇させる尿素上昇部が形成され、A urea rising portion that raises urea water by forming a cut or a hole in the inclined portion is formed,
前記尿素上昇部は、前記傾斜部と前記接触部とに跨るように形成されていることを特徴とする排気浄化装置。The exhaust gas purifying device, wherein the urea rising portion is formed so as to straddle the inclined portion and the contact portion.
JP2015243377A 2015-12-14 2015-12-14 Exhaust gas purification device Active JP6627479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243377A JP6627479B2 (en) 2015-12-14 2015-12-14 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243377A JP6627479B2 (en) 2015-12-14 2015-12-14 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2017110506A JP2017110506A (en) 2017-06-22
JP6627479B2 true JP6627479B2 (en) 2020-01-08

Family

ID=59079482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243377A Active JP6627479B2 (en) 2015-12-14 2015-12-14 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP6627479B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169616A (en) * 2019-04-04 2020-10-15 日野自動車株式会社 Exhaust emission control device
CN113606020B (en) * 2021-07-16 2022-03-22 江苏伟博动力技术有限公司 Gas-liquid mixer for waste gas purification

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581387B2 (en) * 2005-02-28 2009-09-01 Caterpillar Inc. Exhaust gas mixing system
JP5648315B2 (en) * 2010-05-18 2015-01-07 株式会社Ihi Fuel pool prevention mechanism and engine system
JP6081848B2 (en) * 2013-04-02 2017-02-15 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine
JP6306306B2 (en) * 2013-09-12 2018-04-04 フタバ産業株式会社 Diffusion plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017110506A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP4375465B2 (en) Additive dispersion plate structure in exhaust passage
CN101627190B (en) Exhaust gas purification apparatus for internal combustion engine
US9217353B2 (en) Mixer for fluid injection system
JP4681584B2 (en) Fluid dosing device
US20120151902A1 (en) Biased reductant mixer
US7971433B2 (en) Helical exhaust passage
US9664082B2 (en) Reductant dosing system having staggered injectors
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
US9605573B2 (en) System and method for gas/liquid mixing in an exhaust aftertreatment system
US9097157B2 (en) Exhaust purification system of internal combustion engine
US20110083428A1 (en) Scr mixer
JP2008151087A (en) Exhaust emission control device
US9341097B2 (en) Reductant material deposit reduction in exhaust aftertreatment systems
JP2010038020A (en) Exhaust emission control device of internal combustion engine
US8443595B2 (en) Additive-agent diffusion plate in exhaust passage, structure of additive-agent diffusion plate, and exhaust system including additive-agent diffusion plate
JP2018044528A (en) Engine exhaust emission control device
JP2011236746A (en) Exhaust emission control system of internal combustion engine
JP6627479B2 (en) Exhaust gas purification device
JP2009138592A (en) Additive distribution board structure of exhaust passage
US20090100827A1 (en) Exhaust gas purification apparatus for internal combustion engine
JP5605578B2 (en) Exhaust purification device
JP2008151039A (en) Exhaust emission control device
US20080163616A1 (en) Apparatus for Mixing a Liquid Medium Into a Gaseous Medium
JP6182500B2 (en) Exhaust gas purification device
US9447717B2 (en) Mixer for short mixing lengths

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R151 Written notification of patent or utility model registration

Ref document number: 6627479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151