JP2009138592A - Additive distribution board structure of exhaust passage - Google Patents

Additive distribution board structure of exhaust passage Download PDF

Info

Publication number
JP2009138592A
JP2009138592A JP2007314597A JP2007314597A JP2009138592A JP 2009138592 A JP2009138592 A JP 2009138592A JP 2007314597 A JP2007314597 A JP 2007314597A JP 2007314597 A JP2007314597 A JP 2007314597A JP 2009138592 A JP2009138592 A JP 2009138592A
Authority
JP
Japan
Prior art keywords
dispersion plate
exhaust passage
exhaust gas
additive
urea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007314597A
Other languages
Japanese (ja)
Other versions
JP4626647B2 (en
Inventor
Atsushi Inomata
厚 猪股
Tomoki Mabuchi
知樹 馬渕
Toshiro Murata
登志朗 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007314597A priority Critical patent/JP4626647B2/en
Priority to DE102008044364A priority patent/DE102008044364A1/en
Publication of JP2009138592A publication Critical patent/JP2009138592A/en
Application granted granted Critical
Publication of JP4626647B2 publication Critical patent/JP4626647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an additive distribution board structure of an exhaust passage capable of reliably preventing urea water adhered to a distribution board in a liquid membrane form from dripping downward. <P>SOLUTION: A distribution board 4 for distributing urea water injected inside an exhaust passage on an upstream side of an exhaust emission control device arranged in an exhaust passage of an engine is arranged in a sheered state into a vertical plane to cross the inside of the exhaust passage so that the urea water injected inside the exhaust passage collides with a surface 40. Four recesses 42, 42... recessed on a downstream side in a flowing direction of the exhaust gas are equally aligned in a vertical direction and a lateral direction, respectively. Each recess 42 extends in the lateral direction of a vehicle body. Collision pieces 43, 43... tilted to oppose to an injection direction of the urea water are provided on an upper side of each recess 42. Communication parts 44, 44... communicating the exhaust gas from an upstream side to a downstream side in the flowing direction of the distribution board 4 are provided on an upper side of each collision piece 43. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジンの排気通路に配置された排気ガス浄化装置の上流側において排気通路の内部に噴射された添加剤を分散する添加剤分散板の構造に関する。   The present invention relates to a structure of an additive dispersion plate that disperses an additive injected into an exhaust passage on the upstream side of an exhaust gas purification device disposed in an exhaust passage of an engine.

一般に、エンジン、特にディーゼルエンジンの排気ガス中には、一酸化窒素などの燃焼によって生じる窒素酸化物(以下では、NOxという)などの有害物質が含まれており、大気の汚染を防ぐために、このような有害物質の排出量を低減させることが強く要請されている。また、燃焼室の内部に直接ガソリンを噴射する方式の、いわゆる筒内噴射ガソリン機関からも、運転条件によっては排気ガスとともにNOxが排出される場合があり、同様の要請が存在する。   In general, exhaust gases from engines, particularly diesel engines, contain harmful substances such as nitrogen oxides (hereinafter referred to as NOx) generated by combustion such as nitric oxide. In order to prevent air pollution, There is a strong demand to reduce emissions of such harmful substances. Also, a so-called in-cylinder injection gasoline engine that directly injects gasoline into the combustion chamber may emit NOx together with exhaust gas depending on the operating conditions, and there is a similar demand.

そのため、排気ガスとともに排出されるNOxを浄化する上で、三元触媒を備えた排気ガス浄化装置を排気通路に設けることが行われている。   Therefore, in order to purify NOx discharged together with the exhaust gas, an exhaust gas purification device including a three-way catalyst is provided in the exhaust passage.

しかし、このような三元触媒を備えた排気ガス浄化装置では、エンジンの種類によって十分な効果が得られないことがある。例えば、希薄燃焼(リーンバーン)を行うディーゼルエンジンでは、排気ガスが酸素過剰雰囲気にあるため、燃料成分(HC)と酸素とが反応(燃焼)し易く、三元触媒によるNOxの十分な浄化が困難となる。   However, in an exhaust gas purification apparatus provided with such a three-way catalyst, sufficient effects may not be obtained depending on the type of engine. For example, in a diesel engine that performs lean burn, since the exhaust gas is in an oxygen-excess atmosphere, the fuel component (HC) and oxygen are likely to react (combust), and NOx can be sufficiently purified by the three-way catalyst. It becomes difficult.

そこで、排気通路に選択還元型のNOx触媒を備えた排気ガス浄化装置を設けるとともに、この排気ガス浄化装置よりも上流側において排気通路の内部を横切るように配置されたパンチングメタル等からなるミキサを設け、このミキサの表面(排気ガスの流れ方向上流側面)に対し尿素水を噴射させて排気ガス中に分散させることによって、排気ガス中のNOxを効率よく浄化させるようにすることが従来より行われている(例えば、特許文献1参照)。
特開2007−77957号公報
Therefore, an exhaust gas purification device provided with a selective reduction type NOx catalyst is provided in the exhaust passage, and a mixer made of punching metal or the like disposed so as to cross the inside of the exhaust passage upstream from the exhaust gas purification device is provided. It has been conventionally practiced to efficiently purify NOx in the exhaust gas by injecting urea water onto the surface of the mixer (upstream side surface in the exhaust gas flow direction) and dispersing it in the exhaust gas. (For example, refer to Patent Document 1).
JP 2007-77957 A

ところが、上記従来のものでは、ミキサなどの添加剤分散板が排気通路の内部を横切るように配置されているため、添加剤分散板の表面に対し噴射された尿素水などの添加剤が添加剤分散板との衝突により微粒化されて気化するものの、そのうちの一部は衝突した際に添加剤分散板に付着して液膜状となり、その液膜状となった添加剤が自重によって下方に垂れ落ち、排気通路の壁面に落下して固着するおそれがあった。   However, in the above conventional one, the additive dispersion plate such as a mixer is disposed so as to cross the inside of the exhaust passage, so that the additive such as urea water injected to the surface of the additive dispersion plate is the additive. Although it atomizes and vaporizes due to collision with the dispersion plate, some of them adhere to the additive dispersion plate when colliding and become a liquid film, and the liquid film-like additive is lowered downward by its own weight. There was a risk of dripping down and falling onto the wall of the exhaust passage.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、加剤分散板に付着して液膜状となった添加剤の下方への垂れ落ちを確実に防止することができる排気通路の添加剤分散板構造を提供することにある。   The present invention has been made in view of such points, and the object of the present invention is to reliably prevent the additive that has adhered to the additive dispersion plate and formed into a liquid film from dripping downward. It is an object of the present invention to provide an additive dispersion plate structure for an exhaust passage.

上記目的を達成するため、本発明では、エンジンの排気通路に配置された排気ガス浄化装置の上流側において上記排気通路の内部に噴射された添加剤を分散する添加剤分散板の構造を前提とし、上記添加剤分散板を、上記排気通路の内部に噴射された添加剤を表面に衝突させるように上記排気通路の内部を横切って配置している。そして、上記添加剤分散板の表面に、排気ガスの流れ方向下流側に凹む凹部を左右方向へ延ばして設けている。   In order to achieve the above object, the present invention is premised on the structure of an additive dispersion plate that disperses the additive injected into the exhaust passage on the upstream side of the exhaust gas purification device disposed in the exhaust passage of the engine. The additive dispersion plate is disposed across the interior of the exhaust passage so that the additive injected into the exhaust passage collides with the surface. And the recessed part dented in the flow direction downstream of the exhaust gas is provided in the surface of the said additive dispersion | distribution board so that it may extend in the left-right direction.

この特定事項により、排気通路の内部を横切って配置した添加剤分散板の表面に、排気ガスの流れ方向下流側に凹む凹部が左右方向へ延びて設けられているので、添加剤分散板の表面に対し噴射された添加剤の一部が添加剤分散板に衝突した際に添加剤分散板の表面に付着して液膜状となっても、その液膜状となった添加剤が自重により添加剤分散板の表面を伝って下方に垂れた際に凹部に受け止められることになる。このため、凹部に受け止められた添加剤は、排気ガスにより加熱されて気化し、添加剤分散板から排気通路の壁面に落下して固着することが効果的に抑制される。   Due to this particular matter, the surface of the additive dispersion plate is provided on the surface of the additive dispersion plate arranged across the interior of the exhaust passage so as to extend in the left-right direction. Even if a part of the injected additive collides with the additive dispersion plate and adheres to the surface of the additive dispersion plate to form a liquid film, the additive formed in the liquid film is caused by its own weight. When it hangs down along the surface of the additive dispersion plate, it is received by the recess. For this reason, the additive received in the recess is heated and vaporized by the exhaust gas, and is effectively suppressed from dropping and adhering to the wall surface of the exhaust passage from the additive dispersion plate.

特に、添加剤分散板をより具体的に特定するものとして、以下の構成が掲げられる。つまり、上記添加剤分散板の上記凹部よりも上側に、上記排気通路の内部に噴射された添加剤の噴射方向に対しほぼ対向するように傾斜する衝突部と、この衝突部の上側に設けられ、排気ガスを上記添加剤分散板の流れ方向上流側から下流側に連通させる連通部とを設けている。   In particular, the following configurations are listed as more specifically specifying the additive dispersion plate. That is, provided above the concave portion of the additive dispersion plate is a collision portion that is inclined so as to be substantially opposed to the injection direction of the additive injected into the exhaust passage, and above the collision portion. And a communication portion for communicating the exhaust gas from the upstream side to the downstream side in the flow direction of the additive dispersion plate.

この特定事項により、添加剤分散板の表面に対し噴射された添加剤は、添加剤の噴射方向に対しほぼ直交する向きから衝突部に対し衝突すると、その衝突部との衝突によって最も大きなエネルギーが添加剤に作用することになり、この大きな衝突エネルギーを利用して添加剤がより細かく微粒化される。そして、細かく微粒化された添加剤は、衝突部の上側の連通部から排気ガスの流れに乗って流れ方向下流側に導かれ、細かく微粒化された添加剤の分散性能を高めることが可能となる。一方、添加剤の一部が衝突部に衝突した際に衝突部に付着して液膜状となっても、その液膜状となった添加剤が自重により添加剤分散板の表面を伝って下方に垂れた際に凹部に受け止められ、この凹部に受け止められた添加剤が排気ガスにより加熱されて同様に気化し、添加剤分散板から排気通路の壁面に落下して固着することが効果的に抑制される。   Due to this specific matter, when the additive injected to the surface of the additive dispersion plate collides with the collision part from a direction substantially perpendicular to the injection direction of the additive, the largest energy is generated by the collision with the collision part. It acts on the additive, and the additive is finely atomized by utilizing this large collision energy. Then, the finely atomized additive is guided to the downstream side in the flow direction on the exhaust gas flow from the upper communicating portion of the collision portion, and it is possible to improve the dispersion performance of the finely atomized additive Become. On the other hand, even when a part of the additive collides with the collision part, it adheres to the collision part and becomes a liquid film, but the additive that has become the liquid film travels on the surface of the additive dispersion plate by its own weight. It is effective that the additive received in the recess when it hangs downward is heated by the exhaust gas and vaporized in the same manner, and dropped from the additive dispersion plate to the wall of the exhaust passage and fixed. To be suppressed.

また、上記凹部を、上記添加剤分散板の左右両端部間に亘って延設し、その左右方向中央部を左右両端部よりも下方に位置付けるように上記左右方向中央部に向かって傾斜させている場合には、凹部よりも上側に位置する添加剤分散板の表面の左右方向全域において付着した液膜状の添加剤の全てが、添加剤分散板の左右両端部間に亘る左右方向に長い凹部に受け止められる。このため、左右方向に長い凹部にて受け止められた添加剤は、凹部の左右両側より左右方向中央部まで自重によって案内されて集められる。これにより、凹部の左右方向中央部に集められた添加剤を排気通路の壁面付近よりも温度が高い中心付近の排気ガスによって効率よく気化させることが可能となる。   Further, the concave portion extends between the left and right end portions of the additive dispersion plate, and the right and left central portion is inclined toward the left and right central portion so as to be positioned below the left and right end portions. In the case where the additive dispersion plate is located above the recess, all of the liquid film additive adhering in the entire region in the left-right direction of the surface of the additive dispersion plate is long in the left-right direction across the left and right end portions of the additive dispersion plate. Received in the recess. For this reason, the additive received by the recessed part long in the left-right direction is guided and collected by its own weight from the left and right sides of the recessed part to the central part in the left-right direction. As a result, the additive collected at the central portion in the left-right direction of the recess can be efficiently vaporized by the exhaust gas in the vicinity of the center whose temperature is higher than that in the vicinity of the wall surface of the exhaust passage.

更に、上記添加剤分散板を、上記排気通路の中心付近に対応する中心部が最も排気ガスの流れ方向下流側に位置付けられるように上記中心部に向けて傾斜させている場合には、添加剤分散板に向かって流れていた排気ガスは、添加剤分散板との衝突によりその周縁部から中心部に向かって流れることになる。このため、添加剤分散板に付着した液膜状の添加剤は、排気ガスの流れに沿って添加剤分散板の周縁部から排気通路の中心付近に対応する中心部まで案内されて集められ、排気通路の中心付近において最も温度が高い排気ガスによって添加剤分散板の中心部に集められた添加剤を効率よく気化させることが可能となる。   Further, when the additive dispersion plate is inclined toward the central portion so that the central portion corresponding to the vicinity of the center of the exhaust passage is positioned most downstream in the exhaust gas flow direction, The exhaust gas flowing toward the dispersion plate flows from the peripheral portion toward the center portion due to the collision with the additive dispersion plate. For this reason, the liquid film additive adhering to the additive dispersion plate is guided and collected from the peripheral portion of the additive dispersion plate to the central portion corresponding to the vicinity of the center of the exhaust passage along the flow of the exhaust gas, It is possible to efficiently vaporize the additive collected at the center of the additive dispersion plate by the exhaust gas having the highest temperature near the center of the exhaust passage.

以上、要するに、添加剤分散板の表面において排気ガスの流れ方向下流側に凹む凹部を左右方向へ延ばして設けることで、添加剤分散板に衝突した際に添加剤分散板に付着して下方に垂れる液膜状の添加剤を凹部で受け止め、この凹部に受け止めた添加剤を排気ガスにより加熱して気化し、添加剤分散板から排気通路の壁面への添加剤の落下を防止して排気通路の壁面での添加剤の固着を効果的に抑制することができる。   In short, in short, by providing a concave portion that is recessed in the exhaust gas flow direction downstream on the surface of the additive dispersion plate in the left-right direction, it adheres to the additive dispersion plate when it collides with the additive dispersion plate. The dripping liquid film-like additive is received by the concave portion, and the additive received in the concave portion is heated and vaporized by the exhaust gas to prevent the additive from dropping from the additive dispersion plate to the wall surface of the exhaust passage. It is possible to effectively suppress the sticking of the additive on the wall surface.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は本発明の実施例1に係る添加剤分散板構造を用いた車両用ディーゼルエンジンの排気通路を示している。この図1において、排気通路1の途中には、排気ガス浄化装置2が設けられている。この排気ガス浄化装置2は、酸素共存下でも選択的に排気ガス中のNOxを還元剤(添加剤)と反応させる性質を備えた選択還元型触媒21を装備している。この選択還元型触媒21は、排気通路1の径が拡径された拡径部11にマット12を介して設けられている。そして、拡径部11は、排気通路1に対し、排気通路1の半径方向内方向きにラッパ状に反る反り部13によって連結されている。この場合、排気通路1を流れる排気ガスは、反り部13の排気ガス流れ方向上流側において該反り部13に沿って拡径方向に案内されるとともに、反り部13の排気ガス流れ方向下流側において該反り部13から剥離し、マット12側(拡径部11の半径方向外方側)への排気ガスの流れが反り部13によって効果的に偏向されるようにしている。   FIG. 1 shows an exhaust passage of a vehicular diesel engine using an additive dispersion plate structure according to Embodiment 1 of the present invention. In FIG. 1, an exhaust gas purification device 2 is provided in the middle of the exhaust passage 1. This exhaust gas purification device 2 is equipped with a selective reduction catalyst 21 having a property of selectively reacting NOx in exhaust gas with a reducing agent (additive) even in the presence of oxygen. The selective catalytic reduction catalyst 21 is provided via a mat 12 in the enlarged diameter portion 11 in which the diameter of the exhaust passage 1 is increased. The enlarged diameter portion 11 is connected to the exhaust passage 1 by a warp portion 13 that warps in a trumpet shape inward in the radial direction of the exhaust passage 1. In this case, the exhaust gas flowing through the exhaust passage 1 is guided in the diameter increasing direction along the warped portion 13 on the upstream side of the warped portion 13 in the exhaust gas flow direction, and on the downstream side of the warped portion 13 in the exhaust gas flow direction. The gas flow is separated from the warped portion 13 so that the flow of exhaust gas toward the mat 12 (radially outward of the enlarged diameter portion 11) is effectively deflected by the warped portion 13.

また、選択還元型触媒21は、排気通路1内を流れる排気ガス中のNOxを還元剤により還元浄化するもので、セラミックのコーディライトやFe−Cr−Al系の耐熱鋼から成るハニカム形状の横断面を有するモノリスタイプの触媒担体に、例えばゼオライト系の活性成分が担持されている。そして、上記触媒担体に担持された活性成分は、還元剤の供給を受けて活性化し、NOxを効果的に無害物質に浄化させる。この場合、選択還元型触媒21を使ったNOx低減手法をSCR(Selective Catalytic Reduction)と呼び、還元剤として尿素を使うものは特に尿素SCRと呼ばれている。   The selective catalytic reduction catalyst 21 reduces and purifies NOx in the exhaust gas flowing in the exhaust passage 1 with a reducing agent, and has a honeycomb shape made of ceramic cordierite or Fe-Cr-Al heat resistant steel. For example, a zeolite-based active component is supported on a monolithic catalyst carrier having a surface. Then, the active component carried on the catalyst carrier is activated upon receiving the supply of the reducing agent, and effectively purifies NOx into a harmless substance. In this case, the NOx reduction method using the selective catalytic reduction catalyst 21 is called SCR (Selective Catalytic Reduction), and the one using urea as the reducing agent is particularly called urea SCR.

排気ガス浄化装置2(選択還元型触媒21)の排気ガス流れ方向の上流側には、還元剤としての尿素水(添加剤)を噴射する噴射ノズル3が配設されている。この噴射ノズル3は、排気通路1の壁面の上側位置に設けられ、その噴射口31より尿素を選択型還元触媒21の排気ガス流れ方向上流側に供給している。また、噴射ノズルには、尿素水と共に圧縮空気が供給され、該尿素水を霧化して噴射口31より噴射供給するようになっている。そして、噴射ノズル3の噴射口31は、噴射された尿素水が排気通路1を横切るように、排気通路1壁面の上側位置より排気ガスの流れ方向に対し斜め下流側に向けて配置、つまり排気通路1の軸線mに対し適宜の角度(例えば略45°)で排気ガスの流れ方向下流側に斜めに傾斜して配置されている。この場合、尿素水は、貯蔵タンクに貯留され、合成樹脂製の供給管を介して噴射ノズル3に供給される。なお、図1中における破線矢印は、微粒化された尿素水が排気ガス中に分散された状態での排気ガスの流れを示し、実線矢印は、尿素水が分散される前の排気ガスの流れを示している。   An injection nozzle 3 for injecting urea water (additive) as a reducing agent is disposed upstream of the exhaust gas purification device 2 (selective reduction catalyst 21) in the exhaust gas flow direction. The injection nozzle 3 is provided at an upper position on the wall surface of the exhaust passage 1 and supplies urea from the injection port 31 to the upstream side of the selective reduction catalyst 21 in the exhaust gas flow direction. Further, compressed air is supplied to the injection nozzle together with the urea water, and the urea water is atomized and supplied from the injection port 31. The injection port 31 of the injection nozzle 3 is disposed from the upper position of the wall surface of the exhaust passage 1 toward the downstream side of the flow direction of the exhaust gas so that the injected urea water crosses the exhaust passage 1, that is, exhaust gas. It is inclined at an appropriate angle (for example, approximately 45 °) with respect to the axis m of the passage 1 and is inclined obliquely downstream in the exhaust gas flow direction. In this case, urea water is stored in a storage tank and supplied to the injection nozzle 3 via a supply pipe made of synthetic resin. 1 indicates the flow of exhaust gas in a state where atomized urea water is dispersed in the exhaust gas, and the solid line arrow indicates the flow of exhaust gas before the urea water is dispersed. Is shown.

また、噴射ノズル3の噴射口31から噴射供給された尿素水は、排気通路1内の排気熱により加水分解してアンモニアを容易に発生する。得られたアンモニアは、選択還元型触媒21において排気中のNOxと反応し、水および無害なガスに浄化される。尿素水は、固体もしくは粉体の尿素の水溶液で、貯蔵タンクに貯留されており、供給管を通じて噴射ノズル3に供給されるようになっている。なお、噴射ノズル3で噴射供給する還元剤(添加剤)としては、尿素水の他に、アンモニア水溶液や炭化水素水溶液などが適用されていてもよい。   Further, the urea water injected and supplied from the injection port 31 of the injection nozzle 3 is hydrolyzed by the exhaust heat in the exhaust passage 1 to easily generate ammonia. The obtained ammonia reacts with NOx in the exhaust gas in the selective reduction catalyst 21 to be purified into water and harmless gas. The urea water is a solid or powdery urea aqueous solution, stored in a storage tank, and supplied to the injection nozzle 3 through a supply pipe. In addition, as a reducing agent (additive) supplied and supplied by the injection nozzle 3, an ammonia aqueous solution, a hydrocarbon aqueous solution, or the like may be applied in addition to the urea water.

そして、噴射ノズル3の排気ガス流れ方向の直下流側(選択還元型触媒21よりも排気ガス流れ方向上流側)には、噴射ノズル3より排気通路1内に噴射された尿素水を排気ガス中に分散する添加剤分散板としての分散板4が設けられている。この分散板4は、図2に示すように、排気通路1を略垂直方向から横切るように鉛直面状に切り立った状態で配置されている。そして、分散板4は、排気ガスの流れ方向から見て略矩形状に形成され、その各角部より半径方向外方に突出するフランジ部41,41,…によって排気通路1の壁面に取り付けられている。   Then, on the downstream side of the injection nozzle 3 in the exhaust gas flow direction (upstream side of the selective reduction catalyst 21 in the exhaust gas flow direction), urea water injected into the exhaust passage 1 from the injection nozzle 3 is contained in the exhaust gas. A dispersion plate 4 is provided as an additive dispersion plate that is dispersed in the substrate. As shown in FIG. 2, the dispersion plate 4 is arranged in a state of being vertically cut so as to cross the exhaust passage 1 from a substantially vertical direction. The dispersion plate 4 is formed in a substantially rectangular shape when viewed from the flow direction of the exhaust gas, and is attached to the wall surface of the exhaust passage 1 by flange portions 41, 41,... ing.

また、分散板4の表面40(排気ガスの流れ方向上流側の面)には、排気ガスの流れ方向下流側(図1では右側)に凹む凹部42,42,…が上下方向および左右方向にそれぞれ4つずつ均等に配列されて設けられている。この各凹部42は、車体左右方向へ延びて設けられている。また、各凹部42よりも上側には、排気通路1内に噴射ノズル3の噴射口31から噴射された尿素水の噴射方向に対しほぼ対向するようにそれぞれ下端を起点にして排気ガスの流れ方向下流側に傾斜する衝突部としての衝突片43,43,…が設けられている。更に、各衝突片43の上側には、排気ガスを分散板4の流れ方向上流側から下流側に連通させる連通部44,44,…がそれぞれ設けられている。また、各連通部44の上縁には、その上縁を起点にして排気ガスの流れ方向下流側に傾斜する整流板45,45,…が設けられ、この各整流板45によって、各衝突片43に衝突して微粒化された尿素水が排気ガスの流れに沿って均等に排気ガス浄化装置2に導かれるようになっている。そして、各衝突片43および各整流板45は、それぞれ分散板4より切り起こして形成されている一方、各通路部44は、それぞれ切り起こされた衝突片43および整流板45により開口して形成されてなる。また、各凹部42は、分散板4の表面40より排気ガスの流れ方向下流側に凹んでいることにより、分散板4の剛性を高めるリブとしての機能も備えている。   Further, on the surface 40 (surface upstream of the exhaust gas flow direction) of the dispersion plate 4, concave portions 42, 42,... Recessed in the exhaust gas flow direction downstream side (right side in FIG. 1) are provided in the vertical direction and the horizontal direction. Four of each are arranged in an even manner. Each of the recesses 42 is provided extending in the left-right direction of the vehicle body. Further, on the upper side of each recess 42, the flow direction of the exhaust gas starting from the lower end so as to be substantially opposed to the injection direction of the urea water injected from the injection port 31 of the injection nozzle 3 into the exhaust passage 1. Colliding pieces 43, 43,... Are provided as the colliding portions inclined to the downstream side. Further, on the upper side of each collision piece 43, communication portions 44, 44,... For communicating the exhaust gas from the upstream side in the flow direction of the dispersion plate 4 to the downstream side are provided. Further, the upper edge of each communication portion 44 is provided with rectifying plates 45, 45,... Inclined from the upper edge as a starting point to the downstream side in the exhaust gas flow direction. The urea water atomized by colliding with the nozzle 43 is guided to the exhaust gas purification device 2 evenly along the flow of the exhaust gas. Each collision piece 43 and each rectifying plate 45 are formed by being cut and raised from the dispersion plate 4, while each passage portion 44 is formed by being opened by the cut and raised collision piece 43 and each of the rectifying plates 45. Being done. In addition, each recess 42 has a function as a rib that increases the rigidity of the dispersion plate 4 by being recessed downstream of the surface 40 of the dispersion plate 4 in the exhaust gas flow direction.

この場合、各凹部42、各衝突片43、各連通部44および各整流板45は、それぞれ1つずつで1組とされ、分散板4の上下方向および左右方向に規則正しく配列されている。また、各凹部42の左右方向の長さは、各連通部44の車体左右方向の長さよりも若干長く設定されている。   In this case, each concave portion 42, each collision piece 43, each communication portion 44, and each rectifying plate 45 are set as one set, and are regularly arranged in the vertical direction and the horizontal direction of the dispersion plate 4. Further, the length of each recess 42 in the left-right direction is set slightly longer than the length of each communication portion 44 in the left-right direction of the vehicle body.

したがって、上記実施例1では、分散板4の表面40に、排気ガスの流れ方向下流側に凹む凹部42,42,…が左右方向へ延びて設けられている上、各凹部42の上側に、噴射口31から噴射された尿素水の噴射方向に対しほぼ対向するように傾斜する衝突片43,43,…が設けられているとともに、この各衝突片43の上側に、排気ガスを分散板4の流れ方向上流側から下流側に連通させる連通部44,44,…が設けられているので、分散板4の表面40に対し噴射された尿素水は、分散板4の表面40に衝突すると、その分散板4との衝突によってエネルギーが尿素水に作用することになり、この衝突エネルギーを利用して尿素水が細かく微粒化される。また、尿素水の噴射方向に対しほぼ直交する向きから各衝突片43に対しそれぞれ衝突すると、その各衝突部43との衝突によって更に大きなエネルギーが尿素水に作用することになり、この大きな衝突エネルギーを利用して尿素水がより細かく微粒化される。これにより、細かく微粒化された尿素水は、各衝突片43上側の連通部44,44,…から排気ガスの流れに乗って流れ方向下流側に導かれ、細かく微粒化された尿素水の分散性能を高めることができる。   Accordingly, in the first embodiment, the surface 40 of the dispersion plate 4 is provided with concave portions 42, 42,... Recessed in the left and right direction on the downstream side in the exhaust gas flow direction. Colliding pieces 43, 43,... That are inclined so as to be substantially opposed to the injection direction of the urea water injected from the injection port 31 are provided, and the exhaust gas is distributed above the collision pieces 43. Since the communicating portions 44, 44,... That communicate from the upstream side to the downstream side in the flow direction are provided, when the urea water injected to the surface 40 of the dispersion plate 4 collides with the surface 40 of the dispersion plate 4, The energy acts on the urea water due to the collision with the dispersion plate 4, and the urea water is finely atomized using the collision energy. Further, when each of the collision pieces 43 collides with each of the collision pieces 43 from a direction substantially orthogonal to the urea water injection direction, a larger energy acts on the urea water due to the collision with each of the collision portions 43, and this large collision energy. The urea water is finely atomized using As a result, the finely atomized urea water is guided from the communicating portions 44, 44,... Above each collision piece 43 to the downstream side in the flow direction by the exhaust gas flow, and the finely atomized urea water is dispersed. Performance can be increased.

一方、分散板4の表面に対し噴射された尿素水の一部が分散板4に衝突した際に分散板4の表面40に付着して液膜状となっても、その液膜状となった尿素水が自重により表面40を伝って下方に垂れた際に各凹部42に受け止められることになる。また、各衝突片43に対し噴射された尿素水の一部が各衝突片43に衝突した際に各衝突片43の表面に付着して液膜状となっても、その液膜状となった尿素水が自重によって各衝突片の表面から分散板4の表面40を伝って各凹部42に受け止められることになる。これにより、各凹部42に受け止められた尿素水は排気ガスにより加熱されて気化し、分散板4から排気通路1の壁面への尿素水の落下を防止して排気通路1の下部での尿素水の固着を効果的に抑制することができる。   On the other hand, even if a part of the urea water sprayed onto the surface of the dispersion plate 4 collides with the dispersion plate 4 and adheres to the surface 40 of the dispersion plate 4 to form a liquid film shape, the liquid film shape is obtained. When the urea water hangs down along the surface 40 due to its own weight, it is received by the respective recesses 42. Further, even if a part of the urea water jetted to each collision piece 43 collides with each collision piece 43 and adheres to the surface of each collision piece 43 to form a liquid film shape, the liquid film shape is obtained. The urea water is received by each concave portion 42 from the surface of each collision piece through the surface 40 of the dispersion plate 4 by its own weight. As a result, the urea water received in each of the recesses 42 is heated and vaporized by the exhaust gas to prevent the urea water from falling from the dispersion plate 4 to the wall surface of the exhaust passage 1, thereby reducing the urea water in the lower portion of the exhaust passage 1. Can be effectively suppressed.

次に、本発明の実施例2を図3に基づいて説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

この実施例では、凹部の構成を変更している。なお、凹部を除くその他の構成は上記実施例1の場合と同じであり、同一部分については同じ符号を付して、その詳細な説明は省略する。   In this embodiment, the configuration of the recess is changed. In addition, the structure other than a recessed part is the same as the case of the said Example 1, The same code | symbol is attached | subjected about the same part and the detailed description is abbreviate | omitted.

すなわち、本実施例2では、図3に示すように、凹部46,46,…は、左右方向にそれぞれ4つずつ均等に配列された上下方向4列の連通部44,44,…の下方において左右方向に連続するように分散板4の左右両端部間に亘って延設されている。そして、互いに左右方向で相隣なる連通部44,44同士の間には、上下方向に延びる縦格子40a,40a,…が設けられている。この場合、各凹部46は、各縦格子40aを上下方向に分断するように設けられている。   That is, in the second embodiment, as shown in FIG. 3, the recesses 46, 46,... Are below the four vertical communication portions 44, 44,. The dispersion plate 4 extends between both left and right ends so as to be continuous in the left-right direction. And the vertical lattices 40a, 40a, ... extended in the up-down direction are provided between the communication portions 44, 44 adjacent to each other in the left-right direction. In this case, each concave portion 46 is provided so as to divide each vertical lattice 40a in the vertical direction.

したがって、上記実施例2では、分散板4の表面40および各衝突片43に対し尿素水が噴射されて衝突した際、分散板4の表面40に付着して液膜状となった尿素水が自重により表面40を伝って下方に垂れると、その垂れた尿素水が各凹部46に受け止められることになる。その場合、互いに相隣なる連通部44,44同士の間の縦格子40a,40a,…に付着して液膜状となった尿素水もその各縦格子40aを伝って下方に垂れた際に各凹部46に受け止められることになる。これにより、分散板4の各縦格子40aから垂れる尿素水も各凹部46により確実に受け止められ、この各凹部46に受け止められた尿素水は排気ガスにより加熱されて気化し、排気通路1の壁面への尿素水の落下を確実に防止して排気通路1の下部での尿素水の固着をより効果的に抑制することができる。   Therefore, in the second embodiment, when urea water is jetted and collided with the surface 40 of the dispersion plate 4 and the collision pieces 43, the urea water that adheres to the surface 40 of the dispersion plate 4 and forms a liquid film is formed. When it hangs down along the surface 40 due to its own weight, the drooped urea water is received by each recess 46. In that case, when the urea water adhered to the vertical lattices 40a, 40a,... Between the communication portions 44, 44 adjacent to each other to form a liquid film also hangs down along the vertical lattices 40a. It will be received by each recess 46. As a result, the urea water hanging from each vertical lattice 40a of the dispersion plate 4 is also reliably received by each recess 46, and the urea water received by each recess 46 is heated and vaporized by the exhaust gas, and the wall surface of the exhaust passage 1 The urea water can surely be prevented from falling to the bottom of the exhaust passage 1 and the urea water can be more effectively prevented from sticking to the lower portion of the exhaust passage 1.

次に、本発明の実施例3を図4に基づいて説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIG.

この実施例では、凹部の構成を変更している。なお、凹部を除くその他の構成は上記実施例1の場合と同じであり、同一部分については同じ符号を付して、その詳細な説明は省略する。   In this embodiment, the configuration of the recess is changed. In addition, the structure other than a recessed part is the same as the case of the said Example 1, The same code | symbol is attached | subjected about the same part and the detailed description is abbreviate | omitted.

すなわち、本実施例3では、図4に示すように、凹部47,47,…は、左右方向にそれぞれ4つずつ均等に配列されて列をなす上下方向4列の連通部44,44,…の下方において左右方向に連続するように分散板4の左右両端部間に亘って延設されている。そして、各凹部47は、その左右両端がそれぞれ分散板4の左右両端より外方(排気通路1側)に開口している。   That is, in the third embodiment, as shown in FIG. 4, the concave portions 47, 47,... Have four rows in the vertical direction and the communication portions 44, 44,. Is extended across the left and right ends of the dispersion plate 4 so as to be continuous in the left-right direction. Each recess 47 is opened outward (exhaust passage 1 side) from both left and right ends of the dispersion plate 4.

したがって、上記実施例3では、各凹部47に受け止められた尿素水は排気ガスにより加熱されて気化される上、その気化された尿素水が各凹部47の左右両端から排気ガスの流れに沿って排気ガスの流れ方向下流側に積極的に導かれ、排気通路1の壁面への尿素水の落下を確実に防止して排気通路1の下部での尿素水の固着を効果的に抑制することができる。   Therefore, in the third embodiment, the urea water received in each concave portion 47 is heated and vaporized by the exhaust gas, and the vaporized urea water flows from the left and right ends of each concave portion 47 along the flow of the exhaust gas. It is actively guided downstream in the flow direction of the exhaust gas, and the urea water can be reliably prevented from falling on the wall surface of the exhaust passage 1 to effectively prevent the urea water from sticking to the lower portion of the exhaust passage 1. it can.

次に、本発明の実施例4を図5に基づいて説明する。   Next, a fourth embodiment of the present invention will be described with reference to FIG.

この実施例では、凹部の構成を変更している。なお、凹部を除くその他の構成は上記実施例1の場合と同じであり、同一部分については同じ符号を付して、その詳細な説明は省略する。   In this embodiment, the configuration of the recess is changed. In addition, the structure other than a recessed part is the same as the case of the said Example 1, The same code | symbol is attached | subjected about the same part and the detailed description is abbreviate | omitted.

すなわち、本実施例4では、図5に示すように、凹部48,48,…は、左右方向にそれぞれ4つずつ均等に配列されて列をなす上下方向4列の連通部44,44,…の下方において左右方向に連続するように分散板4の左右両端部間に亘って延設されている。そして、各凹部48は、その左右方向中央部が左右両端部よりも下方に位置付けられるように左右方向中央部に向かって略V字状に傾斜している。この場合、排気通路1内を流れる排気ガスの温度は、各凹部48の左右両端部付近よりも左右方向中央部付近の方が高くなっている。   That is, in the fourth embodiment, as shown in FIG. 5, the concave portions 48, 48,... Is extended across the left and right ends of the dispersion plate 4 so as to be continuous in the left-right direction. And each recessed part 48 inclines in the substantially V shape toward the left-right direction center part so that the left-right direction center part may be located below rather than the left-right both ends. In this case, the temperature of the exhaust gas flowing in the exhaust passage 1 is higher in the vicinity of the central portion in the left-right direction than in the vicinity of both left and right end portions of each recess 48.

したがって、上記実施例4では、各凹部48よりも上側に位置する分散板4の表面40の左右方向全域において付着した液膜状の尿素水の全てが、分散板4の左右両端部間に亘る左右方向に長い各凹部48により受け止められる。このため、左右方向に長い各凹部48にて受け止められた尿素水は、各凹部48の左右両側から左右方向中央部まで自重によって案内されて集められる。これにより、各凹部48の左右方向中央部に集められた尿素水を排気通路1の壁面付近よりも温度が高い中心付近の排気ガスによって効率よく気化させることができる。   Therefore, in Example 4 described above, all of the liquid film-like urea water adhering to the entire region in the left-right direction of the surface 40 of the dispersion plate 4 positioned above each recess 48 extends between the left and right end portions of the dispersion plate 4. It is received by each recess 48 that is long in the left-right direction. For this reason, the urea water received by each concave part 48 long in the left-right direction is guided and collected by its own weight from the left and right sides of each concave part 48 to the central part in the left-right direction. As a result, the urea water collected at the central portion in the left-right direction of each recess 48 can be efficiently vaporized by the exhaust gas near the center having a temperature higher than that near the wall surface of the exhaust passage 1.

次に、本発明の実施例5を図6に基づいて説明する。   Next, a fifth embodiment of the present invention will be described with reference to FIG.

この実施例では、衝突片および整流板の構成を変更している。なお、衝突片および整流板を除くその他の構成は上記実施例1の場合と同じであり、同一部分については同じ符号を付して、その詳細な説明は省略する。   In this embodiment, the configurations of the collision piece and the current plate are changed. The other configurations except for the collision piece and the current plate are the same as those in the first embodiment, and the same parts are denoted by the same reference numerals, and detailed description thereof is omitted.

すなわち、本実施例5では、図6に示すように、衝突片49,49,…は、分散板4の各連通部44の下縁より切り起こして形成され、その下縁を起点にして排気ガスの流れ方向下流側に傾斜している。この場合、各衝突片49は、排気通路1内に噴射ノズル3の噴射口31から噴射された尿素水の噴射方向に対しほぼ対向している。なお、本実施例では、各連通部44の上縁より切り起こされた整流板は廃止されている。   That is, in the fifth embodiment, as shown in FIG. 6, the collision pieces 49, 49,... Are formed by cutting and raising from the lower edges of the communicating portions 44 of the dispersion plate 4. Inclined downstream in the gas flow direction. In this case, each collision piece 49 is substantially opposed to the injection direction of the urea water injected from the injection port 31 of the injection nozzle 3 in the exhaust passage 1. In this embodiment, the current plate cut and raised from the upper edge of each communication portion 44 is abolished.

また、各衝突片49の上下方向3箇所には、左右方向に延びるスリット49a,49a,…(図6では上端の4つの衝突片においてのみ符号を付す)が設けられている。この各スリット49aは、各衝突片49の表面に付着した尿素水を各スリット49aによる表面張力により表面上に留まらせるように微小な開口間隔(例えば3mm以下)に設定されている。この場合、各衝突片49の表面上に付着して液膜状となって各スリット49aの表面張力により各衝突片49の表面上に留まる尿素水は、排気ガスの熱により気化されると、各スリット49aを介して排気ガスの流れ方向下流側に導かれるようになっている。   Further, slits 49a, 49a,... Extending in the left-right direction are provided at three positions in the vertical direction of each collision piece 49 (in FIG. 6, only the upper four collision pieces are denoted by reference numerals). Each of the slits 49a is set to have a minute opening interval (for example, 3 mm or less) so that urea water attached to the surface of each collision piece 49 remains on the surface by the surface tension of each slit 49a. In this case, when the urea water that adheres on the surface of each collision piece 49 and becomes a liquid film and stays on the surface of each collision piece 49 by the surface tension of each slit 49a is vaporized by the heat of the exhaust gas, It is led to the downstream side in the exhaust gas flow direction through each slit 49a.

したがって、上記実施例5では、分散板4の各衝突片49に付着して液膜状となった尿素水は、各スリット49aによる表面張力により各衝突片49の表面上に留まって自重による下方への垂れが抑制される。これにより、各スリット49aの表面張力により各衝突片49の表面上に留まる尿素水を、排気ガスにより気化し、各スリット49aを介して排気ガスの流れ方向下流側に円滑に導くことができる。   Therefore, in the fifth embodiment, the urea water adhered to each collision piece 49 of the dispersion plate 4 and formed into a liquid film remains on the surface of each collision piece 49 due to the surface tension by each slit 49a and is lowered by its own weight. Sag is suppressed. As a result, the urea water remaining on the surface of each collision piece 49 due to the surface tension of each slit 49a can be vaporized by the exhaust gas and smoothly guided to the downstream side in the exhaust gas flow direction through each slit 49a.

しかも、各衝突片49にスリット49a,49a,…を設けたことにより、排気通路1における排気ガスの流路面積(排気通路1の断面積)の減少が抑制されて排気ガスを流通させる排気通路1内での有効面積が増加し、分散板4における排気ガスの流れ方向下流側での背圧の上昇を抑えることができる。   In addition, by providing slits 49a, 49a,... In each collision piece 49, a reduction in the exhaust gas flow passage area (the cross-sectional area of the exhaust passage 1) in the exhaust passage 1 is suppressed, and the exhaust passage circulates the exhaust gas. The effective area in 1 increases, and the increase in the back pressure on the downstream side of the flow direction of the exhaust gas in the dispersion plate 4 can be suppressed.

次に、本発明の実施例6を図7および図8に基づいて説明する。   Next, a sixth embodiment of the present invention will be described with reference to FIGS.

この実施例では、分散板の構成を変更している。なお、分散板を除くその他の構成は上記実施例1の場合と同じであり、同一部分については同じ符号を付して、その詳細な説明は省略する。   In this embodiment, the configuration of the dispersion plate is changed. The other configurations except for the dispersion plate are the same as those in the first embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof is omitted.

すなわち、本実施例6では、図7に示すように、分散板5(添加剤分散板)は、排気通路1内に噴射ノズル3の噴射口31から噴射された尿素水の噴射方向に対しほぼ対向するように傾斜、具体的には、排気通路1の軸線mに対し適宜の角度(例えば略60°)で排気ガスの流れ方向下流側に後傾状態で傾斜して配置されている。そして、分散板5は、排気ガスの流れ方向から見て略矩形状に形成され、その各角部より半径方向外方に突出するフランジ部51,51,…によって排気通路1の壁面に取り付けられている。   That is, in the sixth embodiment, as shown in FIG. 7, the dispersion plate 5 (additive dispersion plate) is approximately in the exhaust passage 1 with respect to the injection direction of the urea water injected from the injection port 31 of the injection nozzle 3. Inclined so as to oppose, specifically, is inclined in a rearwardly inclined state at an appropriate angle (for example, approximately 60 °) with respect to the axis m of the exhaust passage 1 downstream in the exhaust gas flow direction. The dispersion plate 5 is formed in a substantially rectangular shape when viewed from the flow direction of the exhaust gas, and is attached to the wall surface of the exhaust passage 1 by flange portions 51, 51,. ing.

また、図8に示すように、分散板5の表面50(排気ガスの流れ方向上流側の面)には、排気ガスの流れ方向下流側(図7では右側)に凹む断面略L字状の凹部52,52,…が上下方向および左右方向にそれぞれ4つずつ均等に配列されて設けられている。この各凹部52は、車体左右方向へ延びて設けられている。また、上下方向に互いに相隣なる凹部52,52同士の間には、排気ガスを分散板5の流れ方向上流側から下流側に連通させる連通部53,53,…がそれぞれ開設されている。そして、各凹部52は、分散板5の表面50より排気ガスの流れ方向下流側に凹んでいることにより、分散板5の剛性を高めるリブとしての機能も備えている。   Further, as shown in FIG. 8, the surface 50 of the dispersion plate 5 (the upstream surface in the exhaust gas flow direction) has a substantially L-shaped cross section that is recessed downstream in the exhaust gas flow direction (right side in FIG. 7). Four recesses 52, 52,... Are provided so as to be evenly arranged in the vertical direction and the horizontal direction, respectively. Each of the recesses 52 extends in the left-right direction of the vehicle body. Further, communication portions 53, 53,... That allow the exhaust gas to communicate from the upstream side to the downstream side in the flow direction of the dispersion plate 5 are provided between the recesses 52 adjacent to each other in the vertical direction. Each recess 52 has a function as a rib that increases the rigidity of the dispersion plate 5 by being recessed from the surface 50 of the dispersion plate 5 to the downstream side in the exhaust gas flow direction.

この場合、各凹部52は、分散板5が後傾状態で傾斜して配置されている関係上、略鉛直な縦面52aと略水平な底面52bとで構成され、分散板5の表面50を伝って各凹部52の上側から垂れる尿素水が略水平な底面52bによって円滑に受け止められるようにしている。   In this case, each recess 52 is configured by a substantially vertical vertical surface 52a and a substantially horizontal bottom surface 52b because the dispersion plate 5 is disposed in a tilted state in a backward tilt state. The urea water that hangs down from the upper side of each recess 52 is smoothly received by the substantially horizontal bottom surface 52b.

したがって、上記実施例6では、分散板5が噴射口31からの尿素水の噴射方向に対しほぼ対向するように傾斜している上、その表面50に、排気ガスの流れ方向下流側に凹む凹部52,52,…が左右方向へ延びて設けられているとともに、上下方向に互いに相隣なる凹部52,52同士の間に連通部53,53,…がそれぞれ開設されているので、分散板5の表面50に対し噴射された尿素水がほぼ直交する方向から尿素水が衝突し、その分散板5への衝突によって尿素水に大きなエネルギーが作用することになり、この大きな衝突エネルギーを利用して尿素水がより細かく微粒化される。これにより、細かく微粒化された尿素水は、各連通部53から排気ガスの流れに乗って流れ方向下流側に導かれ、細かく微粒化された尿素水の分散性能を高めることができる。   Therefore, in the sixth embodiment, the dispersion plate 5 is inclined so as to be substantially opposed to the injection direction of the urea water from the injection port 31, and the concave portion recessed on the surface 50 on the downstream side in the exhaust gas flow direction. Are provided extending in the left-right direction, and communication portions 53, 53,... Are provided between the recesses 52 adjacent to each other in the vertical direction. Urea water collides from the direction in which the urea water jetted to the surface 50 of the liquid substantially orthogonal, and a large energy acts on the urea water due to the collision with the dispersion plate 5, and this large collision energy is utilized. Urea water is more finely atomized. As a result, the finely atomized urea water rides on the flow of the exhaust gas from each communication portion 53 and is guided downstream in the flow direction, so that the dispersion performance of the finely atomized urea water can be enhanced.

また、分散板5の表面50に対し噴射された尿素水の一部が分散板5に衝突した際に分散板5の表面50に付着して液膜状となっても、その液膜状となった尿素水が自重によって下方に垂れた際に各凹部52の底面52aで円滑に受け止められることになる。これにより、各凹部52に受け止められた尿素水は排気ガスにより加熱されて気化し、分散板5から排気通路1の壁面への尿素水の落下を防止して排気通路1の下部での尿素水の固着を効果的に抑制することができる。   Further, even if a part of the urea water sprayed on the surface 50 of the dispersion plate 5 collides with the dispersion plate 5 and adheres to the surface 50 of the dispersion plate 5 to form a liquid film shape, When the urea water thus formed hangs downward due to its own weight, it is smoothly received by the bottom surface 52a of each recess 52. As a result, the urea water received in each of the recesses 52 is heated and vaporized by the exhaust gas to prevent the urea water from dropping from the dispersion plate 5 to the wall surface of the exhaust passage 1, thereby reducing the urea water in the lower portion of the exhaust passage 1. Can be effectively suppressed.

次に、本発明の実施例7を図9ないし図11に基づいて説明する。   Next, a seventh embodiment of the present invention will be described with reference to FIGS.

この実施例では、分散板の構成を変更している。なお、分散板を除くその他の構成は上記実施例1の場合と同じであり、同一部分については同じ符号を付して、その詳細な説明は省略する。   In this embodiment, the configuration of the dispersion plate is changed. The other configurations except for the dispersion plate are the same as those in the first embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof is omitted.

すなわち、本実施例7では、図9に示すように、分散板6(添加剤分散板)は、排気通路1を略垂直方向から横切るように鉛直面状に切り立った状態で配置されている。また、分散板6は、排気通路1の中心付近に対応する上下方向中心部が上下両端部よりも排気ガスの流れ方向下流側に位置付けられるように上記上下方向中心部に向かって傾斜して断面略くの字状に形成されている。そして、分散板6は、排気ガスの流れ方向から見て略矩形状に形成され、その各角部より半径方向外方に突出するフランジ部61,61,…によって排気通路1の壁面に取り付けられている。   That is, in the seventh embodiment, as shown in FIG. 9, the dispersion plate 6 (additive dispersion plate) is arranged in a vertical plane so as to cross the exhaust passage 1 from a substantially vertical direction. In addition, the dispersion plate 6 is inclined and cross-sectioned toward the vertical center so that the vertical center corresponding to the vicinity of the center of the exhaust passage 1 is positioned on the downstream side in the exhaust gas flow direction with respect to the upper and lower ends. It is formed in a substantially square shape. The dispersion plate 6 is formed in a substantially rectangular shape when viewed from the flow direction of the exhaust gas, and is attached to the wall surface of the exhaust passage 1 by flange portions 61, 61,. ing.

また、図10および図11に示すように、分散板6の表面60(排気ガスの流れ方向上流側の面)には、排気ガスの流れ方向下流側(図11では右側)に凹む単一の凹部62が設けられている。この凹部62は、排気通路1の中心付近に対応する上下方向中央部を分散板6の左右両端部間に亘って左右方向に延びている。また、分散板6の表面60上における凹部62の下側には、排気通路1内に噴射ノズル3の噴射口31から噴射された尿素水の噴射方向に対しほぼ対向するようにそれぞれ下端を起点にして排気ガスの流れ方向下流側に傾斜する衝突部としての衝突片63,63,…が設けられている。更に、各衝突片63の上側には、排気ガスを分散板6の流れ方向上流側から下流側に連通させる連通部64,64,…がそれぞれ設けられている。また、各連通部64の上縁には、その上縁を起点にして排気ガスの流れ方向下流側に傾斜する整流板65,65,…が設けられ、この各整流板65によって、各衝突片63に衝突して微粒化された尿素水が排気ガスの流れに沿って均等に排気ガス浄化装置2に導かれるようになっている。そして、各衝突片63および各整流板65は、それぞれ分散板6より切り起こして形成されている一方、各通路部64は、それぞれ切り起こされた衝突片63および整流板65により開口して形成されてなる。また、凹部62は、分散板6の表面60より排気ガスの流れ方向下流側に凹んでいることにより、分散板6の剛性を高めるリブとしての機能も備えている。そして、各衝突片63、各連通部64および各整流板65は、それぞれ1つずつで1組とされ、凹部62の上側および下側においてそれぞれ上下方向に2つずつで左右方向に4つずつ規則正しく配列されている。また、凹部62の左右両端は、分散板6の左右両端より外方(排気通路1側)に開口している。   Further, as shown in FIGS. 10 and 11, the surface 60 of the dispersion plate 6 (the surface on the upstream side in the exhaust gas flow direction) has a single recess recessed downstream in the exhaust gas flow direction (right side in FIG. 11). A recess 62 is provided. The concave portion 62 extends in the left-right direction across the left and right end portions of the dispersion plate 6 at the central portion in the vertical direction corresponding to the vicinity of the center of the exhaust passage 1. In addition, the lower ends of the lower surfaces of the recesses 62 on the surface 60 of the dispersion plate 6 start from the lower ends so as to substantially face the injection direction of the urea water injected from the injection port 31 of the injection nozzle 3 into the exhaust passage 1. In this way, collision pieces 63, 63,... Are provided as the collision portions that are inclined to the downstream side in the exhaust gas flow direction. Further, on the upper side of each collision piece 63, communication portions 64, 64,... For communicating the exhaust gas from the upstream side in the flow direction of the dispersion plate 6 to the downstream side are provided. Further, rectifying plates 65, 65,... That are inclined from the upper edge to the downstream side in the flow direction of the exhaust gas are provided at the upper edge of each communication portion 64. The urea water atomized by colliding with 63 is guided to the exhaust gas purification device 2 evenly along the flow of the exhaust gas. Each collision piece 63 and each rectifying plate 65 are formed by being cut and raised from the dispersion plate 6, while each passage portion 64 is formed by being opened by the cut and raised collision piece 63 and the rectifying plate 65. Being done. Further, the concave portion 62 has a function as a rib that increases the rigidity of the dispersion plate 6 by being recessed from the surface 60 of the dispersion plate 6 to the downstream side in the exhaust gas flow direction. Each collision piece 63, each communication portion 64, and each rectifying plate 65 are set as one set, and two in the vertical direction and four in the horizontal direction on the upper side and the lower side of the recess 62. Arranged regularly. The left and right ends of the recess 62 are opened outward (exhaust passage 1 side) from the left and right ends of the dispersion plate 6.

この場合、排気通路1内を流れる排気ガスは、上下方向中心部が上下両端部よりも排気ガスの流れ方向下流側に位置付けられるように分散板6が断面略くの字状に形成されている関係上、分散板6との衝突により上下方向両端から分散板6の表面60に沿って上下方向中心部向きの流れが生じている。   In this case, the exhaust gas flowing in the exhaust passage 1 is formed such that the dispersion plate 6 has a substantially U-shaped cross section so that the central portion in the vertical direction is positioned on the downstream side in the exhaust gas flow direction with respect to the upper and lower end portions. In relation, the collision with the dispersion plate 6 causes a flow from the both ends in the vertical direction toward the center in the vertical direction along the surface 60 of the dispersion plate 6.

したがって、上記実施例7では、分散板6の表面60および各衝突片63に対し噴射された尿素水は、分散板6の表面60および各衝突片63との衝突によってエネルギーが尿素水に作用することになり、この衝突エネルギーを利用して尿素水が細かく微粒化される。これにより、細かく微粒化された尿素水は、各衝突片63上側の連通部64,64,…から排気ガスの流れに乗って流れ方向下流側に導かれ、細かく微粒化された尿素水の分散性能を高めることができる。   Therefore, in the seventh embodiment, the urea water sprayed on the surface 60 of the dispersion plate 6 and each collision piece 63 has energy acting on the urea water due to the collision with the surface 60 of the dispersion plate 6 and each collision piece 63. As a result, urea water is finely atomized using this collision energy. As a result, the finely atomized urea water is guided to the downstream side in the flow direction by riding on the flow of the exhaust gas from the communication portions 64, 64,... Above each collision piece 63, and the finely atomized urea water is dispersed. Performance can be increased.

また、分散板6の表面60および各衝突片63に対し尿素水が噴射されて衝突した際に分散板6の表面60に付着して尿素水が液膜状となると、その表面60に付着した液膜状の尿素水が、分散板6の上下方向両端から分散板6の表面60に沿って上下方向中心部向きに流れる排気ガスの流れに沿って凹部62まで案内され、この凹部62にて受け止められることになる。このため、凹部62に受け止められた尿素水は排気通路1の中心付近で最も温度が高くなる排気ガスにより効果的に加熱されて気化される上、その気化された尿素水が凹部62の左右両端から排気ガスの流れに沿って排気ガスの流れ方向下流側に積極的に導かれることになる。これにより、排気通路1の壁面への尿素水の落下を確実に防止して排気通路1の下部での尿素水の固着を効果的に抑制することができる。   Further, when urea water is jetted onto the surface 60 of the dispersion plate 6 and each collision piece 63 and collides, the urea water adheres to the surface 60 when it adheres to the surface 60 of the dispersion plate 6 and becomes a liquid film. The liquid film-like urea water is guided to the recess 62 along the flow of the exhaust gas flowing from the both ends in the vertical direction of the dispersion plate 6 along the surface 60 of the dispersion plate 6 toward the center in the vertical direction. It will be accepted. For this reason, the urea water received in the concave portion 62 is effectively heated and vaporized by the exhaust gas having the highest temperature near the center of the exhaust passage 1, and the vaporized urea water is left and right of the concave portion 62. Therefore, the exhaust gas is actively guided to the downstream side in the exhaust gas flow direction along the exhaust gas flow. Thereby, it is possible to reliably prevent the urea water from falling onto the wall surface of the exhaust passage 1 and to effectively prevent the urea water from adhering to the lower portion of the exhaust passage 1.

次に、本発明の実施例8を図12および図13に基づいて説明する。   Next, an eighth embodiment of the present invention will be described with reference to FIGS.

この実施例では、分散板の構成を変更している。なお、分散板を除くその他の構成は上記実施例7の場合と同じであり、同一部分については同じ符号を付して、その詳細な説明は省略する。   In this embodiment, the configuration of the dispersion plate is changed. The rest of the configuration except for the dispersion plate is the same as in the case of the seventh embodiment, and the same parts are denoted by the same reference numerals and detailed description thereof is omitted.

すなわち、本実施例8では、図12に示すように、分散板6の表面60には、互いに左右方向で相隣なる連通部64,64同士の間を上下方向に延びる縦格子60a,60a,…が設けられている。この各縦格子60aには、上下方向に延びる縦凹部66,66,…が設けられている。この各縦凹部66は、図13に示すように、排気ガスの流れ方向下流側(図12では右側)に凹んでおり、それぞれ上下方向中央部において凹部62に接続されている。そして、各縦凹部66は、それぞれ上下両端部より上下方向中央部に行くに従い深さが漸増しており、その最も深くなる上下方向中央部が凹部62に対し略同じ深さで合流している。   That is, in the eighth embodiment, as shown in FIG. 12, on the surface 60 of the dispersion plate 6, vertical lattices 60a, 60a, 60b extending in the vertical direction between the communication portions 64, 64 adjacent to each other in the left-right direction. ... is provided. Each vertical lattice 60a is provided with vertical recesses 66, 66,... Extending in the vertical direction. As shown in FIG. 13, each vertical recess 66 is recessed downstream in the exhaust gas flow direction (right side in FIG. 12), and is connected to the recess 62 at the center in the vertical direction. Each vertical recess 66 gradually increases in depth as it goes from the upper and lower ends to the center in the vertical direction. The deepest vertical center joins the recess 62 at substantially the same depth. .

したがって、上記実施例8では、分散板6の表面60および各衝突片63に対し尿素水が噴射されて衝突した際に分散板6の表面60に付着した液膜状の尿素水は、分散板6の上下方向両端から分散板6の表面60に沿って上下方向中心部向きに流れる排気ガスの流れに沿って各縦凹部66から凹部62に案内されて積極的に合流し、凹部62において受け止められることになる。このため、凹部62に受け止められた尿素水は排気管の中心付近で最も温度が高い排気ガスにより効果的に加熱されて効率よく気化される上、その気化された尿素水が凹部62の左右両端から排気ガスの流れに沿って排気ガスの流れ方向下流側に積極的に導かれることになる。これにより、排気通路1の壁面への尿素水の落下をより確実に防止して排気通路1の下部での尿素水の固着をより効果的に抑制することができる。   Therefore, in Example 8 described above, when urea water is jetted onto the surface 60 of the dispersion plate 6 and each collision piece 63 and collides, the liquid film-like urea water attached to the surface 60 of the dispersion plate 6 is dispersed in the dispersion plate. 6 are guided from the vertical recesses 66 to the recesses 62 along the flow of the exhaust gas flowing from the both ends in the vertical direction along the surface 60 of the dispersion plate 6 toward the central portion in the vertical direction. Will be. For this reason, the urea water received in the concave portion 62 is effectively heated and efficiently vaporized by the exhaust gas having the highest temperature near the center of the exhaust pipe, and the vaporized urea water is efficiently vaporized at both the left and right ends of the concave portion 62. Therefore, the exhaust gas is actively guided to the downstream side in the exhaust gas flow direction along the exhaust gas flow. Thereby, it is possible to more reliably prevent urea water from dropping onto the wall surface of the exhaust passage 1 and more effectively suppress sticking of the urea water in the lower portion of the exhaust passage 1.

なお、本発明は、上記各実施例に限定されるものではなく、その他種々の変形例を包含している。例えば、上記各実施例では、選択還元型触媒21を備えた排気ガス浄化装置2の上流側において噴射ノズル3の噴射口31から排気ガス中に噴射される尿素水を衝突させる分散板4,5,6について述べたが、排気通路にゼオライト系触媒を備えた排気ガス浄化装置を設け、この排気ガス浄化装置よりも上流側において噴射ノズルの噴射口から排気ガス中に噴射される燃料成分(HC成分)を衝突させる分散板であってもよいのはもちろんである。   In addition, this invention is not limited to said each Example, The other various modifications are included. For example, in each of the above-described embodiments, the dispersion plates 4 and 5 that collide with the urea water injected into the exhaust gas from the injection port 31 of the injection nozzle 3 on the upstream side of the exhaust gas purification device 2 including the selective reduction catalyst 21. 6, an exhaust gas purification device having a zeolite catalyst is provided in the exhaust passage, and a fuel component (HC) injected into the exhaust gas from the injection nozzle of the injection nozzle upstream of the exhaust gas purification device. Of course, it may be a dispersion plate that collides the component).

また、上記実施例5では、各衝突片49の上下方向3箇所に左右方向へ延びるスリット49a,49a,…を設けたが、スリットが各衝突片以外の部分、例えば縦格子などに設けられていてもよい。   In the fifth embodiment, slits 49a, 49a,... Extending in the left-right direction are provided at three positions in the vertical direction of each collision piece 49. However, the slits are provided in portions other than each collision piece, for example, a vertical lattice. May be.

また、上記実施例7および8では、凹部62の左右両端を分散板6の左右両端より外方に開口させたが、凹部の左右両端が、分散板の左右両端より外方に開口せずに、分散板の左右両端部間に亘って延設されていてもよい。   In Examples 7 and 8, the left and right ends of the recess 62 are opened outward from the left and right ends of the dispersion plate 6. However, the left and right ends of the recess are not opened outward from the left and right ends of the dispersion plate. In addition, it may extend across the left and right ends of the dispersion plate.

また、上記実施例7および8では、排気通路1の中心付近に対応する上下方向中心部が上下両端部よりも排気ガスの流れ方向下流側に位置付けられるように上下方向中心部に向かって傾斜する断面略くの字状の分散板6を用いたが、排気通路の中心付近に対応する中心部が周縁部よりも排気ガスの流れ方向下流側に位置付けられるように中心部に向かって球面状に湾曲する断面略椀状の分散板が用いられていてもよい。   Moreover, in the said Example 7 and 8, it inclines toward an up-down direction center part so that the up-down direction center part corresponding to the center vicinity of the exhaust passage 1 may be located in the exhaust gas flow direction downstream rather than the up-and-down both ends. Although the dispersion plate 6 having a substantially U-shaped cross section is used, the center portion corresponding to the vicinity of the center of the exhaust passage is spherically formed toward the center portion so as to be positioned downstream of the peripheral portion in the exhaust gas flow direction. A curved dispersion plate having a substantially bowl-shaped cross section may be used.

更に、上記各実施例では、ディーゼルエンジンの排気通路1に添加剤分散板構造を適用した場合について述べたが、運転条件によっては排気ガスとともにNOxが排出される筒内噴射ガソリンエンジンの排気通路に添加剤分散板構造が適用されていてもよいのはいうまでもない。   Further, in each of the above embodiments, the case where the additive dispersion plate structure is applied to the exhaust passage 1 of the diesel engine has been described. However, depending on the operating conditions, the exhaust passage of the direct injection gasoline engine in which NOx is discharged together with the exhaust gas is described. Needless to say, an additive dispersion plate structure may be applied.

本発明の実施例1に係る分散板付近の排気通路を側方から見た断面図である。It is sectional drawing which looked at the exhaust passage of the dispersion plate vicinity which concerns on Example 1 of this invention from the side. 同じく分散板を斜め前方から見た斜視図である。It is the perspective view which similarly looked at the dispersion plate from diagonally forward. 本発明の実施例2に係る分散板を斜め前方から見た斜視図である。It is the perspective view which looked at the dispersion plate which concerns on Example 2 of this invention from diagonally forward. 本発明の実施例3に係る分散板を斜め前方から見た斜視図である。It is the perspective view which looked at the dispersion plate which concerns on Example 3 of this invention from diagonally forward. 本発明の実施例4に係る分散板を斜め前方から見た斜視図である。It is the perspective view which looked at the dispersion plate which concerns on Example 4 of this invention from diagonally forward. 本発明の実施例5に係る分散板を斜め前方から見た斜視図である。It is the perspective view which looked at the dispersion plate which concerns on Example 5 of this invention from diagonally forward. 本発明の実施例6に係る分散板付近の排気通路を側方から見た断面図である。It is sectional drawing which looked at the exhaust passage of the dispersion plate vicinity which concerns on Example 6 of this invention from the side. 同じく分散板を側方から見た縦断側面図である。It is the vertical side view which similarly looked at the dispersion plate from the side. 本発明の実施例7に係る分散板付近の排気通路を側方から見た断面図である。It is sectional drawing which looked at the exhaust passage of the dispersion plate vicinity which concerns on Example 7 of this invention from the side. 同じく分散板を斜め前方から見た斜視図である。It is the perspective view which similarly looked at the dispersion plate from diagonally forward. 同じく分散板を側方から見た縦断側面図である。It is the vertical side view which similarly looked at the dispersion plate from the side. 本発明の実施例8に係る分散板を斜め前方から見た斜視図である。It is the perspective view which looked at the dispersion plate which concerns on Example 8 of this invention from diagonally forward. 同じく分散板を側方から見た縦断側面図である。It is the vertical side view which similarly looked at the dispersion plate from the side.

符号の説明Explanation of symbols

1 排気通路
2 排気ガス浄化装置
4 分散板(添加剤分散板)
42 凹部
43 衝突片(衝突部)
44 連通部
46 凹部
47 凹部
48 凹部
49 衝突片(衝突部)
5 分散板(添加剤分散板)
52 凹部
53 連通部
6 分散板(添加剤分散板)
62 凹部
63 衝突片(衝突部)
64 連通部
66 縦凹部
1 Exhaust passage 2 Exhaust gas purification device 4 Dispersion plate (additive dispersion plate)
42 Recess 43 Colliding piece (collision part)
44 Communication part 46 Concave part 47 Concave part 48 Concave part 49 Colliding piece (collision part)
5 Dispersion plate (additive dispersion plate)
52 Concave portion 53 Communication portion 6 Dispersion plate (additive dispersion plate)
62 Recess 63 Colliding piece (collision part)
64 Communication portion 66 Vertical recess

Claims (4)

エンジンの排気通路に配置された排気ガス浄化装置の上流側において上記排気通路の内部に噴射された添加剤を分散する添加剤分散板の構造であって、
上記添加剤分散板は、上記排気通路の内部に噴射された添加剤を表面に衝突させるように上記排気通路の内部を横切って配置されており、
上記添加剤分散板の表面には、排気ガスの流れ方向下流側に凹む凹部が設けられ、この凹部は、左右方向へ延びて設けられていることを特徴とする排気通路の添加剤分散板構造。
The structure of an additive dispersion plate that disperses the additive injected into the exhaust passage on the upstream side of the exhaust gas purification device disposed in the exhaust passage of the engine,
The additive dispersion plate is disposed across the interior of the exhaust passage so that the additive injected into the exhaust passage collides with the surface.
An additive dispersion plate structure for an exhaust passage, characterized in that a concave portion is provided on the surface of the additive dispersion plate and is recessed in the downstream of the exhaust gas flow direction. .
請求項1に記載の排気通路の添加剤分散板構造において、
上記添加剤分散板の上記凹部よりも上側には、
上記排気通路の内部に噴射された添加剤の噴射方向に対しほぼ対向するように傾斜する衝突部と、
この衝突部の上側に設けられ、排気ガスを上記添加剤分散板の流れ方向上流側から下流側に連通させる連通部と
が設けられていることを特徴とする排気通路の添加剤分散板構造。
The additive dispersion plate structure of the exhaust passage according to claim 1,
Above the concave portion of the additive dispersion plate,
A collision portion that is inclined so as to be substantially opposed to the injection direction of the additive injected into the exhaust passage;
An additive dispersion plate structure for an exhaust passage, which is provided on the upper side of the collision portion and communicates with exhaust gas from the upstream side to the downstream side in the flow direction of the additive dispersion plate.
請求項1または請求項2に記載の添加剤分散板構造において、
上記凹部は、上記添加剤分散板の左右両端部間に亘って延設され、その左右方向中央部が左右両端部よりも下方に位置付けられるように上記左右方向中央部に向かって傾斜していることを特徴とする排気通路の添加剤分散板構造。
In the additive dispersion plate structure according to claim 1 or 2,
The concave portion extends between the left and right end portions of the additive dispersion plate, and is inclined toward the left-right direction central portion so that the left-right direction central portion is positioned below the left and right end portions. An additive dispersion plate structure for an exhaust passage.
請求項1ないし請求項3のいずれか1つに記載の添加剤分散板構造において、
上記添加剤分散板は、上記排気通路の中心付近に対応する中心部が最も排気ガスの流れ方向下流側に位置付けられるように上記中心部に向かって傾斜していることを特徴とする排気通路の添加剤分散板構造。
In the additive dispersion plate structure according to any one of claims 1 to 3,
The additive dispersion plate is inclined toward the central portion so that a central portion corresponding to the vicinity of the center of the exhaust passage is positioned most downstream in the flow direction of the exhaust gas. Additive dispersion plate structure.
JP2007314597A 2007-12-05 2007-12-05 Additive dispersion plate structure in exhaust passage Expired - Fee Related JP4626647B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007314597A JP4626647B2 (en) 2007-12-05 2007-12-05 Additive dispersion plate structure in exhaust passage
DE102008044364A DE102008044364A1 (en) 2007-12-05 2008-12-04 Additive distribution plate in an exhaust passage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314597A JP4626647B2 (en) 2007-12-05 2007-12-05 Additive dispersion plate structure in exhaust passage

Publications (2)

Publication Number Publication Date
JP2009138592A true JP2009138592A (en) 2009-06-25
JP4626647B2 JP4626647B2 (en) 2011-02-09

Family

ID=40621374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314597A Expired - Fee Related JP4626647B2 (en) 2007-12-05 2007-12-05 Additive dispersion plate structure in exhaust passage

Country Status (2)

Country Link
JP (1) JP4626647B2 (en)
DE (1) DE102008044364A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202512A (en) * 2010-03-24 2011-10-13 Hino Motors Ltd Apparatus for control of exhaust emission
WO2015015260A1 (en) 2013-07-30 2015-02-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine and control method thereof
JP2020513494A (en) * 2017-05-24 2020-05-14 エルジー・ケム・リミテッド Selective catalytic reduction system
CN115059529A (en) * 2022-06-30 2022-09-16 无锡威孚力达催化净化器有限责任公司 Urea mixing arrangement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011015089A1 (en) * 2011-03-25 2012-09-27 Dif Die Ideenfabrik Gmbh Exhaust gas treatment device for cleaning exhaust gas of internal combustion engine of motor vehicle, has plate-like shield that is provided with opening through which fluid is fed to interior of exhaust gas treatment device
KR101758218B1 (en) * 2016-05-18 2017-07-14 세종공업 주식회사 Reducing agent mixing apparatus having linear blade
DE102017100132A1 (en) 2017-01-05 2018-07-05 Eberspächer Exhaust Technology GmbH & Co. KG exhaust system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336588A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008115796A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Reducing agent dispersing device of internal-combustion engine
JP2009068460A (en) * 2007-09-14 2009-04-02 Toyota Motor Corp Additive dispersing plate structure of exhaust passage
JP2009085179A (en) * 2007-10-02 2009-04-23 Toyota Motor Corp Additive distribution board structure in exhaust passage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077957A (en) 2005-09-16 2007-03-29 Hino Motors Ltd Exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336588A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008115796A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Reducing agent dispersing device of internal-combustion engine
JP2009068460A (en) * 2007-09-14 2009-04-02 Toyota Motor Corp Additive dispersing plate structure of exhaust passage
JP2009085179A (en) * 2007-10-02 2009-04-23 Toyota Motor Corp Additive distribution board structure in exhaust passage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202512A (en) * 2010-03-24 2011-10-13 Hino Motors Ltd Apparatus for control of exhaust emission
WO2015015260A1 (en) 2013-07-30 2015-02-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine and control method thereof
JP2020513494A (en) * 2017-05-24 2020-05-14 エルジー・ケム・リミテッド Selective catalytic reduction system
US10808591B2 (en) 2017-05-24 2020-10-20 Lg Chem, Ltd. Selective catalytic reduction system
CN113250794A (en) * 2017-05-24 2021-08-13 株式会社Lg化学 Selective catalytic reduction system
CN113250794B (en) * 2017-05-24 2023-03-14 株式会社Lg化学 Selective catalytic reduction system
CN115059529A (en) * 2022-06-30 2022-09-16 无锡威孚力达催化净化器有限责任公司 Urea mixing arrangement

Also Published As

Publication number Publication date
JP4626647B2 (en) 2011-02-09
DE102008044364A1 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4375465B2 (en) Additive dispersion plate structure in exhaust passage
JP4600457B2 (en) Additive dispersion plate structure in exhaust passage
CN101627190B (en) Exhaust gas purification apparatus for internal combustion engine
JP4626647B2 (en) Additive dispersion plate structure in exhaust passage
JP3938187B2 (en) Exhaust gas purification method and exhaust gas purification system
US20110239631A1 (en) Ring Reductant Mixer
EP2075428B1 (en) Emission control system
JP4961847B2 (en) Exhaust gas purification method and exhaust gas purification system
US9821282B2 (en) Diesel exhaust fluid mixing system for a linear arrangement of diesel oxidation catalyst and selective catalytic reduction filter
US20120151902A1 (en) Biased reductant mixer
JP2007032472A (en) Exhaust gas treatment device using urea water
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
JP4404123B2 (en) Additive dispersion plate structure in exhaust passage
JP2011236746A (en) Exhaust emission control system of internal combustion engine
JP2008240722A (en) Exhaust emission control device
JP2009138598A (en) Additive distribution board structure of exhaust passage
JP4830570B2 (en) Exhaust gas purification system
JP5664771B2 (en) Exhaust gas purification device for internal combustion engine
JP2013002336A (en) Reducing agent injection nozzle and nitrogen oxide purification system with reducing agent injection nozzle
JP6627479B2 (en) Exhaust gas purification device
JP2014231744A (en) Exhaust gas purification device
WO2020110938A1 (en) Mixing member, exhaust purification device and vehicle
KR101484254B1 (en) Selective catalyst reduction device for exhaust system
JP2009162122A (en) Exhaust gas passage structure
JP2009250171A (en) Exhaust emission control system of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees