JP2010038020A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2010038020A
JP2010038020A JP2008201055A JP2008201055A JP2010038020A JP 2010038020 A JP2010038020 A JP 2010038020A JP 2008201055 A JP2008201055 A JP 2008201055A JP 2008201055 A JP2008201055 A JP 2008201055A JP 2010038020 A JP2010038020 A JP 2010038020A
Authority
JP
Japan
Prior art keywords
reducing agent
exhaust gas
supply valve
exhaust
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008201055A
Other languages
Japanese (ja)
Inventor
Akio Kawaguchi
暁生 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008201055A priority Critical patent/JP2010038020A/en
Publication of JP2010038020A publication Critical patent/JP2010038020A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4311Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2290/00Movable parts or members in exhaust systems for other than for control purposes

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine, uniformly dispersing a reducing agent in exhaust gas. <P>SOLUTION: The exhaust emission control device of the internal combustion engine has a reducing agent supply valve 7 arranged in an exhaust passage 5 upstream of a catalyst 6 and controls emissions of exhaust in the catalyst 6 with the reducing agent injected from the reducing agent supply valve 7, wherein a deflecting member 12 is arranged downstream of the reducing agent supply valve 7 and in the exhaust passage 5 upstream of the catalyst 6. The deflecting member 12 can deflect an exhaust gas flow 11 between a direction of a wall surface on which the reducing agent supply valve 7 is arranged and a direction of the opposite wall surface by controlling its inclination angle with respect to an axis direction of the exhaust passage 5 and the inclination angle of the deflecting member 12 is controlled so that a deflection direction of the exhaust gas flow 11 containing the injected reducing agent is varied from the direction of the wall surface on which the reducing agent supply valve 7 is arranged to the direction of the opposite wall surface according to increase of a flow rate of the exhaust gas flow 11 in the exhaust passage 5 when the reducing agent is injected from the reducing agent supply valve 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出するNOx吸蔵触媒を機関排気通路内に配置し、NOx吸蔵触媒の上流に還元剤供給弁を配置し、NOx吸蔵触媒からNOxを放出すべきときには還元剤供給弁から還元剤を供給し、NOx吸蔵触媒に流入する排気ガスの空燃比をリッチにする内燃機関が公知である。   When the air-fuel ratio of the inflowing exhaust gas is lean, the NOx storage catalyst that stores NOx contained in the exhaust gas and releases the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich is disposed in the engine exhaust passage. The reducing agent supply valve is arranged upstream of the NOx storage catalyst, and when the NOx should be released from the NOx storage catalyst, the reducing agent is supplied from the reducing agent supply valve, and the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst Internal combustion engines that enrich the engine are known.

この内燃機関において、NOx吸蔵触媒から良好にNOxを放出させるためには、還元剤供給弁から噴射された還元剤をできる限り排気ガス内に分散させてNOx吸蔵触媒に流入させる必要がある。そのために、還元剤供給弁下流の排気管内に排気管の軸線方向に延びる並列配置の複数の排気流通路の集合体からなる通気性板状部材を配置し、還元剤供給弁から通気性板状部材の上流側端面に向けて噴射された還元剤を噴射する内燃機関が公知である(例えば特許文献1を参照)。この内燃機関では還元剤を通気性板状部材の各排気流通路内に分散して流入させ、それによって排気ガス中に還元剤を分散させている。   In this internal combustion engine, in order to release NOx well from the NOx storage catalyst, it is necessary to disperse the reducing agent injected from the reducing agent supply valve in the exhaust gas as much as possible and to flow into the NOx storage catalyst. For this purpose, a breathable plate-like member comprising a collection of a plurality of exhaust flow passages arranged in parallel extending in the axial direction of the exhaust pipe is disposed in the exhaust pipe downstream of the reducing agent supply valve, and the breathable plate-like member is formed from the reducing agent supply valve. An internal combustion engine that injects a reducing agent that is injected toward the upstream end face of a member is known (see, for example, Patent Document 1). In this internal combustion engine, the reducing agent is dispersed and introduced into each exhaust flow passage of the breathable plate-like member, thereby dispersing the reducing agent in the exhaust gas.

特開2005−214100号公報JP-A-2005-214100

しかしながら実際には還元剤は還元剤供給弁から通気性板状部材の上流側端面上に均一に分散して噴射されず、各排気流通路内には還元剤が均一に分散して流入しない。即ち、還元剤供給弁からの噴射圧は略一定であるが、排気管内を流れる排気ガスの流量又は流速は内燃機関の運転状態によって異なるので、例えば図13及び図14に示すような噴射された還元剤20に偏りが生じる。図13及び14は、還元剤供給弁7近傍の排気管5の縦断面図を示す。図13は、排気ガスが低流量時、即ち機関回転数が低い場合を示し、還元剤供給弁7から噴射された還元剤20は還元剤供給弁7が配置された壁面と反対側の壁面方向に偏る。他方、図14は、排気ガスが高流量時、即ち機関回転数が高い場合を示し、還元剤供給弁7から噴射された還元剤20は還元剤供給弁7が配置された側の壁面方向にに偏る。   However, in practice, the reducing agent is not uniformly dispersed and injected from the reducing agent supply valve onto the upstream end face of the air-permeable plate-like member, and the reducing agent is not uniformly dispersed and flows into each exhaust flow passage. That is, the injection pressure from the reducing agent supply valve is substantially constant, but the flow rate or flow rate of the exhaust gas flowing through the exhaust pipe varies depending on the operating state of the internal combustion engine, so that the injection was performed as shown in FIGS. 13 and 14, for example. The reducing agent 20 is biased. 13 and 14 are longitudinal sectional views of the exhaust pipe 5 in the vicinity of the reducing agent supply valve 7. FIG. 13 shows a case where the exhaust gas is at a low flow rate, that is, when the engine speed is low, and the reducing agent 20 injected from the reducing agent supply valve 7 is in the direction of the wall opposite to the wall on which the reducing agent supply valve 7 is disposed. Biased toward On the other hand, FIG. 14 shows a case where the exhaust gas is at a high flow rate, that is, when the engine speed is high, and the reducing agent 20 injected from the reducing agent supply valve 7 is directed toward the wall surface on the side where the reducing agent supply valve 7 is disposed. Biased toward

従って各排気流通路からは異なる量の還元剤が排出され、各排気流通路から流出した異なる量の還元剤は通気性板状部材の下流において十分に混合されず、還元剤を排気ガス中に均一に分散させることができないという問題がある。   Therefore, a different amount of reducing agent is discharged from each exhaust flow passage, and the different amount of reducing agent flowing out from each exhaust flow passage is not sufficiently mixed downstream of the air-permeable plate member, so that the reducing agent is put into the exhaust gas. There is a problem that it cannot be uniformly dispersed.

また、通気性板状部材を用いて還元剤を排気ガス中に均一に分散させることに関し、よりミクロな視点で見た場合に別の問題がある。即ち、還元剤の分散を促進するため、通気性板状部材の各排気流通路を隔てる隔壁表面に還元剤を一時的に付着保持し、保持されている間に還元剤を十分に気化させることが好ましい。しかしながら、図15に隔壁表面の拡大図に示すように、噴射された還元剤の液滴18は、付着保持されることなく、即ち十分気化することなく表面に弾かれ、十分気化しないという問題がある。   In addition, there is another problem in terms of uniformly dispersing the reducing agent in the exhaust gas using the air-permeable plate-like member when viewed from a more microscopic viewpoint. That is, in order to promote the dispersion of the reducing agent, the reducing agent is temporarily attached to and held on the partition wall separating the exhaust flow passages of the breathable plate member, and the reducing agent is sufficiently vaporized while being held. Is preferred. However, as shown in the enlarged view of the partition wall surface in FIG. 15, there is a problem that the injected reducing agent droplets 18 are not adhered and held, that is, repelled on the surface without being sufficiently vaporized and not sufficiently vaporized. is there.

これらの問題のため、還元剤の分散性が悪化し、不均一な還元剤が下流の触媒に流入することによって部分的な劣化が生じ、排気浄化率の低下を招く結果となる。   Due to these problems, the dispersibility of the reducing agent is deteriorated, and when the non-uniform reducing agent flows into the downstream catalyst, partial deterioration occurs, resulting in a decrease in the exhaust purification rate.

そこで本発明は、還元剤を排気ガス中に均一に分散させる内燃機関の排気浄化装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust purification device for an internal combustion engine in which a reducing agent is uniformly dispersed in exhaust gas.

前記課題を解決するために請求項1に記載の発明によれば、触媒上流の排気通路内に還元剤供給弁を配置し、還元剤供給弁から噴射された還元剤によって触媒において排気を浄化する内燃機関の排気浄化装置において、還元剤供給弁下流であって触媒上流排気通路内に偏向部材を配置し、該偏向部材は、排気通路の軸線方向に対するその傾斜角を制御することによって排気ガス流れを還元剤供給弁が配置された壁面方向とその反対側の壁面方向との間で偏向可能であり、還元剤供給弁からの還元剤の噴射時における排気通路内の排気ガス流れの流量の増加に応じて、噴射された還元剤を含む排気ガス流れの偏向方向を還元剤供給弁が配置された壁面方向からその反対側の壁面方向へ変化させるように偏向部材の傾斜角を制御する内燃機関の排気浄化装置が提供される。即ち、請求項1に記載の発明では、排気ガスの流量によって生じる還元剤供給弁から噴射された還元剤の偏りを、排気ガスの流量に応じて偏向部材を制御することによって、還元剤を排気ガス中に均一に分散させることが可能となる。   In order to solve the above problem, according to the first aspect of the present invention, a reducing agent supply valve is disposed in the exhaust passage upstream of the catalyst, and exhaust gas is purified in the catalyst by the reducing agent injected from the reducing agent supply valve. In an exhaust gas purification apparatus for an internal combustion engine, a deflection member is disposed in a catalyst upstream exhaust passage downstream of a reducing agent supply valve, and the deflection member controls an exhaust gas flow by controlling an inclination angle of the exhaust passage with respect to an axial direction. The flow rate of the exhaust gas flow in the exhaust passage during the injection of the reducing agent from the reducing agent supply valve can be deflected between the wall direction in which the reducing agent supply valve is disposed and the opposite wall direction. Accordingly, the internal combustion engine controls the inclination angle of the deflecting member so as to change the deflection direction of the exhaust gas flow containing the injected reducing agent from the wall surface direction where the reducing agent supply valve is disposed to the opposite wall surface direction. Excretion Purifier is provided. That is, in the first aspect of the present invention, the reducing agent is exhausted by controlling the deflection member according to the flow rate of the exhaust gas to control the deflection of the reducing agent injected from the reducing agent supply valve caused by the flow rate of the exhaust gas. It becomes possible to disperse uniformly in the gas.

また、請求項2に記載の発明によれば請求項1に記載の発明において、還元剤供給弁からの還元剤の噴射時以外は、偏向部材が受ける排気ガス流れに対する抵抗が最小限となる位置に偏向部材の傾斜角を制御する内燃機関の排気浄化装置が提供される。即ち、請求項2に記載の発明では、還元剤供給弁からの還元剤の噴射時以外の時、偏向部材による排気通路内の圧力損失を抑制することが可能となる。   According to the invention described in claim 2, in the invention described in claim 1, the position where the resistance to the exhaust gas flow received by the deflecting member is minimized except when the reducing agent is injected from the reducing agent supply valve. Further, an exhaust gas purification apparatus for an internal combustion engine that controls the inclination angle of the deflection member is provided. In other words, in the invention described in claim 2, it is possible to suppress the pressure loss in the exhaust passage due to the deflecting member when the reducing agent is not injected from the reducing agent supply valve.

また、請求項3に記載の発明によれば請求項1又は2のいずれか一方に記載の発明において、少なくとも2つの偏向部材を排気ガス流れに対して並列配置した内燃機関の排気浄化装置が提供される。即ち、請求項3に記載の発明では、複数の偏向部材を用いることによって、還元剤の偏りをなくし、還元剤をより均一に分散させることが可能となる。   According to a third aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the first or second aspect of the present invention, wherein at least two deflecting members are arranged in parallel to the exhaust gas flow. Is done. That is, in the invention described in claim 3, by using a plurality of deflecting members, it is possible to eliminate the unevenness of the reducing agent and to disperse the reducing agent more uniformly.

また、請求項4に記載の発明によれば請求項4に記載の発明において、偏向方向とは反対側の壁面近くに配置された偏向部材ほど噴射された還元剤を含む排気ガス流れを大きく偏向させる傾斜角に制御する内燃機関の排気浄化装置が提供される。即ち、請求項4に記載の発明では、各偏向部材が偏向させる排気ガスの偏向の度合を場所により変えることによって、還元剤をより均一に分散させることが可能となる。   Further, according to the invention described in claim 4, in the invention described in claim 4, the flow of exhaust gas containing the reducing agent is largely deflected toward the deflecting member disposed near the wall surface opposite to the deflecting direction. An exhaust gas purification apparatus for an internal combustion engine that controls the tilt angle is provided. That is, in the invention described in claim 4, the reducing agent can be more uniformly dispersed by changing the degree of deflection of the exhaust gas deflected by each deflecting member depending on the location.

また、請求項5に記載の発明によれば、触媒上流の排気通路内に還元剤供給弁を配置し、還元剤供給弁から噴射された還元剤によって触媒において排気を浄化する内燃機関の排気浄化装置において、還元剤供給弁下流であって触媒上流排気通路内に通気性のメッシュ面を備えたメッシュ部材を配置し、メッシュ面が還元剤供給弁から噴射された還元剤を一時的に付着保持し気化させ又は微粒化させ、メッシュ面と排気通路の軸線方向とがなす傾斜角を、還元剤供給弁からの還元剤の噴射時はメッシュ面が還元剤を付着保持又は微粒化する角度に、還元剤供給弁からの還元剤の噴射時以外はメッシュ面が受ける排気ガス流れに対する抵抗が最小限となる角度に制御する内燃機関の排気浄化装置が提供される。即ち、請求項5に記載の発明では、メッシュ部材を用いることによって簡単な構造で還元剤を均一に分散させることができ、また、還元剤供給弁からの還元剤の噴射時以外の時、メッシュ部材による排気通路内の圧力損失を抑制することが可能となる。   According to the invention described in claim 5, the exhaust gas purification of the internal combustion engine in which the reducing agent supply valve is disposed in the exhaust passage upstream of the catalyst, and the exhaust gas is purified in the catalyst by the reducing agent injected from the reducing agent supply valve. In the device, a mesh member having a breathable mesh surface is disposed in the exhaust passage downstream of the reducing agent supply valve and upstream of the catalyst, and the mesh surface temporarily holds the reducing agent injected from the reducing agent supply valve. When the reducing agent is injected from the reducing agent supply valve, the mesh surface adheres to or retains the reducing agent when the reducing agent is injected. Provided is an internal combustion engine exhaust gas purification apparatus that controls an angle at which resistance to an exhaust gas flow received by a mesh surface is minimized except during injection of a reducing agent from a reducing agent supply valve. That is, in the invention described in claim 5, the reducing agent can be uniformly dispersed with a simple structure by using the mesh member, and the mesh can be used at a time other than when the reducing agent is injected from the reducing agent supply valve. It becomes possible to suppress the pressure loss in the exhaust passage by the member.

また、請求項6に記載の発明によれば、還元剤供給弁から噴射された還元剤によって触媒において排気を浄化する内燃機関の排気浄化装置において、還元剤供給弁下流であって触媒上流排気通路内に還元剤を一時的に付着保持し気化させる付着保持部を備えた還元剤保持部材を配置し、付着保持部に光触媒作用を有する光触媒物質を備えると共に排気通路内に光触媒物質に光を照射する光源を備え、付着保持部に付着したデポジットを光触媒作用により酸化除去する内燃機関の排気浄化装置が提供される。即ち、請求項6に記載の発明では、付着保持部に還元剤を一時的に付着保持し気化させることによって還元剤を排気ガス中に均一に分散させることができると共に、付着保持部に生じやすいデポジットを光触媒作用によって簡単に酸化除去することが可能となる。   According to the sixth aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine that purifies exhaust gas in the catalyst with the reducing agent injected from the reducing agent supply valve, the exhaust gas passage downstream of the reducing agent supply valve and upstream of the catalyst A reducing agent holding member having an adhesion holding portion that temporarily holds and vaporizes the reducing agent is disposed therein, and the photocatalytic material having a photocatalytic action is provided in the adhesion holding portion and light is irradiated to the photocatalytic material in the exhaust passage. There is provided an exhaust gas purification apparatus for an internal combustion engine that includes a light source that oxidizes and removes deposits adhering to an adhesion holding portion by photocatalysis. That is, in the invention according to the sixth aspect, the reducing agent can be uniformly dispersed in the exhaust gas by temporarily adsorbing and vaporizing the reducing agent in the adhesion holding portion, and easily generated in the adhesion holding portion. The deposit can be easily oxidized and removed by photocatalysis.

各請求項に記載の発明によれば、還元剤を排気ガス中に均一に分散させることができるという共通の効果を奏する。   According to the invention described in each claim, there is a common effect that the reducing agent can be uniformly dispersed in the exhaust gas.

以下、図面を参照しながら本発明による内燃機関の排気浄化装置について説明する。図1は本発明の排気浄化装置が搭載される内燃機関全体の図である。図1に示した実施形態では本発明の排気浄化装置が圧縮着火式内燃機関に用いられた場合を示しているが、火花点火式内燃機関等その他内燃機関にも用いることができる。   Hereinafter, an exhaust emission control device for an internal combustion engine according to the present invention will be described with reference to the drawings. FIG. 1 is an overall view of an internal combustion engine equipped with an exhaust emission control device of the present invention. In the embodiment shown in FIG. 1, the exhaust purification device of the present invention is used for a compression ignition type internal combustion engine, but it can also be used for other internal combustion engines such as a spark ignition type internal combustion engine.

図1に圧縮着火式内燃機関の全体図を示す。図1を参照すると、1は機関本体、2は吸気マニホルド、3は排気マニホルドをそれぞれ示す。排気マニホルド3の出口は酸化触媒4の入口に連結され、酸化触媒4の出口は排気管5を介して触媒6の入口に連結される。触媒6の上流の排気管5内には還元剤供給弁7が配置される。還元剤供給弁7は、還元剤供給管8を介して電気制御式の吐出量可変な供給ポンプ9に連結され、供給ポンプ9は例えば液体の還元剤を収容した還元剤タンク10に連結される。Aに示す還元剤供給弁7の下流であって触媒6の上流排気管5内には、いくつかの実施形態によって後述する、還元剤を分散させる還元剤分散器が配置されている。   FIG. 1 shows an overall view of a compression ignition type internal combustion engine. Referring to FIG. 1, 1 is an engine body, 2 is an intake manifold, and 3 is an exhaust manifold. The outlet of the exhaust manifold 3 is connected to the inlet of the oxidation catalyst 4, and the outlet of the oxidation catalyst 4 is connected to the inlet of the catalyst 6 through the exhaust pipe 5. A reducing agent supply valve 7 is disposed in the exhaust pipe 5 upstream of the catalyst 6. The reducing agent supply valve 7 is connected to an electrically controlled supply variable discharge pump 9 via a reducing agent supply pipe 8, and the supply pump 9 is connected to a reducing agent tank 10 containing, for example, a liquid reducing agent. . In the exhaust pipe 5 downstream of the reducing agent supply valve 7 shown in A and in the upstream of the catalyst 6, a reducing agent disperser for dispersing the reducing agent, which will be described later according to some embodiments, is arranged.

還元剤の種類は、触媒6の種類や浄化すべき排気ガス成分に応じて定めることができ、例えば軽油(燃料)のような炭化水素や、尿素、アンモニア等を還元剤として用いることができる。以下に示す実施形態においては、還元剤として尿素水を、触媒6としてNOx選択還元触媒を用いた場合について説明する。   The type of the reducing agent can be determined according to the type of the catalyst 6 and the exhaust gas component to be purified. For example, hydrocarbon such as light oil (fuel), urea, ammonia or the like can be used as the reducing agent. In the embodiment described below, a case where urea water is used as the reducing agent and a NOx selective reduction catalyst is used as the catalyst 6 will be described.

NOx選択還元触媒6は、例えばアンモニア吸着タイプのFeゼオライトから構成されている。尿素水を供給すべきときには還元剤タンク10内に貯蔵されている尿素水が供給ポンプ9によって還元剤供給弁7から排気管5内を流れる排気ガス中に噴射され、このとき尿素から発生したアンモニア((NH2)2CO+H2O→2NH3+CO2)によって排気ガス中に含まれるNOxがNOx選択還元触媒6において還元される。酸化触媒4は、例えば白金のような貴金属触媒を担持しており、この酸化触媒4は排気ガス中に含まれるHCを酸化させる作用をなす。 The NOx selective reduction catalyst 6 is made of, for example, ammonia adsorption type Fe zeolite. When the urea water is to be supplied, the urea water stored in the reducing agent tank 10 is injected by the supply pump 9 into the exhaust gas flowing through the exhaust pipe 5 from the reducing agent supply valve 7, and at this time, the ammonia generated from the urea NOx contained in the exhaust gas is reduced in the NOx selective reduction catalyst 6 by ((NH 2 ) 2 CO + H 2 O → 2 NH 3 + CO 2 ). The oxidation catalyst 4 carries a noble metal catalyst such as platinum, for example, and this oxidation catalyst 4 functions to oxidize HC contained in the exhaust gas.

電子制御ユニット(ECU)30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。アクセルペダル39にはアクセルペダル39の踏み込み量Lに比例した出力電圧を発生する負荷センサ40が接続され、負荷センサ40の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ41が接続される。CPU34ではクランク角センサ41からの出力パルスに基づいて機関回転数Nが算出される。一方、出力ポート36は対応する駆動回路38を介して還元剤供給弁7及び供給ポンプ9に接続される。   The electronic control unit (ECU) 30 is a digital computer and includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35, and the like connected to each other by a bidirectional bus 31. An output port 36 is provided. A load sensor 40 that generates an output voltage proportional to the depression amount L of the accelerator pedal 39 is connected to the accelerator pedal 39, and the output voltage of the load sensor 40 is input to the input port 35 via the corresponding AD converter 37. . Further, the input port 35 is connected to a crank angle sensor 41 that generates an output pulse every time the crankshaft rotates, for example, 15 °. The CPU 34 calculates the engine speed N based on the output pulse from the crank angle sensor 41. On the other hand, the output port 36 is connected to the reducing agent supply valve 7 and the supply pump 9 via a corresponding drive circuit 38.

図2は、本発明による1番目の実施形態による還元剤分散器が配置された図1のA部の拡大断面図である。本実施形態による還元剤分散器は、1つ又は少なくとも2つの偏向板12を有する。偏向板12は、還元剤供給弁7の噴射軸線に対して垂直且つ排気管5の横断面に対して平行に配置された回転軸12aを有し、この回転軸12aを中心とした排気管5の中心軸線5a方向に対する傾斜角によってその位置を図示しないアクチュエータによって制御することができる。図2に示す偏向板12の配置は傾斜角0度の定常位置であり、還元剤の噴射時以外、偏向板12はこの定常位置に配置され、排気ガス流れ11に対する抵抗を最小限に抑えている。図3は、図2の線B−Bにおける断面を示している。   FIG. 2 is an enlarged cross-sectional view of part A of FIG. 1 in which the reducing agent disperser according to the first embodiment of the present invention is arranged. The reducing agent disperser according to the present embodiment has one or at least two deflecting plates 12. The deflection plate 12 has a rotating shaft 12a disposed perpendicular to the injection axis of the reducing agent supply valve 7 and parallel to the cross section of the exhaust pipe 5, and the exhaust pipe 5 with the rotating shaft 12a as the center. The position can be controlled by an actuator (not shown) by an inclination angle with respect to the direction of the central axis 5a. The arrangement of the deflection plate 12 shown in FIG. 2 is a steady position with an inclination angle of 0 degrees, and the deflection plate 12 is arranged at this steady position except when the reducing agent is injected, and the resistance to the exhaust gas flow 11 is minimized. Yes. FIG. 3 shows a cross section taken along line BB in FIG.

図4は、排気ガスが低流量時に還元剤が噴射される場合の偏向板12の配置を示す図1のA部の拡大断面図である。排気ガスの流量が低い場合、図13を参照しながら前述したように、噴射された還元剤20は、還元剤供給弁7が配置された壁面とは反対側の壁面方向に偏る傾向にある。従って、図4に示すように、還元剤を含む排気ガス流れ11が、還元剤供給弁7が配置された側の壁面方向に向かうように偏向板12の傾斜角を制御する。それによって、還元剤の偏りはなくなり、還元剤を排気ガス中に均一に分散させることができる。なお、偏向板12の傾斜角がゼロではなく、排気ガス流れ11を偏向する位置を偏向位置と称す。   FIG. 4 is an enlarged cross-sectional view of part A of FIG. 1 showing the arrangement of the deflection plate 12 when the reducing agent is injected when the exhaust gas is at a low flow rate. When the flow rate of the exhaust gas is low, as described above with reference to FIG. 13, the injected reducing agent 20 tends to be biased toward the wall surface opposite to the wall surface on which the reducing agent supply valve 7 is disposed. Therefore, as shown in FIG. 4, the inclination angle of the deflection plate 12 is controlled so that the exhaust gas flow 11 containing the reducing agent is directed toward the wall surface on the side where the reducing agent supply valve 7 is disposed. Accordingly, the reducing agent is not biased, and the reducing agent can be uniformly dispersed in the exhaust gas. Note that the position at which the inclination angle of the deflection plate 12 is not zero and the exhaust gas flow 11 is deflected is referred to as a deflection position.

なお、還元剤の偏りが大きい還元剤供給弁7が配置された壁面とは反対側の壁面に近い偏向板12ほど、偏向板12の傾斜角の変位量が大きくなるように制御することによって、還元剤の分散性をより向上させることができる。また還元剤の偏りは、流量が低ければ低いほど大きくなるため、流量が低いほど偏向板12の傾斜角の変位量を大きくするように制御することができる。   By controlling the deflection plate 12 closer to the wall surface opposite to the wall surface on which the reducing agent supply valve 7 having a large bias of the reducing agent is disposed, the displacement amount of the inclination angle of the deflection plate 12 is controlled to be larger. The dispersibility of the reducing agent can be further improved. Further, since the bias of the reducing agent increases as the flow rate decreases, it can be controlled to increase the displacement amount of the inclination angle of the deflector plate 12 as the flow rate decreases.

図5は、排気ガスが高流量時に還元剤が噴射される場合の偏向板12の配置を示す図1のA部の拡大断面図である。排気ガスの流量が高い場合、図14を参照しながら前述したように、噴射された還元剤20は、還元剤供給弁7が配置された側の壁面方向に偏る傾向にある。従って、図5に示すように、還元剤を含む排気ガス流れ11が、還元剤供給弁7が配置された側とは反対側の壁面方向に向かうように偏向板12の傾斜角を制御する。それによって、還元剤の偏りはなくなり、還元剤を排気ガス中に均一に分散させることができる。   FIG. 5 is an enlarged cross-sectional view of part A of FIG. 1 showing the arrangement of the deflection plate 12 when the reducing agent is injected when the exhaust gas is at a high flow rate. When the flow rate of the exhaust gas is high, as described above with reference to FIG. 14, the injected reducing agent 20 tends to be biased toward the wall surface on the side where the reducing agent supply valve 7 is disposed. Therefore, as shown in FIG. 5, the inclination angle of the deflection plate 12 is controlled so that the exhaust gas flow 11 containing the reducing agent is directed toward the wall surface on the side opposite to the side where the reducing agent supply valve 7 is disposed. Accordingly, the reducing agent is not biased, and the reducing agent can be uniformly dispersed in the exhaust gas.

なお、還元剤の偏りが大きい還元剤供給弁7が配置された側の壁面に近い偏向板12ほど、偏向板12の傾斜角の変位量が大きくなるように制御することによって、還元剤の分散性をより向上させることができる。また還元剤の偏りは、流量が高ければ高いほど大きくなるため、流量が高いほど偏向板12の傾斜角の変位量を大きくするように制御することができる。   The deflection of the reducing agent is controlled by controlling the deflection plate 12 closer to the wall on the side where the reducing agent supply valve 7 having a large bias of the reducing agent is disposed so that the displacement amount of the inclination angle of the deflection plate 12 is increased. The sex can be further improved. Further, since the bias of the reducing agent increases as the flow rate increases, the amount of displacement of the tilt angle of the deflecting plate 12 can be controlled to increase as the flow rate increases.

本実施形態において、偏向板12は、排気管5の同一の横断面内に配置したが、異なる横断面内に配置してもよい。また、偏向板12の形状も排気ガスの流れを偏向可能な範囲内で任意に取り得る。   In the present embodiment, the deflecting plate 12 is disposed in the same cross section of the exhaust pipe 5, but may be disposed in different cross sections. Further, the shape of the deflecting plate 12 can be arbitrarily set within a range in which the flow of the exhaust gas can be deflected.

図6は、偏向板12の制御機構の一例を示す。図6(A)は、制御機構を排気管5の軸線方向から見た概略図であり、図6(B)は、その側面の概略図を示す。各偏向板12はアクチュエータ13によって往復動する駆動シャフト14に連結し、偏向板12の回転軸12aを中心に傾斜角を制御することができる。この制御機構によれば各偏向板12を一体的に制御することができ、構造が簡略化しコストを削減できる。また、各偏向板12の制御は、個々に独立に制御されるアクチュエータを用いてもよい。   FIG. 6 shows an example of the control mechanism of the deflection plate 12. 6A is a schematic view of the control mechanism viewed from the axial direction of the exhaust pipe 5, and FIG. 6B is a schematic side view thereof. Each deflection plate 12 is connected to a drive shaft 14 that reciprocates by an actuator 13, and an inclination angle can be controlled around a rotation axis 12 a of the deflection plate 12. According to this control mechanism, each deflection plate 12 can be integrally controlled, the structure is simplified, and the cost can be reduced. In addition, each deflection plate 12 may be controlled using an actuator that is independently controlled.

図7及び図8は、本発明による2番目の実施形態による還元剤分散器が配置されたA部の拡大断面図である。本実施形態による還元剤分散器は、1つのメッシュ部材15を有し、メッシュ部材15は、回転軸15a周りに図示しないアクチュエータによって回転角、即ち1番目の実施形態と同様に傾斜角を制御することが可能となっている。メッシュ部材15は、図9に示すように複数の微小な貫通孔16からなるメッシュ構造からなり、そのため還元剤が接触する表面積が大きくなっている。   7 and 8 are enlarged cross-sectional views of part A where the reducing agent disperser according to the second embodiment of the present invention is arranged. The reducing agent disperser according to the present embodiment has one mesh member 15, and the mesh member 15 controls the rotation angle, that is, the inclination angle similarly to the first embodiment, by an actuator (not shown) around the rotation shaft 15 a. It is possible. As shown in FIG. 9, the mesh member 15 has a mesh structure composed of a plurality of minute through holes 16, and therefore has a large surface area with which the reducing agent contacts.

還元剤を含む排気ガス流れ11が貫通孔16を通過する際、還元剤の液滴がメッシュ部分に当たって分裂し微粒化が促進される。また、貫通孔16は微小であるため、還元剤の液滴がその表面張力によって貫通孔16を塞ぐ液膜を形成し一時的に付着保持される。その保持の間に十分気化させることが可能となる。それによって、還元剤を排気ガス中に均一に分散させることが可能になる。なお、メッシュ部材15を金属部材によって構成した場合には、より高い伝熱性を有し、蒸発性を向上させることができるため好ましい。また、メッシュ部材を複数枚重ねると、還元剤がより保持されやすくなる。   When the exhaust gas flow 11 containing the reducing agent passes through the through-hole 16, the reducing agent droplets hit the mesh portion and break up, thereby promoting atomization. Further, since the through hole 16 is very small, a liquid film that closes the through hole 16 by the surface tension of the reducing agent droplets is formed and temporarily attached and held. It is possible to vaporize sufficiently during the holding. Thereby, the reducing agent can be uniformly dispersed in the exhaust gas. In addition, when the mesh member 15 is comprised with a metal member, since it has higher heat conductivity and can improve evaporation property, it is preferable. Moreover, when a plurality of mesh members are stacked, the reducing agent is more easily held.

図7は、還元剤の噴射時以外のメッシュ部材15の配置を示しており、還元剤の噴射時以外は排気ガス流れ11に対する抵抗を最小限に抑えるよう図に示すような傾斜角がゼロとなる配置に制御される。図8は、還元剤の噴射時のメッシュ部材15の配置を示している。還元剤の噴射時は、噴射された還元剤をより多くメッシュ部材15に通過させ、付着保持させるため、還元剤供給弁7の噴射軸線とメッシュ部材15平面とが垂直となるよう図に示す配置に制御される。なお、還元剤の噴射時の配置に関し、排気ガスの流量に応じて、噴射された還元剤が最も付着保持される配置となるよう傾斜角を制御してもよい。   FIG. 7 shows the arrangement of the mesh member 15 other than during the injection of the reducing agent, and the inclination angle as shown in the figure is zero so as to minimize the resistance to the exhaust gas flow 11 except during the injection of the reducing agent. Is controlled to be arranged. FIG. 8 shows the arrangement of the mesh member 15 when the reducing agent is injected. At the time of the injection of the reducing agent, in order to pass more injected reducing agent through the mesh member 15 and keep it attached, the arrangement shown in the figure is such that the injection axis of the reducing agent supply valve 7 and the plane of the mesh member 15 are perpendicular to each other. Controlled. Regarding the arrangement at the time of injection of the reducing agent, the inclination angle may be controlled so that the injected reducing agent is most adhered and held in accordance with the flow rate of the exhaust gas.

図10は、本発明による3番目の実施形態による還元剤分散器が配置されたA部の拡大断面図である。本実施形態による還元剤分散器は、通気性板状部材17を有し、通気性板状部材17は、隔壁17aにより細分割された並列配置の複数の排気流通路17bの集合体からなるハニカム構造体から形成される。   FIG. 10 is an enlarged cross-sectional view of a part A where the reducing agent disperser according to the third embodiment of the present invention is arranged. The reducing agent disperser according to the present embodiment has a breathable plate-like member 17, and the breathable plate-like member 17 is a honeycomb composed of an aggregate of a plurality of exhaust flow passages 17b arranged in parallel and subdivided by partition walls 17a. It is formed from a structure.

図11は、隔壁17a表面の拡大図である。本実施形態は、隔壁17aに、還元剤との親和性が高くなるようなコーティング材19が塗布されていることを特徴とする。コーティング材19の効果により、噴射された還元剤の液滴18が液膜18aとなって付着保持され、還元剤を十分気化20させることが可能となり、排気ガス中に均一に分散させることが可能となる。これによって、図15を参照しながら前述したような問題が解消される。   FIG. 11 is an enlarged view of the surface of the partition wall 17a. The present embodiment is characterized in that a coating material 19 is applied to the partition wall 17a so as to increase the affinity with the reducing agent. Due to the effect of the coating material 19, the injected reducing agent droplets 18 are adhered and held as a liquid film 18 a, and the reducing agent can be sufficiently vaporized 20 and can be uniformly dispersed in the exhaust gas. It becomes. This eliminates the problem described above with reference to FIG.

本実施形態において、還元剤として尿素水を用いているため、コーティング材として酸化チタン等親水性が高い物質が選択される。更に、親水性物質をコーティングすることにより、隔壁17a表面に主として固体炭素からなるデポジットが付着してしまっても、還元剤の液膜18aによって洗浄され、表面性状の維持を図ることができる。従って、デポジットによる圧力損失の増大が防止され、還元剤の分散性が改善される。   In this embodiment, since urea water is used as the reducing agent, a highly hydrophilic substance such as titanium oxide is selected as the coating material. Further, by coating with a hydrophilic substance, even if a deposit mainly made of solid carbon adheres to the surface of the partition wall 17a, it can be washed by the reducing agent liquid film 18a to maintain the surface properties. Therefore, an increase in pressure loss due to deposit is prevented, and the dispersibility of the reducing agent is improved.

図12は、本発明による4番目の実施形態による還元剤分散器が配置されたA部の拡大断面図である。本実施形態による還元剤分散器は、図10に示す3番目の実施形態と同じ通気性板状部材17を有し、更に通気性板状部材17の隔壁17a表面を照射するように紫外線ライト21が排気管5に配置されている。本実施形態において、コーティング材19として、還元剤との親和性を有し且つ紫外線の照射によって光触媒作用を有する物質が選択される。そのため、本実施形態においては、コーティング材19として酸化チタンを用いる。   FIG. 12 is an enlarged cross-sectional view of part A where the reducing agent disperser according to the fourth embodiment of the present invention is arranged. The reducing agent disperser according to the present embodiment has the same breathable plate-like member 17 as that of the third embodiment shown in FIG. 10, and further the ultraviolet light 21 so as to irradiate the surface of the partition wall 17a of the breathable plate-like member 17. Is disposed in the exhaust pipe 5. In the present embodiment, a material having an affinity for a reducing agent and having a photocatalytic action when irradiated with ultraviolet rays is selected as the coating material 19. Therefore, in the present embodiment, titanium oxide is used as the coating material 19.

光触媒作用を有するコーティング材19に紫外線を照射することによって、隔壁17a表面に堆積した主として固体炭素からなるデポジットを酸化除去し、表面性状の維持を図ることができる。更に、酸化除去と共に還元剤の液膜18aによって表面が洗浄され、表面性状の維持が図れる。また、デポジットは、その酸化反応において排気ガス中のNOxとも反応するため、NOxの還元浄化にも利用可能である。それによって、排気性状の改善することができる。   By irradiating the coating material 19 having a photocatalytic action with ultraviolet rays, deposits mainly composed of solid carbon deposited on the surface of the partition wall 17a can be oxidized and removed to maintain the surface properties. Furthermore, the surface is cleaned by the reducing agent liquid film 18a together with the oxidation removal, and the surface property can be maintained. Further, since the deposit also reacts with NOx in the exhaust gas in the oxidation reaction, it can be used for NOx reduction purification. Thereby, exhaust properties can be improved.

紫外線照射は、例えば前回の照射から所定運転時間経過後や、前回の照射から所定量の還元剤を噴射後等、予め定められた期間又は間隔毎に行われる。   The ultraviolet irradiation is performed at predetermined intervals or intervals, for example, after a predetermined operation time has elapsed since the previous irradiation or after a predetermined amount of reducing agent has been injected from the previous irradiation.

なお、隔壁17a表面に還元剤との親和性を高め、還元剤の液膜を形成するためのその他の実施形態として、表面粗さを粗くする方法や、また隔壁17a表面に金属メッシュを貼るか又は隔壁17a自体を金属メッシュで形成する方法等もある。   In addition, as another embodiment for increasing the affinity with the reducing agent on the surface of the partition wall 17a and forming a liquid film of the reducing agent, a method of roughening the surface roughness, or applying a metal mesh to the surface of the partition wall 17a Alternatively, there is a method of forming the partition wall 17a itself with a metal mesh.

第3、第4及びその他の実施形態は、第1及び第2の実施形態と組み合わせて使用することも可能である。即ち、還元剤との親和性の高いコーティング材19を第1の実施形態における偏向板12の表面や、第2の実施形態のメッシュ部材15に塗布してもよい。更に、コーティング材19として光触媒作用を有する物質を用い、紫外線ライト21を排気管5に配置してもよい。   The third, fourth, and other embodiments can be used in combination with the first and second embodiments. That is, the coating material 19 having a high affinity with the reducing agent may be applied to the surface of the deflection plate 12 in the first embodiment or the mesh member 15 in the second embodiment. Furthermore, a substance having a photocatalytic action may be used as the coating material 19 and the ultraviolet light 21 may be disposed in the exhaust pipe 5.

本発明の排気浄化装置が搭載される内燃機関全体の図である。It is a figure of the whole internal combustion engine by which the exhaust gas purification apparatus of this invention is mounted. 本発明による1番目の実施形態による還元剤分散器が配置された図1のA部の拡大断面図である。It is an expanded sectional view of the A section of Drawing 1 where the reducing agent disperser by a 1st embodiment by the present invention is arranged. 図2の線B−Bにおける断面である。3 is a cross section taken along line BB in FIG. 2. 排気ガスが低流量時に還元剤が噴射される場合の本発明による1番目の実施形態による還元剤分散器が配置された図1のA部の拡大断面図である。It is an expanded sectional view of the A section of Drawing 1 where the reducing agent disperser by a 1st embodiment by the present invention when exhaust gas is injected at the time of low flow of exhaust gas is arranged. 排気ガスが高流量時に還元剤が噴射される場合の本発明による1番目の実施形態による還元剤分散器が配置された図1のA部の拡大断面図である。It is an expanded sectional view of the A section of Drawing 1 where the reducing agent disperser by a 1st embodiment by the present invention when exhaust gas is injected when exhaust gas is a high flow rate is arranged. 偏向板12の制御機構の一例を示す図である。It is a figure which shows an example of the control mechanism of the deflection | deviation plate. 本発明による2番目の実施形態による還元剤分散器が配置されたA部の拡大断面図である。It is an expanded sectional view of the A section by which the reducing agent disperser by 2nd embodiment by this invention is arrange | positioned. 本発明による2番目の実施形態による還元剤分散器が配置されたA部の拡大断面図である。It is an expanded sectional view of the A section by which the reducing agent disperser by 2nd embodiment by this invention is arrange | positioned. メッシュ構造を示す図である。It is a figure which shows a mesh structure. 本発明による3番目の実施形態による還元剤分散器が配置されたA部の拡大断面図である。It is an expanded sectional view of the A section by which the reducing agent disperser by 3rd Embodiment by this invention is arrange | positioned. 隔壁表面の拡大図である。It is an enlarged view of the partition surface. 本発明による4番目の実施形態による還元剤分散器が配置されたA部の拡大断面図である。It is an expanded sectional view of the A section by which the reducing agent disperser by 4th embodiment by this invention is arrange | positioned. 排気管内に噴射された還元剤の偏りを示す図である。It is a figure which shows the bias | inclination of the reducing agent injected in the exhaust pipe. 排気管内に噴射された還元剤の偏りを示す図である。It is a figure which shows the bias | inclination of the reducing agent injected in the exhaust pipe. 隔壁表面の拡大図である。It is an enlarged view of the partition surface.

符号の説明Explanation of symbols

5 排気管
7 還元剤供給弁
11 排気ガス流れ
12 偏向板
5 Exhaust pipe 7 Reducing agent supply valve 11 Exhaust gas flow 12 Deflection plate

Claims (6)

触媒上流の排気通路内に還元剤供給弁を配置し、還元剤供給弁から噴射された還元剤によって触媒において排気を浄化する内燃機関の排気浄化装置において、還元剤供給弁下流であって触媒上流排気通路内に偏向部材を配置し、該偏向部材は、排気通路の軸線方向に対するその傾斜角を制御することによって排気ガス流れを還元剤供給弁が配置された壁面方向とその反対側の壁面方向との間で偏向可能であり、還元剤供給弁からの還元剤の噴射時における排気通路内の排気ガス流れの流量の増加に応じて、噴射された還元剤を含む排気ガス流れの偏向方向を還元剤供給弁が配置された壁面方向からその反対側の壁面方向へ変化させるように偏向部材の傾斜角を制御する内燃機関の排気浄化装置。   In an exhaust gas purification apparatus for an internal combustion engine, a reducing agent supply valve is disposed in an exhaust passage upstream of a catalyst, and exhaust gas is purified in the catalyst by the reducing agent injected from the reducing agent supply valve. A deflecting member is disposed in the exhaust passage, and the deflecting member controls the inclination angle of the exhaust passage with respect to the axial direction of the exhaust passage so that the flow of exhaust gas is directed to the wall surface direction where the reducing agent supply valve is disposed and the opposite wall surface direction. The deflection direction of the exhaust gas flow including the injected reducing agent can be changed according to the increase in the flow rate of the exhaust gas flow in the exhaust passage when the reducing agent is injected from the reducing agent supply valve. An exhaust emission control device for an internal combustion engine that controls an inclination angle of a deflection member so as to change from a wall surface direction in which a reducing agent supply valve is disposed to a wall surface direction on the opposite side. 還元剤供給弁からの還元剤の噴射時以外は、偏向部材が受ける排気ガス流れに対する抵抗が最小限となる位置に偏向部材の傾斜角を制御する請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the inclination angle of the deflecting member is controlled to a position where the resistance to the exhaust gas flow received by the deflecting member is minimized except when the reducing agent is injected from the reducing agent supply valve. . 少なくとも2つの偏向部材を排気ガス流れに対して並列配置した請求項1又は2のいずれか一方に記載の内燃機関の排気浄化装置。   The exhaust emission control device for an internal combustion engine according to any one of claims 1 and 2, wherein at least two deflecting members are arranged in parallel to the exhaust gas flow. 偏向方向とは反対側の壁面近くに配置された偏向部材ほど噴射された還元剤を含む排気ガス流れを大きく偏向させる傾斜角に制御する請求項3に記載の内燃機関の排気浄化装置。   4. An exhaust emission control device for an internal combustion engine according to claim 3, wherein the deflection member disposed near the wall surface opposite to the deflection direction is controlled to an inclination angle that largely deflects the flow of exhaust gas containing the reducing agent that is injected. 触媒上流の排気通路内に還元剤供給弁を配置し、還元剤供給弁から噴射された還元剤によって触媒において排気を浄化する内燃機関の排気浄化装置において、還元剤供給弁下流であって触媒上流排気通路内に通気性のメッシュ面を備えたメッシュ部材を配置し、メッシュ面が還元剤供給弁から噴射された還元剤を一時的に付着保持し気化させ又は微粒化させ、メッシュ面と排気通路の軸線方向とがなす傾斜角を、還元剤供給弁からの還元剤の噴射時はメッシュ面が還元剤を付着保持又は微粒化する角度に、還元剤供給弁からの還元剤の噴射時以外はメッシュ面が受ける排気ガス流れに対する抵抗が最小限となる角度に制御する内燃機関の排気浄化装置。   In an exhaust gas purification apparatus for an internal combustion engine, a reducing agent supply valve is disposed in an exhaust passage upstream of a catalyst, and exhaust gas is purified in the catalyst by the reducing agent injected from the reducing agent supply valve. A mesh member having a breathable mesh surface is disposed in the exhaust passage, and the mesh surface temporarily holds and holds the reducing agent injected from the reducing agent supply valve to vaporize or atomize the mesh surface and the exhaust passage. The angle of inclination formed by the axial direction of the nozzle is the angle at which the mesh surface adheres to or retains the reducing agent when the reducing agent is injected from the reducing agent supply valve, except when the reducing agent is injected from the reducing agent supply valve. An exhaust purification device for an internal combustion engine that controls an angle at which resistance to an exhaust gas flow received by a mesh surface is minimized. 触媒上流の排気通路内に還元剤供給弁を配置し、還元剤供給弁から噴射された還元剤によって触媒において排気を浄化する内燃機関の排気浄化装置において、還元剤供給弁下流であって触媒上流排気通路内に還元剤を一時的に付着保持し気化させる付着保持部を備えた還元剤保持部材を配置し、付着保持部に光触媒作用を有する光触媒物質を備えると共に排気通路内に光触媒物質に光を照射する光源を備え、付着保持部に付着したデポジットを光触媒作用により酸化除去する内燃機関の排気浄化装置。   In an exhaust gas purification apparatus for an internal combustion engine, a reducing agent supply valve is disposed in an exhaust passage upstream of a catalyst, and exhaust gas is purified in the catalyst by the reducing agent injected from the reducing agent supply valve. A reducing agent holding member having an adhesion holding portion that temporarily holds and vaporizes the reducing agent is disposed in the exhaust passage, the photocatalytic material having a photocatalytic action is provided in the adhesion holding portion, and light is applied to the photocatalytic material in the exhaust passage. An exhaust gas purification apparatus for an internal combustion engine that includes a light source that irradiates and deposits adhering to the adhesion holding part by oxidation and photocatalysis.
JP2008201055A 2008-08-04 2008-08-04 Exhaust emission control device of internal combustion engine Withdrawn JP2010038020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008201055A JP2010038020A (en) 2008-08-04 2008-08-04 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008201055A JP2010038020A (en) 2008-08-04 2008-08-04 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010038020A true JP2010038020A (en) 2010-02-18

Family

ID=42010826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008201055A Withdrawn JP2010038020A (en) 2008-08-04 2008-08-04 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010038020A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125205A1 (en) * 2010-04-08 2011-10-13 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
WO2011136320A1 (en) 2010-04-30 2011-11-03 ヤンマー株式会社 Exhaust purification system for internal combustion engine
JP2012047119A (en) * 2010-08-27 2012-03-08 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2012117489A (en) * 2010-12-03 2012-06-21 Ud Trucks Corp Engine exhaust emission control device
JP2012122340A (en) * 2010-12-06 2012-06-28 Ud Trucks Corp Exhaust gas cleaning device for internal combustion engine
JP2012530214A (en) * 2009-06-18 2012-11-29 ルノー・トラックス Mixing system in exhaust gas mixing chamber
WO2013088923A1 (en) * 2011-12-12 2013-06-20 いすゞ自動車株式会社 Internal combustion engine and control method for same
JP2014202099A (en) * 2013-04-02 2014-10-27 株式会社日本自動車部品総合研究所 Exhaust emission control device for internal combustion engine
GB2533353A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Mixer for an exhaust after-treatment system of an internal combustion engine
CN105736095A (en) * 2014-12-29 2016-07-06 埃贝斯佩歇排气技术有限责任两合公司 Mixer for an exhaust gas duct system of an internal combustion engine
FR3051507A1 (en) * 2016-05-20 2017-11-24 Peugeot Citroen Automobiles Sa MIXER DEVICE FOR A MOTOR VEHICLE COMPRISING A MOBILE IMPACTOR
JP2018040318A (en) * 2016-09-08 2018-03-15 三菱自動車工業株式会社 Exhaust emission control device
US20190040780A1 (en) * 2016-05-13 2019-02-07 International Engine Intellectual Property Company, Llc Variable geometry def mixer design

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646258B2 (en) 2009-06-18 2014-02-11 Renault Trucks Mixing system in an exhaust gas mixing chamber
JP2012530214A (en) * 2009-06-18 2012-11-29 ルノー・トラックス Mixing system in exhaust gas mixing chamber
WO2011125205A1 (en) * 2010-04-08 2011-10-13 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
CN102985649A (en) * 2010-04-08 2013-03-20 丰田自动车株式会社 Exhaust gas purification apparatus for internal combustion engine
US9157354B2 (en) 2010-04-08 2015-10-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
JP5338973B2 (en) * 2010-04-08 2013-11-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2011136320A1 (en) 2010-04-30 2011-11-03 ヤンマー株式会社 Exhaust purification system for internal combustion engine
JP2011236746A (en) * 2010-04-30 2011-11-24 Yanmar Co Ltd Exhaust emission control system of internal combustion engine
CN102869864A (en) * 2010-04-30 2013-01-09 洋马株式会社 Exhaust purification system for internal combustion engine
US9086005B2 (en) 2010-04-30 2015-07-21 Yanmar Co., Ltd. Exhaust purification system for internal combustion engine
JP2012047119A (en) * 2010-08-27 2012-03-08 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2012117489A (en) * 2010-12-03 2012-06-21 Ud Trucks Corp Engine exhaust emission control device
JP2012122340A (en) * 2010-12-06 2012-06-28 Ud Trucks Corp Exhaust gas cleaning device for internal combustion engine
JP2013122209A (en) * 2011-12-12 2013-06-20 Isuzu Motors Ltd Internal combustion engine and control method for same
WO2013088923A1 (en) * 2011-12-12 2013-06-20 いすゞ自動車株式会社 Internal combustion engine and control method for same
JP2014202099A (en) * 2013-04-02 2014-10-27 株式会社日本自動車部品総合研究所 Exhaust emission control device for internal combustion engine
GB2533353A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Mixer for an exhaust after-treatment system of an internal combustion engine
CN105736095A (en) * 2014-12-29 2016-07-06 埃贝斯佩歇排气技术有限责任两合公司 Mixer for an exhaust gas duct system of an internal combustion engine
JP2016125498A (en) * 2014-12-29 2016-07-11 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Mixer device for exhaust gas guiding system of internal combustion engine
US20190040780A1 (en) * 2016-05-13 2019-02-07 International Engine Intellectual Property Company, Llc Variable geometry def mixer design
FR3051507A1 (en) * 2016-05-20 2017-11-24 Peugeot Citroen Automobiles Sa MIXER DEVICE FOR A MOTOR VEHICLE COMPRISING A MOBILE IMPACTOR
JP2018040318A (en) * 2016-09-08 2018-03-15 三菱自動車工業株式会社 Exhaust emission control device

Similar Documents

Publication Publication Date Title
JP2010038020A (en) Exhaust emission control device of internal combustion engine
JP4943499B2 (en) Exhaust gas purification device for internal combustion engine
US8209965B2 (en) Additive-agent diffusion plate structure in exhaust passage, and additive-agent diffusion plate in exhaust passage
JP4155320B2 (en) Exhaust gas purification device for internal combustion engine
JP4961847B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2009041371A (en) Exhaust emission control device and mixer unit of internal combustion engine
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
WO2011136320A1 (en) Exhaust purification system for internal combustion engine
US9028763B2 (en) Exhaust purification system of internal combustion engine
JP4285460B2 (en) Exhaust gas purification device for internal combustion engine
JP4577099B2 (en) Exhaust gas purification device for internal combustion engine
JP4662334B2 (en) Exhaust gas purification device for internal combustion engine
JP4830570B2 (en) Exhaust gas purification system
US20150369102A1 (en) Reducing agent supplying device
JP2005207289A (en) System for fuel addition in exhaust pipe of diesel engine
WO2014178110A1 (en) Exhaust purification device for internal combustion engine
JP2014202099A (en) Exhaust emission control device for internal combustion engine
DE102014117048A1 (en) Reductant delivery device
JP2006200497A (en) Emission control device
WO2011067966A1 (en) Engine exhaust-air purifying apparatus
JP6627479B2 (en) Exhaust gas purification device
JP2010150978A (en) Exhaust emission control device
JP2008533358A (en) Apparatus for mixing a liquid medium with a gaseous medium
JP2008284432A (en) Exhaust gas purification apparatus for engine
JP4844766B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004