JP6627226B2 - Manufacturing method of non-oriented electrical steel sheet - Google Patents

Manufacturing method of non-oriented electrical steel sheet Download PDF

Info

Publication number
JP6627226B2
JP6627226B2 JP2015033971A JP2015033971A JP6627226B2 JP 6627226 B2 JP6627226 B2 JP 6627226B2 JP 2015033971 A JP2015033971 A JP 2015033971A JP 2015033971 A JP2015033971 A JP 2015033971A JP 6627226 B2 JP6627226 B2 JP 6627226B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
sulfide
rolled
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015033971A
Other languages
Japanese (ja)
Other versions
JP2016156044A (en
Inventor
隆史 片岡
隆史 片岡
義行 牛神
義行 牛神
有田 吉宏
吉宏 有田
史明 高橋
史明 高橋
洋介 黒崎
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015033971A priority Critical patent/JP6627226B2/en
Publication of JP2016156044A publication Critical patent/JP2016156044A/en
Application granted granted Critical
Publication of JP6627226B2 publication Critical patent/JP6627226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板及びその製造方法に関し、特に、電気機器の鉄心材料として使用される、鉄損に優れた無方向性電磁鋼板およびその製造方法に関する。   The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same, and more particularly, to a non-oriented electrical steel sheet excellent in iron loss and used as a core material of electrical equipment and a method for manufacturing the same.

無方向性電磁鋼板は、重電機器、家電用などの各種モーターの鉄芯材料として用いられている。無方向性電磁鋼板は、商業的には鉄損でグレード分けされ、モーターやトランスの設計特性に応じて使い分けられている。
近年、エネルギー節減の観点から、無方向性電磁鋼板に対して、一層の低鉄損化が強く要望されている。
Non-oriented electrical steel sheets are used as iron core materials for various motors for heavy electric appliances and home appliances. Non-oriented electrical steel sheets are commercially graded according to iron loss, and are selectively used according to the design characteristics of motors and transformers.
In recent years, from the viewpoint of energy saving, there is a strong demand for non-oriented electrical steel sheets to further reduce iron loss.

一般に、鋼板中に微細な析出物が存在すると、磁壁移動が阻害され、ヒステリシス損は劣化する。   Generally, when fine precipitates are present in a steel sheet, domain wall movement is hindered, and the hysteresis loss deteriorates.

そこで、従来、無方向性電磁鋼板の鉄損の改善を目的に、熱延における硫化物の析出制御、脱硫による硫化物の低減方法、仕上焼鈍後の急速冷却によるCu硫化物の析出抑制などの方法が提案されてきた。   Therefore, conventionally, for the purpose of improving iron loss of non-oriented electrical steel sheets, control of sulfide precipitation in hot rolling, reduction of sulfide by desulfurization, suppression of precipitation of Cu sulfide by rapid cooling after finish annealing, etc. Methods have been proposed.

例えば、特許文献1では、Cuを0.2%以下含んだ鋼片を900〜1100℃の範囲で30分以上保定し、その後、1150℃で高温保定し、引き続いて圧延を開始するとともに、仕上熱延中の冷却速度を50℃/秒以下に抑えることによって、Cu硫化物の分散状態を無方向性電磁鋼板の磁気特性、即ち、鉄損および磁束密度にとって好ましい状態に制御する方法が開示されている。   For example, in Patent Literature 1, a billet containing 0.2% or less of Cu is kept in a range of 900 to 1100 ° C for 30 minutes or more, then kept at a high temperature of 1150 ° C, and subsequently, rolling is started and finishing is performed. A method of controlling the dispersion state of Cu sulfide to a state favorable for the magnetic properties of non-oriented electrical steel sheets, that is, iron loss and magnetic flux density, by suppressing the cooling rate during hot rolling to 50 ° C./sec or less is disclosed. ing.

特許文献2では、鋳造完了時までに溶鋼にCaSiを添加し、S含有量を0.005%以下に制御し、1000℃以上の温度でスラブを加熱した後、熱間圧延し、特定の温度域でコイル巻取りすることによって、微細な析出物の生成を回避する方法が開示されている。   In Patent Document 2, CaSi is added to molten steel by the time casting is completed, the S content is controlled to 0.005% or less, a slab is heated at a temperature of 1000 ° C. or more, and then hot-rolled to a specific temperature. A method of avoiding the formation of fine precipitates by coil winding in a region is disclosed.

また、特許文献3では、仕上焼鈍後、500〜600℃の温度域から300℃までの間を10〜50℃/秒の冷却速度で急冷し、Cu硫化物の析出を抑制する技術が開示されている。   Patent Literature 3 discloses a technique in which after finish annealing, quenching is performed at a cooling rate of 10 to 50 ° C./sec from a temperature range of 500 to 600 ° C. to 300 ° C. to suppress precipitation of Cu sulfide. ing.

特許文献4〜7では仕上焼鈍後の冷却速度を制御することによって、磁気特性の向上を期待する技術が開示されている。   Patent Literatures 4 to 7 disclose techniques that are expected to improve magnetic properties by controlling a cooling rate after finish annealing.

特開2010−174376号公報JP 2010-174376 A 特開平10−183244号公報JP-A-10-183244 特開平09−302414号公報JP-A-09-302414 特開2011−006721号公報JP 2011-006721 A 特開2006−144036号公報JP 2006-144036 A 特開2003−113451号公報JP-A-2003-113451 国際公開第2014/168136号International Publication No. 2014/168136

CAMP−ISIJ Vol.25(2012),p1080CAMP-ISIJ Vol. 25 (2012), p1080 CAMP−ISIJ Vol.22(2009),p1284CAMP-ISIJ Vol. 22 (2009), p1284 j.Flux Growth vol.5(2010),p48j. Flux Growth vol. 5 (2010), p48 Tetsu−to−Hagane vol.100(2014),p1229Tetsu-to-Hagane vol. 100 (2014), p1229 Tetsu−to−Hagane vol.83(1997),p479Tetsu-to-Hagane vol. 83 (1997), p479 Tetsu−to−Hagane vol.92(2006),p609Tetsu-to-Hagane vol. 92 (2006), p609 Bunnseki vol.11(2002),p639Bunnseki vol. 11 (2002), p639

しかし、上記特許文献1〜6に記載の従来の方法では、以下のような問題があった。
特許文献1に記載の方法では、スラブ加熱温度の低温化による圧延負荷の増大や、冷却速度の厳密な制御の困難さなど、生産性に問題があった。
また特許文献2に記載の方法では高純度鋼が必須であるが、不可避レベルで混入するCuによる微細Cu硫化物の形成は避けられないので、Cu混入によって、かえって磁気特性が劣化するという問題があった。
However, the conventional methods described in Patent Documents 1 to 6 have the following problems.
The method described in Patent Literature 1 has problems in productivity, such as an increase in rolling load due to a lower slab heating temperature and difficulty in strict control of a cooling rate.
Further, in the method described in Patent Document 2, high-purity steel is indispensable, but the formation of fine Cu sulfide by Cu mixed at an unavoidable level is inevitable, so that the mixing of Cu degrades the magnetic properties. there were.

また特許文献3には、500〜600℃の温度域から300℃までの間を10〜50℃/秒の冷却速度で急冷する方法が開示されているが、Cu硫化物は50℃/秒以上の冷却速度でも冷却中に析出する事実が非特許文献1および2などで知られている。すなわち、10〜50℃/秒程度の冷却を行う特許文献3の技術では完全にCu硫化物の析出を抑制することは困難である。
また特許文献4〜6においては、上述した方法により鋼板への冷却歪の導入を回避でき、鉄損劣化を低減することは可能であるが、Cu硫化物の析出状態を制御することはできず、微細に析出したCu硫化物が磁気特性に悪影響してしまう。特許文献7においては、Cu硫化物の析出形態を制御する技術が開示されているが、Cu硫化物以外の析出物(例えば窒化物など)が存在する場合、Cu硫化物の無害化が困難になるという課題があった。
Patent Literature 3 discloses a method of rapidly cooling from a temperature range of 500 to 600 ° C. to 300 ° C. at a cooling rate of 10 to 50 ° C./sec. It is known from Non-Patent Documents 1 and 2 that the precipitation occurs during cooling even at a cooling rate of. That is, it is difficult to completely suppress the precipitation of Cu sulfide by the technique of Patent Document 3 in which cooling is performed at about 10 to 50 ° C./sec.
Further, in Patent Documents 4 to 6, although the introduction of cooling strain into a steel sheet can be avoided by the above-described method and iron loss deterioration can be reduced, the precipitation state of Cu sulfide cannot be controlled. In addition, finely precipitated Cu sulfide adversely affects magnetic properties. Patent Document 7 discloses a technique for controlling the precipitation form of Cu sulfide, but it is difficult to make Cu sulfide harmless when precipitates other than Cu sulfide (such as nitrides) are present. There was a problem of becoming.

本発明は上述の問題を鑑み、Cu硫化物の析出形態を制御し、コスト増加や生産性の低下を招くことなく、鉄損に優れた無方向性電磁鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, to control the precipitation form of Cu sulfide, without decreasing the cost increase and productivity, to provide a manufacturing how the non-oriented electrical steel sheet excellent in core loss that With the goal.

本発明は上記課題を解決するため、無方向性電磁鋼板の鋼板成分、製造条件が硫化物の分散状態と磁気特性の関係に及ぼす影響について検討を重ねた。その結果、窒化アルミニウムを含んだ無方向性電磁鋼板をある条件で焼鈍した場合に、Cu硫化物の微細分散が抑制され、かつ磁気特性が著しく向上する現象を認識した。そしてさらに鋼中析出物の形態や構造について詳細な調査を行った結果、この現象が特にCu硫化物が窒化アルミニウムと複合析出することで、(A)Cu硫化物の単独分散が回避されていること、(B)Cu硫化物が地鉄と良好な格子整合性を有することに起因することを見出した。また、Cu硫化物と窒化アルミニウムの複合析出は、析出核である窒化アルミニウムとCu硫化物の格子整合性が最適化された場合に起こりうることを見出した。   In order to solve the above-mentioned problems, the present invention has repeatedly studied the effects of the steel sheet components and the manufacturing conditions of the non-oriented electrical steel sheet on the relationship between the sulfide dispersion state and the magnetic properties. As a result, it has been found that when a non-oriented electrical steel sheet containing aluminum nitride is annealed under a certain condition, the fine dispersion of Cu sulfide is suppressed and the magnetic properties are remarkably improved. Further, as a result of a detailed investigation on the form and structure of the precipitates in the steel, it was found that this phenomenon was particularly caused by the complex precipitation of Cu sulfide with aluminum nitride, thereby preventing (A) the single dispersion of Cu sulfide. And (B) Cu sulfide was found to have good lattice matching with base iron. Further, they have found that composite precipitation of Cu sulfide and aluminum nitride can occur when the lattice matching between aluminum nitride, which is a precipitation nucleus, and Cu sulfide is optimized.

本発明は上記知見をもとになされたもので、以下の(1)〜(5)を要旨とする。   The present invention has been made based on the above findings, and has the following (1) to (5).

(1)本発明の一態様に係る無方向性電磁鋼板の製造方法は、質量%で、C:0.0001〜0.01%、Si:0.05〜7.0%、Mn:0.02〜3.0%、Al:0.002〜3.0%、S:0.0005〜0.05%、P:0.002〜0.15%、N:0.0010〜0.0100%、Cu:0.010〜5.00%を含有し、残部がFe及び不純物からなる化学組成を有し、電解抽出残渣に対するX線回折において得られる、2θ=33.5°に現れるHexagonal構造を有する窒化アルミニウムの回折強度であるI 2θ=33.5 と、2θ=32.1°に現れるCubic構造を有するCu硫化物の回折強度であるI 2θ=32.1 とが、下記式1の条件を満たす無方向性電磁鋼板の製造方法であって、質量%で、C:0.0001〜0.01%、Si:0.05〜7.0%、Mn:0.02〜3.0%、Al:0.002〜3.0%、S:0.0005〜0.05%、P:0.002〜0.15%、N:0.0010〜0.0100%、Cu:0.010〜5.00%を含有し、残部がFe及び不純物からなる化学組成を有する鋼片に熱間圧延を行い、熱延鋼板を得る熱延工程と、前記熱延鋼板を焼鈍する熱延板焼鈍工程と、前記熱延板焼鈍工程後の前記熱延鋼板を酸洗する酸洗工程と、前記酸洗工程後の前記熱延鋼板に冷間圧延を行い冷延鋼板を得る冷延工程と、前記冷延鋼板を焼鈍する仕上焼鈍工程とを有する無方向性電磁鋼板の製造工程において、前記熱延板焼鈍工程において、下記式3に示すT2℃以上で10〜3600秒の保持を行い、前記仕上焼鈍工程において、室温から下記式2に示すT1℃以上、前記T2℃以下に昇温する際、下記式6に示すT5℃以上、下記式7に示すT6℃以下の温度域における平均加熱速度を10℃/秒以上1000℃/秒以下とし、前記T1℃以上、前記T2℃以下で10〜3600秒の保持を行い、その後の冷却について、下記式4に示すT3℃以下、下記式5に示すT4℃以上の温度域における平均冷却速度を20℃/秒以上200℃以下とする。
2θ=32.1 /I 2θ=33.5 ≧0.01 …式1
T1=15000/(12−log10([%Cu]2×[%S]))−273…式2
T2=10000/(3.5−log10([%Al]×[%N]))−273…式3
T3=15000/(12−log10([%Cu]2×[%S]))−323…式4
T4=15000/(12−log10([%Cu]2×[%S]))−423…式5
T5=10000/(3.5−log10([%Al]×[%N]))−923…式6
T6=10000/(3.5−log10([%Al]×[%N]))−523…式7
ここで、[%Cu]はCuの質量%での含有量、[%S]はSの質量%での含有量、[%Al]はAlの質量%での含有量[%N]はNの質量%での含有量である。
(2)上記(1)に記載の無方向性電磁鋼板の製造方法は、前記熱延板焼鈍工程において、上記T2℃以上での上記保持を行った後の冷却において、上記T5℃以上、上記T6℃以下の温度域における平均冷却速度を10℃/秒以上200℃以下にしてもよい。
(1) In the method for producing a non-oriented electrical steel sheet according to one embodiment of the present invention , C: 0.0001 to 0.01%, Si: 0.05 to 7.0%, and Mn: 0. 02-3.0%, Al: 0.002-3.0%, S: 0.0005-0.05%, P: 0.002-0.15%, N: 0.0010-0.0100% , Cu: 0.010 to 5.00%, the balance having a chemical composition consisting of Fe and impurities, and a Hexagonal structure appearing at 2θ = 33.5 ° obtained by X-ray diffraction of the electrolytic extraction residue. I 2θ = 33.5, which is the diffraction intensity of aluminum nitride, and I 2θ = 32.1 , which is the diffraction intensity of Cu sulfide having a Cubic structure appearing at 2θ = 32.1 °, satisfy the condition of the following formula 1. The method for producing a non-oriented electrical steel sheet which satisfies the formula : 0001-0.01%, Si: 0.05-7.0%, Mn: 0.02-3.0%, Al: 0.002-3.0%, S: 0.0005-0.05% , P: 0.002 to 0.15%, N: 0.0010 to 0.0100%, Cu: 0.010 to 5.00%, the remainder having a chemical composition consisting of Fe and impurities. Hot rolling to obtain a hot-rolled steel sheet, hot-rolled sheet annealing step of annealing the hot-rolled steel sheet, and pickling step of pickling the hot-rolled steel sheet after the hot-rolled sheet annealing step In the production process of a non-oriented electrical steel sheet, the cold-rolling step of performing cold rolling on the hot-rolled steel sheet after the pickling step to obtain a cold-rolled steel sheet, and a finish annealing step of annealing the cold-rolled steel sheet. In the hot-rolled sheet annealing step, holding at T2 ° C. or more shown in the following formula 3 for 10 to 3600 seconds is performed, and the finish annealing is performed. When the temperature is raised from room temperature to T1 ° C. or more and T2 ° C. or less shown in the following formula 2, the average heating rate in the temperature range of T5 ° C. or more shown in the following formula 6 and T6 ° C. or less shown in the following formula 7 is 10 C./sec. To 1,000 ° C./sec., Holding at T1 ° C. or more and T2 ° C. or less for 10 to 3600 seconds, and cooling thereafter, T3 ° C. or less shown in the following formula 4, T4 shown in the following formula 5 The average cooling rate in the temperature range of not less than 20 ° C. is not less than 20 ° C./sec and not more than 200 ° C.
I 2θ = 32.1 / I 2θ = 33.5 ≧ 0.01 Expression 1
T1 = 15000 / (12-log10 ([% Cu] 2 × [% S]))-273 ... Equation 2
T2 = 10000 / (3.5-log10 ([% Al] × [% N]))-273 ... Equation 3
T3 = 15000 / (12-log10 ([% Cu] 2 × [% S]))-323 ... Equation 4
T4 = 15000 / (12-log10 ([% Cu] 2 × [% S]))-423 ... Equation 5
T5 = 10000 / (3.5 log10 ([% Al] × [% N]))-923 ... Equation 6
T6 = 10000 / (3.5 log10 ([% Al] × [% N]))-523 ... Equation 7
Here, [% Cu] is the content in mass% of Cu, [% S] is the content in mass% of S, and [% Al] is the content in mass% of Al [% N] is N Is the content in mass%.
(2) In the method for producing a non-oriented electrical steel sheet according to (1), in the hot-rolled sheet annealing step, in the cooling after the holding at T2 ° C or higher, the cooling is performed at T5 ° C or higher. The average cooling rate in a temperature range of T6 ° C. or less may be set to 10 ° C./sec or more and 200 ° C. or less.

本発明によれば、無方向性電磁鋼板に対し、高純化や、スラブ加熱温度の低温化、熱延条件の最適化などを施さなくても、微細Cu硫化物の単独析出を回避するとともに、鉄損に好影響をもたらす析出形態に制御することで、鉄損に優れた無方向性電磁鋼板を提供することができる。
なお、本発明によれば、無方向性電磁鋼板において求められる鉄損以外の特性(磁束密度や加工性など)は、従来材と同等以上を確保できる。
According to the present invention, the non-oriented electrical steel sheet, without purifying, or lowering the slab heating temperature, without optimizing the hot rolling conditions, etc., while avoiding single precipitation of fine Cu sulfide, By controlling the precipitation form that has a favorable effect on iron loss, a non-oriented electrical steel sheet excellent in iron loss can be provided.
According to the present invention, characteristics (magnetic flux density, workability, and the like) other than iron loss required of the non-oriented electrical steel sheet can be secured to be equal to or higher than conventional materials.

以下に本発明の一実施形態に係る無方向性電磁鋼板(本実施形態に係る無方向性電磁鋼板と言う場合がある。)及びその製造方法について、詳細に説明する。
まず、本実施形態に係る無方向性電磁鋼板の成分組成の限定理由について説明する。なお以下に記す含有量の%は、特に断りがない限り全て質量%である。
Hereinafter, a non-oriented electrical steel sheet according to an embodiment of the present invention (sometimes referred to as a non-oriented electrical steel sheet according to the present embodiment) and a method for manufacturing the same will be described in detail.
First, the reasons for limiting the component composition of the non-oriented electrical steel sheet according to the present embodiment will be described. All percentages of the contents described below are% by mass unless otherwise specified.

C:0.0001〜0.01%
Cは磁気時効によって鉄損を著しく劣化させる。そのため、C含有量の上限を0.01%とする。鉄損改善の観点から0.0040%以下が好ましい。より好ましくは0.0020%以下である。一方で、C含有量が0.0001%未満であると、磁束密度が劣化する。そのため、十分な磁束密度を確保するため、C含有量の下限を0.0001%とし、好ましくは0.0010%とする。より好ましくは0.0015%以上である。
C: 0.0001-0.01%
C significantly reduces iron loss due to magnetic aging. Therefore, the upper limit of the C content is set to 0.01%. From the viewpoint of improving iron loss, 0.0040% or less is preferable. More preferably, it is 0.0020% or less. On the other hand, when the C content is less than 0.0001%, the magnetic flux density deteriorates. Therefore, in order to ensure a sufficient magnetic flux density, the lower limit of the C content is set to 0.0001%, preferably 0.0010%. More preferably, it is 0.0015% or more.

Si:0.05〜7.0%
Si含有量は鉄損の確保と通板性との兼ね合いから0.05〜7.0%とする。Si含有量が0.05%未満では良好な鉄損が得られない。好ましくは、Si含有量は2.00%以上であり、より好ましくは3.00%以上である。一方で、Si含有量が7.0%を超えると鋼板が脆化し、製造工程での通板性が顕著に劣化する。好ましくは、Si含有量は、3.50%以下であり、より好ましくは3.30%以下である。
Si: 0.05 to 7.0%
The Si content is set to 0.05 to 7.0% in consideration of securing iron loss and passing property. If the Si content is less than 0.05%, good iron loss cannot be obtained. Preferably, the Si content is at least 2.00%, more preferably at least 3.00%. On the other hand, if the Si content exceeds 7.0%, the steel sheet becomes brittle, and the sheet passing property in the manufacturing process is significantly deteriorated. Preferably, the Si content is no more than 3.50%, more preferably no more than 3.30%.

Mn:0.02〜3.0%
MnはSと反応して硫化物を形成するので、本発明では重要な元素である。鋼中にMnが存在する場合、MnSが析出することにより、CuSの析出量が低下し、CuSが微細に析出しやすくなる。そのため、Mn含有量の上限を3.0%とする。好ましくは、Mn含有量は2.0%以下、より好ましくは、1.0%以下である。一方、Mn含有量が0.02%未満であると、熱間圧延時に鋼板が脆化する。そのため、Mn含有量の下限を0.02%とする。好ましくは、Mn含有量は、0.10%以上、より好ましくは、0.15%以上である。
Mn: 0.02 to 3.0%
Mn is an important element in the present invention because it reacts with S to form a sulfide. When Mn is present in the steel, the precipitation amount of MnS reduces the amount of Cu 2 S deposited, and Cu 2 S easily precipitates finely. Therefore, the upper limit of the Mn content is set to 3.0%. Preferably, the Mn content is at most 2.0%, more preferably at most 1.0%. On the other hand, if the Mn content is less than 0.02%, the steel sheet becomes brittle during hot rolling. Therefore, the lower limit of the Mn content is set to 0.02%. Preferably, the Mn content is at least 0.10%, more preferably at least 0.15%.

Al:0.002〜3.0%
AlはAlNを形成する元素であり、本発明において特に重要な元素のひとつである。Alを多く添加すると、AlNが形成し易くなり、本発明の効果も享受し易い。そのため、鋼中のAl含有量を多くする方が有利である。しかしながら、Al含有量の高い溶鋼は鋳造時の操業性を悪化させるとともに、鋼板の脆化を招く。そのため、Al含有量の上限を3.0%とする。好ましくはAl含有量は、2.0%以下、より好ましくは1.5%以下である。一方、Al含有量が少ないと、AlNが十分に生成せず、AlNの代わりに、結晶粒成長を阻害する微細TiNが生成し、磁束密度が顕著に劣化する。そのためAl含有量の下限を0.002%とする。好ましくはAl含有量は、0.050%以上、より好ましくは0.100%以上である。
Al: 0.002 to 3.0%
Al is an element forming AlN, and is one of the particularly important elements in the present invention. When a large amount of Al is added, AlN is easily formed, and the effects of the present invention are easily enjoyed. Therefore, it is advantageous to increase the Al content in the steel. However, molten steel having a high Al content deteriorates operability at the time of casting and causes brittleness of the steel sheet. Therefore, the upper limit of the Al content is set to 3.0%. Preferably, the Al content is 2.0% or less, more preferably 1.5% or less. On the other hand, if the Al content is small, AlN is not sufficiently generated, and fine TiN that inhibits crystal grain growth is generated instead of AlN, and the magnetic flux density is significantly deteriorated. Therefore, the lower limit of the Al content is set to 0.002%. Preferably, the Al content is 0.050% or more, more preferably 0.100% or more.

S:0.0005〜0.05%
S含有量は硫化物の析出量に直接関係する。S含有量が過剰であると、Sが固溶状態で鋼中に存在し、熱間圧延時に鋼が脆化する。そのため、S含有量の上限を0.050%とする。好ましくはS含有量は0.010%以下であり、より好ましくは0.005%以下である。一方で、Sが存在しないと、Cuは金属Cuとして微細析出し、鉄損劣化の原因となる。そのためS含有量の下限を0.0005%とする。好ましくは0.0020%以上であり、より好ましくは0.0040%以上である。
S: 0.0005 to 0.05%
The S content is directly related to the amount of sulfide deposited. If the S content is excessive, S exists in the steel in a solid solution state, and the steel becomes brittle during hot rolling. Therefore, the upper limit of the S content is set to 0.050%. Preferably, the S content is 0.010% or less, more preferably 0.005% or less. On the other hand, if S does not exist, Cu is finely precipitated as metallic Cu, which causes iron loss deterioration. Therefore, the lower limit of the S content is set to 0.0005%. Preferably it is 0.0020% or more, more preferably 0.0040% or more.

P:0.002〜0.15%
Pは鋼板の硬度を高め、打ち抜き性を向上させる作用を有する。また、微量のPは磁束密度を改善する効果を有する。これらの効果を得るため、P含有量の下限を0.002%とする。好ましくはP含有量は、0.020%以上であり、より好ましくは0.040%以上である。ただし、P含有量が過剰になると磁束密度が劣化するのでP含有量の上限を0.150%とする。P含有量は、好ましくは0.10%以下であり、より好ましくは0.08%以下である。
P: 0.002 to 0.15%
P has the effect of increasing the hardness of the steel sheet and improving the punchability. Further, a small amount of P has an effect of improving the magnetic flux density. In order to obtain these effects, the lower limit of the P content is set to 0.002%. Preferably, the P content is at least 0.020%, more preferably at least 0.040%. However, if the P content becomes excessive, the magnetic flux density deteriorates, so the upper limit of the P content is set to 0.150%. The P content is preferably 0.10% or less, more preferably 0.08% or less.

N:0.0010〜0.0100%
Nは、AlNを形成する元素であるため、本発明においては特に重要な元素のひとつである。ただし、N含有量が過剰であるとTiN、VN、Siなど他の窒化物の析出量が多くなり、これらの窒化物が結晶粒の成長を阻害する。そのためN含有量の上限を0.0100%とする。好ましくはN含有量は0.0080%以下であり、より好ましくは0.0070%以下である。一方、AlNを析出させ、本発明効果を享受する上では、N含有量の下限を0.0010%とする。好ましくはN含有量は0.0030%以上であり、より好ましくは0.0050%以上である。
N: 0.0010 to 0.0100%
N is one of the particularly important elements in the present invention because it is an element forming AlN. However, if the N content is excessive, the amount of other nitrides such as TiN, VN, and Si 3 N 4 increases, and these nitrides hinder the growth of crystal grains. Therefore, the upper limit of the N content is set to 0.0100%. Preferably, the N content is 0.0080% or less, more preferably 0.0070% or less. On the other hand, in order to precipitate AlN and enjoy the effects of the present invention, the lower limit of the N content is set to 0.0010%. Preferably, the N content is 0.0030% or more, and more preferably 0.0050% or more.

Cu:0.010〜5.00%
CuはMnと同様に硫化物を形成する元素であり、特に重要な元素である。Cu含有量が多すぎると、Cuが鋼板中に固溶し、固溶Cuが熱間圧延中の鋼板の脆化をもたらす。そのためCu含有量の上限を5.00%とする。好ましくはCu含有量は3.00%以下であり、より好ましくは1.00%以下である。一方、Cuが少なすぎる場合、TiSなどの他の微細な硫化物が析出し、鉄損劣化の原因となるため、Cu含有量の下限を0.010%とする必要がある。好ましくはCu含有量は0.10%以上であり、より好ましくは0.50%以上である。
Cu: 0.010-5.00%
Cu is an element that forms a sulfide like Mn, and is a particularly important element. If the Cu content is too large, Cu forms a solid solution in the steel sheet, and the solute Cu causes embrittlement of the steel sheet during hot rolling. Therefore, the upper limit of the Cu content is set to 5.00%. Preferably, the Cu content is at most 3.00%, more preferably at most 1.00%. On the other hand, if the Cu content is too small, other fine sulfides such as TiS precipitate and cause iron loss deterioration. Therefore, it is necessary to set the lower limit of the Cu content to 0.010%. Preferably, the Cu content is at least 0.10%, more preferably at least 0.50%.

本実施形態に係る無方向性電磁鋼板は、上述の化学成分を含有し、残部がFe及び不純物からなることを基本とする。しかしながら、磁気特性の更なる向上、強度、耐食性や疲労特性などの構造部材に求められる特性の向上、鋳造性や通板性の向上、スクラップ使用などによる生産向を目的として、Mo、W、In、Sn、Bi、Sb、Ag、Te、Ce、V、Cr、Co、Ni、Se、Re、Os、Nb、Zr、Hf、Ta、Y、La等の微量元素を、合計で0.5%以下の範囲で含有させてもよい。また、これらの元素が、合計で0.5%以下の範囲で混入したとしても、本実施形態の効果を損なうものではない。
Mg、Ca、Zn、Tiなどの硫化物生成元素についてはCu硫化物の析出温度に影響を及ぼすため、含有量の合計を0.1%以下とすることが好ましい。
The non-oriented electrical steel sheet according to the present embodiment basically contains the above-mentioned chemical components, and the balance consists of Fe and impurities. However, in order to further improve magnetic properties, improve properties required for structural members such as strength, corrosion resistance and fatigue properties, improve castability and sheet passing properties, and improve production by using scrap, Mo, W, In, and the like are used. , Sn, Bi, Sb, Ag, Te, Ce, V, Cr, Co, Ni, Se, Re, Os, Nb, Zr, Hf, Ta, Y, La, etc. You may make it contain in the following ranges. Further, even if these elements are mixed in a range of 0.5% or less in total, the effect of the present embodiment is not impaired.
Since sulfide-forming elements such as Mg, Ca, Zn, and Ti affect the precipitation temperature of Cu sulfide, the total content is preferably 0.1% or less.

次に本実施形態に係る無方向性電磁鋼板における重要な制御因子であるCu硫化物の状態について説明する。
Cu硫化物は、鋼板中での存在を完全になくすことが困難である。そこで、本実施形態に係る無方向性電磁では、Sを積極的にCu硫化物として析出させることに加え、析出するCu硫化物について、AlNを析出核として複合析出するように制御することで良好な鉄損を得る。
Cu硫化物とAlNの複合析出のしやすさは析出核であるAlNの結晶構造、つまり原子配列の周期性で決まる。すなわちAlNの結晶系がHexagonalである場合に、AlNがCu硫化物の析出核として最も有効に機能する。なお、AlN(Hexagonal)と複合析出しているCu硫化物の結晶系は、Cubicであり、結晶構造はX線回折(XRD)により同定可能である。
Next, the state of Cu sulfide, which is an important control factor in the non-oriented electrical steel sheet according to the present embodiment, will be described.
It is difficult to completely eliminate the presence of Cu sulfide in a steel sheet. Therefore, in the non-directional electromagnetic according to the present embodiment, in addition to positively depositing S as Cu sulfide, the Cu sulfide to be deposited is preferably controlled by performing composite precipitation using AlN as a precipitation nucleus. Iron loss.
The ease of complex precipitation of Cu sulfide and AlN is determined by the crystal structure of the precipitation nucleus AlN, that is, the periodicity of the atomic arrangement. That is, when the crystal system of AlN is Hexagonal, AlN functions most effectively as a precipitation nucleus of Cu sulfide. Note that the crystal system of Cu sulfide that is compositely precipitated with AlN (Hexagonal) is Cubic, and the crystal structure can be identified by X-ray diffraction (XRD).

本実施形態に係る無方向性電磁鋼板においては、例えば鋼板の電解抽出残渣に対してCu−Kα線によるX線回折(XRD)を行ったとき、2θ=33.5°±3°におけるAlN(Hexagonal)の100回折強度であるI2θ=33.5と、2θ=32.1°±3°におけるCu硫化物(Cubic)の200回折強度であるI2θ=32.1とが、下記式1の条件を満たすように制御する。
2θ=32.1/I2θ=33.5 ≧ 0.01・・・式1
In the non-oriented electrical steel sheet according to the present embodiment, for example, when X-ray diffraction (XRD) by Cu-Kα radiation is performed on the electrolytic extraction residue of the steel sheet, AlN at 2θ = 33.5 ° ± 3 ° is obtained. Hexagonal's 100 diffraction intensity, I 2θ = 33.5 , and 2θ = 32.1 ° ± 3 °, 200 diffraction intensity of Cu sulfide (Cubic) at 2θ = 32.1 = 22.1 Is controlled to satisfy the condition of
I 2θ = 32.1 / I 2θ = 33.5 ≧ 0.01 Expression 1

XRD回折では試料の結晶構造に応じて、特定の2θ位置に回折ピークが観察される。ただし鉄鋼材料中の析出物は、析出物に対するFe固溶、地鉄マトリクスとの格子整合性などの諸要因で結晶格子が変動する。それに伴い、AlN(Hexagonal)由来の100回折、およびCu硫化物(Cubic)由来の200回折が現れる上記2θの値は、誤差の範囲で少なくとも±3°を含むことになる。結晶構造の同定は結晶格子のデータベースであるJCPDS−CARDを用いて照合すればよいが、AlN(Hexagonal)は、JCPDS−CARD:087−1054や025−1133、Cu硫化物(Cubic)はJCPDS−CARD:00−012−0174、00−024−0061や023−0962、053−0522、33−0491、33−0492、070−9133などが存在し、これらは2θの誤差範囲±3°に収まるため、いずれも本発明の効果が得られる析出物である。上記以外にも2θの誤差範囲±3°に収まるような、AlN(Hexagonal)やCu硫化物(Cubic)であれば本発明の効果は当然享受できる。
特にCu硫化物においてはFeとSが一部置換することで、Cu9Fe9S16(JCPDS:00−027−0165)、Cu5FeS4(JCPDS:024−0050, 089−2620)やCuFe2S3(JCPDS:027−0166)、CuFeS2(JCPDS:075−0253、041−1404)などの析出物を形成するが、このようなCu−Fe−S系化合物についても、結晶系がCubicであり、かつ2θ=32.1°±3°において200回折ピークが観察されれば、I2θ=32.1と定義できる。なお、上記誤差範囲において、Cu硫化物(Cubic)について2つ以上の回折ピークが存在した場合については、それらのピーク強度を足し合わせたものをI2θ=32.1とする。
In XRD diffraction, a diffraction peak is observed at a specific 2θ position according to the crystal structure of the sample. However, the crystal lattice of the precipitate in the steel material fluctuates due to various factors such as a solid solution of Fe to the precipitate and lattice matching with the base iron matrix. Accordingly, the value of 2θ at which 100 diffractions derived from AlN (Hexagonal) and 200 diffractions derived from Cu sulfide (Cubic) appear, includes at least ± 3 ° within an error range. The identification of the crystal structure may be performed using JCPDS-CARD, which is a database of crystal lattices. For AlN (Hexagonal), JCPDS-CARD: 087-1054 or 025-1133, and for Cu sulfide (Cubic), JCPDS-CARD. CARD: 00-012-0174, 00-024-0061, 023-0962, 053-0522, 33-0491, 33-0492, 070-9133, etc., which are within the error range of 2θ ± 3 °. Are precipitates from which the effects of the present invention can be obtained. In addition to the above, the effects of the present invention can be naturally enjoyed with AlN (Hexagonal) or Cu sulfide (Cubic) that falls within an error range of 2θ ± 3 °.
In particular, in Cu sulfide, Fe and S are partially substituted, so that Cu9Fe9S16 (JCPDS: 00-027-0165), Cu5FeS4 (JCPDS: 024-0050, 089-2620), CuFe2S3 (JCPDS: 027-0166), Although precipitates such as CuFeS2 (JCPDS: 075-0253, 041-1404) are formed, the crystal system of such a Cu-Fe-S-based compound is Cubic, and 2θ = 32.1 ° ± 3. If 200 diffraction peaks are observed at °, it can be defined as I2θ = 32.1 . When two or more diffraction peaks are present for Cu sulfide (Cubic) in the above error range, the sum of the peak intensities is defined as I2θ = 32.1 .

一般的に、XRD回折強度とはスペクトルのバックグラウンドからピークまでの高さである。バックグラウンド強度が十分低く、除去する必要がない状況が理想的だが、析出物からの回折強度が弱い場合、相対的にバックグラウンドの強度が高くなる場合がある。そのような場合には、非特許文献3、4に記載あるように、XRD解析ソフトウェアを用いてバックグラウンドを除去する必要があり、本実施形態におけるXRD回折強度(ピーク強度)も、同様にソフトウェアを用いて、バックグラウンドを除去して求めた。
また、AlNの析出量とCu硫化物の析出量には最適なバランスがあるため、I2θ=32.1/I2θ=33.5が0.5以上25以下であることがより好ましい。さらに好ましい範囲は2以上10以下である。
Generally, the XRD diffraction intensity is the height from the background to the peak of the spectrum. Ideally, the background intensity is sufficiently low and there is no need to remove the background intensity. However, when the diffraction intensity from the precipitate is weak, the background intensity may be relatively high. In such a case, as described in Non-Patent Documents 3 and 4, it is necessary to remove the background using XRD analysis software, and the XRD diffraction intensity (peak intensity) in the present embodiment is similarly reduced by software. Was used to remove the background.
In addition, since there is an optimal balance between the amount of AlN deposited and the amount of Cu sulfide deposited, I 2θ = 32.1 / I 2θ = 33.5 is more preferably 0.5 or more and 25 or less. A more preferred range is from 2 to 10.

また、本実施形態に係る無方向性電磁においては、Cu硫化物とAlNを複合析出せしめ鉄損を改善するが、この効果をより享受するためには、鋼板中に、CuおよびAlを含有し、かつ5〜1000nmの直径を有する析出物が、単位面積当たりの個数密度(面密度)で、0.01〜80個/μm存在することが好ましい。
上記析出物の個数密度が0.01個未満だと、効果を十分に享受できないおそれがある。一方、個数密度が80個/μmを超えると、粒成長性が悪化し、磁束密度の劣化の恐れがあるからである。好ましくは、上記析出物の個数密度(面密度)は0.5個〜20個/μmであり、より好ましくは1個〜5個/μmである。
In addition, in the non-directional electromagnetic according to the present embodiment, Cu sulfide and AlN are compositely precipitated to improve iron loss, but in order to further enjoy this effect, Cu and Al are contained in the steel sheet. It is preferable that precipitates having a diameter of 5 to 1000 nm exist in a number density per unit area (area density) of 0.01 to 80 / μm 2 .
If the number density of the precipitates is less than 0.01, the effect may not be sufficiently obtained. On the other hand, when the number density exceeds 80 particles / μm 2 , the grain growth property is deteriorated, and the magnetic flux density may be deteriorated. Preferably, the precipitate has a number density (area density) of 0.5 to 20 / μm 2 , more preferably 1 to 5 / μm 2 .

上記のCuおよびAlを含有する析出物の観察は、TEM(透過型電子顕微鏡)またはSEM(走査型電子顕微鏡)により行えばよい。析出物の構成元素はEDS分析により同定が可能である。具体的には対象の析出物にEDS分析を行った場合に、スペクトル横軸のエネルギー1.5±0.2kevの位置にAl−Kα線および、8.0±0.2kevの位置にCu−Kα線が同時に検出されればよい。元素同定はKα線以外にもLα線、Kγ線で行ってもよい。ただし、抽出レプリカをTEM−EDSの観察試料として供す場合、Cu硫化物とレプリカメッシュのシグナルを分離する必要があるため、Cuメッシュの使用は避けなければならない。また、Cu硫化物にはMnまたはFeが少量固溶することが知られており、EDS分析の結果、Cu硫化物からMn−KαまたはFe−KαのEDSシグナルが検出されても本発明の効果を失うものではない。   The observation of the precipitate containing Cu and Al may be performed by a TEM (transmission electron microscope) or a SEM (scanning electron microscope). The constituent elements of the precipitate can be identified by EDS analysis. Specifically, when EDS analysis was performed on the target precipitate, the Al-Kα ray was located at the energy of 1.5 ± 0.2 kev on the horizontal axis of the spectrum, and the Cu- ray was located at the location of 8.0 ± 0.2 kev on the horizontal axis of the spectrum. It is sufficient that Kα rays are simultaneously detected. Element identification may be performed by Lα ray or Kγ ray in addition to Kα ray. However, when an extracted replica is used as an observation sample of TEM-EDS, it is necessary to separate signals of Cu sulfide and the replica mesh, and therefore, the use of Cu mesh must be avoided. Further, it is known that a small amount of Mn or Fe is dissolved in Cu sulfide, and even if an EDS signal of Mn-Kα or Fe-Kα is detected from Cu sulfide as a result of EDS analysis, the effect of the present invention is obtained. Do not lose.

次に、本実施形態に係る無方向性電磁鋼板の製造方法について述べる。
本実施形態に係る無方向性電磁鋼板は、上述した成分組成となるよう通常の電磁鋼板と同様に転炉で溶製され、連続鋳造された鋼片に、熱間圧延、熱延板焼鈍、冷間圧延、仕上焼鈍などを行うことによって製造できる。
Next, a method for manufacturing the non-oriented electrical steel sheet according to the present embodiment will be described.
The non-oriented electrical steel sheet according to the present embodiment is melted in a converter in the same manner as a normal electrical steel sheet so as to have the component composition described above, and into a continuously cast steel piece, hot-rolled, hot-rolled sheet annealing, It can be manufactured by performing cold rolling, finish annealing, and the like.

熱間圧延については特に限定せず、直送熱延や、連続熱延などの熱延方法およびスラブ加熱温度によらず、鉄損改善効果を享受できる。
冷間圧延についても特に限定せず、二回以上冷延、温間圧延などの冷延方法及び冷延圧下率によらず、鉄損改善効果を享受できる。
またこれらの工程に加え、絶縁皮膜の形成や脱炭工程などを経ても構わない。また、通常の工程ではなく急冷凝固法による薄帯の製造や熱延工程を省略する薄スラブ、連続鋳造法などの工程によって製造しても問題ない。
The hot rolling is not particularly limited, and the iron loss improving effect can be enjoyed irrespective of a hot rolling method such as direct feeding hot rolling or continuous hot rolling and a slab heating temperature.
There is no particular limitation on the cold rolling, and the effect of improving iron loss can be enjoyed regardless of the cold rolling method such as cold rolling twice or more and the cold rolling reduction ratio.
Further, in addition to these steps, an insulating film forming step, a decarburizing step, or the like may be performed. In addition, there is no problem in manufacturing a thin strip by a rapid solidification method, a thin slab that omits a hot rolling step, a continuous casting method, or the like instead of a normal step.

しかしながら、本実施形態に係る無方向性電磁鋼板を得る場合、仕上焼鈍工程において、以下に説明するような熱履歴を経ることが重要である。すなわち、仕上焼鈍工程においてCu硫化物を全量固溶させ、仕上焼鈍工程の冷却中に、Cu硫化物とAlNを複合析出させるよう制御することである。
以下、仕上焼鈍工程、および必要に応じて行う熱延板焼鈍工程の各条件について詳述する。
However, when obtaining the non-oriented electrical steel sheet according to the present embodiment, it is important to undergo a heat history as described below in the finish annealing step. That is, control is performed so that Cu sulfide is entirely dissolved in the finish annealing step, and composite precipitation of Cu sulfide and AlN is performed during cooling in the finish annealing step.
Hereinafter, each condition of the finish annealing step and the hot-rolled sheet annealing step performed as necessary will be described in detail.

本発明では以下に示すT1〜T6℃の6つの温度が重要な意味を持つ。T1℃はCu硫化物の固溶開始温度であり、T2℃はAlN(Hexagonal)の固溶開始温度である。T3℃はCu硫化物が析出する上限温度であり、T4℃はCu硫化物が析出する下限温度である。T5℃はAlN(Hexagonal)が析出する上限温度であり、T5℃は、AlN(Hexagonal)が析出する下限温度である。   In the present invention, the following six temperatures T1 to T6 ° C. are important. T1 ° C. is a solid solution start temperature of Cu sulfide, and T2 ° C. is a solid solution start temperature of AlN (Hexagonal). T3 ° C. is the upper limit temperature at which Cu sulfide precipitates, and T4 ° C. is the lower limit temperature at which Cu sulfide precipitates. T5 ° C. is the upper limit temperature at which AlN (Hexagonal) precipitates, and T5 ° C. is the lower limit temperature at which AlN (Hexagonal) precipitates.

T1=15000/(12−log10([%Cu]×[%S]))−273…式2
T2=10000/(3.5−log10([%Al]×[%N]))−273…式3
T3=15000/(12−log10([%Cu]×[%S]))−323…式4
T4=15000/(12−log10([%Cu]×[%S]))−423…式5
T5=10000/(3.5−log10([%Al]×[%N]))−923…式6
T6=10000/(3.5−log10([%Al]×[%N]))−523…式7
ここで、[%Cu]はCuの質量%での含有量、[%S]はSの質量%での含有量、[%Al]はAlの質量%での含有量、[%N]はNの質量%での含有量である。
以下、これらの温度に基づいた硫化物制御方法について説明する。
T1 = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-273 ... Formula 2
T2 = 10000 / (3.5-log 10 ([% Al] × [% N]))-273 ... Equation 3
T3 = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-323 ... Equation 4
T4 = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-423 ... Equation 5
T5 = 10000 / (3.5 log 10 ([% Al] × [% N]))-923 ... Equation 6
T6 = 10000 / (3.5 log 10 ([% Al] × [% N]))-523 ... Formula 7
Here, [% Cu] is the content in mass% of Cu, [% S] is the content in mass% of S, [% Al] is the content in mass% of Al, and [% N] is This is the content of N in mass%.
Hereinafter, a sulfide control method based on these temperatures will be described.

本実施形態に係る無方向性電磁鋼板では、Cu硫化物とAlNを複合析出せしめ鉄損改善の効果を得る。
一般にCu硫化物は析出速度が速く、仕上焼鈍で固溶しても、その後の冷却中に単独で微細に再析出してしまい鉄損に悪影響を及ぼす。しかし、冷却開始時にAlN(Hexagonal)が存在すると、Cu硫化物は、冷却中にAlNを核として複合析出するため、微細析出を抑制できる。しかも、この複合析出物(Cu硫化物+AlN)が存在する場合に良好な鉄損が得られる。このため、仕上焼鈍の保持温度を、Cu硫化物を固溶させつつ、AlNが固溶しない温度域に制御することで冷却開始時にAlNを存在させておく必要がある。
In the non-oriented electrical steel sheet according to the present embodiment, Cu sulfide and AlN are precipitated in combination to obtain an effect of improving iron loss.
In general, Cu sulfide has a high precipitation rate, and even if it is solid-dissolved by finish annealing, it precipitates finely alone during subsequent cooling, adversely affecting iron loss. However, if AlN (Hexagonal) is present at the start of cooling, Cu sulfide undergoes complex precipitation with AlN as a nucleus during cooling, so that fine precipitation can be suppressed. Moreover, good iron loss can be obtained when the composite precipitate (Cu sulfide + AlN) is present. For this reason, it is necessary to keep AlN present at the start of cooling by controlling the holding temperature of the finish annealing to a temperature range in which AlN does not form a solid solution while dissolving Cu sulfide.

すなわち、仕上焼鈍工程においては、Cu硫化物をその固溶温度T1℃以上で10秒以上保持することで、Cu硫化物を全量固溶させることが可能となる。保持温度がT1℃未満では、Cu硫化物を固溶させることができない。ただし、鋼板がAlNの溶解温度T2℃を超えてしまうと、Cu硫化物の析出核であるAlNが消失してしまうことになり、本発明効果は享受できない。そのため、保持温度の上限はT2℃とする。   That is, in the finish annealing step, by holding Cu sulfide at a solid solution temperature T1 ° C. or higher for 10 seconds or more, it becomes possible to form a solid solution of Cu sulfide in its entirety. If the holding temperature is lower than T1 ° C., Cu sulfide cannot be dissolved. However, when the temperature of the steel sheet exceeds the melting temperature T2 ° C. of AlN, AlN which is a precipitation nucleus of Cu sulfide disappears, and the effect of the present invention cannot be enjoyed. Therefore, the upper limit of the holding temperature is T2 ° C.

また、仕上焼鈍の保持時間(T1℃以上T2℃以下の滞在時間)は10秒以上3600秒以下とする。保持時間が10秒未満ではCu硫化物の固溶が十分に進まない。一方で、3600秒を超えて保持すると、析出速度の遅いTiSなどの他の微細硫化物が生成し、鉄損改善に悪影響を及ぼす。そのため、好ましい保持時間は、100秒以上1000秒以下である。   Further, the holding time of the finish annealing (the stay time between T1 ° C. and T2 ° C.) is set to 10 seconds or more and 3600 seconds or less. If the holding time is less than 10 seconds, the solid solution of Cu sulfide will not sufficiently proceed. On the other hand, if it is maintained for more than 3600 seconds, other fine sulfides such as TiS having a low deposition rate are generated, which adversely affects iron loss improvement. Therefore, a preferable holding time is 100 seconds or more and 1000 seconds or less.

仕上焼鈍工程における冷却速度の制御も本発明において重要な制御因子である。冷却速度が小さすぎると、Cu硫化物はAlNと複合析出せず、単独に析出してしまい本発明の効果を享受できない。そのため、Cu硫化物の析出温度域である上記T3℃以下T4℃以上の温度範囲において20℃/秒以上で急速冷却する必要がある。しかしながら、200℃/秒を超える冷却速度だと、鋼板に冷却歪が導入される懸念がある。したがって、上記T3℃以下T4℃以上の温度範囲における冷却速度は20℃/秒以上200℃/秒以下に制御する必要がある。好ましくは50℃/秒以上100℃/秒以下である。   Control of the cooling rate in the finish annealing step is also an important control factor in the present invention. If the cooling rate is too low, Cu sulfide does not precipitate with AlN, but precipitates independently, and the effects of the present invention cannot be enjoyed. Therefore, it is necessary to rapidly cool at a rate of 20 ° C./sec or more in the temperature range of T3 ° C. or less and T4 ° C. or more, which is the precipitation temperature range of Cu sulfide. However, if the cooling rate exceeds 200 ° C./sec, there is a concern that cooling strain may be introduced into the steel sheet. Therefore, it is necessary to control the cooling rate in the temperature range of T3 ° C. or lower and T4 ° C. or higher to 20 ° C./second or more and 200 ° C./second or less. Preferably it is 50 ° C./sec or more and 100 ° C./sec or less.

本発明ではAlN(Hexagonal)をCu硫化物の析出核として積極的に活用しているため、Hexagonalの結晶構造を有するAlNをなるべく多く析出させるのが好ましい。しかし熱延板でのAlNの結晶構造はHexagonalのみならず様々な形態を有する。
そこで、熱延板焼鈍工程において全てのAlNを固溶させ、かつ続く仕上焼鈍の昇温工程にて、上記T5℃以上、T6℃以下で定める温度範囲の滞留時間を稼ぐことで、結晶構造がHexagonalのAlNをより多く析出させることができる。そのため、熱延板焼鈍の温度はAlNの溶解開始温度T2℃以上にすることが好ましい。
また、熱延板焼鈍における保持時間が10秒未満ではAlNの固溶が十分に進まない。一方で、3600秒を超えて保持すると、TiNなどのほかの窒化物が微細析出し、鉄損劣化の原因となる。そのため、熱延板焼鈍における保持時間は10秒以上3600秒以下とすることが好ましい。より確実にAlNを固溶させつつ、TiNなどの窒化物の析出を防ぐためには、保持時間を30秒以上1000秒以下にすることが好ましい。
In the present invention, AlN (Hexagonal) is actively utilized as a precipitation nucleus of Cu sulfide. Therefore, it is preferable to deposit as much as possible AlN having a hexagonal crystal structure. However, the crystal structure of AlN in the hot-rolled sheet has various forms as well as hexagonal.
Therefore, in the hot-rolled sheet annealing step, all the AlN is dissolved, and in the subsequent heating step of the finish annealing, the residence time in the above-mentioned temperature range of T5 ° C. or more and T6 ° C. or less is obtained, so that the crystal structure is increased. Hexagonal AlN can be more precipitated. Therefore, the temperature of the hot-rolled sheet annealing is preferably set to be equal to or higher than the melting start temperature T2 ° C. of AlN.
If the holding time in the hot-rolled sheet annealing is less than 10 seconds, the solid solution of AlN does not sufficiently proceed. On the other hand, if it is held for more than 3600 seconds, other nitrides such as TiN are finely precipitated and cause iron loss deterioration. Therefore, the holding time in the hot-rolled sheet annealing is preferably set to 10 seconds or more and 3600 seconds or less. In order to prevent the precipitation of nitride such as TiN while ensuring the solid solution of AlN, the holding time is preferably 30 seconds or more and 1000 seconds or less.

仕上焼鈍の昇温工程においては、AlN(Hexagonal)の析出温度域であるT5〜T6℃の温度域における加熱速度を100℃/秒以下で徐加熱することで、Cu硫化物とAlNとが複合析出する。ただし、加熱速度が10℃/秒未満だと、AlN自体が微細な状態で析出してしまい、鋼板の粒成長を抑制してしまう。そのため、加熱速度は10℃/秒以上1000℃/秒以下とする必要がある。好ましくは30℃/秒以上500℃/秒以下である。また熱延板焼鈍を伴わないプロセスにおいても、仕上焼鈍の昇温工程において、加熱速度を10℃/秒以上1000℃/秒以下に制御することは有効である。これはスラブ加熱によっても、AlNは固溶するためであると考える。   In the temperature raising step of the finish annealing, Cu sulfide and AlN are combined by gradually heating at a heating rate of 100 ° C./second or less in a temperature range of T5 to T6 ° C., which is a precipitation temperature range of AlN (hexagonal). Precipitates. However, if the heating rate is less than 10 ° C./second, AlN itself precipitates in a fine state, and the grain growth of the steel sheet is suppressed. Therefore, the heating rate needs to be 10 ° C./sec or more and 1000 ° C./sec or less. Preferably it is 30 ° C./sec or more and 500 ° C./sec or less. Also in a process not involving hot-rolled sheet annealing, it is effective to control the heating rate to 10 ° C./sec or more and 1000 ° C./sec or less in the temperature raising step of the finish annealing. This is considered to be because AlN is dissolved even by slab heating.

より鉄損改善を図るうえで、熱延板焼鈍工程の冷却中に析出物が再析出しないよう、冷却速度を制御することも重要である。冷却速度が遅いと、AlN以外の窒化物が析出し、固溶したNを消費してしまうため、Cu硫化物の析出サイトであるAlNの数自体が減ってしまう。そこで、熱延板焼鈍工程において、T2℃以上の温度で10秒以上3600秒以下に保持した後、上記T5〜T6(℃)で定める温度範囲における冷却速度を10℃/秒以上にすることが好ましい。仕上焼鈍においてCu硫化物の単独析出の抑制には冷却速度が20℃/秒以上にする必要があったが、これはCu硫化物の析出速度が窒化物に比べて早いからである。窒化物の析出抑制は10℃/秒以上で十分である。ただし200℃/秒を超える冷却速度だと、冷却歪により鋼板形状が劣化し、その後の冷延が困難となる。したがって、冷却速度は10℃/秒以上200℃/秒以下に制御しなくてはならない。好ましくは、30℃/秒以上100℃/秒以下である。   In order to further improve iron loss, it is important to control the cooling rate so that precipitates do not reprecipitate during cooling in the hot-rolled sheet annealing step. If the cooling rate is low, nitrides other than AlN are precipitated and the solid solution of N is consumed, so that the number of AlN, which is a precipitation site of Cu sulfide, itself decreases. Therefore, in the hot-rolled sheet annealing step, after holding at a temperature of T2 ° C. or more for 10 seconds or more and 3600 seconds or less, the cooling rate in the temperature range defined by the above T5 to T6 (° C) is set to 10 ° C / second or more. preferable. In the finish annealing, the cooling rate was required to be 20 ° C./second or more in order to suppress the precipitation of Cu sulfide alone, because the precipitation rate of Cu sulfide was faster than that of nitride. Suppression of nitride precipitation of 10 ° C./sec or more is sufficient. However, if the cooling rate exceeds 200 ° C./second, the shape of the steel sheet deteriorates due to cooling strain, and it becomes difficult to perform subsequent cold rolling. Therefore, the cooling rate must be controlled between 10 ° C./sec and 200 ° C./sec. Preferably, it is 30 ° C./sec or more and 100 ° C./sec or less.

一般的に析出物と鋼の界面との整合性が良好なほど、磁壁移動はスムーズとなり、鉄損が良好となる。Cu硫化物は単独かつ極微細(<5nm)に析出することで、鉄損に悪影響するが、本実施形態に係る無方向性電磁鋼板では、Cu硫化物はAlNと複合析出することで、微細析出が回避される。さらに、AlN(Hexagonal)と複合析出することでCu硫化物は、その結晶構造がCubicになる。Cu硫化物(Cubic)は、鋼との界面における原子配列の周期性、すなわち結晶格子の整合性が良好であるため、本実施形態に係る無方向性電磁鋼板では、磁壁移動が容易であり、良好な鉄損を示すと考えられる。   In general, the better the consistency between the precipitate and the steel interface, the smoother the domain wall movement and the better the iron loss. Cu sulfide alone and extremely finely (<5 nm) adversely affects iron loss, but in the non-oriented electrical steel sheet according to the present embodiment, Cu sulfide is finely precipitated by complex precipitation with AlN. Precipitation is avoided. Furthermore, the crystal structure of Cu sulfide becomes Cubic by complex precipitation with AlN (Hexagonal). Cu sulfide (Cubic) has good periodicity of the atomic arrangement at the interface with the steel, that is, good matching of the crystal lattice. Therefore, in the non-oriented electrical steel sheet according to the present embodiment, domain wall movement is easy, It is considered to show good iron loss.

以下、本発明の実施例を挙げながら、本発明の技術的内容について更に説明する。なお、以下に示す実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。また本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
なお、下記の説明で用いる表中の下線は、本発明の範囲外であることを示す。
Hereinafter, the technical contents of the present invention will be further described with reference to examples of the present invention. It should be noted that the conditions in the following examples are one condition examples adopted for confirming the operability and effects of the present invention, and the present invention is not limited to these one condition examples. Further, the present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
In addition, the underline in the table used in the following description shows that it is out of the range of the present invention.

<実施例1>
表1に示す成分のインゴットを真空溶解し、このインゴットを1150℃で加熱し、熱延仕上温度を875℃、巻取温度を630℃として熱延し、板厚2.0mmの熱延鋼板とした。その後、T2+30℃で200秒の熱延板焼鈍を行った。なお、熱延板焼鈍後の炉冷却過程において、T5〜T6℃間の冷却速度を8℃/秒とした。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とした。続いてT1+30℃で200秒の仕上焼鈍を行った。室温からの昇温において、T5〜T6℃間の加熱速度を25℃/秒とし、仕上焼鈍後の炉冷却過程においては、T3〜T4℃間の冷却速度を40℃/秒とした。
<Example 1>
The ingots of the components shown in Table 1 were melted in vacuum, and the ingot was heated at 1150 ° C., hot-rolled at a hot-rolling finishing temperature of 875 ° C. and a winding temperature of 630 ° C. did. Thereafter, hot-rolled sheet annealing was performed at T2 + 30 ° C. for 200 seconds. In the furnace cooling process after hot-rolled sheet annealing, the cooling rate between T5 and T6 ° C was set at 8 ° C / sec. Thereafter, the sheet was pickled and then cold-rolled at a reduction of 75% to obtain a cold-rolled steel sheet having a sheet thickness of 0.50 mm. Subsequently, finish annealing was performed at T1 + 30 ° C. for 200 seconds. At a temperature rise from room temperature, the heating rate between T5 and T6 ° C was 25 ° C / sec, and in the furnace cooling process after finish annealing, the cooling rate between T3 and T4 ° C was 40 ° C / sec.

X線回折結果と磁気特性(磁束密度および鉄損)の結果を表2に示す。なお、表中の「ICuS/IAlN」はI2θ=32.1/I2θ=33.5を示す。 Table 2 shows the results of the X-ray diffraction and the results of the magnetic characteristics (magnetic flux density and iron loss). In the table, “I CuS / I AlN ” indicates I 2θ = 32.1 / I 2θ = 33.5 .

鉄損に応じて、VG:非常に優れる、G:優れる、F:効果がみられる、B:従来レベルとして評価した。なお、磁気特性の評価はJIS C 2550:2000に準じて行った。歪取焼鈍は実施していない。鉄損については、W15/50(W/kg)を評価した。W15/50は、周波数50Hz、最大磁束密度1.5Tのときの鉄損である。また、磁束密度については、B50を用いて評価した。B50は、磁界の強さ5000A/mにおける磁束密度を示す。なお、B50の最低目標値を従来材と同等である1.50Tとした。
試料の鉄損評価基準は、以下の通りとした。
VG(VeryGood):W15/50(W/kg)<2.20
G(Good):2.20≦W15/50(W/kg)≦2.50
F(Fair):2.50<W15/50(W/kg)≦4.50
B(Bad):4.50<W15/50(W/kg)
According to the iron loss, VG: very excellent, G: excellent, F: effect was observed, and B: the conventional level was evaluated. The evaluation of the magnetic properties was performed according to JIS C 2550: 2000. No strain relief annealing was performed. Regarding iron loss, W15 / 50 (W / kg) was evaluated. W15 / 50 is an iron loss at a frequency of 50 Hz and a maximum magnetic flux density of 1.5T. The magnetic flux density was evaluated using B50. B50 indicates a magnetic flux density at a magnetic field strength of 5000 A / m. In addition, the minimum target value of B50 was set to 1.50T which is equivalent to the conventional material.
The evaluation criteria for iron loss of the sample were as follows.
VG (VeryGood): W15 / 50 (W / kg) <2.20
G (Good): 2.20 ≦ W15 / 50 (W / kg) ≦ 2.50
F (Fair): 2.50 <W15 / 50 (W / kg) ≦ 4.50
B (Bad): 4.50 <W15 / 50 (W / kg)

X線回折には非特許文献5〜7に記載されている一般的な抽出残渣法により介在物のみをフィルターで捕集したものを分析試料として用いた。XRD測定は非特許文献4〜6に記載のCuKα線をプローブとした広角X線回折により行った。   For X-ray diffraction, a sample obtained by collecting only inclusions with a filter by a general extraction residue method described in Non-Patent Documents 5 to 7 was used as an analysis sample. The XRD measurement was performed by wide-angle X-ray diffraction using CuKα radiation described in Non-Patent Documents 4 to 6 as a probe.

Figure 0006627226
Figure 0006627226

Figure 0006627226
Figure 0006627226

<実施例2>
表1に示す成分のインゴットを真空溶解し、このインゴットを1150℃で加熱し、熱延仕上温度を875℃、巻取温度を630℃として熱延し、板厚2.0mmの熱延鋼板とした。その後、T2+30℃で200秒の熱延板焼鈍を行った。なお、熱延板焼鈍後の炉冷却過程において、T5〜T6℃間の冷却速度を50℃/秒とした。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とした。続いてT1+30℃で200秒の仕上焼鈍を行った。室温からの昇温において、T5〜T6℃間の加熱速度を40℃/秒とし、仕上焼鈍後の炉冷却過程においては、T3〜T4℃間の冷却速度を75℃/秒とした。
表3にはX線回折結果、析出物の析出状態、磁気特性(磁束密度および鉄損)の評価結果も示す。X線回折、磁気特性の測定については、<実施例1>と同様の評価を行った。また、析出物観察は、鋼板の圧延方向に垂直な断面をエッチングし、SEM観察により測定した。その際、100μmの視野を10視野観察した。観察されたAlおよびCuを含む析出物の総数を、1000(100μm×10視野)で割った数字を、1μmあたりの析出物の個数、すなわち面密度とした。
<Example 2>
The ingots of the components shown in Table 1 were melted in vacuum, and the ingot was heated at 1150 ° C., hot-rolled at a hot-rolling finishing temperature of 875 ° C. and a winding temperature of 630 ° C. did. Thereafter, hot-rolled sheet annealing was performed at T2 + 30 ° C. for 200 seconds. In the furnace cooling process after the hot-rolled sheet annealing, the cooling rate between T5 and T6 ° C was set to 50 ° C / sec. Thereafter, the sheet was pickled and then cold-rolled at a reduction of 75% to obtain a cold-rolled steel sheet having a sheet thickness of 0.50 mm. Subsequently, finish annealing was performed at T1 + 30 ° C. for 200 seconds. At a temperature rise from room temperature, the heating rate between T5 and T6 ° C was 40 ° C / sec, and in the furnace cooling process after finish annealing, the cooling rate between T3 and T4 ° C was 75 ° C / sec.
Table 3 also shows the results of X-ray diffraction, the precipitation state of precipitates, and the evaluation results of magnetic properties (magnetic flux density and iron loss). For the measurement of X-ray diffraction and magnetic properties, the same evaluation as in <Example 1> was performed. The precipitates were observed by etching a section perpendicular to the rolling direction of the steel sheet and observing by SEM. At that time, 10 visual fields of 100 μm 2 were observed. The number obtained by dividing the observed total number of precipitates containing Al and Cu by 1000 (100 μm 2 × 10 visual fields) was defined as the number of precipitates per 1 μm 2 , that is, areal density.

No.c1〜c3はいずれも発明例であるが、No.c1は析出物の面密度が大きく、No.C1〜C6の発明例と比較し、鉄損が少々劣った。一方、No.c2、c3は析出物の面密度が小さく、これらも同様に、No.C1〜C6の発明例と比較して鉄損が少々劣った。   No. Nos. c1 to c3 are all examples of the invention. No. c1 has a large area density of the precipitate. The iron loss was slightly inferior to the invention examples C1 to C6. On the other hand, No. Nos. c2 and c3 have low areal densities of the precipitates. Iron loss was slightly inferior to the invention examples C1 to C6.

Figure 0006627226
Figure 0006627226

<実施例3>
表1に示す鋼No.A1、A17、A18の成分を有するインゴットを、1100℃で加熱し、仕上温度が850℃、巻取温度が630℃となるように熱延して板厚2.0mmの熱延板とした。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とし、表4に示す条件で仕上焼鈍を実施した。表4にはX線回折結果、析出物の析出状態、磁気特性(磁束密度および鉄損)の評価結果も示す。X線回折、磁気特性の測定、析出物の測定については、実施例1と同様の評価を行った。
<Example 3>
The steel No. shown in Table 1 was used. The ingot having the components of A1, A17 and A18 was heated at 1100 ° C., and hot rolled so that the finishing temperature was 850 ° C. and the winding temperature was 630 ° C. to obtain a hot rolled sheet having a sheet thickness of 2.0 mm. After that, cold rolling was performed at a rolling reduction of 75% after pickling to obtain a cold-rolled steel sheet having a sheet thickness of 0.50 mm, and finish annealing was performed under the conditions shown in Table 4. Table 4 also shows the results of X-ray diffraction, the precipitation state of precipitates, and the evaluation results of magnetic properties (magnetic flux density and iron loss). X-ray diffraction, measurement of magnetic properties, and measurement of precipitates were evaluated in the same manner as in Example 1.

仕上焼鈍の条件が本発明範囲外であるNo.d1〜d5はいずれも、ICuS/IAlNが小さく、析出物密度も十分に確保できなかったため、鉄損が劣化してしまった。 The conditions of the finish annealing were out of the range of the present invention. In all of d1 to d5, I CuS / I AlN was small and the precipitate density could not be sufficiently secured, so that iron loss was deteriorated.

Figure 0006627226
Figure 0006627226

<実施例4>
表1に示す鋼No.A1、A17、A18の成分を有するインゴットを、1100℃で加熱し、仕上温度が850℃、巻取温度が630℃となるように熱延して板厚2.0mmの熱延板とした。この熱延板のうち、No.E1〜E7については、表5に示す条件で熱延板焼鈍を実施した。
その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とし、鋼No.A1については950℃、鋼No.A17については1050℃、鋼No.A18については1100℃で60秒の仕上焼鈍を実施した。仕上焼鈍のT5〜T6℃間の加熱速度は表5に示す通りであり、仕上焼鈍後の炉冷却過程においては、T3〜T4℃間の冷却速度を40℃/秒とした。
表5にはX線回折結果、析出物の析出状態、磁気特性(磁束密度および鉄損)の評価結果も示す。X線回折、磁気特性の測定、析出物の測定については、<実施例1>と同様の評価を行った。
<Example 4>
The steel No. shown in Table 1 was used. The ingot having the components of A1, A17 and A18 was heated at 1100 ° C., and hot rolled so that the finishing temperature was 850 ° C. and the winding temperature was 630 ° C. to obtain a hot rolled sheet having a sheet thickness of 2.0 mm. Among the hot rolled sheets, No. For E1 to E7, hot-rolled sheet annealing was performed under the conditions shown in Table 5.
Then, after pickling, it was cold-rolled at a rolling reduction of 75% to obtain a cold-rolled steel sheet having a sheet thickness of 0.50 mm. A1 is 950 ° C., steel No. About A17, 1050 degreeC, steel No. For A18, finish annealing was performed at 1100 ° C. for 60 seconds. The heating rate between T5 and T6 ° C. in the finish annealing is as shown in Table 5, and in the furnace cooling process after the finish annealing, the cooling rate between T3 and T4 ° C. was 40 ° C./sec.
Table 5 also shows the results of X-ray diffraction, the precipitation state of precipitates, and the evaluation results of magnetic properties (magnetic flux density and iron loss). X-ray diffraction, measurement of magnetic properties, and measurement of precipitates were evaluated in the same manner as in Example 1.

No.E1〜E7のいずれもの試料についても、仕上焼鈍の温度、時間及び冷却速度が本発明範囲内にあるため、本発明効果が得られた。特に、仕上焼鈍のT5〜T6℃間の加熱速度を好ましい範囲に制御した、No.E6およびE7では、ICuS/IAlNおよび析出物の面密度も好ましい範囲に制御されており、特に良好だった。No.E1〜E7は、仕上焼鈍の加熱速度の制御により、AlNをより多く析出させた効果が得られた。 No. Regarding any of the samples E1 to E7, the effects of the present invention were obtained because the temperature, time, and cooling rate of the finish annealing were within the range of the present invention. In particular, the heating rate between T5 and T6 ° C. in the finish annealing was controlled in a preferable range. In E6 and E7, the areal densities of I CuS / I AlN and the precipitates were also controlled in the preferred ranges, and were particularly good. No. In E1 to E7, the effect of precipitating more AlN was obtained by controlling the heating rate of the finish annealing.

Figure 0006627226
Figure 0006627226

<実施例5>
表1に示す鋼No.A1、A17、A18の成分を有するインゴットを、1100℃で加熱し、仕上温度が850℃、巻取温度が630℃となるように熱延して板厚2.0mmの熱延板とした。この熱延版に、表6に示す条件で熱延板焼鈍を実施した。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とし、A1については950℃、A17については1050℃、A18については1100℃で60秒の仕上焼鈍を実施した。仕上焼鈍後の炉冷却過程においては、T3〜T4℃間の冷却速度を40℃/秒とした。
表6にはX線回折結果、析出物の析出状態、磁気特性(磁束密度および鉄損)の評価結果も示す。X線回折、磁気特性の測定、析出物の測定については、<実施例1>と同様の評価を行った。
<Example 5>
The steel No. shown in Table 1 was used. The ingot having the components of A1, A17 and A18 was heated at 1100 ° C., and hot rolled so that the finishing temperature was 850 ° C. and the winding temperature was 630 ° C. to obtain a hot rolled sheet having a sheet thickness of 2.0 mm. The hot-rolled plate was subjected to hot-rolled sheet annealing under the conditions shown in Table 6. After that, it is cold-rolled at a rolling reduction of 75% after pickling to obtain a cold-rolled steel sheet having a sheet thickness of 0.50 mm. Was carried out. In the furnace cooling process after the finish annealing, the cooling rate between T3 and T4C was 40C / sec.
Table 6 also shows the results of X-ray diffraction, the precipitation state of precipitates, and the evaluation results of magnetic properties (magnetic flux density and iron loss). X-ray diffraction, measurement of magnetic properties, and measurement of precipitates were evaluated in the same manner as in Example 1.

No.F1〜F10のいずれもの試料についても、良好な鉄損が得られた。熱延板焼鈍工程の冷却速度および仕上焼鈍の加熱速度を好ましい範囲に制御した、No.F5〜F6において、特に良好な鉄損が得られた。次いで、熱延板焼鈍工程の冷却速度および仕上焼鈍の昇温工程の加熱速度が本発明範囲内に入っているNo.F9〜F10において良好な鉄損が得られた。また、No.F5〜F6、No.F9〜F10において優れた鉄損を確保できたのは、熱延板焼鈍の冷却速度を好ましい範囲内となるよう制御することで、AlN以外の窒化物の析出を回避し、かつ仕上焼鈍の加熱速度を好ましい範囲に制御することで、Cu硫化物とAlNとを効率よく複合析出せしめたためであり、熱延板焼鈍の冷却速度および仕上焼鈍の加熱速度が好ましい範囲ではないNo.F1〜F4、7、8と比較して、鉄損は優位だった。   No. Good iron loss was obtained for any of the samples F1 to F10. The cooling rate in the hot-rolled sheet annealing step and the heating rate in the finish annealing were controlled in preferred ranges. In F5 to F6, particularly good iron loss was obtained. Then, the cooling rate in the hot-rolled sheet annealing step and the heating rate in the temperature-raising step in the finish annealing were within the ranges of the present invention. Good iron loss was obtained in F9 to F10. No. F5 to F6, No. Excellent iron loss was secured in F9 to F10 by controlling the cooling rate of hot-rolled sheet annealing to be within a preferable range, thereby avoiding precipitation of nitrides other than AlN and heating the finish annealing. This is because Cu sulfide and AlN were efficiently precipitated in a complex manner by controlling the rate in a preferable range, and the cooling rate of hot-rolled sheet annealing and the heating rate of finish annealing were not in the preferable ranges. Iron loss was superior to F1 to F4, 7, and 8.

Figure 0006627226
Figure 0006627226

Claims (2)

質量%で、C:0.0001〜0.01%、Si:0.05〜7.0%、Mn:0.02〜3.0%、Al:0.002〜3.0%、S:0.0005〜0.05%、P:0.002〜0.15%、N:0.0010〜0.0100%、Cu:0.010〜5.00%を含有し、残部がFe及び不純物からなる化学組成を有し、電解抽出残渣に対するX線回折において得られる、2θ=33.5°に現れるHexagonal構造を有する窒化アルミニウムの回折強度であるI 2θ=33.5 と、2θ=32.1°に現れるCubic構造を有するCu硫化物の回折強度であるI 2θ=32.1 とが、下記式1の条件を満たす無方向性電磁鋼板の製造方法であって、
質量%で、C:0.0001〜0.01%、Si:0.05〜7.0%、Mn:0.02〜3.0%、Al:0.002〜3.0%、S:0.0005〜0.05%、P:0.002〜0.15%、N:0.0010〜0.0100%、Cu:0.010〜5.00%を含有し、残部がFe及び不純物からなる化学組成を有する鋼片に熱間圧延を行い、熱延鋼板を得る熱延工程と、
前記熱延鋼板を焼鈍する熱延板焼鈍工程と、
前記熱延板焼鈍工程後の前記熱延鋼板を酸洗する酸洗工程と、
前記酸洗工程後の前記熱延鋼板に冷間圧延を行い冷延鋼板を得る冷延工程と、
前記冷延鋼板を焼鈍する仕上焼鈍工程と、
を有する無方向性電磁鋼板の製造工程において、
前記熱延板焼鈍工程において、下記式3に示すT2℃以上で10〜3600秒の保持を行い、
前記仕上焼鈍工程において、室温から下記式2に示すT1℃以上、前記T2℃以下に昇温する際、下記式6に示すT5℃以上、下記式7に示すT6℃以下の温度域における平均加熱速度を10℃/秒以上1000℃/秒以下とし、前記T1℃以上、前記T2℃以下で10〜3600秒の保持を行い、その後の冷却について、下記式4に示すT3℃以下、下記式5に示すT4℃以上の温度域における平均冷却速度を20℃/秒以上200℃/秒以下とすることを特徴とする無方向性電磁鋼板の製造方法。
2θ=32.1 /I 2θ=33.5 ≧0.01 …式1
T1=15000/(12−log10([%Cu]×[%S]))−273…式2
T2=10000/(3.5−log10([%Al]×[%N]))−273…式3
T3=15000/(12−log10([%Cu]×[%S]))−323…式4
T4=15000/(12−log10([%Cu]×[%S]))−423…式5
T5=10000/(3.5−log10([%Al]×[%N]))−923…式6
T6=10000/(3.5−log10([%Al]×[%N]))−523…式7
ここで、[%Cu]はCuの質量%での含有量、[%S]はSの質量%での含有量、[%Al]はAlの質量%での含有量[%N]はNの質量%での含有量である。
In mass%, C: 0.0001 to 0.01%, Si: 0.05 to 7.0%, Mn: 0.02 to 3.0%, Al: 0.002 to 3.0%, S: 0.0005 to 0.05%, P: 0.002 to 0.15%, N: 0.0010 to 0.0100%, Cu: 0.010 to 5.00%, the balance being Fe and impurities I 2θ = 33.5 , 2θ = 32.3 , which is the diffraction intensity of aluminum nitride having a hexagonal structure appearing at 2θ = 33.5 °, which is obtained by X-ray diffraction of the electrolytic extraction residue . I 2θ = 32.1 , which is the diffraction intensity of Cu sulfide having a Cubic structure appearing at 1 °, is a method for producing a non-oriented electrical steel sheet satisfying the condition of the following formula 1,
In mass%, C: 0.0001 to 0.01%, Si: 0.05 to 7.0%, Mn: 0.02 to 3.0%, Al: 0.002 to 3.0%, S: 0.0005 to 0.05%, P: 0.002 to 0.15%, N: 0.0010 to 0.0100%, Cu: 0.010 to 5.00%, the balance being Fe and impurities Hot rolling on a steel slab having a chemical composition consisting of:
Hot-rolled sheet annealing step of annealing the hot-rolled steel sheet,
Pickling step of pickling the hot-rolled steel sheet after the hot-rolled sheet annealing step,
A cold rolling step of performing cold rolling on the hot rolled steel sheet after the pickling step to obtain a cold rolled steel sheet,
A finish annealing step of annealing the cold-rolled steel sheet,
In the manufacturing process of non-oriented electrical steel sheet having
In the hot-rolled sheet annealing step, holding at T2 ° C. or more shown in the following formula 3 for 10 to 3600 seconds,
In the finish annealing step, when the temperature is raised from room temperature to T1 ° C. or more and T2 ° C. or less shown in the following formula 2, average heating in a temperature range of T5 ° C. or more shown in the following formula 6 and T6 ° C. or less shown in the following formula 7 The speed is set to 10 ° C./sec or more and 1000 ° C./sec or less, the holding is performed at the T1 ° C. or more and the T2 ° C. or less for 10 to 3600 seconds. A method for producing a non-oriented electrical steel sheet, wherein the average cooling rate in a temperature range of T4 ° C. or higher is set to 20 ° C./sec or more and 200 ° C./sec or less.
I 2θ = 32.1 / I 2θ = 33.5 ≧ 0.01 Expression 1
T1 = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-273 ... Formula 2
T2 = 10000 / (3.5-log 10 ([% Al] × [% N]))-273 ... Equation 3
T3 = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-323 ... Equation 4
T4 = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-423 ... Equation 5
T5 = 10000 / (3.5 log 10 ([% Al] × [% N]))-923 ... Equation 6
T6 = 10000 / (3.5 log 10 ([% Al] × [% N]))-523 ... Formula 7
Here, [% Cu] is the content in mass% of Cu, [% S] is the content in mass% of S, and [% Al] is the content in mass% of Al [% N] is N Is the content in mass%.
前記熱延板焼鈍工程において、前記T2℃以上での前記保持後の冷却において、前記T5℃以上、前記T6℃以下の温度域における平均冷却速度を10℃/秒以上200℃/秒以下にすることを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。   In the hot-rolled sheet annealing step, in the cooling after the holding at the T2 ° C or higher, the average cooling rate in the temperature range of the T5 ° C or higher and the T6 ° C or lower is 10 ° C / second or more and 200 ° C / second or less. The method for producing a non-oriented electrical steel sheet according to claim 1, wherein:
JP2015033971A 2015-02-24 2015-02-24 Manufacturing method of non-oriented electrical steel sheet Active JP6627226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033971A JP6627226B2 (en) 2015-02-24 2015-02-24 Manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033971A JP6627226B2 (en) 2015-02-24 2015-02-24 Manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2016156044A JP2016156044A (en) 2016-09-01
JP6627226B2 true JP6627226B2 (en) 2020-01-08

Family

ID=56825190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033971A Active JP6627226B2 (en) 2015-02-24 2015-02-24 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6627226B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282779B (en) * 2016-09-29 2018-03-13 武汉科技大学 One kind is orientated high silicon steel thin belt and preparation method thereof
KR101901313B1 (en) * 2016-12-19 2018-09-21 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101904309B1 (en) * 2016-12-19 2018-10-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101918720B1 (en) 2016-12-19 2018-11-14 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101903008B1 (en) * 2016-12-20 2018-10-01 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
JP6891673B2 (en) * 2017-07-04 2021-06-18 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
JP6969219B2 (en) * 2017-08-16 2021-11-24 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
KR102043289B1 (en) * 2017-12-26 2019-11-12 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102106409B1 (en) * 2018-07-18 2020-05-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102178341B1 (en) * 2018-11-30 2020-11-12 주식회사 포스코 Non-oriented electrical steel sheet having superior magneticproperties and method for manufacturing the same
EP3904540A4 (en) * 2018-12-27 2022-04-20 JFE Steel Corporation Non-oriented magnetic steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302414A (en) * 1996-05-15 1997-11-25 Nkk Corp Production of nonoriented silicon steel sheet excellent in low magnetic field characteristics
JP4258918B2 (en) * 1999-11-01 2009-04-30 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP5423175B2 (en) * 2009-06-23 2014-02-19 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
WO2014168136A1 (en) * 2013-04-09 2014-10-16 新日鐵住金株式会社 Non-oriented magnetic steel sheet and method for producing same

Also Published As

Publication number Publication date
JP2016156044A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6627226B2 (en) Manufacturing method of non-oriented electrical steel sheet
KR101719445B1 (en) Non-oriented magnetic steel sheet and method for producing same
JP6891682B2 (en) Electrical steel sheet and its manufacturing method, rotor motor core and its manufacturing method, stator motor core and its manufacturing method, and motor core manufacturing method
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
EP3214195B1 (en) Method for manufacturing non-oriented electrical steel sheet
US11421297B2 (en) Non-oriented electrical steel sheet
TW200422408A (en) Non-oriented electromagnetic steel plate with excellent iron loss property and the production method thereof
CN111511948A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP6763148B2 (en) Non-oriented electrical steel sheet
JP6586815B2 (en) Non-oriented electrical steel sheet excellent in iron loss and manufacturing method thereof
JP6891673B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6816516B2 (en) Non-oriented electrical steel sheet
JP6801464B2 (en) Non-oriented electrical steel sheet
JP6638359B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN111542630B (en) Grain-oriented electromagnetic steel sheet
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
CN115244204A (en) Hot rolled steel plate
JP2021080501A (en) Non-oriented magnetic steel sheet
US20210340651A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP4267439B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method
TWI757156B (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for producing the same
WO2022219742A1 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same
JP2003247052A (en) Nonoriented silicon steel sheet having excellent high frequency property
JP4598709B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
TW202126821A (en) Method for producing non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R151 Written notification of patent or utility model registration

Ref document number: 6627226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151