JP6891673B2 - Non-oriented electrical steel sheet and its manufacturing method - Google Patents

Non-oriented electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP6891673B2
JP6891673B2 JP2017131442A JP2017131442A JP6891673B2 JP 6891673 B2 JP6891673 B2 JP 6891673B2 JP 2017131442 A JP2017131442 A JP 2017131442A JP 2017131442 A JP2017131442 A JP 2017131442A JP 6891673 B2 JP6891673 B2 JP 6891673B2
Authority
JP
Japan
Prior art keywords
hot
sulfide
steel sheet
content
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017131442A
Other languages
Japanese (ja)
Other versions
JP2019014927A (en
Inventor
隆史 片岡
隆史 片岡
藤倉 昌浩
昌浩 藤倉
伸一 松井
伸一 松井
村上 健一
健一 村上
高橋 克
克 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017131442A priority Critical patent/JP6891673B2/en
Publication of JP2019014927A publication Critical patent/JP2019014927A/en
Application granted granted Critical
Publication of JP6891673B2 publication Critical patent/JP6891673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板及びその製造方法に関し、特に、電気機器の鉄心材料として使用される、鉄損に優れた無方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a non-oriented electrical steel sheet and a method for producing the same, and more particularly to a non-oriented electrical steel sheet having excellent iron loss and a method for producing the same, which is used as an iron core material of an electric device.

無方向性電磁鋼板は、重電機器、家電用などの各種モーターの鉄芯材料として用いられている。無方向性電磁鋼板は、商業的には鉄損でグレード分けされ、モーターやトランスの設計特性に応じて使い分けられている。 Non-oriented electrical steel sheets are used as iron core materials for various motors for heavy electrical equipment and home appliances. Non-oriented electrical steel sheets are commercially graded according to iron loss, and are used properly according to the design characteristics of motors and transformers.

近年、エネルギー節減の観点から、無方向性電磁鋼板に対して、一層の低鉄損化が強く要望されている。一般に、鋼板中に微細な析出物が存在すると、磁壁移動が阻害され、ヒステリシス損は劣化する。そこで、従来、無方向性電磁鋼板の鉄損の改善を目的に、熱間圧延における硫化物の析出制御、脱硫による硫化物の低減方法、仕上焼鈍後の急速冷却によるCu硫化物の析出抑制などの方法が提案されてきた。 In recent years, from the viewpoint of energy saving, there is a strong demand for further reduction of iron loss in non-oriented electrical steel sheets. In general, the presence of fine precipitates in a steel sheet hinders domain wall movement and deteriorates hysteresis loss. Therefore, conventionally, for the purpose of improving iron loss of non-oriented electrical steel sheets, control of sulfide precipitation in hot rolling, method of reducing sulfide by desulfurization, suppression of Cu sulfide precipitation by rapid cooling after finish annealing, etc. Method has been proposed.

例えば、特許文献1では、Cuを0.2%以下含んだ鋼片を900〜1100℃の範囲で30分以上保定し、その後、1150℃で高温保定し、引き続いて圧延を開始するとともに、仕上熱延中の冷却速度を50℃/秒以下に抑えることによって、Cu硫化物の分散状態を無方向性電磁鋼板の磁気特性、即ち、鉄損および磁束密度にとって好ましい状態に制御する方法が開示されている。 For example, in Patent Document 1, a steel piece containing 0.2% or less of Cu is held in the range of 900 to 1100 ° C. for 30 minutes or more, then held at a high temperature of 1150 ° C., and then rolling is started and finished. A method of controlling the dispersed state of Cu sulfide to the magnetic properties of non-oriented electrical steel sheets, that is, a state preferable for iron loss and magnetic flux density by suppressing the cooling rate during hot rolling to 50 ° C./sec or less is disclosed. ing.

特許文献2では、鋳造完了時までに溶鋼にCaSiを添加し、S含有量を0.005%以下に制御し、1000℃以上の温度でスラブを加熱した後、熱間圧延し、特定の温度域でコイル巻取りすることによって、微細な析出物の生成を回避する方法が開示されている。 In Patent Document 2, CaSi is added to the molten steel by the time the casting is completed, the S content is controlled to 0.005% or less, the slab is heated at a temperature of 1000 ° C. or higher, and then hot-rolled to a specific temperature. A method of avoiding the formation of fine precipitates by winding the coil in the region is disclosed.

また、特許文献3では、仕上焼鈍後、500〜600℃の温度域から300℃までの間を10〜50℃/秒の冷却速度で急冷し、Cu硫化物の析出を抑制する技術が開示されている。 Further, Patent Document 3 discloses a technique for suppressing precipitation of Cu sulfide by rapidly cooling from a temperature range of 500 to 600 ° C. to 300 ° C. at a cooling rate of 10 to 50 ° C./sec after finish annealing. ing.

特許文献4〜7では仕上焼鈍後の冷却速度を制御することによって、磁気特性の向上を期待する技術が開示されている。 Patent Documents 4 to 7 disclose techniques expected to improve magnetic characteristics by controlling the cooling rate after finish annealing.

特開2010−174376号公報Japanese Unexamined Patent Publication No. 2010-174376 特開平10−183244号公報Japanese Unexamined Patent Publication No. 10-183244 特開平09−302414号公報Japanese Unexamined Patent Publication No. 09-302414 特開2011−006721号公報Japanese Unexamined Patent Publication No. 2011-006721 特開2006−144036号公報Japanese Unexamined Patent Publication No. 2006-144036 特開2003−113451号公報Japanese Unexamined Patent Publication No. 2003-113451 国際公開第2014/168136号International Publication No. 2014/168136

CAMP−ISIJ Vol.25(2012),p1080CAMP-ISIJ Vol. 25 (2012), p1080 CAMP−ISIJ Vol.22(2009),p1284CAMP-ISIJ Vol. 22 (2009), p1284 Tetsu−to−Hagane (TETSU−2016−069)Tetsu-to-Hagane (TETSU-2016-069) Tetsu−to−Hagane vol.100(2014),p1229Tetsu-to-Hagane vol. 100 (2014), p1229 Tetsu−to−Hagane vol.83(1997),p479Tetsu-to-Hagane vol. 83 (1997), p479 Tetsu−to−Hagane vol.92(2006),p618Tetsu-to-Hagane vol. 92 (2006), p618 Bunnseki vol.11(2002),p639Analysis vol. 11 (2002), p639

しかし、上記特許文献1〜7に記載の従来の方法では、以下のような問題があった。特許文献1に記載の方法では、スラブ加熱温度の低温化による圧延負荷の増大や、冷却速度の厳密な制御の困難さなど、生産性に問題があった。 However, the conventional methods described in Patent Documents 1 to 7 have the following problems. The method described in Patent Document 1 has problems in productivity such as an increase in rolling load due to a low slab heating temperature and difficulty in strict control of a cooling rate.

また特許文献2に記載の方法では高純度鋼が必須であるが、不可避レベルで混入するCuによる微細Cu硫化物の形成は避けられないので、Cu混入によって、かえって磁気特性が劣化するという問題があった。 Further, although high-purity steel is indispensable in the method described in Patent Document 2, the formation of fine Cu sulfide by Cu mixed at an unavoidable level is unavoidable, so that there is a problem that the magnetic characteristics are rather deteriorated by Cu mixing. there were.

また特許文献3には、500〜600℃の温度域から300℃までの間を10〜50℃/秒の冷却速度で急冷する方法が開示されているが、Cu硫化物は50℃/秒以上の冷却速度でも冷却中に析出する事実が非特許文献1および2などで知られている。すなわち、10〜50℃/秒程度の冷却を行う特許文献3の技術では完全にCu硫化物の析出を抑制することは困難である。 Further, Patent Document 3 discloses a method of rapidly cooling from a temperature range of 500 to 600 ° C. to 300 ° C. at a cooling rate of 10 to 50 ° C./sec, but Cu sulfide is 50 ° C./sec or more. It is known in Non-Patent Documents 1 and 2 that even at the cooling rate of the above, precipitation occurs during cooling. That is, it is difficult to completely suppress the precipitation of Cu sulfide by the technique of Patent Document 3 which cools at about 10 to 50 ° C./sec.

また特許文献4〜6においては、上述した方法により鋼板への冷却歪の導入を回避でき、鉄損劣化を低減することは可能であるが、Cu硫化物の析出状態を制御することはできず、微細に析出したCu硫化物が磁気特性に悪影響を及ぼしてしまう。
また特許文献7において、Cu硫化物の析出形態を制御する技術が開示されているが、Cu硫化物以外の析出物が存在する場合、Cu硫化物の無害化が困難になるという課題があった。
Further, in Patent Documents 4 to 6, it is possible to avoid the introduction of cooling strain into the steel sheet by the above-mentioned method and reduce the deterioration of iron loss, but it is not possible to control the precipitation state of Cu sulfide. The finely precipitated Cu sulfide adversely affects the magnetic properties.
Further, Patent Document 7 discloses a technique for controlling the precipitation form of Cu sulfide, but there is a problem that it becomes difficult to detoxify Cu sulfide when a precipitate other than Cu sulfide is present. ..

本発明は上述の問題に鑑み、Cu硫化物の析出形態を制御し、コスト増加や生産性の低下を招くことなく、鉄損に優れた無方向性電磁鋼板と、その製造方法とを提供することを目的とする。 In view of the above problems, the present invention provides a non-oriented electrical steel sheet having excellent iron loss and a method for producing the same, without controlling the precipitation form of Cu sulfide and causing an increase in cost and a decrease in productivity. The purpose is.

本発明は上記課題を解決するため、鋼板成分、製造条件が硫化物の分散状態と磁気特性の関係に及ぼす影響について検討を重ねた。その結果、Cubic型の結晶構造を有する酸化物(SiO、MgO、TiO、Mn、Alのいずれか1種以上)を含む無方向性電磁鋼板をある条件で焼鈍した場合に、Cu硫化物の微細分散が抑制され、かつ磁気特性が著しく向上することを認識した。そして、鋼中析出物の形態や構造について詳細な調査を行った結果、この現象が特にCu硫化物がCubic型の酸化物と複合析出することで、(A)Cu硫化物の単独分散が回避され、(B)Cu硫化物が地鉄と良好な格子整合性を有することを見出した。また、析出核である酸化物とCu硫化物の格子整合性が最適化された場合、すなわち、(C)Cu硫化物の結晶構造がHexagonal型の場合にCubic型の酸化物との複合析出が起こりうることを見出した。 In order to solve the above problems, the present invention has repeatedly studied the effects of steel sheet components and manufacturing conditions on the relationship between the dispersed state of sulfide and the magnetic properties. As a result, when a non-directional electromagnetic steel plate containing an oxide having a Cubic crystal structure ( one or more of SiO 2 , MgO, TiO, Mn 2 O 3 , and Al 2 O 3) is annealed under certain conditions. In addition, it was recognized that the fine dispersion of Cu sulfide was suppressed and the magnetic properties were significantly improved. As a result of conducting a detailed investigation on the morphology and structure of the precipitates in the steel, this phenomenon is caused by the composite precipitation of Cu sulfide with the Cubic type oxide, thereby avoiding the single dispersion of (A) Cu sulfide. It was found that (B) Cu sulfide has good lattice consistency with the base metal. Further, when the lattice consistency between the oxide as the precipitation nucleus and the Cu sulfide is optimized, that is, when the crystal structure of (C) Cu sulfide is Hexagonal type, the composite precipitation with the Cubic type oxide occurs. I found that it could happen.

本発明は上記知見をもとになされたもので、以下の(1)〜(8)を要旨とする。
(1) すなわち、本発明の一態様に係る無方向性電磁鋼板は、質量%で、C:0.0100%以下、Si:0.10〜5.00%、Mn:0.010〜2.000%、Al:0.10〜3.00%、S:0.0001〜0.0300%、P:0.0010〜0.2000%、Cu:0.005〜2.000%、N:0.0001〜0.0150%、O:0.0010〜0.0200%を含有するとともに、Mg:0.0001〜0.0100%、Ti:0.0001〜0.0100%Zr:0.0001〜0.0100%の1種または2種以上を含有し、残部がFe及び不純物からなる化学組成を有し、結晶系がCubic型の酸化物とCu硫化物とが複合析出し、平均直径が10〜5000nmである複合析出物の個数密度が0.001〜10.000個/μmである。
(2) 上記(1)に記載の無方向性電磁鋼板の電解抽出残渣に対するX線回折において得られる、2θ=46.8°に現れるHexagonal構造を有するCu硫化物の回折強度であるI2θ=46.8と、2θ=32.9°に現れるCubic構造を有するMnの回折強度であるI2θ=32.9が下記式1の条件を満たしてもよい。
2θ=46.8/I2θ=32.9≧0.10・・・式1
(3) 上記(1)または(2)に記載の無方向性電磁鋼板の電解抽出残渣に対するX線回折において得られる、2θ=46.8°に現れるHexagonal構造を有するCu硫化物の回折強度であるI2θ=46.8と、2θ=21.6°に現れるCubic構造を有するSiO、2θ=42.9°に現れるCubic構造を有するMgO、2θ=43.3°に現れるCubic構造を有するTiO、2θ=45.9°に現れるCubic構造を有するAlのそれぞれの回析強度が下記式2の条件を満たしてもよい。
2θ=46.8/(I2θ=21.6+I2θ=42.9+I2θ=43.3+I2θ=45.9)≧0.010・・・式2
ただし、I2θ=21.6、I2θ=42.9、I2θ=43.3、I2θ=45.9はそれぞれ、2θ=21.6°に現れるCubic構造を有するSiO、2θ=42.9°に現れるCubic構造を有するMgO、2θ=43.3°に現れるCubic構造を有するTiO、2θ=45.9°に現れるCubic構造を有するAlのXRDの回折ピーク高さである。
(4) 上記(1)〜(3)の何れか一項に記載の無方向性電磁鋼板の電解抽出残渣に対するX線回折において得られる、2θ=32.1°に現れるCubic構造を有するCu硫化物の回折強度であるI2θ32.1と、2θ=46.8°に現れるHexagonal構造を有するCu硫化物の回折強度であるI2θ=46.8とが、下記式3の条件を満たしてもよい。
2θ=46.8/I2θ=32.1>0.50・・・式3
(5) 本発明に係る無方向性電磁鋼板の製造方法は、(1)に記載の化学組成を有する鋼片に熱間圧延を行い、熱延鋼板を得る熱延工程と、前記熱延工程後の前記熱延鋼板を酸洗する酸洗工程と、前記酸洗工程後の前記熱延鋼板に冷間圧延を行い、冷延鋼板を得る冷延工程と、前記冷延鋼板を焼鈍する仕上焼鈍工程とを有する無方向性電磁鋼板の製造方法であって、前記仕上焼鈍工程において、下記式4に示すT1(℃)以上で10秒以上3600秒以下の保持を行い、前記仕上焼鈍工程の冷却において、前記T1(℃)以下、下記式5に示すT2(℃)以上の温度域における平均冷却速度CR1を60℃/秒未満とする。
T1(℃)=15000/(12−log10([%Cu]×[%S]))−273・・・式4
T2(℃)=15000/(12−log10([%Cu]×[%S]))−373・・・式5
なお、上記式中の[%Cu]はCuの質量%での含有量であり、[%S]はSの質量%での含有量である。
(6) 上記(5)に記載の無方向性電磁鋼板の製造方法は、前記仕上焼鈍工程の冷却において、下記式6に示すT3(℃)以上、前記T2(℃)以下の温度域における平均冷却速度CR2を20℃/秒以上としてもよい。
T3(℃)=15000/(12−log10([%Cu]×[%S]))−473・・・式6
なお、上記式中の[%Cu]はCuの質量%での含有量であり、[%S]はSの質量%での含有量である。
(7) 上記(5)または(6)に記載の無方向性電磁鋼板の製造方法は、前記熱延工程の鋼片加熱温度を下記式7記載のT4(℃)以下かつ下記式8記載のT5(℃)以上とし、熱間圧延した後、熱延板の巻取温度を下記式9記載のT6(℃)以下に制御してもよい。
T4(℃)=15000/(6−log10([%Mn]×[%O]))−273・・・式7
T5(℃)=14900/(8−log10([%Mn]×[%S]))−473・・・式8
T6(℃)=14900/(8−log10([%Mn]×[%S]))−573・・・式9
なお、上記式中の[%Mn]はMnの質量%での含有量であり、[%O]はOの質量%での含有量であり、[%S]はSの質量%での含有量である。
(8) 上記(5)〜(7)の何れか一項に記載の無方向性電磁鋼板の製造方法は、前記熱延工程と前記酸洗工程との間に、前記熱延鋼板を焼鈍する熱延板焼鈍工程を備えてもよい。
The present invention has been made based on the above findings, and the following (1) to (8) are the gist of the present invention.
(1) That is, the non-directional electromagnetic steel plate according to one aspect of the present invention has a mass% of C: 0.0100% or less, Si: 0.10 to 5.00%, Mn: 0.010 to 2. 000%, Al: 0.10 to 3.00%, S: 0.0001 to 0.0300%, P: 0.0010 to 0.2000%, Cu: 0.005 to 2.000%, N: 0 It contains .0001 to 0.0150%, O: 0.0010 to 0.0200%, Mg: 0.0001 to 0.0100%, Ti: 0.0001 to 0.0100% , Zr: 0.0001. It contains 1 or 2 or more of ~ 0.0100%, has a chemical composition with the balance consisting of Fe and impurities, and has a composite precipitation of Cubic-type oxide and Cu sulfide in the crystal system, and has an average diameter of The number density of the composite precipitates having a diameter of 10 to 5000 nm is 0.001 to 10.000 pieces / μm 2 .
(2) I 2θ = which is the diffraction intensity of Cu sulfide having a Hexagonal structure appearing at 2θ = 46.8 ° obtained by X-ray diffraction on the electrolytic extraction residue of the non-directional electromagnetic steel plate according to (1) above. 46.8 and I 2θ = 32.9, which is the diffraction intensity of Mn 2 O 3 having a Cubic structure appearing at 2θ = 32.9 °, may satisfy the condition of the following formula 1.
I 2θ = 46.8 / I 2θ = 32.9 ≧ 0.10 ... Equation 1
(3) The diffraction intensity of Cu sulfide having a Hexagonal structure appearing at 2θ = 46.8 ° obtained by X-ray diffraction on the electrolytic extraction residue of the non-directional electromagnetic steel plate according to (1) or (2) above. A certain I 2θ = 46.8 , SiO 2 having a Cubic structure appearing at 2θ = 21.6 °, MgO having a Cubic structure appearing at 2θ = 42.9 °, and having a Cubic structure appearing at 2θ = 43.3 °. The diffraction intensity of each of Al 2 O 3 having a Cubic structure appearing at TiO and 2θ = 45.9 ° may satisfy the condition of the following formula 2.
I 2θ = 46.8 / (I 2θ = 21.6 + I 2θ = 42.9 + I 2θ = 43.3 + I 2θ = 45.9 ) ≧ 0.010 ... Equation 2
However, SiO 2, 2θ = 42 with I 2θ = 21.6, I 2θ = 42.9, I 2θ = 43.3, I 2θ = 45.9 , respectively, Cubic structure appearing at 2 [Theta] = 21.6 ° is the diffraction peak heights of the XRD of the Al 2 O 3 having TiO, a Cubic structure appearing at 2 [Theta] = 45.9 ° with MgO, a Cubic structure appearing at 2 [Theta] = 43.3 ° having a Cubic structure appearing in .9 ° ..
(4) Cu sulfurization having a Cubic structure appearing at 2θ = 32.1 ° obtained by X-ray diffraction on the electrolytic extraction residue of the non-directional electromagnetic steel sheet according to any one of (1) to (3) above. I = 32.1 , which is the diffraction intensity of an object, and I 2θ = 46.8 , which is the diffraction intensity of a Cu sulfide having a Hexagonal structure that appears at 2θ = 46.8 °, satisfy the condition of the following formula 3. You may.
I 2θ = 46.8 / I 2θ = 32.1 > 0.50 ... Equation 3
(5) The method for producing a non-directional electromagnetic steel sheet according to the present invention includes a hot-rolling step of hot-rolling a steel piece having the chemical composition described in (1) to obtain a hot-rolled steel sheet, and the hot-rolling step. A subsequent pickling step of pickling the hot-rolled steel sheet, a cold-rolling step of cold-rolling the hot-rolled steel sheet after the pickling step to obtain a cold-rolled steel sheet, and a finish of annealing the cold-rolled steel sheet. A method for producing a non-directional electromagnetic steel sheet having a annealing step. In the finishing annealing step, holding is performed at T1 (° C.) or higher shown in the following formula 4 for 10 seconds or more and 3600 seconds or less, and the finishing annealing step is performed. In cooling, the average cooling rate CR1 in the temperature range of T1 (° C.) or lower and T2 (° C.) or higher represented by the following formula 5 is set to less than 60 ° C./sec.
T1 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-273 ... Equation 4
T2 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-373 ... Equation 5
In the above formula, [% Cu] is the content of Cu in mass%, and [% S] is the content of S in mass%.
(6) The method for manufacturing a non-oriented electrical steel sheet according to (5) above is an average in a temperature range of T3 (° C.) or higher and T2 (° C.) or lower represented by the following formula 6 in the cooling of the finishing annealing step. The cooling rate CR2 may be 20 ° C./sec or higher.
T3 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-473 ... Equation 6
In the above formula, [% Cu] is the content of Cu in mass%, and [% S] is the content of S in mass%.
(7) In the method for manufacturing a non-oriented electrical steel sheet according to (5) or (6) above, the steel piece heating temperature in the hot rolling step is set to T4 (° C.) or less according to the following formula 7 and according to the following formula 8. After hot rolling at T5 (° C.) or higher, the winding temperature of the hot rolled plate may be controlled to T6 (° C.) or lower according to the following formula 9.
T4 (° C.) = 15000 / (6-log 10 ([% Mn] × [% O]))-273 ... Equation 7
T5 (° C.) = 14900 / (8-log 10 ([% Mn] × [% S]))-473 ... Equation 8
T6 (° C.) = 14900 / (8-log 10 ([% Mn] × [% S])) −573 ... Equation 9
In the above formula, [% Mn] is the content of Mn in mass%, [% O] is the content of O in mass%, and [% S] is the content of S in mass%. The quantity.
(8) In the method for producing a non-directional electromagnetic steel sheet according to any one of (5) to (7) above, the hot-rolled steel sheet is annealed between the hot-rolling step and the pickling step. A hot-rolled sheet annealing step may be provided.

本発明によれば、無方向性電磁鋼板に対し、高純化や、スラブ加熱温度の低温化、熱延条件の最適化などを施さなくても、微細Cu硫化物の単独析出を回避するとともに、鉄損に好影響をもたらす析出形態に制御することで、鉄損に優れた無方向性電磁鋼板を提供することができる。
なお、本発明によれば、無方向性電磁鋼板において求められる鉄損以外の特性(磁束密度や加工性など)は、従来材と同等以上を確保できる。
According to the present invention, even if the non-oriented electrical steel sheet is not subjected to high purification, lowering of the slab heating temperature, optimization of hot rolling conditions, etc., it is possible to avoid single precipitation of fine Cu sulfide and also to avoid single precipitation of fine Cu sulfide. By controlling the precipitation form that has a positive effect on iron loss, it is possible to provide non-oriented electrical steel sheets having excellent iron loss.
According to the present invention, characteristics other than iron loss (magnetic flux density, workability, etc.) required for non-oriented electrical steel sheets can be ensured to be equal to or higher than those of conventional materials.

以下に本発明の一実施形態に係る無方向性電磁鋼板(以下、本実施形態に係る無方向性電磁鋼板と言う場合がある。)及びその製造方法について、詳細に説明する。なお、含有量の%は全て質量%である。 Hereinafter, the non-oriented electrical steel sheet according to the embodiment of the present invention (hereinafter, may be referred to as the non-oriented electrical steel sheet according to the present embodiment) and the manufacturing method thereof will be described in detail. The% of the content is all mass%.

<化学成分>
C:0.0100%以下
Cが多く存在すると磁気時効によって鉄損を著しく劣化させる。そのため、C含有量の上限を0.0100%以下とする。下限は0%を含むが、Cはトランプエレメントとして少なくとも0.0001%以上混入することが好ましい。磁気時効の回避を考慮すると、C含有量は0.0001〜0.0070%がより好ましい。更に好ましいC含有量は0.0001〜0.0050%である。
<Chemical composition>
C: 0.0100% or less If a large amount of C is present, the iron loss is significantly deteriorated by magnetic aging. Therefore, the upper limit of the C content is set to 0.0100% or less. Although the lower limit includes 0%, it is preferable that C is mixed as a trump element at least 0.0001% or more. Considering the avoidance of magnetic aging, the C content is more preferably 0.0001 to 0.0070%. A more preferable C content is 0.0001 to 0.0050%.

Si:0.10〜5.00%
Siの含有量は0.10%未満では良好な鉄損が得られないため、Si含有量の下限を0.10%以上とする。一方で、Si含有量が5.00%を超えると、脆性が劣化し、製造工程での通板が困難となる。したがって、Si含有量の上限を5.00%以下とする。磁性と通板性の観点から、好ましいSi含有量は2.00〜4.00%であり、より好ましくは2.50〜3.50%である。
Si: 0.10 to 5.00%
If the Si content is less than 0.10%, good iron loss cannot be obtained. Therefore, the lower limit of the Si content is set to 0.10% or more. On the other hand, if the Si content exceeds 5.00%, the brittleness deteriorates and it becomes difficult to pass the plate in the manufacturing process. Therefore, the upper limit of the Si content is set to 5.00% or less. From the viewpoint of magnetism and plate-through property, the Si content is preferably 2.00 to 4.00%, more preferably 2,500 to 3.50%.

Mn:0.010〜2.000%
MnはOと反応してMn酸化物を形成するので、本発明では重要な元素のひとつである。鋼中に多量のMnが存在する場合、MnSが析出することにより、CuSの析出量が低下し、本発明の効果が享受できなくなる。そのため、Mn含有量の上限を2.000%以下とする。一方、Mn含有量が0.010%未満であると、熱間圧延時に鋼板が脆化する。そのため、Mn含有量の下限を0.010%以上とする。好ましくは、Mn含有量は0.050〜1.500%であり、より好ましくは、0.100〜1.000%である。
Mn: 0.010-2.000%
Since Mn reacts with O to form Mn oxide, it is one of the important elements in the present invention. If a large amount of Mn is present in the steel, by MnS is precipitated, reduces the amount of precipitation of Cu 2 S, the effect of the present invention can not be enjoyed. Therefore, the upper limit of the Mn content is set to 2.000% or less. On the other hand, if the Mn content is less than 0.010%, the steel sheet becomes embrittled during hot rolling. Therefore, the lower limit of the Mn content is set to 0.010% or more. Preferably, the Mn content is 0.050 to 1.500%, more preferably 0.100 to 1.000%.

Al:0.10〜3.00%
Alは含有量が多いと、Siと同様に鋼板の硬度上昇を招き、製造工程での通板が困難になる。そのため、生産性を考慮してAl含有量の上限を3.00%以下とする。AlはSi同様、電気抵抗を上げる効果を有するため、下限を0.10%以上とする。好ましいAl含有量は0.20〜2.00%であり、より好ましくは0.30〜1.50%である。
Al: 0.10 to 3.00%
If the content of Al is high, the hardness of the steel sheet will increase as in Si, and it will be difficult to pass the sheet in the manufacturing process. Therefore, the upper limit of the Al content is set to 3.00% or less in consideration of productivity. Like Si, Al has the effect of increasing electrical resistance, so the lower limit is set to 0.10% or more. The Al content is preferably 0.25 to 2.00%, more preferably 0.30 to 1.50%.

P:0.0010〜0.2000%
Pは鋼板の硬度を高め、打ち抜き性を向上させる作用を有する。しかし、0.2000%を超えて含有すると鋼板の硬さが上昇するので、打ち抜き金型の摩耗が速くなり、モーター鉄心の製造コストが増加する。また、鋼板が固くなるため、通板そのものが難しくなる。そのため、P含有量の上限を0.2000%以下とする。一方、微量のPは磁束密度を改善する効果を有する。これらの効果を得るため、P含有量の下限を0.0010%以上とする。好ましいP含有量は0.0010〜0.1500%であり、より好ましくは0.0010〜0.1000%である。
P: 0.0010 to 0.2000%
P has the effect of increasing the hardness of the steel sheet and improving the punching property. However, if the content exceeds 0.2000%, the hardness of the steel sheet increases, so that the punching die wears faster and the manufacturing cost of the motor iron core increases. Moreover, since the steel plate becomes hard, it becomes difficult to pass the steel plate itself. Therefore, the upper limit of the P content is set to 0.2000% or less. On the other hand, a small amount of P has the effect of improving the magnetic flux density. In order to obtain these effects, the lower limit of the P content is set to 0.0010% or more. The preferred P content is 0.0010 to 0.1500%, more preferably 0.0010 to 0.1000%.

S:0.0001〜0.0300%
S含有量は硫化物量に直接関係する。S含有量が過剰であると、Sが固溶状態で鋼中に存在し、熱間圧延時に鋼が脆化する。そのため、S含有量の上限を0.0300%以下とする。一方でSが存在しないと、Cuは金属Cuとして微細析出し、粒成長を妨げ磁束密度劣化の原因となる。そのため、S含有量の下限を0.0001%以上とする。好ましいSi含有量は0.0010〜0.0100%であり、より好ましくは0.0010〜0.0050%である。
S: 0.0001 to 0.0300%
The S content is directly related to the amount of sulfide. If the S content is excessive, S is present in the steel in a solid solution state, and the steel becomes embrittled during hot rolling. Therefore, the upper limit of the S content is set to 0.0300% or less. On the other hand, in the absence of S, Cu is finely precipitated as metallic Cu, hindering grain growth and causing deterioration of magnetic flux density. Therefore, the lower limit of the S content is set to 0.0001% or more. The Si content is preferably 0.0010 to 0.0100%, more preferably 0.0010 to 0.0050%.

Cu:0.005〜2.000%
CuはCu硫化物を形成するため、本発明において特に重要な元素である。Cu含有量が多すぎると、熱間脆性が生じる。そのため、Cu含有量の上限を2.000%以下とする。一方、Cuが少なすぎる場合、TiSなどの他の微細な硫化物が析出し、鉄損劣化の原因となるため、Cu含有量の下限を0.005%以上とする必要がある。好ましいCu含有量は0.010〜1.000%であり、より好ましくは0.010〜0.500%である。
Cu: 0.005-2.000%
Cu is a particularly important element in the present invention because it forms Cu sulfide. If the Cu content is too high, hot brittleness will occur. Therefore, the upper limit of the Cu content is set to 2.000% or less. On the other hand, if the amount of Cu is too small, other fine sulfides such as TiS are precipitated, which causes deterioration of iron loss. Therefore, it is necessary to set the lower limit of the Cu content to 0.005% or more. The Cu content is preferably 0.010 to 1.000%, more preferably 0.010 to 0.500%.

N:0.0001〜0.0150%
Nが過剰であると窒化物の析出量が増えすぎ、結晶粒の成長を阻害し、磁束密度が劣化する。そのためN含有量の上限を0.0150%以下とする。窒化物による強度上昇を期待しないのであればNは低いほど好ましい。すなわち、Nの下限値は0%を含むが、Nの検出限界が0.0001%なので、これを考慮して、Nの下限値を0.0001%以上とする。N含有量は、0.0001〜0.0050%とするのが、磁気特性にとって好ましく、より好ましくは0.0001〜0.0030%である。
N: 0.0001 to 0.0150%
If N is excessive, the amount of nitride precipitated increases too much, which hinders the growth of crystal grains and deteriorates the magnetic flux density. Therefore, the upper limit of the N content is set to 0.0150% or less. A lower N is preferable if the strength increase due to the nitride is not expected. That is, the lower limit of N includes 0%, but the detection limit of N is 0.0001%. In consideration of this, the lower limit of N is set to 0.0001% or more. The N content is preferably 0.0001 to 0.0050%, more preferably 0.0001 to 0.0030%, for magnetic properties.

O:0.0010〜0.0200%
OはMn酸化物の析出量に直接関係するため、本発明において重要な元素である。O含有量が過剰であると、微細酸化物を多数形成し、かえって磁束密度を低下させる。そのため、O含有量の上限を0.0200%以下とする。一方で、Mn酸化物を析出させ、本発明効果を享受するには、Oを少なくとも0.0010%以上含有させる必要がある。そのため、O含有量の下限を0.0010%以上とする。好ましいO含有量は0.0010〜0.0150%であり、より好ましくは0.0050〜0.0100%である。
O: 0.0010 to 0.0200%
O is an important element in the present invention because it is directly related to the amount of Mn oxide precipitated. If the O content is excessive, a large number of fine oxides are formed, and the magnetic flux density is rather lowered. Therefore, the upper limit of the O content is set to 0.0200% or less. On the other hand, in order to precipitate the Mn oxide and enjoy the effects of the present invention, it is necessary to contain at least 0.0010% or more of O. Therefore, the lower limit of the O content is set to 0.0010% or more. The preferred O content is 0.0010 to 0.0150%, more preferably 0.0050 to 0.0100%.

本実施形態に係る無方向性電磁鋼板は、上述した元素に加えて更に、Mg、Ti、Zrの1種または2種以上を選択的に含有してもよい。含有しない場合の、これら元素の含有量の下限値は0%である。以下、Mg、Ti、Zrについて説明する。 The non-oriented electrical steel sheet according to the present embodiment may selectively contain one or more of Mg, Ti, and Zr in addition to the above-mentioned elements. When not contained, the lower limit of the content of these elements is 0%. Hereinafter, Mg, Ti, and Zr will be described.

Mg:0〜0.0100%
Mg含有量はMgOの析出量に直接関係するため、本発明において制御すべき元素である。Mgが多すぎると、鋼中で微細なMgSを形成し、鋼板粒成長を阻害し磁束密度の低下の原因となる。そのため、その上限を0.0100%以下とする。また、Mgは0.0001%以上含有してもよい。Mg含有量の好ましい範囲は0.0001〜0.0060%であり、より好ましくは0.0001〜0.0030%である。
Mg: 0 to 0.0100%
Since the Mg content is directly related to the precipitation amount of MgO, it is an element to be controlled in the present invention. If the amount of Mg is too large, fine MgS is formed in the steel, which hinders the growth of steel sheet grains and causes a decrease in magnetic flux density. Therefore, the upper limit is set to 0.0100% or less. Further, Mg may be contained in an amount of 0.0001% or more. The preferred range of Mg content is 0.0001 to 0.0060%, more preferably 0.0001 to 0.0030%.

Zr:0〜0.0100%
ZrはZrOを形成する元素であり、本発明効果を更に発揮することが可能であるため、選択的に含有させることのできる元素である。Zrが多すぎると、熱間脆性が悪化する。そのため、その上限を0.0100%以下とする。また、Zrは0.0001%以上含有してもよい。Zr含有量の好ましい範囲は0.0001〜0.0060%であり、より好ましくは0.0001〜0.0030%である。
Zr: 0-0.0100%
Zr is an element that forms ZrO 2 , and since it is possible to further exert the effects of the present invention, it is an element that can be selectively contained. If there is too much Zr, the hot brittleness will worsen. Therefore, the upper limit is set to 0.0100% or less. Further, Zr may be contained in an amount of 0.0001% or more. The preferred range of Zr content is 0.0001 to 0.0060%, more preferably 0.0001 to 0.0030%.

Ti:0〜0.0100%
Ti含有量が過剰であると、微細炭化物を形成して粒成長を抑制し、磁束密度を低下させる。そのため、Ti含有量の上限を0.0100%以下とする。また、Tiは0.0001%以上含有してもよい。好ましいTi含有量は0.0001〜0.0060%であり、より好ましくは0.0001〜0.0030%である。
Ti: 0 to 0.0100%
When the Ti content is excessive, fine carbides are formed to suppress grain growth and reduce the magnetic flux density. Therefore, the upper limit of the Ti content is set to 0.0100% or less. Further, Ti may be contained in an amount of 0.0001% or more. The preferred Ti content is 0.0001 to 0.0060%, more preferably 0.0001 to 0.0030%.

本実施形態に係る無方向性電磁鋼板は、上述の化学成分を含有し、残部がFe及び不純物からなることを基本とする。しかしながら、磁気特性の更なる向上、強度、耐食性や疲労特性などの構造部材に求められる特性の向上、鋳造性や通板性の向上、スクラップ使用などによる生産性の向上を目的として、Ca、W、Mo、Nb、V、Sn、Bi、Sb、Ag、Te、Ce、Cr、Co、Ni、In、Se、Re、Os、Hf、Ta、Y、La等の微量元素を、合計で0.5%以下の範囲で含有させてもよい。また、これらの元素が、合計で0.5%以下の範囲で混入したとしても、本実施形態の効果を損なうものではない。 The non-oriented electrical steel sheet according to this embodiment basically contains the above-mentioned chemical components and the balance is composed of Fe and impurities. However, Ca, W for the purpose of further improving the magnetic properties, improving the properties required for structural members such as strength, corrosion resistance and fatigue properties, improving castability and plate-passability, and improving productivity by using scraps, etc. , Mo, Nb, V, Sn, Bi, Sb, Ag, Te, Ce, Cr, Co, Ni, In, Se, Re, Os, Hf, Ta, Y, La, etc. It may be contained in the range of 5% or less. Moreover, even if these elements are mixed in the range of 0.5% or less in total, the effect of the present embodiment is not impaired.

<複合析出物>
次に、本実施形態に係る無方向性電磁鋼板における重要な制御因子である酸化物の結晶構造について説明する。Cu硫化物は、鋼板中での存在を完全になくすことが困難である。そこで、本実施形態に係る無方向性電磁鋼板では、Cubic型の酸化物を析出核としてCu硫化物が複合析出するように制御し、良好な鉄損を得る。すなわち、本実施形態に係る無方向性電磁鋼板においては、CuおよびOを含有し、かつ10〜5000nmの平均直径を有する複合析出物の単位面積当たりの個数密度(面密度)を、0.001〜10.000個/μmと規定する。好ましくは0.001〜1.000個/μm、より好ましくは0.001〜0.100個/μm、更に好ましくは0.001〜0.010個/μmである。析出核となる酸化物はCubic型の結晶構造を有していればよく、例えば、Mn、MgO、TiO、Al、SiOなどである。なお、結晶構造がCubic型であれば、カチオンとアニオンの化学結合比が異なっても本発明効果を享受できる。また、Cubic型の酸化物が球形をとらず、矩形の場合は、短軸長さと長軸長さとの平均値を複合析出物の平均直径と定義する。
<Composite precipitate>
Next, the crystal structure of the oxide, which is an important control factor in the non-oriented electrical steel sheet according to the present embodiment, will be described. It is difficult to completely eliminate the presence of Cu sulfide in a steel sheet. Therefore, in the non-oriented electrical steel sheet according to the present embodiment, the Cubic type oxide is used as a precipitation nucleus to control the Cu sulfide to be compositely precipitated, and a good iron loss is obtained. That is, in the non-directional electromagnetic steel plate according to the present embodiment, the number density (area density) per unit area of the composite precipitate containing Cu and O and having an average diameter of 10 to 5000 nm is 0.001. It is defined as 10.000 pieces / μm 2. Preferably from 0.001 to 1.000 units / [mu] m 2, more preferably 0.001 to 0.100 cells / [mu] m 2, more preferably from 0.001 to 0.010 units / [mu] m 2. The oxide serving as the precipitation nucleus may have a Cubic type crystal structure, and is, for example, Mn 2 O 3 , MgO, TIO, Al 2 O 3 , SiO 2 . If the crystal structure is Cubic, the effect of the present invention can be enjoyed even if the chemical bond ratio of the cation and the anion is different. When the Cubic type oxide is not spherical and rectangular, the average value of the minor axis length and the major axis length is defined as the average diameter of the composite precipitate.

上記のCuおよびOを含有する複合析出物の観察は、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)により行えばよい。析出物の構成元素はEDS分析によって同定が可能である。具体的には、対象の析出物にEDS分析を行った場合に、スペクトル横軸のエネルギー0.5±0.2keVの位置にO−Kα線および、8.0±0.2keVの位置にCu−Kα線が同時に検出されればよい。元素同定はKα線以外にもLα線、Kγ線で行ってもよい。ただし、抽出レプリカをTEM−EDSの観察試料として供する場合、Cu硫化物とレプリカを載置するメッシュのシグナルを分離する必要があるため、Cu製メッシュの使用は避けなければならない。また、Cu硫化物にはMnまたはFeが少量固溶することが知られており、EDS分析の結果、分析対象の析出物からMn、SまたはFe由来のEDSシグナルが検出されても本発明の効果を失うものではない。EDSシグナルはKα線、Lα線、Kγ線などその起源を問わない。さらに、Al−Mg−OやAl−Si−Oは複合酸化物を形成するため、酸化物から複数の金属原子がEDSにより検出されるが、やはり本発明の効果を失うものではない。 The above-mentioned observation of the composite precipitate containing Cu and O may be carried out by a transmission electron microscope (TEM) or a scanning electron microscope (SEM). The constituent elements of the precipitate can be identified by EDS analysis. Specifically, when EDS analysis is performed on the target precipitate, OKα rays are located at the energy 0.5 ± 0.2 keV position on the horizontal axis of the spectrum, and Cu is located at the position of 8.0 ± 0.2 keV. -Kα rays may be detected at the same time. Element identification may be performed by Lα ray or Kγ ray in addition to Kα ray. However, when the extracted replica is used as an observation sample of TEM-EDS, it is necessary to separate the signal of the mesh on which the Cu sulfide and the replica are placed, so the use of the Cu mesh must be avoided. Further, it is known that a small amount of Mn or Fe is dissolved in Cu sulfide, and even if an EDS signal derived from Mn, S or Fe is detected in the precipitate to be analyzed as a result of EDS analysis, the present invention It does not lose its effect. The origin of the EDS signal does not matter, such as Kα ray, Lα ray, and Kγ ray. Further, since Al-Mg-O and Al-Si-O form a composite oxide, a plurality of metal atoms are detected by EDS from the oxide, but the effect of the present invention is not lost.

酸化物の結晶構造は透過型電子顕微鏡(TEM)観察および析出物の電子線回折により同定可能である。前記複合析出物においては、Cu硫化物の結晶構造はHexagonal構造となるが、TEMによる電子線回折では、酸化物の結晶構造の同定は可能であっても、Cu硫化物の結晶構造の同定は困難である。これは、析出核である酸化物の回折強度が強く、Cu硫化物由来の電子線回折が不鮮明になるためである。 The crystal structure of the oxide can be identified by transmission electron microscopy (TEM) observation and electron diffraction of the precipitate. In the composite precipitate, the crystal structure of Cu sulfide has a Hexagonal structure. However, although the crystal structure of the oxide can be identified by electron diffraction by TEM, the crystal structure of Cu sulfide cannot be identified. Have difficulty. This is because the diffraction intensity of the oxide, which is the precipitated nucleus, is strong, and the electron diffraction derived from Cu sulfide becomes unclear.

Cu硫化物の結晶構造はX線回折(XRD)により同定可能である。一般的にX線回折はCu−Kα線をプローブとする。本実施形態に係る無方向性電磁鋼板においては、例えば、鋼板の電解抽出残渣に対してX線回折(XRD)を行ったとき、2θ=46.8°に現れるHexagonal構造を有するCu硫化物の回折強度であるI2θ=46.8と、2θ=32.9°に現れるCubic構造を有するMnの回析強度であるI2θ=32.9とを、下記式1の条件を満たすように制御することが好ましい。金属酸化物はMgOやSiO,Alなど複数あるが、Mnが最もCu硫化物との結晶整合性が良く、複合析出し易い。Mn酸化物の量に対して、複合析出できるCu硫化物の量には限度があり、それを超えるとCu硫化物は微細に単独析出してしまう恐れがある。そのため、I2θ=46.8/I2θ=32.9の上限は10.00以下とすることがより好ましい。I2θ=46.8/I2θ=32.9のさらに好ましい範囲としては0.50以上、10.00以下とする。 The crystal structure of Cu sulfide can be identified by X-ray diffraction (XRD). Generally, X-ray diffraction uses Cu-Kα rays as a probe. In the non-directional electromagnetic steel sheet according to the present embodiment, for example, a Cu sulfide having a Hexagonal structure that appears at 2θ = 46.8 ° when X-ray diffraction (XRD) is performed on the electrolytic extraction residue of the steel sheet. and I 2 [Theta] = 46.8 is a diffraction intensity, and I 2 [Theta] = 32.9 which is the diffraction intensity Mn 2 O 3 having a Cubic structure appearing at 2 [Theta] = 32.9 °, satisfies the following formula 1 It is preferable to control as such. There are a plurality of metal oxides such as MgO, SiO 2 , and Al 2 O 3 , but Mn 2 O 3 has the best crystal consistency with Cu sulfide and is easy to complex precipitate. There is a limit to the amount of Cu sulfide that can be compound-precipitated with respect to the amount of Mn oxide, and if it exceeds that amount, Cu sulfide may be finely precipitated independently. Therefore, the upper limit of I 2θ = 46.8 / I 2θ = 32.9 is more preferably 10.00 or less. A more preferable range of I 2θ = 46.8 / I 2θ = 32.9 is 0.50 or more and 10.00 or less.

2θ=46.8/I2θ=32.9≧0.10・・・式1 I 2θ = 46.8 / I 2θ = 32.9 ≧ 0.10 ... Equation 1

また、本実施形態に係る無方向性電磁鋼板においては、Mn酸化物以外の酸化物として、2θ=21.6°に現れるCubic構造を有するSiOと、2θ=42.9°に現れるCubic構造を有するMgOと、2θ=43.3°に現れるCubic構造を有するTiOと、2θ=45.9°に現れるCubic構造を有するAlが、下記式2の条件を満たすように制御してもよい。Cubic型の酸化物と複合析出が可能なCu硫化物の結晶構造はHexagonal構造である。これは、Cubic型の酸化物と、Hexagonal型のCu硫化物との格子整合性が良好なことに起因する。すなわち、Hexagonal型のCu硫化物の回折強度であるI2θ=46.8が多いほど、Cu硫化物は複合析出していることになるので、基本的にはI2θ=46.8/(I2θ=21.6+I2θ=42.9+I2θ=43.3+I2θ=45.9)が大きい方が発明効果を得ることができる。したがって、この値に上限はないが、任意の酸化物の量に対して、複合析出できるCu硫化物の量には限度があり、それを超えるとCu硫化物は微細に単独析出してしまう恐れがある。そのため、I2θ=46.8/(I2θ=21.6+I2θ=42.9+I2θ=43.3+I2θ=45.9)の上限は1.000以下とすることが好ましい。I2θ=46.8/(I2θ=21.6+I2θ=42.9+I2θ=43.3+I2θ=45.9)のより好ましい範囲としては、0.100以上、1.000以下とする。 Further, in the non-oriented electrical steel sheet according to the present embodiment, SiO 2 having a Cubic structure appearing at 2θ = 21.6 ° and Cubic structure appearing at 2θ = 42.9 ° as oxides other than Mn oxide. and MgO having a TiO having a Cubic structure appearing at 2 [Theta] = 43.3 °, the Al 2 O 3 having Cubic structure appearing at 2 [Theta] = 45.9 °, controlled to so as to satisfy the condition of the following formula 2 May be good. The crystal structure of Cu sulfide capable of complex precipitation with a Cubic type oxide is a hexagonal structure. This is due to the good lattice consistency between the Cubic type oxide and the Hexagonal type Cu sulfide. That is, the greater the diffraction intensity of I 2θ = 46.8, which is the diffraction intensity of Hexagonal-type Cu sulfide, the more the Cu sulfide is complex-precipitated. Therefore, basically, I 2θ = 46.8 / (I). The larger 2θ = 21.6 + I 2θ = 42.9 + I 2θ = 43.3 + I 2θ = 45.9 ), the more the invention effect can be obtained. Therefore, although there is no upper limit to this value, there is a limit to the amount of Cu sulfide that can be compound-precipitated with respect to the amount of any oxide, and if it exceeds that value, Cu sulfide may be finely precipitated independently. There is. Therefore, the upper limit of I 2θ = 46.8 / (I 2θ = 21.6 + I 2θ = 42.9 + I 2θ = 43.3 + I 2θ = 45.9 ) is preferably 1.000 or less. More preferable ranges of I 2θ = 46.8 / (I 2θ = 21.6 + I 2θ = 42.9 + I 2θ = 43.3 + I 2θ = 45.9 ) are 0.100 or more and 1.000 or less. To do.

2θ=46.8/(I2θ=21.6+I2θ=42.9+I2θ=43.3+I2θ=45.9)≧0.010・・・式2 I 2θ = 46.8 / (I 2θ = 21.6 + I 2θ = 42.9 + I 2θ = 43.3 + I 2θ = 45.9 ) ≧ 0.010 ... Equation 2

また、本発明者らは、鋼中のCu硫化物の構造には、Hexagonal構造に加えて、Cubic構造が存在することを知見している。Cubic型のCu硫化物は、Cubic型の酸化物とは複合析出しないため、本実施形態に係る無方向性電磁鋼板においては、Cubic構造のCu硫化物はHexagonal構造のCu硫化物に比べて、その存在量が少なくなることが好ましい。したがって、2θ=32.1°に現れるCubic構造を有するCu硫化物の回折強度であるI2θ=32.1と、2θ=46.8°に現れるHexagonal構造を有するCu硫化物の回折強度であるI2θ=46.8とが、下記式3の条件を満たすことが好ましい。Cubic構造のCu硫化物が少ないほど本発明の効果を享受できるので、またI2θ=46.8/I2θ=32.1には最適なバランスが存在するため、好ましい範囲は10.00以上、50.00以下である。 Further, the present inventors have found that the Cu sulfide structure in steel has a Cubic structure in addition to the Hexagonal structure. Since the Cubic-type Cu sulfide does not complexly precipitate with the Cubic-type oxide, in the non-directional electromagnetic steel plate according to the present embodiment, the Cu sulfide having a Cubic structure is compared with the Cu sulfide having a Hexagonal structure. It is preferable that the abundance thereof is small. Therefore, I 2θ = 32.1 , which is the diffraction intensity of the Cu sulfide having a Cubic structure appearing at 2θ = 32.1 °, and the diffraction intensity of the Cu sulfide having a Hexagonal structure appearing at 2θ = 46.8 °. It is preferable that I 2θ = 46.8 satisfies the condition of the following equation 3. Since the effect of the present invention can be enjoyed as the amount of Cu sulfide in the Cubic structure is small, and because there is an optimum balance in I 2θ = 46.8 / I 2θ = 32.1 , the preferable range is 10.00 or more. It is 50.00 or less.

2θ=46.8/I2θ=32.1>0.50・・・式3 I 2θ = 46.8 / I 2θ = 32.1 > 0.50 ... Equation 3

XRD回折では試料の結晶構造に応じて、特定の2θ位置に回折ピークが観察される。ただし、鉄鋼材料中の析出物は、析出物に対するFe固溶、地鉄マトリクスとの格子整合性などの諸要因で結晶格子が変動する。それに伴い、回折が現れる上記2θの値は、誤差の範囲で少なくとも±3°を含むことになる。結晶構造の同定は結晶格子のデータベースであるJCPDS−CARDを用いて照合すればよいが、Cu硫化物(Hexagonal)については、23−958や26−1116、46−119536−0379がある。一方、Cu硫化物(Cubic)はJCPDS−CARD:00−012−0174、00−024−0061や023−0962、053−0522、33−0491、33−0492、070−9133などが存在する。Mnについては31−0825、SiOについては27−0605、MgOについては04−0829、Alについては10−0425、TiOについては08−0117、MnOについては01−075−1090で同定可能である。 In XRD diffraction, a diffraction peak is observed at a specific 2θ position according to the crystal structure of the sample. However, the crystal lattice of the precipitate in the steel material fluctuates due to various factors such as Fe solid solution to the precipitate and lattice consistency with the ground iron matrix. Along with this, the value of 2θ in which diffraction appears includes at least ± 3 ° within the margin of error. The identification of the crystal structure may be collated using JCPDS-CARD, which is a database of crystal lattices, but for Cu sulfide (Hexagonal), there are 23-958, 26-1116, and 46-119536-0379. On the other hand, Cu sulfides (Cubic) include JCPDS-CARD: 00-012-0174, 00-024-0061, 023-0962, 053-0522, 33-0491, 33-0492, 070-9133 and the like. 31-0825 for Mn 2 O 3 , 27-0605 for SiO 2 , 04-0829 for MgO, 10-0425 for Al 2 O 3 , 08-0117 for TiO, 01-075-1090 for MnO It can be identified by.

特に、Cu硫化物においてはFeとSとが一部置換することで、CuFe16(JCPDS:00−027−0165)、CuFeS(JCPDS:024−0050,089−2620)やCuFe(JCPDS:027−0166)、CuFeS(JCPDS:075−0253、041−1404)などの析出物を形成するが、このようなCu−Fe−S系化合物についても、結晶系がCubic構造であり、かつ2θ=32.1°±3°において回折ピークが観察されれば、I2θ=32.1と定義できる。なお、上記誤差範囲において、Cu硫化物(Cubic)およびCu硫化物(Hexagonal)について、それぞれ2つ以上の回折ピークが存在した場合については、Cu硫化物(Cubic)はCu硫化物(Cubic)のピーク強度同士を足し合わせたものをI2θ=32.1とし、Cu硫化物(Hexagonal)はCu硫化物(Hexagonal)のピーク強度同士を足し合わせたものをI2θ=46.8とするとよい。 In particular, in the case of Cu sulfide, Cu 9 Fe 9 S 16 (JCPDS: 00-027-0165) and Cu 5 FeS 4 (JCPDS: 024-0050, 089-2620) are partially replaced by Fe and S. Precipitates such as CuFe 2 S 3 (JCPDS: 027-0166) and CuFeS 2 (JCPDS: 075-0253, 041-1404) are formed, and such Cu-Fe-S compounds are also crystalline. Is a Cubic structure, and if a diffraction peak is observed at 2θ = 32.1 ° ± 3 °, it can be defined as I 2θ = 32.1. In the above error range, when two or more diffraction peaks are present for each of Cu sulfide (Cubic) and Cu sulfide (Hexagonal), Cu sulfide (Cubic) is a Cu sulfide (Cubic). The sum of the peak intensities may be I 2θ = 32.1 , and the Cu sulfide (Hexagonal) may be the sum of the peak intensities of the Cu sulfide (Hexagonal) as I 2θ = 46.8 .

上記以外にも、2θの誤差範囲±3°に収まるような析出物であれば本発明の効果は当然享受できる。ただし、実際にそのような結晶構造の析出物が存在するかどうかは電子顕微鏡などによる観察およびEDS元素分析、電子線回折により判別する必要がある。なぜなら同じ2θ位置に回折ピークを持つような、全く別の析出物が存在しないとも限らないからである。 In addition to the above, the effect of the present invention can naturally be enjoyed as long as the precipitate is within the error range of 2θ ± 3 °. However, it is necessary to determine whether or not a precipitate having such a crystal structure actually exists by observing with an electron microscope or the like, EDS elemental analysis, and electron diffraction. This is because it is not always the case that there is no completely different precipitate having a diffraction peak at the same 2θ position.

一般的に、XRD回折強度とはスペクトルのバックグラウンドからピークまでの高さである。バックグラウンド強度が十分低く、除去する必要がない状況が理想的だが、析出物からの回折強度が弱い場合、相対的にバックグラウンドの強度が高くなる場合がある。そのような場合には、非特許文献3、4に記載してあるように、XRD解析ソフトウェアを用いてバックグラウンドを除去する必要がある。本実施形態におけるXRD回折強度(ピーク強度)も、同様にソフトウェアを用いて、バックグラウンドを除去して求めるとよい。 In general, the XRD diffraction intensity is the height from the background to the peak of the spectrum. Ideally, the background intensity is low enough that it does not need to be removed, but if the diffraction intensity from the precipitate is weak, the background intensity may be relatively high. In such a case, it is necessary to remove the background by using XRD analysis software as described in Non-Patent Documents 3 and 4. The XRD diffraction intensity (peak intensity) in the present embodiment may also be obtained by removing the background using software in the same manner.

<製造方法>
次に、本実施形態に係る無方向性電磁鋼板の製造方法について述べる。
本実施形態に係る無方向性電磁鋼板は、上述した成分組成となるように通常の電磁鋼板と同様に転炉で溶製され、連続鋳造された鋼片に、熱間圧延、熱延板焼鈍、冷間圧延、仕上焼鈍などを行うことによって製造できる。
<Manufacturing method>
Next, a method for manufacturing the non-oriented electrical steel sheet according to the present embodiment will be described.
The non-oriented electrical steel sheet according to the present embodiment is melted in a converter in the same manner as a normal electrical steel sheet so as to have the above-mentioned composition, and is hot-rolled and hot-rolled and annealed on continuously cast steel pieces. , Can be manufactured by cold rolling, finish annealing, etc.

本実施形態に係る無方向性電磁鋼板では、Cu硫化物とCubic型の酸化物とを複合析出せしめ鉄損改善の効果を得る。一般にCu硫化物は析出速度が速く、仕上焼鈍で固溶しても、その後の冷却中に単独で微細に再析出してしまい鉄損に悪影響を及ぼす。しかし、冷却開始時にCubic型の酸化物が存在すると、Cu硫化物は冷却中にCubic型の酸化物を核として複合析出する。これにより、Cu硫化物の微細析出を抑制することができる。このため、仕上焼鈍工程の前工程までにCubic型の酸化物を析出させ、仕上焼鈍工程では、Cu硫化物を固溶させ、かつ、冷却速度を制御することで冷却開始時にCubic型の酸化物とCu硫化物とを複合析出させることが可能となる。 In the non-oriented electrical steel sheet according to the present embodiment, Cu sulfide and Cubic type oxide are compositely precipitated to obtain the effect of improving iron loss. In general, Cu sulfide has a high precipitation rate, and even if it is solid-solved by finish annealing, it is finely reprecipitated by itself during subsequent cooling, which adversely affects iron loss. However, if a Cubic-type oxide is present at the start of cooling, the Cu sulfide is complex-precipitated with the Cubic-type oxide as a nucleus during cooling. As a result, fine precipitation of Cu sulfide can be suppressed. Therefore, the Cubic-type oxide is precipitated before the pre-step of the finish annealing step, and in the finish-annealing step, the Cu sulfide is solid-dissolved and the cooling rate is controlled to control the Cubic-type oxide at the start of cooling. And Cu sulfide can be compound-precipitated.

本実施形態では、仕上焼鈍工程における保持温度、保持時間および所定の温度範囲(下記T1〜T2(℃)間)における冷却を以下に示す条件で行う。また、磁気特性をさらに向上させるために、熱延工程、熱延工程後のコイル巻取、熱延工程後かつ酸洗工程前の熱延板焼鈍工程を以下に示す条件で行うことが好ましい。
なお、本実施形態において、熱延工程後の酸洗については特に限定しない。また、冷間圧延についても特に限定せず、二回以上冷延、温間圧延などの冷延方法及び冷延圧下率によらず、鉄損改善効果を享受できる。またこれらの工程に加え、絶縁皮膜の形成や脱炭工程などを経ても構わない。
In the present embodiment, the holding temperature, holding time, and cooling in a predetermined temperature range (between T1 to T2 (° C.) below) in the finish annealing step are performed under the conditions shown below. Further, in order to further improve the magnetic characteristics, it is preferable to carry out the hot-rolling step, the coil winding after the hot-rolling step, and the hot-rolled plate annealing step after the hot-rolling step and before the pickling step under the conditions shown below.
In the present embodiment, the pickling after the hot rolling process is not particularly limited. Further, the cold rolling is not particularly limited, and the iron loss improving effect can be enjoyed regardless of the cold rolling method such as cold rolling or warm rolling twice or more and the cold rolling reduction rate. Further, in addition to these steps, a step of forming an insulating film, a step of decarburizing, etc. may be performed.

(仕上焼鈍工程)
仕上焼鈍工程において、下記式4記載のT1(℃)、下記式5記載のT2(℃)および下記式6記載のT3(℃)が重要な意味を持つ。下記T1(℃)はCu硫化物の固溶温度であり、下記T2(℃)はHexagonal型のCu硫化物が析出する下限温度かつCubic型のCu硫化物が析出する上限温度、下記T3(℃)はCubic型のCu硫化物が析出する下限温度である。
(Finishing annealing process)
In the finishing annealing step, T1 (° C.) described in the following formula 4 and T2 (° C.) described in the following formula 5 and T3 (° C.) described in the following formula 6 have important meanings. The following T1 (° C.) is the solid dissolution temperature of Cu sulfide, the following T2 (° C.) is the lower limit temperature at which Hexagonal type Cu sulfide is precipitated and the upper limit temperature at which Cubic type Cu sulfide is precipitated, and the following T3 (° C.) ) Is the lower limit temperature at which Cubic type Cu sulfide is precipitated.

T1(℃)=15000/(12−log10([%Cu]×[%S]))−273・・・式4
T2(℃)=15000/(12−log10([%Cu]×[%S]))−373・・・式5
T3(℃)=15000/(12−log10([%Cu]×[%S]))−473・・・式6
T1 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-273 ... Equation 4
T2 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-373 ... Equation 5
T3 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-473 ... Equation 6

仕上焼鈍工程においては、Cu硫化物をその固溶温度である上記T1(℃)以上で保持することにより、Cu硫化物を全量固溶させることが可能となる。保持温度がT1(℃)未満では、Cu硫化物を固溶させることができない。なお、保持温度は酸化物の固溶温度以下が好ましい。本発明と関連するMn、MgO、TiO、Al、SiOの固溶温度はいずれも高温であり、一般的には1250℃以上である。そのため、保持温度はT1℃以上1250℃以下が磁性にとって好ましい範囲である。磁性にとってより好ましい保持温度は(T1+200)℃以上1100℃以下である。 In the finish annealing step, by holding the Cu sulfide at the above-mentioned T1 (° C.) or higher, which is the solid solution temperature thereof, it is possible to dissolve the entire amount of the Cu sulfide. If the holding temperature is less than T1 (° C.), Cu sulfide cannot be dissolved as a solid solution. The holding temperature is preferably equal to or lower than the solid solution temperature of the oxide. The solid solution temperature of Mn 2 O 3 , MgO, TiO, Al 2 O 3 , and SiO 2 related to the present invention is high, and is generally 1250 ° C. or higher. Therefore, the holding temperature is T1 ° C. or higher and 1250 ° C. or lower, which is a preferable range for magnetism. A more preferable holding temperature for magnetism is (T1 + 200) ° C. or higher and 1100 ° C. or lower.

仕上焼鈍工程における保持時間は10秒以上3600秒以下とする。保持時間が10秒未満では十分にCu硫化物の固溶が進まない。一方で、保持時間が3600秒を超えると、析出速度の遅いTiSなどの他の微細硫化物が生成し、鉄損改善に悪影響を及ぼす。仕上焼鈍工程における好ましい保持時間は、20秒以上200秒以下である。 The holding time in the finish annealing step is 10 seconds or more and 3600 seconds or less. If the holding time is less than 10 seconds, the solid solution of Cu sulfide does not proceed sufficiently. On the other hand, if the holding time exceeds 3600 seconds, other fine sulfides such as TiS having a slow precipitation rate are generated, which adversely affects the improvement of iron loss. The preferred holding time in the finish annealing step is 20 seconds or more and 200 seconds or less.

仕上焼鈍工程における冷却速度の制御も本発明において重要な制御因子である。Cu硫化物は析出速度が速いため、仕上焼鈍後の冷却工程中に析出する。ただし、Cu硫化物がHexagonal型の結晶構造を形成する温度域と、Cubic型の結晶構造を形成する温度域とが存在することが判っている。Hexagonal型のCu硫化物は、上記のCubic型の酸化物と複合析出する。すなわち、仕上焼鈍後の冷却工程として、Cu硫化物(Hexagonal)が析出する温度域の冷却速度を遅くして、当該温度域における滞在時間をより長く確保することが重要である。つまり、上記T1〜T2(℃)間の平均冷却速度CR1(℃/秒)を60℃/秒未満に制御する。T1〜T2(℃)間の平均冷却速度CR1が小さいほど本発明効果は大きいが、実際の製造においては自然空冷が現実的であり、その場合、平均冷却速度は0.01℃/秒が限界である。したがって、上記T1〜T2(℃)間の平均冷却速度CR1の下限は、0.01℃/秒以上とすることが好ましい。平均冷却速度CR1の好ましい範囲は0.01℃/秒以上、40℃/秒以下である。 Controlling the cooling rate in the finish annealing step is also an important control factor in the present invention. Since Cu sulfide has a high precipitation rate, it precipitates during the cooling step after finish annealing. However, it is known that there is a temperature range in which Cu sulfide forms a Hexagonal type crystal structure and a temperature range in which a Cubic type crystal structure is formed. Hexagonal-type Cu sulfide is compound-precipitated with the above-mentioned Cubic-type oxide. That is, as a cooling step after finish annealing, it is important to slow down the cooling rate in the temperature range where Cu sulfide (Hexagonal) is precipitated to secure a longer staying time in the temperature range. That is, the average cooling rate CR1 (° C./sec) between T1 and T2 (° C.) is controlled to be less than 60 ° C./sec. The smaller the average cooling rate CR1 between T1 and T2 (° C.), the greater the effect of the present invention, but natural air cooling is realistic in actual manufacturing, and in that case, the average cooling rate is limited to 0.01 ° C./sec. Is. Therefore, the lower limit of the average cooling rate CR1 between T1 and T2 (° C.) is preferably 0.01 ° C./sec or more. The preferred range of the average cooling rate CR1 is 0.01 ° C./sec or more and 40 ° C./sec or less.

また、Cubic型の結晶構造を有するCu硫化物は、前記T2〜T3(℃)間の温度域において析出する。そこで本実施形態では、Cubic型の結晶構造を有するCu硫化物の析出温度域の冷却速度を早くして、当該温度域における滞在時間を短縮することにより、鉄損をより改善してもよい。具体的には、前記T2〜T3(℃)間の温度域における平均冷却速度CR2(℃/秒)が20℃/秒以上となるように急速冷却してもよい。ただし、平均冷却速度CR2(℃/秒)が大きければ大きいほど、本発明効果は高いが、鋼板に導入される冷却歪の影響を考えると、平均冷却速度CR2(℃/秒)の上限は200℃/秒以下に制御する必要がある。平均冷却速度CR2(℃/秒)の好ましい範囲は50℃/秒以上、100℃/秒以下である。 Further, Cu sulfide having a Cubic type crystal structure precipitates in the temperature range between T2 and T3 (° C.). Therefore, in the present embodiment, the iron loss may be further improved by increasing the cooling rate in the precipitation temperature range of Cu sulfide having a Cubic type crystal structure and shortening the residence time in the temperature range. Specifically, rapid cooling may be performed so that the average cooling rate CR2 (° C./sec) in the temperature range between T2 and T3 (° C.) is 20 ° C./sec or more. However, the larger the average cooling rate CR2 (° C./sec), the higher the effect of the present invention, but considering the influence of the cooling strain introduced into the steel sheet, the upper limit of the average cooling rate CR2 (° C./sec) is 200. It is necessary to control to ℃ / sec or less. The preferred range of the average cooling rate CR2 (° C./sec) is 50 ° C./sec or more and 100 ° C./sec or less.

(熱延工程)
本実施形態では酸化物を析出核として活用するため、仕上焼鈍工程の前工程までにCubic型の酸化物をなるべく多く析出させることが好ましい。特に、Cu硫化物と格子整合性の良好なMn酸化物を多く析出させ、Mn硫化物の析出を回避しておくことが好ましい。そのためには、まず熱延工程において、鋼片加熱温度をMn酸化物の固溶温度である下記式7記載のT4(℃)以下かつ、微細なMnSが固溶する温度である下記式8記載のT5(℃)以上に制御して、保持することが好ましい。MnSの完全な固溶温度はT5+200℃程度であるが、鋼片中の粗大なMnSは磁性への悪影響をほとんど与えないので、鋼片加熱温度をT5(℃)以上とすることで、本発明の効果は享受できる。
(Hot rolling process)
In this embodiment, since the oxide is used as a precipitation nucleus, it is preferable to precipitate as much Cubic-type oxide as possible before the pre-process of the finish annealing step. In particular, it is preferable to precipitate a large amount of Mn oxide having good lattice consistency with Cu sulfide to avoid precipitation of Mn sulfide. For that purpose, first, in the hot rolling step, the heating temperature of the steel piece is T4 (° C.) or less, which is the solid solution temperature of Mn oxide, and the temperature at which fine MnS is solid solution, according to the following formula 8. It is preferable to control and maintain T5 (° C.) or higher. The complete solid solution temperature of MnS is about T5 + 200 ° C., but since coarse MnS in the steel piece has almost no adverse effect on magnetism, the present invention is made by setting the heating temperature of the steel piece to T5 (° C.) or higher. You can enjoy the effect of.

T4(℃)=15000/(6−log10([%Mn]×[%O]))−273・・・式7
T5(℃)=14900/(8−log10([%Mn]×[%S]))−473・・・式8
T4 (° C.) = 15000 / (6-log 10 ([% Mn] × [% O]))-273 ... Equation 7
T5 (° C.) = 14900 / (8-log 10 ([% Mn] × [% S]))-473 ... Equation 8

熱延工程において、鋼片加熱の保持時間はMnSを完全に固溶させるため、1200秒以上とすることが好ましい。保持時間が1200秒未満ではMnSが十分に固溶しない。一方で、鋼片加熱の保持時間の上限は、生産性の観点から18000秒以下とすることが好ましい。より好ましい鋼片加熱の保持時間は、2400秒以上、10000秒以下である。 In the hot rolling step, the holding time for heating the steel pieces is preferably 1200 seconds or more in order to completely dissolve MnS. If the holding time is less than 1200 seconds, MnS does not dissolve sufficiently. On the other hand, the upper limit of the holding time for heating the steel piece is preferably 18,000 seconds or less from the viewpoint of productivity. A more preferable holding time for heating the steel piece is 2400 seconds or more and 10000 seconds or less.

また、MnSの析出はCuSの析出を阻害するため、熱延工程後のコイル巻取温度をMnSの析出下限温度である下記式9記載のT6(℃)以下としてもよい。巻取温度は鋼片加熱温度と熱延コイルの冷却速度で規定されるため、500℃以下に制御するとコイル内の温度ムラが大きくなり、磁性の観点で好ましくない。そのため、コイル巻取温度の制御範囲は500℃以上、T6(℃)以下とすることが好ましい。より好ましい上限は前記T3(℃)以下である。 Further, since precipitation of MnS is to inhibit the precipitation of Cu 2 S, T6 (℃) of formula 9 wherein a coil coiling temperature after hot rolling process is a precipitation minimum temperature of MnS may be less. Since the winding temperature is defined by the heating temperature of the steel piece and the cooling rate of the hot-rolled coil, if the temperature is controlled to 500 ° C. or lower, the temperature unevenness in the coil becomes large, which is not preferable from the viewpoint of magnetism. Therefore, the control range of the coil winding temperature is preferably 500 ° C. or higher and T6 (° C.) or lower. A more preferable upper limit is T3 (° C.) or lower.

T6(℃)=14900/(8−log10([%Mn]×[%S]))−573・・・式9 T6 (° C.) = 14900 / (8-log 10 ([% Mn] × [% S])) −573 ... Equation 9

(熱延板焼鈍工程)
冷間圧延前の熱延板を焼鈍することで、熱間圧延における温度偏差や析出物の分散状態のばらつきを均一化させ、鉄損を改善することが可能である。溶け残りの微細MnSを固溶させ、Mn酸化物を析出させることで本発明効果を更に発揮できるため、熱延板焼鈍工程において、前記T5(℃)以上に保持することは磁性にとって好ましい。本発明と関連するMn、MgO、TiO、Al、SiOの固溶温度は、一般的には1250℃以上である。そのため、酸化物の溶解を回避すべく、熱延板焼鈍工程における保持温度を1250℃以下に設定することが好ましい。磁性にとってより好ましくは、T5+100〜1250℃で保持することである。
(Hot rolled plate annealing process)
By annealing the hot-rolled sheet before cold rolling, it is possible to make the temperature deviation and the variation in the dispersion state of the precipitates uniform in the hot rolling and improve the iron loss. Since the effect of the present invention can be further exhibited by solid-solving the undissolved fine MnS and precipitating the Mn oxide, it is preferable for magnetism to keep the temperature above T5 (° C.) in the hot-rolled plate annealing step. The solid solution temperature of Mn 2 O 3 , MgO, TiO, Al 2 O 3 , and SiO 2 related to the present invention is generally 1250 ° C. or higher. Therefore, in order to avoid dissolution of the oxide, it is preferable to set the holding temperature in the hot rolled sheet annealing step to 1250 ° C. or lower. More preferably for magnetism, it is held at T5 + 100-1250 ° C.

さらに、熱延板焼鈍後の冷却においては、MnSの析出温度域である前記T5(℃)以下、前記T1(℃)以上の温度域の冷却速度を20℃/秒以上に制御し、Mn硫化物の析出を回避することが好ましい。より好ましい冷却速度は50℃/秒以上、100℃/秒以下である。 Further, in the cooling after annealing the hot-rolled plate, the cooling rate in the temperature range of T5 (° C.) or lower and T1 (° C.) or higher, which is the precipitation temperature range of MnS, is controlled to 20 ° C./sec or more, and Mn sulfurization is performed. It is preferable to avoid precipitation of substances. More preferable cooling rates are 50 ° C./sec or more and 100 ° C./sec or less.

また、熱延板焼鈍工程における保持時間について特に規定はしないが、10秒以上、3600秒以下とすることで、熱延板焼鈍の効果が十分得られる。一方で、保持時間が3600秒を超えると、析出速度の遅いTiSなどの他の微細硫化物が生成し、鉄損改善に悪影響を及ぼす。より好ましい保持時間は、20秒以上、200秒以下である。 The holding time in the hot-rolled sheet annealing step is not particularly specified, but the effect of hot-rolled sheet annealing can be sufficiently obtained by setting it to 10 seconds or more and 3600 seconds or less. On the other hand, if the holding time exceeds 3600 seconds, other fine sulfides such as TiS having a slow precipitation rate are generated, which adversely affects the improvement of iron loss. More preferable holding time is 20 seconds or more and 200 seconds or less.

以下、本発明の実施例を挙げながら、本発明の技術的内容について更に説明する。なお、以下に示す実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。また本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。なお、下記の説明で用いる表中の下線は、本発明の範囲外であることを示す。 Hereinafter, the technical contents of the present invention will be further described with reference to examples of the present invention. The conditions in the examples shown below are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is not limited to this one condition example. Further, the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved. The underline in the table used in the following description indicates that it is outside the scope of the present invention.

<実施例1>
表1(鋼No.A1〜A27、鋼No.a1〜a15)に示す成分のインゴットを真空溶解し、1200℃に加熱して3600秒保持した後、巻き取り温度が700℃となるように熱間圧延し、板厚2.0mmの熱延鋼板を得た。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とした。続いて1000℃で30秒の仕上焼鈍を行った。仕上焼鈍後の冷却において、T1〜T2(℃)間の平均冷却速度CR1を30℃/秒とし、T2〜T3(℃)間の平均冷却速度CR2を18℃/秒とした。なお、鋼No.A24は参考例である。
<Example 1>
The ingots of the components shown in Table 1 (Steel Nos. A1 to A27, Steel Nos. a1 to a15) are vacuum-melted, heated to 1200 ° C. and held for 3600 seconds, and then heated so that the winding temperature becomes 700 ° C. After rolling for a while, a hot-rolled steel sheet having a plate thickness of 2.0 mm was obtained. Then, it was pickled and cold-rolled at a reduction ratio of 75% to obtain a cold-rolled steel sheet having a plate thickness of 0.50 mm. Subsequently, finish annealing was performed at 1000 ° C. for 30 seconds. In the cooling after finish annealing, the average cooling rate CR1 between T1 to T2 (° C.) was set to 30 ° C./sec, and the average cooling rate CR2 between T2 to T3 (° C.) was set to 18 ° C./sec. In addition, steel No. A24 is a reference example.

析出物の観察結果と磁気特性(磁束密度および鉄損)を表2に示す。なお、観察されたCu硫化物のうち、酸化物と複合析出していたCu硫化物の個数割合が50%以上の場合は表中の「析出形態」の欄に「○」で示し、50%未満の場合は「×」で示した。なお、析出物観察は、鋼板の圧延方向に垂直な断面をエッチングし、SEM観察により観察し、EDS分析により同定した。その際、100μmの視野を10視野観察した。観察されたOおよびCuを含む平均直径が10〜5000nmである複合析出物の総数を、1000(100μm×10視野)で割った数字を、複合析出物の個数密度(個/μm)、すなわち面密度とした。なお、表中に「−」と記載されたものは、未評価であることを示す。 Table 2 shows the observation results of the precipitates and the magnetic characteristics (magnetic flux density and iron loss). Of the observed Cu sulfides, when the number ratio of Cu sulfides complex-precipitated with the oxide is 50% or more, it is indicated by "○" in the "precipitation form" column in the table, and 50%. If it is less than, it is indicated by "x". The deposit was observed by etching a cross section perpendicular to the rolling direction of the steel sheet, observing by SEM observation, and identifying by EDS analysis. At that time, 10 visual fields of 100 μm 2 were observed. The total number of composite precipitates with an average diameter of 10 to 5000 nm including O and Cu observed divided by 1000 (100 μm 2 × 10 field of view) is divided by the number density of composite precipitates (pieces / μm 2 ). That is, the surface density was used. In addition, what is described as "-" in the table indicates that it has not been evaluated.

磁気特性については、鉄損に応じて、VG:非常に優れる、G:優れる、F:効果がみられる、B:従来レベルとして評価し、Bと評価されたものを不合格とした。なお、磁気特性の評価はJIS C 2550:2000に準じて行った。歪取焼鈍は実施していない。鉄損については、W15/50(W/kg)を評価した。W15/50は、周波数50Hz、最大磁束密度1.5Tのときの鉄損である。また、磁束密度については、B50を用いて評価した。B50は、磁界の強さ5000A/mにおける磁束密度を示す。なお、B50の最低目標値を従来材と同等である1.50T以上とし、1.50T未満のものを不合格とした。なお、試料の鉄損評価基準は、以下の通りとした。 Regarding the magnetic characteristics, VG: very excellent, G: excellent, F: effective, B: evaluated as the conventional level, and those evaluated as B were rejected according to the iron loss. The magnetic characteristics were evaluated according to JIS C 2550: 2000. Strain removal annealing has not been carried out. For iron loss, W 15/50 (W / kg) was evaluated. W 15/50 is the iron loss when the frequency is 50 Hz and the maximum magnetic flux density is 1.5 T. The magnetic flux density was evaluated using B 50. B 50 indicates the magnetic flux density at a magnetic field strength of 5000 A / m. The minimum target value of B 50 was set to 1.50 T or more, which is equivalent to that of the conventional material, and those less than 1.50 T were rejected. The iron loss evaluation criteria for the sample were as follows.

VG(VeryGood):W15/50(W/kg)<3.00
G(Good):3.00≦W15/50(W/kg)≦3.40
F(Fair):3.40<W15/50(W/kg)≦4.50
B(Bad):4.50<W15/50(W/kg)
VG (VeryGood): W 15/50 (W / kg) <3.00
G (Good): 3.00 ≤ W 15/50 (W / kg) ≤ 3.40
F (Fair): 3.40 <W 15/50 (W / kg) ≤ 4.50
B (Bad): 4.50 <W 15/50 (W / kg)

表2のNo.B1〜B27はいずれも発明鋼であり、いずれも磁束密度が目標値を満足するものとなり、さらに鉄損の評価は「G」と、良好な結果だった。なお、No.B24は参考例である。
比較鋼のNo.b2およびb6は平均直径が10〜5000nmである、Cu硫化物と酸化物の複合析出物の個数密度(面密度)が発明範囲を越えており、鉄損はいずれも4.50W/kgを超える悪値だったため、評価を「B」とし、不合格と判定した。
No.b8、b11およびb15は、そもそも磁束密度B50が1.50T未満であり、目標値に達しなかったため不合格と判定し、析出物の観察を行っていない。
No.b5、b12、b14は、観察されたCu硫化物のうち、Cubic型の酸化物と複合析出していたCu硫化物の個数割合が50%未満であり、Cu硫化物と酸化物の複合析出物が得られず、鉄損は4.50W/kgを超える悪値を示したため、評価を「B」とし、不合格と判定した。
No.b1は磁気時効を示したため、不合格と判定した。
No.b3、b4、b7、b9、b10、b13は、熱間圧延または冷間圧延が困難であったため、不合格と判定した。
No. in Table 2 B1 to B27 are all invention steels, and the magnetic flux densities satisfy the target values, and the iron loss evaluation is "G", which is a good result. In addition, No. B24 is a reference example.
Comparative steel No. The average diameter of b2 and b6 is 10 to 5000 nm, the number density (area density) of the composite precipitate of Cu sulfide and oxide exceeds the invention range, and the iron loss exceeds 4.50 W / kg. Since it was a bad value, the evaluation was set to "B" and it was judged to be unacceptable.
No. In b8, b11 and b15, the magnetic flux density B 50 was less than 1.50 T in the first place, and since it did not reach the target value, it was judged to be unacceptable, and the precipitate was not observed.
No. In b5, b12, and b14, the number ratio of Cu sulfide that was complex-precipitated with the Cubic-type oxide was less than 50% among the observed Cu sulfides, and the composite precipitate of Cu sulfide and oxide was formed. Was not obtained, and the iron loss showed a bad value exceeding 4.50 W / kg. Therefore, the evaluation was set to "B" and it was judged to be unacceptable.
No. Since b1 showed magnetic aging, it was judged to be unacceptable.
No. b3, b4, b7, b9, b10, and b13 were judged to be unacceptable because hot rolling or cold rolling was difficult.

Figure 0006891673
Figure 0006891673

Figure 0006891673
Figure 0006891673

<実施例2>
表1に示すNo.A14、A15、A18〜A21、A23〜A27に示す成分のインゴットを真空溶解し、1100℃でインゴットを加熱して、それぞれの温度にて4500秒保持した後、巻き取り温度が480℃となるように熱間圧延し、板厚2.0mmの熱延鋼板を得た。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とした。続いて950℃で60秒の仕上焼鈍を行った。冷却において、T1〜T2(℃)間の平均冷却速度CR1を38℃/秒とした。また、T2〜T3(℃)間の平均冷却速度CR2を30℃/秒とした。
<Example 2>
No. shown in Table 1. The ingots of the components shown in A14, A15, A18 to A21, and A23 to A27 are vacuum-dissolved, the ingot is heated at 1100 ° C., held at each temperature for 4500 seconds, and then the winding temperature becomes 480 ° C. Hot-rolled to obtain a hot-rolled steel sheet having a plate thickness of 2.0 mm. Then, it was pickled and cold-rolled at a reduction ratio of 75% to obtain a cold-rolled steel sheet having a plate thickness of 0.50 mm. Subsequently, finish annealing was performed at 950 ° C. for 60 seconds. In cooling, the average cooling rate CR1 between T1 and T2 (° C.) was set to 38 ° C./sec. The average cooling rate CR2 between T2 and T3 (° C.) was set to 30 ° C./sec.

表3にはX線回折結果、析出物の析出形態、磁気特性(磁束密度および鉄損)の評価結果を示す。析出物の観察、磁気特性の測定については、実施例1と同様の評価を行った。X線回折には非特許文献5〜7に記載されている一般的な抽出残渣法により介在物のみをフィルターで捕集したものを分析試料として用いた。XRD測定は非特許文献4〜6に記載のCuKα線をプローブとした広角X線回折により行った。表3中の「ICuS/IMn2O3」は、I2θ=46.8/I2θ=32.9を示す。 Table 3 shows the X-ray diffraction results, the precipitation morphology of the precipitates, and the evaluation results of the magnetic characteristics (magnetic flux density and iron loss). The same evaluation as in Example 1 was carried out for the observation of the precipitate and the measurement of the magnetic characteristics. For X-ray diffraction, a sample in which only inclusions were collected by a filter by the general extraction residue method described in Non-Patent Documents 5 to 7 was used as an analysis sample. The XRD measurement was performed by wide-angle X-ray diffraction using the CuKα ray described in Non-Patent Documents 4 to 6 as a probe. “I CuS / I Mn2O3 ” in Table 3 indicates I 2θ = 46.8 / I 2θ = 32.9 .

No.C1〜C7、C9〜C11はいずれも発明例であり、No.C8は参考例である。No.C7〜C11は複合析出物の個数密度が好ましい範囲内(0.001〜1.000個/μm)であり、かつ「ICuS/IMn2O3」の値が0.10以上に制御されているため、特に良好な鉄損が得られた。 No. C1 to C7, C9 to C11 are both Ri invention example der, No. C8 is Ru Reference Example der. No. In C7 to C11, the number density of the composite precipitate is within a preferable range (0.001 to 1.000 pieces / μm 2 ), and the value of “I CuS / I Mn2O3 ” is controlled to 0.10 or more. Therefore, a particularly good iron loss was obtained.

Figure 0006891673
Figure 0006891673

<実施例3>
表1に示す鋼No.A7、A11、A18〜A27の成分を有するインゴットを真空溶解し、1200℃で加熱して、それぞれの温度にて3600秒保持した後、巻き取り温度が750℃となるように熱間圧延し、板厚2.0mmの熱延板を得た。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とした。続いて950℃で60秒の仕上焼鈍を行った。仕上焼鈍後の冷却において、T1〜T2(℃)間の平均冷却速度CR1を42℃/秒とし、T2〜T3(℃)間の平均冷却速度CR2を25℃/秒とした。
<Example 3>
Steel No. shown in Table 1. The ingot containing the components A7, A11, A18 to A27 is vacuum-melted, heated at 1200 ° C., held at each temperature for 3600 seconds, and then hot-rolled so that the winding temperature becomes 750 ° C. A hot-rolled plate having a plate thickness of 2.0 mm was obtained. Then, it was pickled and cold-rolled at a reduction ratio of 75% to obtain a cold-rolled steel sheet having a plate thickness of 0.50 mm. Subsequently, finish annealing was performed at 950 ° C. for 60 seconds. In the cooling after finish annealing, the average cooling rate CR1 between T1 and T2 (° C.) was 42 ° C./sec, and the average cooling rate CR2 between T2 and T3 (° C.) was 25 ° C./sec.

表4にはX線回折結果、析出物の析出形態、磁気特性(磁束密度および鉄損)の評価結果を示す。X線回折、磁気特性の測定、析出物の測定については、実施例1および実施例2と同様の評価を行った。表4中の「ICuS/IMn2O3」は、I2θ=46.8/I2θ=32.9を示し、「ICuS(Hex)/IOxide」は、I2θ=46.8/(I2θ=21.6+I2θ=42.9+I2θ=43.3+I2θ=45.9)を示す。 Table 4 shows the X-ray diffraction results, the precipitation morphology of the precipitates, and the evaluation results of the magnetic characteristics (magnetic flux density and iron loss). The same evaluations as in Example 1 and Example 2 were performed for X-ray diffraction, measurement of magnetic properties, and measurement of precipitates. “I CuS / I Mn2O3 ” in Table 4 indicates I 2θ = 46.8 / I 2θ = 32.9 , and “I CuS (Hex) / I Oxide ” indicates I 2θ = 46.8 / (I). 2θ = 21.6 + I 2θ = 42.9 + I 2θ = 43.3 + I 2θ = 45.9 ).

No.D1〜D8、D10〜D12はいずれも発明例であり、No.D9は参考例であるが、No.D9〜D11は、複合析出物の個数密度が好ましい範囲(0.001〜1.000個/μm)の範囲外であり、またICuS/IMn2O3の値が0.10未満であっため、複合析出物の個数密度が好ましい範囲(0.001〜1.000個/μm)の範囲内であり、ICuS/IMn2O3の値が0.10以上であるD1〜D8およびD12に比べて鉄損がやや劣位だった。No.D7は、ICuS(Hex)/IOxideの値が0.010未満であったが、ICuS/IMn2O3の値が0.10以上であったため、鉄損は「G」と、比較的良好な結果だった。 No. D1~ D8, D10~ D12 Both Inventive Example der Ri, No. D9 is Ru Reference Example der but, No. D9 to D11 are outside the range where the number density of the composite precipitate is preferable (0.001 to 1.000 pieces / μm 2 ), and the value of I CuS / I Mn2O3 is less than 0.10. Compared with D1 to D8 and D12 in which the number density of the composite precipitate is within the preferable range (0.001 to 1.000 pieces / μm 2 ) and the value of I CuS / I Mn2O3 is 0.10 or more. The iron loss was a little inferior. No. In D7, the value of I CuS (Hex) / I Oxide was less than 0.010, but the value of I CuS / I Mn2O3 was 0.10 or more, so the iron loss was "G", which was relatively good. It was a good result.

Figure 0006891673
Figure 0006891673

<実施例4>
表1に示す鋼No.A15〜A23およびA27の成分を有するインゴットを真空溶解し、1200℃で加熱して3600秒保持した後、巻取温度が580℃となるように熱間圧延して板厚2.0mmの熱延板とした。熱延板を1100℃で50秒の熱延板焼鈍を実施した。その後、すべての熱延板において、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とし、1000℃で40秒の仕上焼鈍を行った。冷却において、T1〜T2(℃)間の平均冷却速度CR1を32℃/秒とした。また、T2〜T3(℃)間の平均冷却速度CR2を55℃/秒とした。
<Example 4>
Steel No. shown in Table 1. Ingots containing the components A15 to A23 and A27 are vacuum-melted, heated at 1200 ° C. and held for 3600 seconds, then hot-rolled to a winding temperature of 580 ° C. and hot-rolled to a plate thickness of 2.0 mm. It was made into a board. The hot-rolled plate was annealed at 1100 ° C. for 50 seconds. Then, all the hot-rolled sheets were pickled and cold-rolled at a reduction ratio of 75% to obtain a cold-rolled steel sheet having a plate thickness of 0.50 mm, and finish annealing was performed at 1000 ° C. for 40 seconds. In cooling, the average cooling rate CR1 between T1 to T2 (° C.) was set to 32 ° C./sec. The average cooling rate CR2 between T2 and T3 (° C.) was set to 55 ° C./sec.

表5にはX線回折結果、析出物の析出形態、磁気特性(磁束密度および鉄損)の評価結果を示す。X線回折、磁気特性の測定、析出物の測定については、実施例1および実施例2と同様の評価を行った。なお、表5中の「ICuS/IMn2O3」は、I2θ=46.8/I2θ=32.9を示し、「ICuS(Hex)/IOxide」は、I2θ=46.8/(I2θ=21.6+I2θ=42.9+I2θ=43.3+I2θ=45.9)を示し、「ICuS(Hex)/ICuS(Cub)」は、I2θ=46.8/I2θ=32.1を示す。 Table 5 shows the X-ray diffraction results, the precipitation morphology of the precipitates, and the evaluation results of the magnetic characteristics (magnetic flux density and iron loss). The same evaluations as in Example 1 and Example 2 were performed for X-ray diffraction, measurement of magnetic properties, and measurement of precipitates. In Table 5, "I CuS / I Mn2O3 " indicates I 2θ = 46.8 / I 2θ = 32.9 , and "I CuS (Hex) / I Oxide " indicates I 2θ = 46.8 /. (I 2θ = 21.6 + I 2θ = 42.9 + I 2θ = 43.3 + I 2θ = 45.9 ), and "I CuS (Hex) / I CuS (Cub) " is I 2θ = 46.8. / I 2θ = 32.1 .

No.E1〜E10はいずれも発明例であり、いずれも熱延板焼鈍の保持時間がより好ましい範囲内(20〜200秒)に制御されている。No.E2〜E7およびNo.E9〜E10は複合析出物の個数密度が好ましい範囲(0.001〜1.000個/μm)またはより好ましい範囲(0.001〜0.100個/μm)であるため、鉄損は「VG」と良好な値だった。No.E1はICuS(Hex)/IOxideの値が、0.010未満であったが、複合析出物の個数密度をより好ましい範囲(0.001〜0.100個/μm)の範囲内に制御しているため、鉄損は「VG」と良好な値だった。No.E8のICuS(Hex)/ICuS(Cub)は0.50以下であったが、複合析出物の個数密度をより好ましい範囲内に制御しているため、鉄損は「VG」と良好な値だった。 No. Each of E1 to E10 is an example of the invention, and the holding time of hot-rolled sheet annealing is controlled within a more preferable range (20 to 200 seconds). No. E2 to E7 and No. Since E9~E10 is the number density is preferably in the range of complex precipitates (0.001 to 1.000 cells / [mu] m 2) or more preferred range (0.001 to 0.100 pieces / μm 2), core loss It was a good value of "VG". No. In E1, the value of I CuS (Hex) / I Oxide was less than 0.010, but the number density of the composite precipitate was within the more preferable range (0.001 to 0.100 / μm 2 ). Due to the control, the iron loss was a good value of "VG". No. The I CuS (Hex) / I CuS (Cub) of E8 was 0.50 or less, but the iron loss was as good as "VG" because the number density of the composite precipitates was controlled within a more preferable range. It was a value.

Figure 0006891673
Figure 0006891673

<実施例5>
表1に示す鋼No.A15、A27の成分を有するインゴットを真空溶解し、1200℃に加熱して3600秒保持した後、巻取温度が490℃となるように熱間圧延をして板厚2.0mmの熱延鋼板とした。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とした。その後、表6に示す条件で仕上焼鈍を行った。
<Example 5>
Steel No. shown in Table 1. The ingot containing the components A15 and A27 is vacuum-melted, heated to 1200 ° C. and held for 3600 seconds, and then hot-rolled so that the winding temperature becomes 490 ° C. And said. Then, it was pickled and cold-rolled at a reduction ratio of 75% to obtain a cold-rolled steel sheet having a plate thickness of 0.50 mm. Then, finish annealing was performed under the conditions shown in Table 6.

表6にはX線回折結果、析出物の析出形態、磁気特性(磁束密度および鉄損)の評価結果を示す。X線回折、磁気特性の測定、析出物の測定については、実施例1および実施例2と同様の評価を行った。 Table 6 shows the X-ray diffraction results, the precipitation morphology of the precipitates, and the evaluation results of the magnetic characteristics (magnetic flux density and iron loss). The same evaluations as in Example 1 and Example 2 were performed for X-ray diffraction, measurement of magnetic properties, and measurement of precipitates.

No.F1〜F14はいずれも発明例である。仕上焼鈍工程における保持温度、保持時間、T1〜T2(℃)間の冷却速度CR1(℃/秒)およびT3〜T2(℃)間の平均冷却速度CR2(℃/秒)をより好ましい範囲に制御したNo.F13およびF14は鉄損が「G」と比較的良好だった。No.F1〜F3、F5、F9およびF10は、CR2が20℃/秒未満であるが、仕上焼鈍工程における保持温度、保持時間および冷却速度CR1がいずれも本発明範囲内に制御されているため、鉄損が「F」と本発明効果を享受できることが確認できた。 No. F1 to F14 are all examples of the invention. Control the holding temperature, holding time, cooling rate CR1 (° C./sec) between T1 to T2 (° C.) and average cooling rate CR2 (° C./sec) between T3 and T2 (° C.) in the finish annealing step within a more preferable range. No. F13 and F14 had a relatively good iron loss of "G". No. In F1 to F3, F5, F9 and F10, CR2 is less than 20 ° C./sec, but since the holding temperature, holding time and cooling rate CR1 in the finishing annealing step are all controlled within the scope of the present invention, iron It was confirmed that the loss was "F" and the effect of the present invention could be enjoyed.

一方、No.f1〜f3はいずれも比較例であり、仕上焼鈍時の保持温度、保持時間、T1〜T2(℃)間の平均冷却速度CR1のいずれかが本発明の範囲外であったため、Cu硫化物がCubic型の酸化物と複合析出せず、鉄損が4.50W/kgを超える悪値を示し、鉄損評価が「B」となっている。 On the other hand, No. All of f1 to f3 are comparative examples, and since any of the holding temperature, holding time, and average cooling rate CR1 between T1 to T2 (° C.) during finish annealing was outside the range of the present invention, Cu sulfide was produced. It does not precipitate in combination with the Cubic type oxide, and the iron loss shows a bad value exceeding 4.50 W / kg, and the iron loss evaluation is "B".

Figure 0006891673
Figure 0006891673

<実施例6>
表1に示す鋼No.A13〜A17,A19,A20,A22〜A27の成分を有するインゴットを真空溶解し、このインゴットを表7に示す条件で加熱、保持した後に熱間圧延し、板厚2.0mmの熱延鋼板とした。その後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とした。その後、表7に示す条件で仕上焼鈍を行った。
<Example 6>
Steel No. shown in Table 1. An ingot having components A13 to A17, A19, A20, and A22 to A27 was melted in a vacuum, and the ingot was heated and held under the conditions shown in Table 7 and then hot-rolled to obtain a hot-rolled steel sheet having a plate thickness of 2.0 mm. did. Then, it was pickled and cold-rolled at a reduction ratio of 75% to obtain a cold-rolled steel sheet having a plate thickness of 0.50 mm. Then, finish annealing was performed under the conditions shown in Table 7.

表7にはX線回折結果、析出物の析出形態、磁気特性(磁束密度および鉄損)の評価結果を示す。X線回折、磁気特性の測定、析出物の測定については、実施例1および実施例2と同様の評価を行った。 Table 7 shows the X-ray diffraction results, the precipitation morphology of the precipitates, and the evaluation results of the magnetic characteristics (magnetic flux density and iron loss). The same evaluations as in Example 1 and Example 2 were performed for X-ray diffraction, measurement of magnetic properties, and measurement of precipitates.

No.G1〜G22、G24〜G26はいずれも発明例であり、No.G23は参考例である。No.G21〜G26は、T1〜T2(℃)間の冷却速度CR1およびT3〜T2(℃)間の平均冷却速度CR2を好ましい範囲に制御している。しかしながら、No.G25は熱間圧延における巻取温度が好ましい範囲(500〜T6℃)の範囲外だった。そのため、No.G21〜G24、G26は鉄損評価が「VG」と良好な値だった一方で、No.G25の鉄損評価は「G」にとどまった。
No.G6およびG9はT3〜T2(℃)間の平均冷却速度CR2または熱間圧延における巻取温度が好ましい範囲(500〜T6(℃))の範囲外だったため、鉄損評価は「F」だった。No.G4およびG5は平均冷却速度CR2が20℃/秒未満だったが、熱延工程における鋼片加熱の保持温度がより好ましい範囲(2400秒〜10000秒)に制御されていたため、鉄損評価は「G」と比較的良好な結果だった。
No. G1~ G22, G24~ G26 Both Ri invention example der, No. G23 is Ru Reference Example der. No. G21 to G26 control the cooling rate CR1 between T1 to T2 (° C.) and the average cooling rate CR2 between T3 and T2 (° C.) within a preferable range. However, No. G25 was outside the range (500 to T6 ° C.) where the take-up temperature in hot rolling was preferable. Therefore, No. In G21 to G24 and G26, the iron loss evaluation was a good value of "VG", while No. The iron loss evaluation of G25 remained at "G".
No. Since G6 and G9 had an average cooling rate CR2 between T3 and T2 (° C.) or a winding temperature in hot rolling outside the preferable range (500 to T6 (° C.)), the iron loss evaluation was "F". .. No. The average cooling rate CR2 of G4 and G5 was less than 20 ° C./sec, but the holding temperature of steel piece heating in the hot rolling process was controlled within a more preferable range (2400 to 10000 seconds), so the iron loss evaluation was ". It was a relatively good result with "G".

Figure 0006891673
Figure 0006891673

<実施例7>
表1に示す鋼No.A12〜A27の成分を有するインゴットを真空溶解し、このインゴットを表8に示す条件で加熱、保持した後に熱間圧延し、板厚2.0mmの熱延鋼板とした。その後、表8に示す条件で熱延板焼鈍を施した後、酸洗を経て圧下率75%で冷間圧延し、板厚0.50mmの冷延鋼板とした。この冷延鋼板に対し、表8に示す条件で仕上焼鈍を行った。
<Example 7>
Steel No. shown in Table 1. The ingots having the components A12 to A27 were melted in vacuum, and the ingots were heated and held under the conditions shown in Table 8 and then hot-rolled to obtain a hot-rolled steel sheet having a plate thickness of 2.0 mm. Then, the hot-rolled sheet was annealed under the conditions shown in Table 8, then pickled and cold-rolled at a reduction rate of 75% to obtain a cold-rolled steel sheet having a plate thickness of 0.50 mm. The cold-rolled steel sheet was subjected to finish annealing under the conditions shown in Table 8.

表8にはX線回折結果、析出物の析出形態、磁気特性(磁束密度および鉄損)の評価結果を示す。X線回折、磁気特性の測定、析出物の測定については、実施例1および実施例2と同様の評価を行った。 Table 8 shows the X-ray diffraction results, the precipitation morphology of the precipitates, and the evaluation results of the magnetic characteristics (magnetic flux density and iron loss). The same evaluations as in Example 1 and Example 2 were performed for X-ray diffraction, measurement of magnetic properties, and measurement of precipitates.

No.H1〜H16、H18〜H20はいずれも本発明例であり、No.H17は参考例である。No.H4、H8〜H14、H18〜H20は熱間圧延における鋼片加熱時間(保持時間)、熱延板焼鈍工程および仕上焼鈍工程御における保持時間がより好ましい範囲に制御されている。これに加え、仕上焼鈍工程におけるT1〜T2(℃)間の冷却速度CR1が本発明範囲内であり、T3〜T2(℃)間の平均冷却速度CR2が好ましい範囲内に制御されているため鉄損評価は「VG」と特に良好だった。
No.H2、H3、H5〜H7、H15〜H17は、熱間圧延における鋼片加熱温度、鋼片加熱時間(保持時間)および巻取温度のいずれかが好ましい範囲外だった。このため、鉄損評価は「G」にとどまった。
No.H1は熱間圧延における鋼片加熱温度および仕上焼鈍工程のT3〜T2(℃)間の平均冷却速度CR2が好ましい範囲外だった。このため、鉄損評価が「F」だった。
No. H1~ H16, H18~ H20 Both Ri invention example der, No. H17 is Ru Reference Example der. No. In H4, H8 to H14, and H18 to H20, the steel piece heating time (holding time) in hot rolling, and the holding time in the hot-rolled sheet annealing step and the finish annealing step are controlled within a more preferable range. In addition to this, the cooling rate CR1 between T1 to T2 (° C.) in the finish annealing step is within the range of the present invention, and the average cooling rate CR2 between T3 and T2 (° C.) is controlled within a preferable range. The loss evaluation was particularly good as "VG".
No. For H2, H3, H5 to H7, and H15 to H17, any one of the steel piece heating temperature, the steel piece heating time (holding time), and the winding temperature in hot rolling was out of the preferable range. Therefore, the iron loss evaluation was limited to "G".
No. For H1, the steel piece heating temperature in hot rolling and the average cooling rate CR2 between T3 and T2 (° C.) in the finish annealing step were out of the preferable ranges. Therefore, the iron loss evaluation was "F".

Figure 0006891673
Figure 0006891673

Claims (8)

質量%で、
C:0.0100%以下、
Si:0.10〜5.00%、
Mn:0.010〜2.000%、
Al:0.10〜3.00%、
S:0.0001〜0.0300%、
P:0.0010〜0.2000%、
Cu:0.005〜2.000%、
N:0.0001〜0.0150%、
O:0.0010〜0.0200%を含有するとともに、
Mg:0.0001〜0.0100%、
Ti:0.0001〜0.0100%
Zr:0.0001〜0.0100%
の1種または2種以上を含有し、
残部がFe及び不純物からなる化学組成を有し、結晶系がCubic型の酸化物とCu硫化物とが複合析出し、平均直径が10〜5000nmである複合析出物の個数密度が0.001〜10.000個/μmであることを特徴とする無方向性電磁鋼板。
By mass%
C: 0.0100% or less,
Si: 0.10 to 5.00%,
Mn: 0.010-2.000%,
Al: 0.10 to 3.00%,
S: 0.0001 to 0.0300%,
P: 0.0010 to 0.2000%,
Cu: 0.005-2.000%,
N: 0.0001 to 0.0150%,
O: Contains 0.0010 to 0.0200% and
Mg: 0.0001 to 0.0100%,
Ti: 0.0001 to 0.0100% ,
Zr: 0.0001 to 0.0100%
Contains one or more of
The balance has a chemical composition of Fe and impurities, the crystal system is a composite precipitate of a Cubic-type oxide and Cu sulfide, and the number density of the composite precipitate having an average diameter of 10 to 5000 nm is 0.001 to 0.001. A non-directional electromagnetic steel plate characterized by 10.000 pieces / μm 2.
電解抽出残渣に対するX線回折において得られる、2θ=46.8°に現れるHexagonal構造を有するCu硫化物の回折強度であるI2θ=46.8と、2θ=32.9°に現れるCubic構造を有するMnの回折強度であるI2θ=32.9が下記式1の条件を満たすことを特徴とする請求項1に記載の無方向性電磁鋼板。
2θ=46.8/I2θ=32.9≧0.10・・・式1
I 2θ = 46.8 , which is the diffraction intensity of Cu sulfide having a hexagonal structure that appears at 2θ = 46.8 °, and the Cubic structure that appears at 2θ = 32.9 °, which are obtained by X-ray diffraction on the electrolytic extraction residue. The non-directional electromagnetic steel plate according to claim 1, wherein the diffraction intensity of Mn 2 O 3 having I 2θ = 32.9 satisfies the condition of the following formula 1.
I 2θ = 46.8 / I 2θ = 32.9 ≧ 0.10 ... Equation 1
電解抽出残渣に対するX線回折において得られる、2θ=46.8°に現れるHexagonal構造を有するCu硫化物の回折強度であるI2θ=46.8と、2θ=21.6°に現れるCubic構造を有するSiO、2θ=42.9°に現れるCubic構造を有するMgO、2θ=43.3°に現れるCubic構造を有するTiO、2θ=45.9°に現れるCubic構造を有するAlのそれぞれの回析強度が下記式2の条件を満たすことを特徴とする請求項1または請求項2に記載の無方向性電磁鋼板。
2θ=46.8/(I2θ=21.6+I2θ=42.9+I2θ=43.3+I2θ=45.9)≧0.010・・・式2
I 2θ = 46.8 , which is the diffraction intensity of Cu sulfide having a hexagonal structure that appears at 2θ = 46.8 °, and the Cubic structure that appears at 2θ = 21.6 °, which are obtained by X-ray diffraction on the electrolytic extraction residue. SiO 2, MgO having a Cubic structure appearing at 2θ = 42.9 °, TiO with Cubic structure appearing at 2θ = 43.3 °, 2θ = 45.9 each Al 2 O 3 having a Cubic structure appearing in ° with The non-directional electromagnetic steel sheet according to claim 1 or 2, wherein the diffraction strength of the above satisfies the condition of the following formula 2.
I 2θ = 46.8 / (I 2θ = 21.6 + I 2θ = 42.9 + I 2θ = 43.3 + I 2θ = 45.9 ) ≧ 0.010 ... Equation 2
電解抽出残渣に対するX線回折において得られる、2θ=32.1°に現れるCubic構造を有するCu硫化物の回折強度であるI2θ=32.1と、2θ=46.8°に現れるHexagonal構造を有するCu硫化物の回折強度であるI2θ=46.8とが、下記式3の条件を満たすことを特徴とする請求項1〜請求項3の何れか1項に記載の無方向性電磁鋼板。
2θ=46.8/I2θ=32.1>0.50・・・式3
I 2θ = 32.1 , which is the diffraction intensity of Cu sulfide having a Cubic structure that appears at 2θ = 32.1 °, and the Hexagonal structure that appears at 2θ = 46.8 °, which are obtained by X-ray diffraction on the electrolytic extraction residue. The non-directional electromagnetic steel plate according to any one of claims 1 to 3, wherein the diffraction intensity of the Cu sulfide having I 2θ = 46.8 satisfies the condition of the following formula 3. ..
I 2θ = 46.8 / I 2θ = 32.1 > 0.50 ... Equation 3
請求項1に記載の化学組成を有する鋼片に熱間圧延を行い、熱延鋼板を得る熱延工程と、
前記熱延工程後の前記熱延鋼板を酸洗する酸洗工程と、
前記酸洗工程後の前記熱延鋼板に冷間圧延を行い、冷延鋼板を得る冷延工程と、
前記冷延鋼板を焼鈍する仕上焼鈍工程とを有する無方向性電磁鋼板の製造方法であって、
前記仕上焼鈍工程において、下記式4に示すT1(℃)以上で10秒以上3600秒以下の保持を行い、
前記仕上焼鈍工程の冷却において、前記T1(℃)以下、下記式5に示すT2(℃)以上の温度域における平均冷却速度CR1を60℃/秒未満とすることを特徴とする請求項1〜請求項4の何れか一項に記載の無方向性電磁鋼板の製造方法。
T1(℃)=15000/(12−log10([%Cu]×[%S]))−273・・・式4
T2(℃)=15000/(12−log10([%Cu]×[%S]))−373・・・式5
なお、上記式中の[%Cu]はCuの質量%での含有量であり、[%S]はSの質量%での含有量である。
A hot-rolling step of hot-rolling a steel piece having the chemical composition according to claim 1 to obtain a hot-rolled steel sheet,
A pickling step of pickling the hot-rolled steel sheet after the hot-rolling step, and a pickling step.
A cold-rolling step of cold-rolling the hot-rolled steel sheet after the pickling step to obtain a cold-rolled steel sheet, and a cold-rolling step.
A method for producing a non-oriented electrical steel sheet, which comprises a finishing annealing step of annealing the cold-rolled steel sheet.
In the finish annealing step, holding is performed at T1 (° C.) or higher represented by the following formula 4 for 10 seconds or longer and 3600 seconds or lower.
Claims 1 to 1, characterized in that, in the cooling of the finishing annealing step, the average cooling rate CR1 in the temperature range of T1 (° C.) or lower and T2 (° C.) or higher represented by the following formula 5 is set to less than 60 ° C./sec. The method for manufacturing a non-directional electromagnetic steel plate according to any one of claims 4.
T1 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-273 ... Equation 4
T2 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-373 ... Equation 5
In the above formula, [% Cu] is the content of Cu in mass%, and [% S] is the content of S in mass%.
前記仕上焼鈍工程の冷却において、下記式6に示すT3(℃)以上、前記T2(℃)以下の温度域における平均冷却速度CR2を20℃/秒以上とすることを特徴とする請求項5に記載の無方向性電磁鋼板の製造方法。
T3(℃)=15000/(12−log10([%Cu]×[%S]))−473・・・式6
なお、上記式中の[%Cu]はCuの質量%での含有量であり、[%S]はSの質量%での含有量である。
According to claim 5, in the cooling of the finishing annealing step, the average cooling rate CR2 in the temperature range of T3 (° C.) or higher and T2 (° C.) or lower represented by the following formula 6 is set to 20 ° C./sec or more. The method for manufacturing a non-directional electromagnetic steel plate according to the description.
T3 (° C.) = 15000 / (12-log 10 ([% Cu] 2 × [% S]))-473 ... Equation 6
In the above formula, [% Cu] is the content of Cu in mass%, and [% S] is the content of S in mass%.
前記熱延工程の鋼片加熱温度を下記式7記載のT4(℃)以下かつ下記式8記載のT5(℃)以上とし、熱間圧延した後、熱延板の巻取温度を下記式9記載のT6(℃)以下に制御することを特徴とする請求項5または請求項6に記載の無方向性電磁鋼板の製造方法。
T4(℃)=15000/(6−log10([%Mn]×[%O]))−273・・・式7
T5(℃)=14900/(8−log10([%Mn]×[%S]))−473・・・式8
T6(℃)=14900/(8−log10([%Mn]×[%S]))−573・・・式9
なお、上記式中の[%Mn]はMnの質量%での含有量であり、[%O]はOの質量%での含有量であり、[%S]はSの質量%での含有量である。
The steel piece heating temperature in the hot rolling step is set to T4 (° C.) or lower according to the following formula 7 and T5 (° C.) or higher according to the following formula 8, and after hot rolling, the winding temperature of the hot rolled plate is set to the following formula 9 The method for producing a non-oriented electrical steel sheet according to claim 5 or 6, wherein the control is performed at T6 (° C.) or lower.
T4 (° C.) = 15000 / (6-log 10 ([% Mn] × [% O]))-273 ... Equation 7
T5 (° C.) = 14900 / (8-log 10 ([% Mn] × [% S]))-473 ... Equation 8
T6 (° C.) = 14900 / (8-log 10 ([% Mn] × [% S])) −573 ... Equation 9
In the above formula, [% Mn] is the content of Mn in mass%, [% O] is the content of O in mass%, and [% S] is the content of S in mass%. The quantity.
前記熱延工程と前記酸洗工程との間に、前記熱延鋼板を焼鈍する熱延板焼鈍工程を備えることを特徴とする請求項5〜請求項7の何れか一項に記載の無方向性電磁鋼板の製造方法。 The non-directional according to any one of claims 5 to 7, wherein a hot-rolled sheet annealing step for annealing the hot-rolled steel sheet is provided between the hot-rolling step and the pickling step. Manufacturing method of sex electromagnetic steel sheet.
JP2017131442A 2017-07-04 2017-07-04 Non-oriented electrical steel sheet and its manufacturing method Active JP6891673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017131442A JP6891673B2 (en) 2017-07-04 2017-07-04 Non-oriented electrical steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017131442A JP6891673B2 (en) 2017-07-04 2017-07-04 Non-oriented electrical steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019014927A JP2019014927A (en) 2019-01-31
JP6891673B2 true JP6891673B2 (en) 2021-06-18

Family

ID=65357340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131442A Active JP6891673B2 (en) 2017-07-04 2017-07-04 Non-oriented electrical steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6891673B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574194B (en) * 2019-03-20 2022-09-30 日本制铁株式会社 Non-oriented electromagnetic steel sheet
CN112366311B (en) * 2020-09-29 2021-10-08 杭州职业技术学院 Carbon-assembled copper sulfide hollow nanocube honeycomb material and preparation and application thereof
WO2023149249A1 (en) * 2022-02-02 2023-08-10 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088298A (en) * 1996-09-19 1998-04-07 Nkk Corp Nonoriented silicon steel sheet
JP5375678B2 (en) * 2002-04-05 2013-12-25 新日鐵住金株式会社 Non-oriented electrical steel sheet with excellent iron loss and magnetic flux density
JP4568190B2 (en) * 2004-09-22 2010-10-27 新日本製鐵株式会社 Non-oriented electrical steel sheet
WO2014168136A1 (en) * 2013-04-09 2014-10-16 新日鐵住金株式会社 Non-oriented magnetic steel sheet and method for producing same
JP6627226B2 (en) * 2015-02-24 2020-01-08 日本製鉄株式会社 Manufacturing method of non-oriented electrical steel sheet
JP6586815B2 (en) * 2015-08-14 2019-10-09 日本製鉄株式会社 Non-oriented electrical steel sheet excellent in iron loss and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019014927A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP6627226B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP6891682B2 (en) Electrical steel sheet and its manufacturing method, rotor motor core and its manufacturing method, stator motor core and its manufacturing method, and motor core manufacturing method
CN110366604B (en) Non-oriented magnetic steel sheet and method for producing non-oriented magnetic steel sheet
KR101719445B1 (en) Non-oriented magnetic steel sheet and method for producing same
JP6855684B2 (en) Electromagnetic steel sheet and its manufacturing method
JP2013133497A (en) High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
JP6891673B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6880814B2 (en) Electrical steel sheet and its manufacturing method
JP7462737B2 (en) 600MPa-class non-oriented electrical steel sheet and its manufacturing method
KR20170133489A (en) Non-oriented electrical steel sheet
CN111655884B (en) Hot stamp-molded body
CN112654723B (en) Non-oriented electromagnetic steel sheet
JP5375678B2 (en) Non-oriented electrical steel sheet with excellent iron loss and magnetic flux density
JP6763148B2 (en) Non-oriented electrical steel sheet
JP6586815B2 (en) Non-oriented electrical steel sheet excellent in iron loss and manufacturing method thereof
JP4383181B2 (en) Non-oriented electrical steel sheet with excellent uniformity of magnetic properties in coil and high production yield, and method for producing the same
JP6801464B2 (en) Non-oriented electrical steel sheet
JP2020015945A (en) Ferritic stainless steel plate and method for producing the same
JP6969219B2 (en) Non-oriented electrical steel sheet and its manufacturing method
CN113166876A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP6816516B2 (en) Non-oriented electrical steel sheet
CN111542630A (en) Grain-oriented electromagnetic steel sheet
JP2004002954A (en) Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor
TW201502285A (en) Isotropic electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R151 Written notification of patent or utility model registration

Ref document number: 6891673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151