JP6625254B1 - 広域参加型自律式ブラックアウト回避制御装置 - Google Patents

広域参加型自律式ブラックアウト回避制御装置 Download PDF

Info

Publication number
JP6625254B1
JP6625254B1 JP2019028199A JP2019028199A JP6625254B1 JP 6625254 B1 JP6625254 B1 JP 6625254B1 JP 2019028199 A JP2019028199 A JP 2019028199A JP 2019028199 A JP2019028199 A JP 2019028199A JP 6625254 B1 JP6625254 B1 JP 6625254B1
Authority
JP
Japan
Prior art keywords
power
power generation
frequency
control device
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019028199A
Other languages
English (en)
Other versions
JP2020137278A (ja
Inventor
哲吾 松尾
哲吾 松尾
信博 藤吉
信博 藤吉
伸一 健木
伸一 健木
田中 英明
英明 田中
俊之 島
俊之 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuo Construction Co Ltd
Original Assignee
Matsuo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuo Construction Co Ltd filed Critical Matsuo Construction Co Ltd
Priority to JP2019028199A priority Critical patent/JP6625254B1/ja
Application granted granted Critical
Publication of JP6625254B1 publication Critical patent/JP6625254B1/ja
Priority to PCT/JP2020/000282 priority patent/WO2020170626A1/ja
Publication of JP2020137278A publication Critical patent/JP2020137278A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】電力系統において需給バランスが不安定になった場合に、自律的に需給バランスを安定化させるための制御を実施することを可能とした広域参加型自律式ブラックアウト回避制御装置を提供する。【解決手段】少なくとも電力負荷を制御するデマンド制御装置を具備する受電施設7,9,10、または発電量を制御する発電制御装置を具備する発電設備4,5に備えられた広域参加型自律式ブラックアウト回避制御装置であって、受電施設7,9,10または発電設備4,5と、電力系統とを接続する接続点における系統電力の周波数を検出する電圧周波数管理装置11Aを備え、検出周波数と基準周波数との差が予め設定するしきい値以上となった場合に、デマンド制御装置におけるデマンド設定値または発電制御装置における発電設定値を変更するようにした。【選択図】図6

Description

本発明は、電力送電網の安定化を実現するための広域参加型自律式ブラックアウト回避制御装置に関する。
下記特許文献1には、受電設備の需要電力を任意の目標値に且つ、滑らかに制御することを可能とした目標値設定型需要電力比例制御装置が開示されている。
下記特許文献2には、同一受電設備内に設置された複数の冷凍冷蔵庫に品質を検出する品質センサを設け、これら品質センサよって検出された情報に基づき品質に余裕があると判定される冷凍冷蔵庫、即ち、品質管理内の冷凍冷蔵庫だけを選択して、消費電力を削減するための制御信号を出力する一方、品質に余裕がないと判定された冷凍冷蔵庫、即ち、品質管理外にある冷凍冷蔵庫に対しては消費電力を削減するための制御信号を回避する回避手段を設けることよって、施設内の品質を守りながらデマンド制御を行うことを可能とした冷凍冷蔵庫等の品質優先施設向けのデマンド制御装置が開示されている。
下記特許文献3には、電力網の安定を守りながら経済的で安定した再生可能エネルギー(再エネ)を導入することを可能とした自律式安定供給型再生可能エネルギー制御装置が開示されている。
下記特許文献4には、発電設備を備え、発電した電力を逆潮流させることなく場内でのみ消費するか蓄電設備に蓄積される様に自動で制御する事を可能とした逆潮流防止型自家消費用再エネ発電蓄電制御装置が開示されている。
特許第5606645号公報 特許第5731707号公報 特許第5823646号公報 特許第6414870号公報
ところで、東北震災に伴う福島第一原子力発電所の事故以来、原子力発電所の全面再稼働が難しくなり、かつ再生可能エネルギーの全量買い取り制度(FIT)により、天候などにより発電量が変化しやすく制御し難い再エネ発電設備が増加する反面、発電量が安定しており系統安定制御に寄与する化石燃料型(火力)等による発電所が減少している。また、長年に亘って基幹電力を原子力発電所により賄っていた為に大型の火力発電所が偏在した状態となり、近年では発電所の分散化の必要性が議論されている。
この様な状況の中で、近年、地震による電力系統のブラックアウト(広域停電)が発生して大きな社会問題が起きた。担当する電力会社は地震発生から十数分の間に一部地域を強制停電するなどの対策を行ってブラックアウトを防止すべく努力を重ねたが最終的にはブラックアウトが起き、数日間継続する地域もあった。その他にも大手電気通信事業者の通信障害が起きてこれも社会問題となった。
今後も特に災害時には電力系統のブラックアウトが発生する可能性があると考えられ、その対策のための早急な技術開発が求められている。
また、パリ協定(国連気候変動枠組条約締約国会議)の発動によって世界各国にも再エネ発電設備が導入される見通しであり、電力インフラの脆弱な地域で今後大規模な再エネ発電設備が導入されるのは社会的なすう勢であるが、このような地域では情報通信インフラも脆弱な例が多いと考えられ、特に電力インフラや情報通信インフラが脆弱な地域では天災や再エネ発電設備自体の発電量の変動による電力系統の乱れが危惧される。つまり、このような地域にあっては電力需要に比較して供給電力が不足する負(マイナス)側の系統異常(周波数低下)だけでなく、電力需要に比較して供給電力が過多となる正(プラス)側の系統異常(周波数上昇)の可能性も考えられる。
そのため、負側の系統異常だけでなく正側の系統異常にも対応可能な広域参加(系統全体参加)型であって自律式で且つ、情報通信インフラが遮断しても電力系統の安定化を図ることが可能な技術が求められている。
ここで、図1に示すように、電力系統1は全体をループ状かつ網目状に構成されている。電力系統1では、系統電力の電圧および周波数が一定範囲内に制御されているが、発電機全体の多くを占めるのが同期発電機であるため、その基本特性として一度同期運転に入ると定格出力能力の範囲内であれば自動的に同一周波数で運転を継続することができ、これが電力系統の安定化に寄与している。但し、天災等により一部の発電機(例えば、図1に示す3A)が停止すると、この発電機3Aの近隣にある発電機には停止した発電機3Aが賄っていた電力負荷が掛かる。これにより、他の発電機(例えば、図1に示す3B)の発電量が定格出力能力以上になると発電機3Bは自身の装置保護の為に解列(停止)してしまう。このようにして更に運転中の図示しない発電機に対する電力負荷が増加してこの発電機が解列することになれば、連続的な解列が発生して最終的にブラックアウト発生に至るおそれがある。なお、一部の発電機が停止した場合、系統電力の電圧や周波数が低下する現象が見られるので、電力会社において休止中の発電機の再稼働や一部地域の強制停電等の緊急措置が行われるが、時間的には数十秒単位での操作が求められることとなり、手動での対応には限界がある。また、天災等で情報通信インフラが遮断された場合は前述したような緊急措置を実施することができなくなり、電力系統1のブラックアウトの危険性は更に増加してしまう。
このようなことから本発明は、電力系統の需給バランスが不安定になった場合に、少なくとも電力負荷を制御するデマンド制御装置を具備する電力需要家施設、または発電量を制御する発電制御装置を具備する発電設備において、自律的に電力系統の需給バランスを安定化させるための制御を実施することを可能とした広域参加型自律式ブラックアウト回避制御装置を提供することを目的とする。
上記の課題を解決するための第1の発明に係る広域参加型自律式ブラックアウト回避制御装置は、
少なくとも電力負荷及び前記電力負荷を制御するデマンド制御装置を具備する受電施設、または発電量を制御する発電制御装置を具備する発電設備に備えられた広域参加型自律式ブラックアウト回避制御装置であって、
前記受電施設または前記発電設備と、電力系統とを接続する接続点における系統電力の周波数を検出し、検出周波数と基準周波数との差が予め設定するしきい値以上となった場合に、前記デマンド制御装置におけるデマンド設定値または前記発電制御装置における発電設定値を変更する
ことを特徴とする。
上記の課題を解決するための第2の発明に係る広域参加型自律式ブラックアウト回避制御装置は、
第1の発明に係る広域参加型自律式ブラックアウト回避制御装置において、
前記検出周波数が前記基準周波数に比較して前記しきい値以上低い場合に、前記受電施設の前記電力負荷に対する前記デマンド設定値を下げる
ことを特徴とする。
上記の課題を解決するための第3の発明に係る広域参加型自律式ブラックアウト回避制御装置は、
第1の発明に係る広域参加型自律式ブラックアウト回避制御装置において、
前記受電施設がさらに発電量を制御する発電制御装置を具備する発電設備を備え、
前記検出周波数が前記基準周波数に比較して前記しきい値以上低い場合に、前記受電施設の前記電力負荷に対する前記デマンド設定値を下げるとともに前記受電施設の前記発電設備に対する前記発電設定値を上げる
ことを特徴とする。
上記の課題を解決するための第4の発明に係る広域参加型自律式ブラックアウト回避制御装置は、
第1の発明に係る広域参加型自律式ブラックアウト回避制御装置において、
前記検出周波数が前記基準周波数に比較して前記しきい値以上低い場合に、前記発電制御装置の前記発電設備に対する発電設定値を上げる
ことを特徴とする。
上記の課題を解決するための第5の発明に係る広域参加型自律式ブラックアウト回避制御装置は、
第2から第4のいずれか一つの発明に係る広域参加型自律式ブラックアウト回避制御装置において、
前記電力系統との間の通信状態を監視し、
前記電力系統との間の通信状態が遮断している場合に前記デマンド設定値または前記発電設定値を変更する
ことを特徴とする。
上記の課題を解決するための第6の発明に係る広域参加型自律式ブラックアウト回避制御装置は、
第1の発明に係る広域参加型自律式ブラックアウト回避制御装置において、
前記検出周波数が前記基準周波数に比較して前記しきい値以上高い場合に、前記発電制御装置の前記発電設備に対する発電設定値を下げる
ことを特徴とする。
上記の課題を解決するための第7の発明に係る広域参加型自律式ブラックアウト回避制御装置は、
第6の発明に係る広域参加型自律式ブラックアウト回避制御装置において、
前記発電設備が蓄電設備を併設し、
前記検出周波数が前記基準周波数に比較して前記しきい値以上高い場合に、前記発電設備により発電した電力を前記蓄電設備に充電するように制御信号を出力する
ことを特徴とする。
本発明に係る広域参加型自律式ブラックアウト回避制御装置によれば、電力系統において需給バランスが不安定になった場合に、自律的に需給バランスを安定化させるための制御を実施することが可能となる。
商用側および需要家側を含む全体的な電力系統の構成を模式的に示す説明図である。 本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置を自律式安定供給型再生可能エネルギー制御装置に適用した例を示すブロック図である。 本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置を目標値設定型需要電力比例制御装置を備えた電力需要家施設に適用した例を示すブロック図である。 本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置を品質優先施設向けデマンド制御装置を備えた電力需要家施設に適用した例を示すブロック図である。 本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置を逆潮流防止型自家消費用再エネ発電蓄電制御装置を備えた電力需要家施設に適用した例を示すブロック図である。 本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置の構成を示すブロック図である。 図6に示す周波数検出部における交流波形から直流電圧信号への変換の概念を説明するための回路図である。 系統電圧の周波数の遅れ及び進みを説明するための系統電力の交流電圧の位相の例を示すグラフである。 図7に示す周波数検出部の直流電圧出力部から出力される直流信号の例を示すグラフである。 図6に示す周波数検出部における直流電圧信号から接点信号への変換の概念を説明するための回路図である。 図6に示す制御信号出力部における接点信号から発電電力設定信号への変換の概念を説明するための回路図である。 本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置による処理の流れを示すフローチャートである。 ブラックアウト発生時の系統電力の周波数の変化の一例を示すグラフである。 本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置による災害発生時のブラックアウト回避の流れを示すフローチャートである。 災害発生時に本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置によるブラックアウト回避を行った場合の系統電力の周波数の変化の一例を示すグラフである。 本発明の実施例に係る広域参加型自律式ブラックアウト回避制御装置による過剰発電時のブラックアウト回避の流れを示すフローチャートである。
以下、図面を用いて本発明に係る広域参加型自律式ブラックアウト回避制御装置について説明する。
図1に、商用側、および電力需要家(受電施設)側を含む全体的な電力系統1の構成を模式的に示す。図1に示す例では、火力発電設備3、自律式安定供給型再生可能エネルギー制御装置を備えた再生エネルギー発電設備(ここでは、太陽光発電設備4および風力発電設備5)、目標値設定型需要電力比例制御装置6を備えた電力需要家施設7、品質優先施設向けデマンド制御装置8を備えた電力需要家施設9、再エネ発電設備(ここでは、太陽光発電設備4)及び逆潮流防止型自家消費用再エネ発電蓄電制御装置を備えた電力需要家施設10等が含まれている。
これら火力発電設備3、太陽光発電設備4、風力発電設備5、及び電力需要家施設7,9,10等は、それぞれ電力系統1に接続されている一方、通信回線(Web等)2に接続されて電力制御網が構成されている。
ここで、発電制御装置としての自律式安定供給型再生可能エネルギー制御装置を備えた再生エネルギー発電設備は、例えば図2に示すように、発電設備112に接続され、発電設備(図2に示す例では、太陽光パネル)112で発電された電力を直流から交流に変換して出力すると共に出力する電力を操作量に比例して調節する比例制御式電力調節機能を有する電力変換機(パワーコンディショナ(PCS))114と、電力変換機114から出力される電力の瞬時電力を検出する瞬時電力検出器103と、瞬時電力検出器103で検出された瞬時電力と発電電力設定部105で設定された目標値とを比較して比較信号を出力する比較部104と、比較部104により出力された比較信号を調節する制御部106と、制御部106で調節された比較信号を操作量として電力変換機114へ出力する出力信号部107とを備え、瞬時電力検出器103で検出される瞬時電力が発電電力設定部105で設定された目標値に制御されるようにしたものであり、系統電力の電圧、位相及び周波数の情報を検出する電圧位相周波数検出器102と発電電力設定部105との間に、広域参加型自律式ブラックアウト回避制御装置(以下、単に制御装置と称する)11が設置されている。
なお、図中に示す101は送電点、108は出力信号変換器、109は一時遅れ変換器、111は発電電力量計、113は変圧器、115はPCS電力出口部、116は低圧側送電線、117及び118は高圧側送電線である。図2に示す自律式安定供給型再生可能エネルギー制御装置は、制御装置11を除き上記特許文献3に開示されたものと同様であるので、ここでの詳細な説明は省略する。
また、図2に示す発電設備112としては、図1に示す太陽光発電設備4、風力発電設備5、または図示しない化石燃料型発電設備を適用することが可能である。
また、デマンド制御装置としての目標値設定型需要電力比例制御装置を備えた電力需要家施設6は、例えば図3に示すように、受電点201を介して電力会社から電力が供給される全ての負荷A,A,A′,B,B,B′のうち、前記電力の自動制御が可能な負荷(以下、自動制御可能負荷と言う)A,A,A′に対してのみ、前記全ての負荷の消費電力A,A,A′,B,B,B′を目標値に制御するための制御信号を出力するようにして、自動制御可能負荷A,A,A′に含まれない生産機械B,B,B′による生産効率の低下を回避できると共に事業所の消費電力を任意の目標値に向かって自由に制御できるようにしたものであり、受電点201と全ての負荷A,A,A′,B,B,B′の消費電力を制御する際の目標値を設定するための目標値設定部205との間に制御装置11が設置されている。
なお、図中に示す202は積算電力計、203は瞬時電力検出部、204は比較部、206は調節部、207は操作部である。図3に示す目標値設定型需要電力比例制御装置は、制御装置11を除き上記特許文献1に開示されたものと同様であるので、ここでの詳細な説明は省略する。
品質優先施設向けデマンド制御装置を備えた電力需要家施設7は、例えば図4に示すように、比例制御型温度調節機能を持つ複数の冷凍冷蔵庫311,321,331,341,351,361に対して各々電力を供給する全体受電設備370と、冷凍冷蔵庫内の温度及び/又は湿度の品質を検出する品質センサ312,322,332,342,352,362と、冷凍冷蔵庫の消費電力を目標値に制御するための制御信号を冷凍冷蔵庫に対して出力する制御信号出力装置380とを備え、冷凍冷蔵庫の消費電力を削減する品質優先施設向けデマンド制御装置において、品質センサ312,322,332,342,352,362により検出された情報に基づき、品質に余裕がないと判定される冷凍冷蔵庫に対しては、制御信号出力装置380から制御信号の出力を回避する回避手段を設けたものであり、全体受電設備370と冷凍冷蔵庫311,321,331,341,351,361との間に制御装置11が設置されている。
なお、図中に示す310,320,330,340,350,360は棟、315,325,335,345,355,365は切換器、316,326,336,346,356,366はバイパス信号線、371は電力線、380は制御信号出力装置、390はシリアル信号線である。図4に示す品質優先施設向けデマンド制御装置は、制御装置11を除き上記特許文献2に開示されたものと同様であるので、ここでの詳細な説明は省略する。
再エネ発電設備及びデマンド制御装置としての逆潮流防止型自家消費用再エネ発電蓄電制御装置を備えた電力需要家施設8は、例えば図5に示すように、太陽光パネル4111と、太陽光パネル4111で発電された電力の出力量を調整可能な発電用パワコン4112と、パワコン4112から出力される電力量を発電量信号として検出する発電量検出器4113と、潮流電力量を検出して潮流信号として出力する潮流検出部410と、予め設定された目標値と潮流信号とを比較して潮流操作量を出力する潮流制御部420と、潮流制御部420から入力された潮流操作量に基づいて設定される発電目標値と発電量信号とを比較して発電用パワコン4112から出力する発電電力量を求め、発電用パワコン4112から出力される電力量を制御する発電制御部430とを備えるようにしたものであり、受電点411と潮流設定器421との間に制御装置11が設置されている。
なお、図中に示す401は電力会社、412は積算電力計、413は潮流検出器、422は潮流比較部、423は潮流調節部、424は潮流操作部、431は発電設定器、432は発電比較部、433は発電調節部、434は発電操作部、440は充放電判断部、441は放電判断部、442は充電判断部、450は充電量制御部、460は放電量制御部、470は設定値演算部、480はデマンド制御部、491は瞬時電力発振器、492は電力分岐接続部、493は発電量指令演算器、494は充電量検出器、495は放電量検出器、4120は蓄電設備としての蓄エネ設備、D1〜D4は入力された信号を分岐する第一〜第四の分岐部である。図5に示す逆潮流防止型自家消費用再エネ発電蓄電制御装置は、制御装置11を除き上記特許文献4に開示されたものと同様であるので、ここでの詳細な説明は省略する。
次に、上述した制御装置11の詳細を説明する。制御装置11は、図6に示すように、電圧周波数管理部11Aと、通信状態監視部11Bと、設備種類判断部11Cとを備えて構成され、電圧周波数管理部11Aは、電圧検出部11aと、周波数検出部11bと、制御信号出力部11cとを含んでいる。
電圧検出部11aは、発電設備4,5または電力需要家施設7,9,10と電力系統1との接続点(各発電設備4,5であれば各々の発電設備4,5と電力系統1とを接続する送電点、電力需要家施設7,9,10であれば各々の施設7,9,10に接続された配電系統と電力系統1とを接続する受電点)の系統電力の電圧の交流波形を検出する。
周波数検出部11bは、系統電力の電圧の交流波形から周波数を検出する。具体的には、まず電圧検出部11aで検出した系統電力の電圧の交流波形を入力し、これを直流電圧信号に変換して出力する。すなわち、図7に示すように、周波数検出部11bでは、電圧波形入力部11aaに図8に示すような電力の交流電圧の位相が入力されると、直流電圧出力部11abから図9に示すような直流電圧信号が出力されるようになっている。なお、図7中に示す11acは波形成形部、11adは出力電圧設定部である。
ここで、図8は系統電力の交流電圧の位相を表していてa1は基準周波数(例:50Hz)の交流電圧の位相、a2は基準周波数(例:50Hz)よりも幾分遅れた交流電圧の位相、a3は基準周波数(例:50Hz)よりも幾分進んだ交流電圧の位相を表している。また、図9は周波数が47Hzから53Hzまで変化した時の直流電圧出力部11abから出力される直流信号の変化を概念的に示しており、b0が50Hz、b1が48.5Hz、b2が47Hz、b3が51.5Hz、b4が53Hzに対応している。
系統電力の電圧の交流波形を直流電圧信号に変換したら、直流電圧出力部11abから出力される直流電圧信号に基づいて周波数を検出する。具体的には、図10に示すように、直流電圧出力部11abから出力された直流信号が入力部11baに入力されると、入力された直流信号に応じて電気信号R1〜R4を出力し、これにより周波数を検出するようになっている。
具体的には、入力部11baに入力される直流信号をV1とすると、
・V1=3Vの条件で電気信号R1〜R4は出力されず(R1〜R4:OFF)周波数5
0.0Hzを検出する。
・V1≦2Vの条件で電気信号R1が出力されると(R1:ON)周波数48.5Hzを
検出する。
・V1≦1Vの条件で電気信号R2が出力されると(R2:ON)周波数47.0Hzを検出する。
・V1≧4Vの条件で電気信号R3が出力されると(R3:ON)周波数51.5Hzを
検出する。
・V1≧5Vの条件で電気信号R4が出力されると(R4:ON)周波数53.0Hzを
検出する。
図10では、R1がONの状態を示している。
制御信号出力部11cは、周波数検出部11bから出力される電気信号R1〜R4に応じた制御信号を出力する。具体的には、図11に示すように、制御信号出力部11cでは、周波数検出部11bから出力された電気信号R1〜R4に応じて第一出力部11caから制御信号として出力電圧V2を、第二出力部11cbから制御信号として出力電圧V4を出力する。ここで、第一出力部11caの出力電圧V2は次式(1)に示す発電電力設定変更用の電圧出力演算回路の概念式のように、11ccの基準電圧V3に利得Gを乗じた値になる。すなわち、周波数検出部11bにおいて出力R1〜R4を切り替えて利得Gを制御することで、出力電圧V2を変化させる事が可能となる。
V2=V3×G …(1)
なお、本実施例において抵抗r0からr4の値は、次式(2)を満たすものとする。
r2<r1<r0<r3<r4 …(2)
制御信号出力部11cでは、具体的に、周波数検出部11bから出力される電気信号R1〜R4に応じて次の制御を行う。
・電気信号R1〜R4がOFFの場合(50.0Hz(定常状態))、抵抗r0が選択される。
・電気信号R1がONの場合(48.5Hz)、抵抗r1が選択される。
・電気信号R2がONの場合(47.0Hz)、抵抗r2が選択される。
・電気信号R3がONの場合(51.5Hz)、抵抗r3が選択される。
・電気信号R4がONの場合(53.0Hz)、抵抗r4が選択される。
なお、図11では電気信号R1〜R4がOFFの状態を示している。
抵抗r0を仮に再エネ発電機の標準発電電力に対応する値とすれば、定常状態の周波数50Hzの場合に電気信号R1〜R4はOFFとなるのでr0が選択される。r0を選択した場合、利得Gは、G=1+(r/r0)となる。
また、周波数が48.5Hzに低下するとR1がONになりr1が選択される。r1を選択した場合、利得Gは、G=1+(r/r1)となる。
ここで、r1<r0であるのでV2は50Hzよりも高くなる。そこで、図2に示した自律式安定供給型再生可能エネルギー制御装置においては、電圧周波数管理部11Aから再エネ発電機112の再エネ発電電力設定値(発電設定値)を上げるように制御信号が送出され、これにより発電量を増加させる。同時に図3に示した目標値設定型需要電力比例制御装置においては、電圧周波数管理部11Aから図11の信号反転素子11cdにより正逆反転された出力電圧V4が第二出力部11cbから空調機の使用電力設定値(デマンド設定値)を抑制する下げDR制御信号(DR:デマンドレスポンス)として送出される。
また、図5の逆潮流防止型自家消費用再エネ発電蓄電制御装置においても、電圧周波数管理部11Aから図11の信号反転素子11cdにより正逆反転された出力電圧V4が第二出力部11cbから送出され、これにより逆潮流電力値(デマンド設定値)の設定をマイナス(負)の値まで下げて逆潮流を許可し電力系統側に電力を送電する。更に図4に示す品質優先施設向けデマンド制御装置においては、電圧周波数管理部11Aから電気信号R1及びR2が品質優先の機能を停止させ、冷凍機等の消費電力を抑制する下げDR制御信号として送出される。
さらに、周波数が51.5Hzに上昇するとR3がONになりr3が選択される。r3を選択した場合、利得Gは、G=1+(r/r3)となる。ここでr0<r3でありV2は50Hzの状態よりも低くなる。そこで、図2に示した自律式安定供給型再生可能エネルギー制御装置においては、電圧周波数管理部11Aから発電設定値を下げるように制御信号が送出され、これにより発電量を低下させる、または、蓄電装置を設けておき電圧周波数管理部11Aから発電設定値を下げるように制御信号が送出された場合に蓄電装置に充電をする。
なお、電力系統の周波数が上昇する現象については、電力インフラの整備された地域での発生の可能性は低いと思われるが、電力インフラが脆弱な地域では不安定な再エネ発電設備の急速な導入によりこのような現象が起こる可能性がある。
また、電力系統に接続された再エネ発電機を含めた発電機は、所定の範囲内では系統周波数に同期(シンクロナイズ)する特性があるのが系統安定維持の強味となっているが、自然災害や再エネの過大導入により周波数の変動が生じると全体が定格周波数(50Hzや60Hz)から逸脱してしまうおそれがある。本実施例ではこのような場合に情報通信インフラに頼ること無く周波数の変動を検出して電力系統の安定化を図ることができる。
ここで、図7,10,11に示したものは便宜上アナログ回路による信号処理方式を用いて説明したが、デジタル回路やロジック回路での信号処理を採用することも可能である。
通信状態監視部11Bは電力会社との間の通信状態が良好か否かの情報を出力し、設備種類判断部11Cは制御装置11が設置されている設備の種類(例えば、再生エネルギー発電設備4,5、電力需要家施設7,9,10のうちのどれか)の情報を出力する。
次に、図12を用いて制御装置11における処理の流れを説明する。
すなわち、制御装置11では、通常状態の周波数(基準周波数)50Hzから、ステップS1で周波数が47Hz以下となったらステップS2で電圧周波数管理部11Aから周波数低下強信号を出力してステップS3に移行する。
また、通常状態の周波数50Hzから、ステップS8で周波数が48.5Hz以下となったらステップS9で電圧周波数管理部11Aから周波数低下信号を出力してステップS3に移行する。
ステップS3では通信状態監視部11Bから入力される情報に基づいて通信が遮断されているかどうかを判定し、通信が遮断されていればステップS4に移行し、通信が遮断されていなければ通常状態と判断する。
ステップS4では設備種類判断部11Cから入力される情報に基づいて発電設備かどうかを判定し、発電設備であればステップS5に移行して発電電力を上げるための制御(以下、発電電力上げDR制御)を行ってステップS6に移行し、発電設備ではなく負荷設備であればステップS10でDRを上げ下げするための制御(以下、上げ下げDR制御)を行ってステップS6に移行する。
ステップS6では、周波数が復旧したかどうかを判定し、周波数が復旧しなければステップS4に戻り、周波数が復旧すればステップS7でDR制御を終了する。
すなわち、ステップS4からステップS6では、発電電力上げDR制御、上げ下げDR制御を周波数が復旧するまで繰り返し、周波数が復旧したらDR制御を終了する。
また、通常状態の周波数50Hzから、ステップS11で周波数が53Hz以上となったらステップS12で周波数上昇強信号を出力してステップS13に移行する。
また、通常状態の周波数50Hzから、ステップS16で周波数が51.5Hz以上となったらステップS17で周波数上昇信号を出力してステップS13に移行する。
ステップS13では発電設備かどうかを判定し、発電設備であればステップS14に移行して発電電力を下げるための制御(以下、発電電力下げDR制御)を行ってステップS15に移行し、発電設備ではなく負荷設備であればDRの制御は行なわずにステップS15に移行する。
ステップS15では、周波数が復旧したかどうかを判定し、周波数が復旧しなければステップS13に戻り、周波数が復旧すればステップS7でDR制御を終了する。
すなわち、ステップS13からステップS15では、発電電力下げDR制御を周波数が復旧するまで繰り返し、周波数が復旧したらDR制御を終了する。
なお、図12に示す例では、系統電力の周波数が低下した場合、情報が遮断された場合に限って発電電力上げDR制御、上げ下げDR制御を行う例を示したが、本発明は図12に示す例に限定されるものではなく、情報が遮断されていない場合であっても必要に応じて発電電力上げDR制御、上げ下げDR制御を行うことが可能であることは言うまでもない。
以下、本実施例における広域参加型自律式ブラックアウト回避制御装置による作用効果について説明する。
まず、図13を用いて電力系統のブラックアウト発生のメカニズムについて説明する。図13では、地震発生と同時に系統内の主力発電機163万kWの内の60万kWと70万kWの主力発電機が停止し(c1)、これにより周波数の急激な低下が生じた例を示している。これに対し一部地域を強制的に停電させる(c2)とともに、地震による影響を受けずに健全な運転を行っている発電機の出力調整を開始したことで周波数が回復し、系統の標準周波数50Hzが一時的に維持されている。その後、照明や動力機械(空調機や生産機械)の再稼働によって系統に徐々に負荷が掛かり、周波数が再び低下し始めるものの(c3)、地震による影響を受けずに健全な運転を行っている発電機の出力調整により周波数は回復する(c4)。しかしながら、地震で被害を受けながら運転していた35万kW発電機の出力が低下して再度周波数が低下し(c5)、これに対して二度目の強制停電を行うことで周波数がやや改善するものの(c6)、その後35万kW発電機が完全に停止し(c7)、三度目の強制停電を実施するも十分ではなく(c8)、他の火力発電機等も停止し周波数が急激に低下してブラックアウトに至っている(c9)。
すなわち、各発電所は、通常は電力指令所13からの信号により系統電力の電圧や周波数や発電所の発停が制御されている。ここで、地震等の災害時に一部の発電所が停止して系統全体の発電量よりも負荷電力が上回った場合、電圧低下や周波数低下が起こる。このような場合、系統の安定を維持すべく電力指令所13は稼働中の発電所の発電量を増加させる。
しかしながら発電所の能力以上の負荷が掛かってしまうと発電機3(例えば、図1に示す発電機3A)はそれ自体を保護すべく発電を停止してしまう。これにより他の発電所に過大な負荷が掛かって同じ様に発電を停止すれば結果的に全体が停電してブラックアウトとなってしまう。電力会社(電力指令所13)はこれを阻止すべく系統遮断機12(例えば、図1に示す系統遮断機12A及び12B)を強制的に遮断して系統の負荷を軽減しブラックアウトを回避するための操作を実施する。
このとき、自律式安定供給型再生可能エネルギー制御装置を備えた再エネ発電設備4,5、目標値設定型需要電力比例制御装置6を備えた電力需要家施設7、品質優先施設向けデマンド制御装置8を備えた電力需要家施設9、及び再エネ発電設備及び逆潮流防止型自家消費用再エネ発電蓄電制御装置を備えた電力需要家施設10にそれぞれ設けられた各広域参加型自律式ブラックアウト回避制御装置11では、上述したように周波数検出部11bから出力される電気信号R1〜R4に応じた出力電圧V2またはV4(またはR1,R2)を制御信号として出力する。
これにより、図14に示すように、地震の発生(S111)により地域発電所が停止した場合には(S112)、周波数および電圧の低下が発生し(S113)、このとき、電力指令所13では通信回線を利用して系統遮断機12を制御し、一部の地域の強制的な停電を実施する等の系統保護処理を行うとともに(S114)、火力発電所等の出力を上げて系統を安定させる処理を行う(S115)。
また、このとき広域参加型自律式ブラックアウト回避制御装置11では、系統電力の周波数の低下を検出すると(S116)、直ちに、デマンド制御装置を備えた電力需要家施設7,9に対してはデマンド設定値を下げるよう制御信号を出力し(S117)、自律式安定供給型再生可能エネルギー制御装置を備えた再生エネルギー発電設備4,5に対しては発電設定値を上げるよう制御信号を出力し(S118)、太陽光発電設備及び逆潮流防止機能を備えた電力需要家施設10に対しては発電設定値を上げるよう且つ逆潮流を許可するよう制御信号を出力する(S119)。
このような電力指令所13における調整、広域参加型自律式ブラックアウト回避制御装置11による調整を行うことで、需要家に対する電力の供給が安定する(S120)。その後、強制的に停電を実施した一部の地域に対する送電が再開され、周波数及び電圧が正常値に戻れば、これによりデマンド制御装置を備えた電力需要家施設7,9,10、再エネ発電設備4,5等並びに再エネ発電設備4,5等及び逆潮流防止機能を備えた電力需要家施設10においても、それぞれ通常のデマンド設定値及び発電設定値に戻すよう制御信号が出力され、通常状態(系統定常運転状態)に戻る(S121)。
このように、本実施例では、系統電力の周波数を検出し、地震の発生等により検出された周波数(検出周波数)と基準周波数との差が予め設定するしきい値以上であって、検出周波数が基準周波数に比較して前記しきい値以上低ければ、目標値設定型需要電力比例制御装置6、品質優先施設向けデマンド制御装置8のデマンド設定値を下げて電力需要家施設側の消費電力を低減し、電力系統1の負荷を低減させるようにしている。
また、自律式安定供給型再生可能エネルギー制御装置を備えた再エネ発電設備4,5の発電設定値を上げて系統への供給電力量を増加させる。同じ様に逆潮流防止型自家消費用再エネ発電蓄電制御装置において再エネ発電設備4,5の発電設定値を上げ潮流制御値を負(系統側に逆潮流させる)側に変化させて商用電力系統側に電力を供給して電力系統1の安定化に寄与する。
すなわち、図15に示すように災害等により発電所が停止した場合、系統電力の周波数低下が発生するが、その現象を再エネ発電設備4,5や電力需要家施設7,9,10等に設置された制御装置11によって電気的に検出してこれを更にON―OFF信号に変換し、この信号によって電力需要家施設7,9,10等における負荷を低減(これを負のDRと呼ぶ)することにより、図15にd1として示すような周波数の改善を実現する。更に電力系統1に接続される再エネ発電設備4,5の発電量を増加させて(これを正のDRと呼ぶ)図15にd2として示すような周波数の改善を実現する。同じく電力系統1に接続される逆潮流防止型の再エネ発電設備4,5等を備える電力需要家施設10において、再エネ発電設備4,5等の発電量を増加させて逆潮流を許可すると共に電力需要家施設10における負荷を低減することにより図15にd3として示すような周波数の改善を実現する。尚、d1、d2、d3の順番に優先順位はなく同時、或いは逆順位または同時もあり得る。
一般的にこれらの負荷制御や発電制御は通信回線を介して行われるが天災発生時には情報通信インフラが遮断される可能性がある。しかし制御装置11では系統電力の周波数を直接把握出来るので情報通信インフラに頼ることなく周波数改善のための制御を実現することが出来る。
また、休日等にあっては、この電力系統1全体が再エネ発電の運転状態余剰発電状態になる可能性がある。図16に示すように、気象条件の好条件により再エネ発電量が増加して過剰発電状態となった結果(S131)、制御可能な化石燃料型発電所の出力を抑制する操作を行った状況下において、大容量の系統負荷(電力需要家施設等)の停止(大負荷遮断)が発生すると(S132)、周波数および電圧が上昇する(S133)。このとき、電力会社では通信回線を利用して化石燃料型発電機の出力を低減させる等の操作を行う一方(S134)、まずは負荷の増大や不安定な再エネ発電の変動を吸収出来る様に発電機の解列はせず、稼働中の発電所の発電量を低下させるように制御を行う。その後、更に周波数及び電圧の上昇が続けば化石燃料型発電機の解列および停止操作が実施される(S135)。
また、このとき制御装置11では、系統電力の周波数の上昇を検出すると(S136)、直ちに、再エネ発電設備4,5等に対し、発電設定値を下げるよう出力抑制信号を出力する(S137)。
このような電力会社における調整、広域参加型自律式ブラックアウト回避制御装置11による調整を行うことで、電力系統の安定化が図れる(S138)。その後、過剰発電状態が解消されれば、再エネ発電設備4,5等においても通常の発電設定値に戻すよう制御信号が出力され、全体的な電力系統が通常状態(系統定常運転状態)に戻る(S139)。
このように、本実施例では、系統電力の周波数を検出し、検出された周波数(検出周波数)と基準周波数との差が予め設定するしきい値以上であって、検出周波数が基準周波数に比較して前記しきい値以上高ければ、自律式安定供給型再生可能エネルギー制御装置を備えた再エネ発電設備4,5の発電設定値を下げて系統への供給電力量を減少させて電力系統1の安定化に寄与する。
また、自律式安定供給型再生可能エネルギー制御装置を備えた再エネ発電設備4,5に蓄電装置を併設し、上述したように、系統電力の周波数の上昇を検出した際、再エネ発電設備4,5等に対し発電設定値を下げるよう出力抑制信号を出力することに代えて、蓄電装置に充電をするような制御を行っても良い。
ここで、過剰発電時の対応については電力系統インフラや情報通信インフラの脆弱な地域において特に必要とされる電力系統安定化制御技術ではあるが、2018年より九州地区では「再エネ出力抑制」が実施され2019年からは全国的に拡大実施されることが決まった。この事から本発明は急速な増加傾向での再エネ導入が予定されている先進国でも重要な電力系統安定化制御技術として注目されると思われる。
なお、本実施例においては同一の装置である広域参加型自律式ブラックアウト回避制御装置11を、自律式安定供給型再生可能エネルギー制御装置を備えた再生エネルギー発電設備4,5、目標値設定型需要電力比例制御装置6を備えた電力需要家施設7、品質優先施設向けデマンド制御装置8を備えた電力需要家施設9、再エネ発電設備及び逆潮流防止型自家消費用再エネ発電蓄電制御装置を備えた電力需要家施設10等に設置してブラックアウトを回避する制御を行う例を示したが、広域参加型自律式ブラックアウト回避制御装置11は、自律式安定供給型再生可能エネルギー制御装置を備えた再生エネルギー発電設備4,5、目標値設定型需要電力比例制御装置6を備えた電力需要家施設7、品質優先施設向けデマンド制御装置8を備えた電力需要家施設9、再エネ発電設備及び逆潮流防止型自家消費用再エネ発電蓄電制御装置を備えた電力需要家施設10等にそれぞれに特化した異なる構成を備えるものであっても良いことは言うまでもない。
4…太陽光発電設備、5…風力発電設備、7,9,10…電力需要家施設、11…広域参加型自律式ブラックアウト回避制御装置、11A…電圧周波数管理部、11B…通信状態監視部、11C…設備種類判断部、11a…電圧検出部、11b…周波数検出部、11c…制御信号出力部、105…発電電力設定部、205…目標値設定部、380…制御信号出力装置、430…発電制御部、480…デマンド制御部、4120…蓄エネ設備

Claims (3)

  1. 電力指令所からの制御信号に基づいて制御される被制御設備としての発電設備、又は負荷設備に備えられ、電力指令所との間で通信回線を介して相互に通信可能な広域参加型自立式ブラックアウト回避制御装置において、
    前記被制御設備として前記発電設備、又は前記負荷設備の何れの設備であるかを判定し、該判定の結果を出力する設備種類判断部と、
    前記通信回線の通信状態を判定し、該判定の結果を出力する通信状態監視部と、
    電力系統の電圧の交流波形に基づいて検出された検出周波数と基準周波数との差が予め設定する所定のしきい値以上と判定され、かつ前記通信状態監視部において前記通信回線が遮断されていると判定された場合に、電力系統の周波数が基準周波数となるように、前記電力指令所からの制御信号に代えて前記設備種類判断部において判定された一の前記被制御設備に対して制御信号を出力する制御信号出力部を有する電圧周波数管理部と、を備え
    前記制御信号出力部は、
    電力系統の電圧の交流波形に基づいて検出された周波数と基準周波数の差が前記しきい値以上低いと判定され、かつ前記設備種類判断部において前記被制御設備が発電設備であると判定された場合に、電力系統の周波数が基準周波数となるように前記発電設備に対して発電量を所定に上げるための制御信号を出力する
    広域参加型自律式ブラックアウト回避制御装置。
  2. 前記制御信号出力部は、
    電力系統の電圧の交流波形に基づいて検出された周波数と基準周波数の差が前記しきい値以上高いと判定され、かつ前記設備種類判断部において前記被制御設備が発電設備であると判定された場合に、電力系統の周波数が基準周波数となるように前記発電設備に対して発電量を所定に下げるための制御信号を出力する
    請求項1に記載の広域参加型自律式ブラックアウト回避制御装置。
  3. 前記発電設備は蓄電装置を有しており、
    前記制御信号出力部は、
    電力系統の電圧の交流波形に基づいて検出された周波数と基準周波数の差が前記しきい値以上高いと判定された場合に、前記発電設備により発電された電力の一部を前記蓄電装置に充電するよう前記発電設備に対して制御信号を出力する
    請求項に記載の広域参加型自律式ブラックアウト回避制御装置。
JP2019028199A 2019-02-20 2019-02-20 広域参加型自律式ブラックアウト回避制御装置 Active JP6625254B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019028199A JP6625254B1 (ja) 2019-02-20 2019-02-20 広域参加型自律式ブラックアウト回避制御装置
PCT/JP2020/000282 WO2020170626A1 (ja) 2019-02-20 2020-01-08 広域参加型自律式ブラックアウト回避制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028199A JP6625254B1 (ja) 2019-02-20 2019-02-20 広域参加型自律式ブラックアウト回避制御装置

Publications (2)

Publication Number Publication Date
JP6625254B1 true JP6625254B1 (ja) 2019-12-25
JP2020137278A JP2020137278A (ja) 2020-08-31

Family

ID=69100974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028199A Active JP6625254B1 (ja) 2019-02-20 2019-02-20 広域参加型自律式ブラックアウト回避制御装置

Country Status (2)

Country Link
JP (1) JP6625254B1 (ja)
WO (1) WO2020170626A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603992B2 (ja) * 2006-03-28 2010-12-22 大阪瓦斯株式会社 消費電力制御装置
JP6098840B2 (ja) * 2012-12-18 2017-03-22 パナソニックIpマネジメント株式会社 需給制御装置、および需給制御方法
JP6299326B2 (ja) * 2014-03-26 2018-03-28 住友電気工業株式会社 機器管理装置、機器管理方法、機器管理プログラム、および機器管理システム
JP2015213409A (ja) * 2014-05-07 2015-11-26 関西電力株式会社 負荷平準化装置
JP6440974B2 (ja) * 2014-06-24 2018-12-19 株式会社東芝 消費電力制御装置および消費電力制御方法
JP2016140129A (ja) * 2015-01-26 2016-08-04 株式会社ノーリツ 発電システム

Also Published As

Publication number Publication date
WO2020170626A1 (ja) 2020-08-27
JP2020137278A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
US7184903B1 (en) System and method for a self-healing grid using demand side management techniques and energy storage
US8000840B2 (en) Method of start up at least a part of a wind power plant, wind power plant and use of the wind power plant
US10886737B2 (en) Energization control for establishing microgrids
AU2013101461A4 (en) Grid stability control system and method
JPWO2012070141A1 (ja) 風力発電設備の出力制御方法及び出力制御装置
CN111244996B (zh) 储能并网控制系统及控制方法
AU2018405578B2 (en) Coordinated frequency load shedding protection method using distributed electrical protection devices
JP2020061850A (ja) 発電制御システム、発電制御方法及びプログラム
JP6356517B2 (ja) 系統監視制御装置
JP6625254B1 (ja) 広域参加型自律式ブラックアウト回避制御装置
CN117013599A (zh) 基于分布式光伏并网的低压配电系统控制方法及其装置
JP2014121151A (ja) 蓄電システム及び電力供給システム
JP2022190765A (ja) 充放電装置および分散電源システム
CN106208073B (zh) 基于多重约束条件的单一联络线交换功率极限值确定方法
US20230369889A1 (en) Power control device, power control method, and power control program
JP6787473B1 (ja) 分散型電源システム
WO2024160335A1 (en) Uninterruptible power supply with an autonomous under frequency detection and load shedding functionality
Bollen Participation of Network Users

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190220

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190604

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191126

R150 Certificate of patent or registration of utility model

Ref document number: 6625254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250