JP6620604B2 - Fluid sterilizer, dental medical device, and fluid sterilization method - Google Patents

Fluid sterilizer, dental medical device, and fluid sterilization method Download PDF

Info

Publication number
JP6620604B2
JP6620604B2 JP2016042366A JP2016042366A JP6620604B2 JP 6620604 B2 JP6620604 B2 JP 6620604B2 JP 2016042366 A JP2016042366 A JP 2016042366A JP 2016042366 A JP2016042366 A JP 2016042366A JP 6620604 B2 JP6620604 B2 JP 6620604B2
Authority
JP
Japan
Prior art keywords
flow path
fluid
path member
ultraviolet rays
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016042366A
Other languages
Japanese (ja)
Other versions
JP2017154118A (en
Inventor
剛雄 加藤
剛雄 加藤
亮彦 田内
亮彦 田内
貴章 田中
貴章 田中
祥平 前田
祥平 前田
純 藤岡
純 藤岡
弘喜 日野
弘喜 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2016042366A priority Critical patent/JP6620604B2/en
Publication of JP2017154118A publication Critical patent/JP2017154118A/en
Application granted granted Critical
Publication of JP6620604B2 publication Critical patent/JP6620604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、流体殺菌装置、歯科用医療機器及び流体殺菌方法に関する。   Embodiments described herein relate generally to a fluid sterilization apparatus, a dental medical device, and a fluid sterilization method.

流体殺菌装置としては、光源が発する紫外線を、流路を流れる水に照射することで、水を殺菌する流体殺菌装置が知られている。この種の流体殺菌装置では、光源として、紫外線を発するLED(発光ダイオード)が実装された基板を有するものがある。   As a fluid sterilization apparatus, a fluid sterilization apparatus that sterilizes water by irradiating water flowing through a flow path with ultraviolet rays emitted from a light source is known. In this type of fluid sterilization apparatus, there is one having a substrate on which an LED (light emitting diode) emitting ultraviolet light is mounted as a light source.

特開2014−221445号公報JP 2014-212445 A

ところで、流路を流れる水に対して紫外線を照射するとき、反射などの光学的な部材を考慮しないと、LEDを多数配置することとなり、LED単体での紫外線照射効率が良くない。   By the way, when irradiating ultraviolet rays with respect to the water flowing through the flow path, unless an optical member such as reflection is taken into consideration, a large number of LEDs are arranged, and the ultraviolet irradiation efficiency of the LED alone is not good.

そこで、本発明は、紫外線照射効率の低下を抑制することができる流体殺菌装置、歯科用医療機器及び流体殺菌方法を提供することを目的とする。   Then, an object of this invention is to provide the fluid sterilizer which can suppress the fall of ultraviolet irradiation efficiency, a dental medical device, and the fluid sterilization method.

実施形態に係る流体殺菌装置は、紫外線を発する発光素子が実装された基板を有する光源と、少なくとも一部が紫外線透過性を有する材料によって形成され、前記発光素子が発する紫外線が照射される筒状の流路部材と、前記発光素子と前記流路との間に互いに間隙をあけて設けられる反射面を有し、前記間隙を通った紫外線を前記流路部材へ反射する反射部と、を具備する。   A fluid sterilization apparatus according to an embodiment is formed of a light source having a substrate on which a light emitting element that emits ultraviolet light is mounted, and a cylindrical shape that is formed of at least a part of a material having ultraviolet transparency and irradiated with ultraviolet light emitted from the light emitting element. A flow path member, and a reflective portion having a reflective surface provided with a gap between the light emitting element and the flow path, and reflecting the ultraviolet rays passing through the gap to the flow path member. To do.

本発明によれば、紫外線照射効率の低下を抑制することができる。   According to the present invention, it is possible to suppress a decrease in ultraviolet irradiation efficiency.

第1の実施形態に係る流体殺菌装置の全体を示す模式図である。It is a mimetic diagram showing the whole fluid sterilizer concerning a 1st embodiment. 第1の実施形態に係る流体殺菌装置の要部を示す側面図である。It is a side view which shows the principal part of the fluid sterilizer which concerns on 1st Embodiment. 第1の実施形態に係る流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。It is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer which concerns on 1st Embodiment. 第1の実施形態に係る流体殺菌装置において、流路部材の単位容積当たりに流れる流体の流量Q、流路の、流体の流れる方向に直交する断面の断面積A、流路における流体の流れる方向の長さLと殺菌効果の検証結果を示す図である。In the fluid sterilization apparatus according to the first embodiment, the flow rate Q of the fluid flowing per unit volume of the flow path member, the cross-sectional area A of the cross section perpendicular to the flow direction of the flow path, and the flow direction of the fluid in the flow path It is a figure which shows the verification result of length L and the bactericidal effect. 第1の実施形態に係る流体殺菌装置の変形例を示す側面図である。It is a side view which shows the modification of the fluid sterilizer which concerns on 1st Embodiment. 第2の実施形態に係る流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。It is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer which concerns on 2nd Embodiment. 第3の実施形態に係る流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。It is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer which concerns on 3rd Embodiment. 第4の実施形態に係る流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。It is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer which concerns on 4th Embodiment. 第5の実施形態に係る流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。It is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer which concerns on 5th Embodiment. 第6の実施形態に係る流体殺菌装置の全体を示す模式図である。It is a schematic diagram which shows the whole fluid sterilizer which concerns on 6th Embodiment.

以下で説明する実施形態に係る流体殺菌装置は、光源と、流路部材と、反射部としての反射部材と、を備える。光源は、紫外線を発する発光素子としてのLEDが実装された基板を有する。流路部材は、少なくとも一部が紫外線透過性を有する材料によって形成されている。流路部材は、LEDが発する紫外線が照射される。反射部材は、第1の反射面を有する。第1の反射面は、LEDと流路部材との間に互いに間隙をあけて設けられている。反射部材は、間隙を通った紫外線を流路部材へ反射する。   A fluid sterilizer according to an embodiment described below includes a light source, a flow path member, and a reflection member as a reflection portion. The light source has a substrate on which LEDs as light emitting elements that emit ultraviolet rays are mounted. At least a part of the flow path member is formed of a material having ultraviolet transparency. The flow path member is irradiated with ultraviolet rays emitted from the LED. The reflecting member has a first reflecting surface. The first reflecting surface is provided with a gap between the LED and the flow path member. The reflecting member reflects the ultraviolet light that has passed through the gap to the flow path member.

また、以下で説明する実施形態に係る流体殺菌装置は、流路部材の単位容積当たりに流れる流体の流量をQ(dm/min)、流路部材の、流体の流れる方向に直交する断面の断面積をA(mm)、流路部材における流体の流れる方向の長さをL(mm)としたとき、以下の式を満たす。
Q/(A×L)<1.25×10−3(min−1
ただし、流路部材の最大内寸法をφ(mm)としたとき、φ<Lである。
また、以下で説明する実施形態に係る流体殺菌装置は、基板と直交し反射面と向かい合う面と反射面とがなす角度をθ(°)、発光素子の半値角度をθ(°)としたとき、θ≦θである。
Further, the fluid sterilization apparatus according to the embodiment described below has a flow rate of fluid flowing per unit volume of the flow path member as Q (dm 3 / min), and has a cross section perpendicular to the fluid flow direction of the flow path member. When the cross-sectional area is A (mm 2 ) and the length of the flow direction in the flow path member is L (mm), the following expression is satisfied.
Q / (A × L) <1.25 × 10 −3 (min −1 )
However, when the maximum inner dimension of the flow path member is φ (mm), φ <L.
Further, in the fluid sterilization apparatus according to the embodiment described below, an angle formed between a surface orthogonal to the substrate and facing the reflecting surface and the reflecting surface is θ 1 (°), and a half-value angle of the light emitting element is θ 2 (°). Then, θ 1 ≦ θ 2 is satisfied.

また、以下で説明する実施形態に係る流体殺菌装置が備える流路部材は、基板の延びる方向と異なる方向に延びて形成されている。   Moreover, the flow path member with which the fluid sterilizer which concerns on embodiment described below is provided is extended and formed in the direction different from the direction where a board | substrate extends.

また、以下で説明する実施形態に係る流体殺菌装置における流路部材の外面または流路部材の内面には、光源から照射された紫外線を流路部材の内面へ反射する別の反射面としての第2の反射面が設けられている。   In addition, the outer surface of the flow path member or the inner surface of the flow path member in the fluid sterilization apparatus according to the embodiment described below is a second reflective surface that reflects ultraviolet rays emitted from the light source to the inner surface of the flow path member. Two reflective surfaces are provided.

また、以下で説明する実施形態に係る流体殺菌装置における流路部材の内面には、光触媒材料が設けられている。   Moreover, the photocatalyst material is provided in the inner surface of the flow-path member in the fluid sterilizer which concerns on embodiment described below.

また、以下で説明する実施形態に係る流体殺菌装置における光源の少なくとも一部と流路部材とを連結し、光源の熱を流路部材の内面を流れる流体へ伝える伝熱部材を更に具備する。   Further, the heat sterilization apparatus according to the embodiment described below further includes a heat transfer member that connects at least a part of the light source and the flow path member, and transfers heat of the light source to the fluid flowing through the inner surface of the flow path member.

また、以下で説明する実施形態に係る流体殺菌装置における伝熱部材は、基板と流路部材とに接している。   Further, the heat transfer member in the fluid sterilizer according to the embodiment described below is in contact with the substrate and the flow path member.

また、以下で説明する実施形態に係る流体殺菌装置における流路部材は、流路の少なくとも一部が伝熱部材によって形成されている。   Further, in the flow path member in the fluid sterilization apparatus according to the embodiment described below, at least a part of the flow path is formed by a heat transfer member.

また、以下で説明する実施形態に係る歯科用医療機器は、実施形態に係る流体殺菌装置1と、供給部と、を備える。供給部は、流体殺菌装置の流路部材の内面を通過した液体を供給する。   Moreover, the dental medical device which concerns on embodiment described below is provided with the fluid sterilizer 1 which concerns on embodiment, and a supply part. A supply part supplies the liquid which passed the inner surface of the flow-path member of a fluid sterilizer.

また、以下で説明する実施形態に係る流体殺菌方法は、紫外線を発するLEDが実装された基板を有する光源から紫外線を照射する。また、流体殺菌方法は、流路部材の内面を流れる流体へ紫外線を照射するための間隙を通過した紫外線を、LEDと流路部材との間で流路部材へ反射し、流路部材の内面の流体へ紫外線を照射する。   Moreover, the fluid sterilization method which concerns on embodiment described below irradiates an ultraviolet-ray from the light source which has the board | substrate with which LED which emits an ultraviolet-ray was mounted. Further, the fluid sterilization method reflects the ultraviolet light that has passed through the gap for irradiating the fluid flowing on the inner surface of the flow path member to the flow path member between the LED and the flow path member, and the inner surface of the flow path member. Irradiate the fluid with ultraviolet rays.

(第1の実施形態)
以下、実施形態に係る流体殺菌装置について、図面を参照して説明する。図1は、第1の実施形態に係る流体殺菌装置の全体を示す模式図である。図2は、第1の実施形態に係る流体殺菌装置の要部を示す側面図である。図3は、第1の実施形態に係る流体殺菌装置のうち、流体が流れる方向に対して直交する断面を示す断面図である。
(First embodiment)
Hereinafter, a fluid sterilizer according to an embodiment will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the entire fluid sterilizer according to the first embodiment. FIG. 2 is a side view showing a main part of the fluid sterilizer according to the first embodiment. FIG. 3 is a cross-sectional view showing a cross section orthogonal to the direction in which the fluid flows in the fluid sterilizer according to the first embodiment.

(流体殺菌装置の構成)
図1に示すように、第1の実施形態の流体殺菌装置1は、紫外線を照射する流体を供給する供給タンク8に連結されると共に、紫外線が照射された流体を回収する回収タンク9に連結されている。
(Configuration of fluid sterilizer)
As shown in FIG. 1, the fluid sterilizer 1 of the first embodiment is connected to a supply tank 8 that supplies a fluid that irradiates ultraviolet rays, and is connected to a recovery tank 9 that recovers the fluid irradiated with ultraviolet rays. Has been.

本実施形態の流体殺菌装置1は、例えば、歯科用医療機器において、タンク内の水を殺菌処理するために用いられる。本実施形態は、流体として、例えば、上水等の水に適用される。   The fluid sterilization apparatus 1 of this embodiment is used for sterilizing water in a tank, for example, in a dental medical device. This embodiment is applied to water, such as tap water, as a fluid.

図2及び図3に示すように、第1の実施形態に係る流体殺菌装置1は、紫外線を発する光源11と、光源11が発した紫外線が照射される流路部材15と、光源11から照射された紫外線を流路部材15の内面である流路16内を流れる流体へ反射する反射部としての反射部材18と、を備える。   As shown in FIGS. 2 and 3, the fluid sterilization apparatus 1 according to the first embodiment includes a light source 11 that emits ultraviolet light, a flow path member 15 that is irradiated with ultraviolet light emitted from the light source 11, and irradiation from the light source 11. And a reflecting member 18 as a reflecting portion that reflects the ultraviolet light that has been reflected to the fluid flowing in the flow channel 16 that is the inner surface of the flow channel member 15.

光源11は、発光素子としての複数のLED12が実装された基板13を有する。基板13は、母材として金属材料によって形成されている。基板13上には、図示しないが、絶縁層を介して所望の導電パターン(配線パターン)が形成されており、導電パターン上にLED12が設けられている。なお、光源11を構成する発光素子はLED12に限定されず、LD(レーザダイオード)であってもよい。   The light source 11 has a substrate 13 on which a plurality of LEDs 12 as light emitting elements are mounted. The substrate 13 is made of a metal material as a base material. Although not shown, a desired conductive pattern (wiring pattern) is formed on the substrate 13 via an insulating layer, and the LED 12 is provided on the conductive pattern. In addition, the light emitting element which comprises the light source 11 is not limited to LED12, LD (laser diode) may be sufficient.

基板13上には、複数のLED12が、流路部材15の流路16の流れ方向に沿って所定の間隔をあけて配置されている。基板13は、LED12を流路部材15に対向させた姿勢で、基板支持部材20に固定されている。なお、基板13としては、金属材料によって形成された基板に限定するものではなく、例えば、アルミナ等のセラミックスによって形成された基板が用いられてもよい。   On the board | substrate 13, several LED12 is arrange | positioned at predetermined intervals along the flow direction of the flow path 16 of the flow path member 15. FIG. The substrate 13 is fixed to the substrate support member 20 in a posture in which the LEDs 12 are opposed to the flow path member 15. The substrate 13 is not limited to a substrate formed of a metal material. For example, a substrate formed of ceramics such as alumina may be used.

流路部材15は、紫外線透過性を有する材料によって筒状、本実施形態では円管状に形成されており、流体が流れる流路16を構成している。紫外線透過性を有する材料としては、例えば、石英等のガラス材が好ましく、例えば、フッ素樹脂(ポリテトラフルオロエチレン)等の樹脂材料が用いられてもよい。本実施形態では、流路部材15として、外径が12mm程度、内径が9mm程度の石英管を用いている。また、流路部材15は、光源11のLED12の発光面から5mm程度の位置に、外周面がLED12に対向するように配置されている。   The flow path member 15 is formed in a cylindrical shape, in the present embodiment, in a tubular shape by a material having ultraviolet transparency, and constitutes a flow path 16 through which a fluid flows. As a material having ultraviolet transparency, for example, a glass material such as quartz is preferable, and for example, a resin material such as a fluororesin (polytetrafluoroethylene) may be used. In this embodiment, a quartz tube having an outer diameter of about 12 mm and an inner diameter of about 9 mm is used as the flow path member 15. Further, the flow path member 15 is disposed at a position about 5 mm from the light emitting surface of the LED 12 of the light source 11 so that the outer peripheral surface faces the LED 12.

なお、流路部材15は、光源11のLED12の発光面から5mm程度よりも短い位置に配置された場合、流路16に対して照射される紫外線の照度にむらが生じるので、好ましくない。一方、流路部材15は、光源11のLED12の発光面から5mm程度よりも長い位置に配置された場合、流路16に対して直接照射される紫外線が少なくなり、流路16に対して反射して照射される紫外線が多くなる。流路16に対して反射して照射される紫外線が多くなると、流路16に対して直接照射される紫外線よりも照度が劣るので、好ましくない。   In addition, when the flow path member 15 is disposed at a position shorter than about 5 mm from the light emitting surface of the LED 12 of the light source 11, unevenness in the illuminance of ultraviolet rays irradiated to the flow path 16 is not preferable. On the other hand, when the flow path member 15 is disposed at a position longer than about 5 mm from the light emitting surface of the LED 12 of the light source 11, the ultraviolet ray directly irradiated to the flow path 16 is reduced and reflected to the flow path 16. As a result, more ultraviolet rays are irradiated. If the amount of ultraviolet rays reflected and irradiated to the flow path 16 is increased, the illuminance is inferior to the ultraviolet rays directly irradiated to the flow path 16, which is not preferable.

図1及び図2に示すように、流路部材15の流路16は、上流側が、継手等の連結部材22を介して、供給タンク8に連結された他の流路部材23の流路に連結されている。流路部材15の流路16は、上流側と同様に、下流側が、継手等の連結部材22を介して、回収タンク9に連通された他の流路部材23の流路に連結されている。   As shown in FIG. 1 and FIG. 2, the flow path 16 of the flow path member 15 is connected to the flow path of another flow path member 23 connected to the supply tank 8 via the connection member 22 such as a joint on the upstream side. It is connected. Similarly to the upstream side, the downstream side of the flow path 16 of the flow path member 15 is connected to the flow path of another flow path member 23 communicated with the recovery tank 9 via a connection member 22 such as a joint. .

本実施形態における流路部材15は、紫外線透過性を有する材料のみによって形成されているが、この構成に限定するものではなく、光源11の発光面側に対向する外周面における少なくとも一部のみが、流路16内へ紫外線を透過させるように、紫外線透過性を有する材料によって形成されてもよい。また、流路部材15は、紫外線透過性を有する材料によって形成された部分と、他の材料、例えば、金属材料やセラミック等によって形成された部分とを組み合わせて構成されてもよい。紫外線透過性を有する部分と、他の材料によって形成された部分とを組み合わせた流路部材は、後述する第2及び第5の実施形態における伝熱部材26、56に相当する。   The flow path member 15 in the present embodiment is formed only of a material having ultraviolet transparency, but is not limited to this configuration, and at least a part of the outer peripheral surface facing the light emitting surface side of the light source 11 is not limited thereto. The material may be formed of a material having ultraviolet transparency so as to transmit ultraviolet light into the flow path 16. Moreover, the flow path member 15 may be configured by combining a portion formed of a material having ultraviolet transparency and a portion formed of another material such as a metal material or ceramic. A flow path member in which a portion having ultraviolet transparency and a portion formed of another material is combined corresponds to the heat transfer members 26 and 56 in the second and fifth embodiments described later.

図3に示すように、反射部材18は、流路部材15の流路16を包囲して配置されている。反射部材18は、LED12が発する紫外線を流路16へ反射する第1の反射面19a及び第2の反射面19bを有する。第2の反射面19bは、第1の反射面19aに連続して形成されている。   As shown in FIG. 3, the reflection member 18 is disposed so as to surround the flow path 16 of the flow path member 15. The reflection member 18 has a first reflection surface 19 a and a second reflection surface 19 b that reflect ultraviolet rays emitted from the LEDs 12 to the flow path 16. The second reflecting surface 19b is formed continuously with the first reflecting surface 19a.

第1の反射面19aは、LED12が発する紫外線を流路16へ照射するための間隙Aをあけて、LED12と流路16との間に設けられており、間隙Aを通った紫外線を流路16へ反射する。第1の反射面19aの間隙Aは、流路部材15の管軸方向から見たときに、LED12側から流路16側に向かって徐々に大きくなる形状を呈する。なお、図3において、互いに対向する第1の反射面19aは、分離されているが、図示しない部分(反射面)を介して一体に連続して形成されてもよい。   The first reflecting surface 19a is provided between the LED 12 and the flow path 16 with a gap A for irradiating the flow path 16 with ultraviolet rays emitted from the LED 12, and the ultraviolet light passing through the gap A is flowed. 16 reflected. The gap A of the first reflecting surface 19a has a shape that gradually increases from the LED 12 side toward the channel 16 side when viewed from the tube axis direction of the channel member 15. In FIG. 3, the first reflecting surfaces 19a facing each other are separated, but may be formed integrally and continuously via a portion (reflecting surface) not shown.

また、図3に示す第1の反射面19aの間隙Aは、LED12側から流路16側に向かって徐々に大きくなる形状であるが、これに限定されない。例えば、第1の反射面19aの間隙Aは、LED12側から流路16側に向かって変化しなくてもよく、また、流路部材15を設けることができる範囲で徐々に小さくなる形状であってもよい。   Further, the gap A of the first reflecting surface 19a shown in FIG. 3 has a shape that gradually increases from the LED 12 side toward the channel 16 side, but is not limited thereto. For example, the gap A of the first reflecting surface 19a does not have to change from the LED 12 side toward the flow channel 16 side, and has a shape that gradually decreases as long as the flow channel member 15 can be provided. May be.

なお、図3において、第1の反射面19aの間隙Aが、LED12側から流路16側に向かって徐々に大きくなる形状であるとき、LED12の法線と第1の反射面19aとがなす角度をθ(°)、LED12の半値角度をθ(°)としたとき、θ≦θを満たすことが望ましい。θ≦θを満たすことにより、LED12から照射された紫外線が第1の反射面19aによって、より確実に反射することができ、流体殺菌装置1における流体殺菌の効果を更に向上させることができる。 In FIG. 3, when the gap A of the first reflecting surface 19a is gradually increased from the LED 12 side toward the channel 16 side, the normal line of the LED 12 and the first reflecting surface 19a form. When the angle is θ 1 (°) and the half-value angle of the LED 12 is θ 2 (°), it is preferable that θ 1 ≦ θ 2 is satisfied. By satisfying θ 1 ≦ θ 2 , the ultraviolet light irradiated from the LED 12 can be more reliably reflected by the first reflecting surface 19a, and the effect of fluid sterilization in the fluid sterilization apparatus 1 can be further improved. .

また、第2の反射面19bは、流路16を間に挟んで第1の反射面19aの反対側に設けられている。第2の反射面19bの間隙は、流路部材15の管軸方向から見たときに、流路16側に向かって徐々に大きくなる断面V字状に形成されている。   The second reflecting surface 19b is provided on the opposite side of the first reflecting surface 19a with the flow channel 16 therebetween. The gap of the second reflecting surface 19b is formed in a V-shaped cross section that gradually increases toward the flow path 16 when viewed from the tube axis direction of the flow path member 15.

反射部材18は、例えば、金属板を折り曲げて形成されており、LED12側の一端が所定の間隙Aをあけて開口する断面菱形状に形成されている。反射部材18は、鏡面加工等の表面処理を施すことで第1及び第2の反射面19a、19bが形成されている。また、反射部材18は、金属材料によって形成される構成に限定されるものではない。反射部材18は、例えば、ガラス等の基材に反射膜を形成することで構成されてもよい。反射膜としては、例えば、アルミニウム等の金属材料を用いて蒸着によって形成された薄膜や、石英粒子、硫酸バリウムによって形成された薄膜が用いられており、紫外線の反射率が高い反射膜が好ましい。   The reflecting member 18 is formed, for example, by bending a metal plate, and is formed in a rhombus shape with one end on the LED 12 side opened with a predetermined gap A. The reflecting member 18 is formed with first and second reflecting surfaces 19a and 19b by performing a surface treatment such as mirror finishing. Moreover, the reflecting member 18 is not limited to the structure formed with a metal material. The reflection member 18 may be configured by forming a reflection film on a base material such as glass, for example. As the reflective film, for example, a thin film formed by vapor deposition using a metal material such as aluminum, a thin film formed by quartz particles or barium sulfate is used, and a reflective film having a high ultraviolet reflectance is preferable.

なお、第1の反射面19a、第2の反射面19bと、流路部材15との間の最短距離は、0〜2(mm)程度であることが望ましい。第1の反射面19a、第2の反射面19bと、流路部材15との間の最短距離が0(mm)、すなわち、第1の反射面19a、第2の反射面19bと、流路部材15とが接触することで、LED12から照射された紫外線が、第1の反射面19a、第2の反射面19bによって反射され、流路部材15の流路16へ効率良く紫外線が照射される。このことは、第1の反射面19a、第2の反射面19bと、流路部材15との間の最短距離が2(mm)程度まで同様の効果が見られる。一方、第1の反射面19a、第2の反射面19bと、流路部材15との間の最短距離が2(mm)程度よりも大きくなることで、第1の反射面19a、第2の反射面19bを構成する反射部材18が大型化するので、好ましくない。また、第1の反射面19a、第2の反射面19bと、流路部材15との間の最短距離が2(mm)程度よりも大きくなることで、流路16に照射される紫外線のうち、LED12から直接照射される紫外線よりも第1の反射面19a、第2の反射面19bによって反射された紫外線の方が多くなる。流路16に対して反射して照射される紫外線が多くなると、流路16に対して直接照射される紫外線よりも照度が劣るので、好ましくない。   The shortest distance between the first reflection surface 19a and the second reflection surface 19b and the flow path member 15 is preferably about 0 to 2 (mm). The shortest distance between the first reflection surface 19a and the second reflection surface 19b and the flow path member 15 is 0 (mm), that is, the first reflection surface 19a, the second reflection surface 19b, and the flow path. As the member 15 comes into contact, the ultraviolet light emitted from the LED 12 is reflected by the first reflecting surface 19a and the second reflecting surface 19b, and the ultraviolet light is efficiently irradiated to the flow path 16 of the flow path member 15. . This has the same effect until the shortest distance between the first reflection surface 19a and the second reflection surface 19b and the flow path member 15 is about 2 (mm). On the other hand, when the shortest distance between the first reflecting surface 19a and the second reflecting surface 19b and the flow path member 15 is greater than about 2 (mm), the first reflecting surface 19a and the second reflecting surface 19 Since the reflecting member 18 which comprises the reflective surface 19b enlarges, it is not preferable. Further, the shortest distance between the first reflecting surface 19a, the second reflecting surface 19b, and the flow path member 15 is larger than about 2 (mm), so that the ultraviolet ray irradiated to the flow path 16 The ultraviolet rays reflected by the first reflecting surface 19a and the second reflecting surface 19b are larger than the ultraviolet rays directly irradiated from the LED 12. If the amount of ultraviolet rays reflected and irradiated to the flow path 16 is increased, the illuminance is inferior to the ultraviolet rays directly irradiated to the flow path 16, which is not preferable.

(第1の実施形態における殺菌作用)
第1の実施形態の流体殺菌装置1では、図3に示すように、光源11の各LED12から照射された紫外線が、反射部材18の間隙Aを通って、流路部材15の流路16内の流体に照射される。流路部材15の外周面で反射された紫外線は、第1の反射面19aによって反射され、流路16内の流体へ照射される。
(Bactericidal action in the first embodiment)
In the fluid sterilization apparatus 1 of the first embodiment, as shown in FIG. 3, the ultraviolet rays irradiated from the respective LEDs 12 of the light source 11 pass through the gap A of the reflecting member 18 and enter the flow path 16 of the flow path member 15. The fluid is irradiated. The ultraviolet light reflected by the outer peripheral surface of the flow path member 15 is reflected by the first reflective surface 19 a and is irradiated to the fluid in the flow path 16.

流路16に照射された紫外線の一部は、流路部材15を通過して第2の反射面19bで反射され、再度、流路16内へ戻されて流体に照射される。さらに、第2の反射面19bで反射された後、流路16内を通過した紫外線は、第1の反射面19aで反射され、再度、流路16内へ戻されて流体に照射される。   A part of the ultraviolet rays irradiated to the flow path 16 passes through the flow path member 15 and is reflected by the second reflecting surface 19b, and is again returned into the flow path 16 to be irradiated to the fluid. Furthermore, after being reflected by the second reflecting surface 19b, the ultraviolet rays that have passed through the flow path 16 are reflected by the first reflecting surface 19a, and are returned again to the flow path 16 to be irradiated to the fluid.

光源11のLED12から照射された紫外線は、上述のように第1及び第2の反射面19a、19bによって多重反射を繰り返すことで、流路16内の流体に効率良く照射される。このように光源11の紫外線を流体に効率良く照射することで、流体中の細菌が効果的に殺菌される。   The ultraviolet rays irradiated from the LED 12 of the light source 11 are efficiently irradiated to the fluid in the flow path 16 by repeating multiple reflections by the first and second reflecting surfaces 19a and 19b as described above. Thus, the bacteria in the fluid are effectively sterilized by efficiently irradiating the fluid with the ultraviolet rays of the light source 11.

例えば、流体に含まれる細菌は、その細胞の内部に核を有しており、核の内部に、遺伝情報をつかさどるDNA(デオキシリボ核酸)を有する。DNAに紫外線を照射することで、DNAのチミンダイマーが形成され、DNAが死滅する。このため、DNAの吸収スペクトルである波長が260nm付近の紫外線が、細菌を殺菌する上で効果的である。このため、LED12は、波長が260nm付近の紫外線が用いられることが好ましい。   For example, bacteria contained in a fluid have a nucleus inside the cell, and have DNA (deoxyribonucleic acid) that controls genetic information inside the nucleus. By irradiating DNA with ultraviolet rays, a thymine dimer of DNA is formed and the DNA is killed. For this reason, ultraviolet rays having a wavelength of about 260 nm, which is an absorption spectrum of DNA, are effective in sterilizing bacteria. For this reason, it is preferable that the LED 12 uses ultraviolet rays having a wavelength of around 260 nm.

しかしながら、260nm付近にピーク波長を有するLED12は、出力が低く、寿命が短い傾向にある。そのため、光源11として、280nm付近にピーク波長を有するLED12を採用することで、ピーク波長が260nmのLED12に比べ、LED12の出力を高め、寿命を長くすることが可能になる。また、光源11として、365nm付近にピーク波長を有するLED12を採用することで、更に高出力かつ長寿命を実現することが可能になる。したがって、本実施形態では、260nm程度〜370nm程度にピーク波長を有するLED12を採用することで、LED12の出力を高めると共に寿命を長く確保し、適正な殺菌効果を得ている。   However, the LED 12 having a peak wavelength near 260 nm tends to have a low output and a short lifetime. Therefore, by adopting the LED 12 having a peak wavelength near 280 nm as the light source 11, it is possible to increase the output of the LED 12 and extend the life compared to the LED 12 having a peak wavelength of 260 nm. Further, by adopting the LED 12 having a peak wavelength in the vicinity of 365 nm as the light source 11, it becomes possible to realize a higher output and a longer life. Therefore, in this embodiment, by adopting the LED 12 having a peak wavelength of about 260 nm to about 370 nm, the output of the LED 12 is increased and the lifetime is ensured for a long time, thereby obtaining an appropriate sterilizing effect.

また、図示しないが、基板13の表面におけるLED12の周囲には、流路部材15の外周面、反射部材18の第1の反射面19aで反射された紫外線を流路16側へ反射するための反射膜が設けられてもよい。基板13上の反射膜によって、流路16内の流体への紫外線の照射効率が高められる。   Although not shown, around the LED 12 on the surface of the substrate 13, the ultraviolet ray reflected by the outer peripheral surface of the flow path member 15 and the first reflection surface 19 a of the reflection member 18 is reflected to the flow path 16 side. A reflective film may be provided. The reflection film on the substrate 13 increases the irradiation efficiency of ultraviolet rays to the fluid in the flow path 16.

(流体殺菌方法)
以上のように構成された流体殺菌装置1を用いた実施形態の流体殺菌方法について説明する。実施形態の流体殺菌方法では、紫外線を発するLED12が実装された基板13を有する光源11から紫外線を照射する。また、実施形態の流体殺菌方法では、流路部材15の流路16を流れる流体へ紫外線を照射するための間隙Aが、LED12側から流路16側に向かって徐々に大きくなる第1の反射面19aによって、間隙Aを通過した紫外線をLED12と流路16との間で流路16へ反射し、流路16内の流体へ紫外線を照射する。
(Fluid sterilization method)
A fluid sterilization method according to an embodiment using the fluid sterilization apparatus 1 configured as described above will be described. In the fluid sterilization method of the embodiment, ultraviolet light is irradiated from the light source 11 having the substrate 13 on which the LED 12 emitting ultraviolet light is mounted. In the fluid sterilization method of the embodiment, the first reflection in which the gap A for irradiating the fluid flowing through the flow path 16 of the flow path member 15 with ultraviolet light gradually increases from the LED 12 side toward the flow path 16 side. The surface 19 a reflects the ultraviolet light that has passed through the gap A to the flow channel 16 between the LED 12 and the flow channel 16, and irradiates the fluid in the flow channel 16 with the ultraviolet light.

上述のように第1の実施形態は、LED12が発する紫外線を流路16へ照射するための間隙Aをあけて、光源11と流路16との間に設けられ、間隙Aを通った紫外線を流路16へ反射する第1の反射面19aを有する反射部材18を備える。第1の反射面19aは、間隙Aが光源11側から流路16側に向かって徐々に大きくなる形状である。これにより、反射部材18によって、光源11のLED12が発する紫外線を、効率的に流路16内の流体へ照射することが可能になり、流体の殺菌作用が高められる。このため、光源11が有するLED12の個数を抑えることが可能になり、LED12の温度の上昇を抑制することができると共に、光源11の製造コストの増大を抑えることができる。よって、第1の実施形態では、紫外線照射効率の低下を抑制することができる。   As described above, in the first embodiment, the gap A for irradiating the ultraviolet rays emitted from the LEDs 12 to the flow path 16 is opened, and the ultraviolet rays passing through the gap A are provided between the light source 11 and the flow path 16. A reflecting member 18 having a first reflecting surface 19 a that reflects to the flow path 16 is provided. The first reflecting surface 19a has a shape in which the gap A gradually increases from the light source 11 side toward the flow path 16 side. Thereby, it becomes possible to irradiate the fluid in the flow path 16 efficiently with the ultraviolet rays emitted from the LED 12 of the light source 11 by the reflecting member 18, and the sterilizing action of the fluid is enhanced. For this reason, it becomes possible to suppress the number of LED12 which the light source 11 has, and while being able to suppress the raise of the temperature of LED12, the increase in the manufacturing cost of the light source 11 can be suppressed. Therefore, in the first embodiment, it is possible to suppress a decrease in ultraviolet irradiation efficiency.

ここで、流路部材15の単位容積、即ち、流路16の単位体積当たりに流れる流体の流量をQ(dm/min)、流路16の、流体の流れる方向に直交する断面の断面積をA(mm)、流路16における流体の流れる方向の長さをL(mm)としたとき、以下の式を満たすことが望ましい。
Q/(A×L)<1.25×10−3(min−1
ただし、流路16の最大内寸法をφ(mm)としたとき、φ<L。
上記式を満たすことで、流体殺菌処理をより確実に実施することができる。
Here, the unit volume of the flow path member 15, that is, the flow rate of the fluid flowing per unit volume of the flow path 16 is Q (dm 3 / min), and the cross-sectional area of the cross section of the flow path 16 orthogonal to the fluid flow direction. Is A (mm 2 ), and the length of the fluid flow direction in the flow path 16 is L (mm), it is desirable to satisfy the following expression.
Q / (A × L) <1.25 × 10 −3 (min −1 )
However, when the maximum inner dimension of the flow path 16 is φ (mm), φ <L.
By satisfy | filling the said Formula, a fluid sterilization process can be implemented more reliably.

ここで、Q/(A×L)を変えて殺菌効果を検証した。検証結果を図4に示す。なお、図4において、「殺菌の効果」については、“○”が殺菌の効果があった、“△”が殺菌の効果があったが“○”ほどではなかった、“×”が殺菌の効果がなかったことを示す。図4から明らかである通り、Q/(A×L)<1.25×10−3を満たすことで、殺菌の効果があることが明らかとなった。 Here, the sterilization effect was verified by changing Q / (A × L). The verification result is shown in FIG. In FIG. 4, regarding “bactericidal effect”, “◯” was a sterilizing effect, “Δ” was a bactericidal effect but was not as good as “◯”, “×” was a bactericidal effect. Indicates no effect. As is clear from FIG. 4, it was clarified that the sterilization effect was obtained by satisfying Q / (A × L) <1.25 × 10 −3 .

(第1の実施形態の変形例)
図5は、第1の実施形態の変形例を示す流体殺菌装置の要部を示す側面図である。図5は、第1の実施形態において、流路部材15の流路16が基板13の延びる方向と異なる方向に延びている点が、第1の実施形態と異なる。
(Modification of the first embodiment)
FIG. 5 is a side view showing the main part of the fluid sterilizer showing a modification of the first embodiment. FIG. 5 is different from the first embodiment in that the flow path 16 of the flow path member 15 extends in a direction different from the direction in which the substrate 13 extends in the first embodiment.

流路部材15の流路16は、基板13が延びる方向(長辺方向)と異なる方向、具体的には基板13が延びる方向と直交する方向(短辺方向)に蛇行して延びている。このように構成することで、流路16を流れる流体に、LED12から照射される紫外線が当たる部分がより多く確保されるので、殺菌の効果を高めることができる。   The flow path 16 of the flow path member 15 extends meandering in a direction different from the direction in which the substrate 13 extends (long side direction), specifically, in a direction orthogonal to the direction in which the substrate 13 extends (short side direction). By comprising in this way, the part which the ultraviolet-ray irradiated from LED12 hits the fluid which flows through the flow path 16 more is ensured, Therefore The effect of sterilization can be improved.

なお、図5において、流路16は、基板13が延びる方向と直交する方向に蛇行しているが、上記構成に限定されるものではない。例えば、流路16は、基板13が延びる方向(長辺方向)と同じ方向に延びた後に折り返されて基板13が延びる一方向と逆方向に延びて蛇行してもよい。また、流路16は、基板13が延びる方向によらず、例えば渦状に延びてもよい。要するに、流路16の延びる方向は、基板13が延びる方向と異なっていれば、どのような形態を採ってもよい。   In FIG. 5, the flow path 16 meanders in a direction orthogonal to the direction in which the substrate 13 extends, but is not limited to the above configuration. For example, the flow path 16 may be meandered by extending in the same direction as the direction in which the substrate 13 extends (long side direction) and then turning back in a direction opposite to the one direction in which the substrate 13 extends. Further, the flow path 16 may extend, for example, in a spiral shape regardless of the direction in which the substrate 13 extends. In short, as long as the direction in which the flow path 16 extends is different from the direction in which the substrate 13 extends, it may take any form.

以下、第2〜第5の実施形態の流体殺菌装置について図面を参照して説明する。なお、第2〜第5の実施形態において、便宜上、第1の実施形態と同一の構成部材には、第1の実施形態と同一符号を付して説明を省略する。   Hereinafter, fluid sterilizers according to second to fifth embodiments will be described with reference to the drawings. In the second to fifth embodiments, for the sake of convenience, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.

(第2の実施形態)
図6は、第2の実施形態の流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。第2の実施形態は、流路を部分的に形成する伝熱部材を有する点が、第1の実施形態と異なる。
(Second Embodiment)
FIG. 6: is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer of 2nd Embodiment. The second embodiment differs from the first embodiment in having a heat transfer member that partially forms a flow path.

図6に示すように、第2の実施形態の流体殺菌装置2は、紫外線を発する光源11と、LED12が発する紫外線を流路16に透過する透光部材25と、光源11の基板13に生じる熱を流路16内の流体へ伝える伝熱部材26と、を備える。そして、流体殺菌装置2では、透光部材25と伝熱部材26とが、紫外線が照射される流体が流れる流路16を有する流路部材として機能している。つまり、本実施形態における伝熱部材26は、第1の実施形態における流路部材15の一部を兼ねている。   As shown in FIG. 6, the fluid sterilizer 2 of the second embodiment is generated on the light source 11 that emits ultraviolet rays, the translucent member 25 that transmits the ultraviolet rays emitted by the LEDs 12 to the flow path 16, and the substrate 13 of the light source 11. And a heat transfer member 26 that transfers heat to the fluid in the flow path 16. And in the fluid sterilizer 2, the translucent member 25 and the heat transfer member 26 function as a flow path member having the flow path 16 through which the fluid irradiated with ultraviolet rays flows. That is, the heat transfer member 26 in the present embodiment also serves as a part of the flow path member 15 in the first embodiment.

また、本実施形態における流路16は、透光部材25と伝熱部材26とが協働して筒状に形成されている。なお、ここでいう「筒状」とは、流体が流れる方向に対する断面において円管状のものに限定されず、例えば楕円状であってもよいし、本実施形態のように矩形状であるものも許容される。つまり、「筒状」とは、流体が流れる方向に細長く延びるものであれば、流体が流れる方向に対する断面の形状は限定されない。   Moreover, the flow path 16 in this embodiment is formed in the cylinder shape in cooperation with the translucent member 25 and the heat transfer member 26. Note that the “cylindrical shape” here is not limited to a tubular shape in a cross section with respect to the direction in which the fluid flows, and may be, for example, an elliptical shape or a rectangular shape as in the present embodiment. Permissible. In other words, as long as the “cylindrical shape” is elongated in the direction in which the fluid flows, the shape of the cross section with respect to the direction in which the fluid flows is not limited.

言い換えると、本実施形態における伝熱部材26は、流路部材の流路16を構成する部分と、流路部材と光源11の基板13を熱的に接続する部分と、を含む。つまり、本実施形態において、流路部材の流路16は、一部が伝熱部材26によって形成されており、流路部材と基板13とを連結する伝熱部材26と、流路部材の一部である伝熱部材26とが一体に形成されている。   In other words, the heat transfer member 26 in the present embodiment includes a portion that constitutes the flow path 16 of the flow path member, and a portion that thermally connects the flow path member and the substrate 13 of the light source 11. That is, in this embodiment, the flow path 16 of the flow path member is partially formed by the heat transfer member 26, and the heat transfer member 26 that connects the flow path member and the substrate 13, and one of the flow path members. The heat transfer member 26 as a part is integrally formed.

透光部材25は、紫外線透過性を有する材料によって平板状に形成されている。透光部材25は、断面矩形状の流路16の1つの内面を構成している。透光部材25は、外周部が伝熱部材26に嵌め込まれて支持されている。透光部材25の外周部と伝熱部材26との接続部分には、図示しないOリング等のパッキン部材が組み付けられており、パッキン部材によって流路16内が密封されている。また、透光部材25には、LED12に対向する面と、流路16を構成する面とに反射防止膜が形成されてもよく、LED12が発した紫外線が光源11側へ反射されることを抑制できる。   The translucent member 25 is formed in a flat plate shape by a material having ultraviolet transparency. The translucent member 25 constitutes one inner surface of the channel 16 having a rectangular cross section. The translucent member 25 is supported with its outer peripheral portion fitted into the heat transfer member 26. A packing member such as an O-ring (not shown) is assembled at a connection portion between the outer peripheral portion of the light transmitting member 25 and the heat transfer member 26, and the inside of the flow path 16 is sealed by the packing member. Further, the translucent member 25 may be provided with an antireflection film on the surface facing the LED 12 and the surface constituting the flow path 16, and the ultraviolet light emitted from the LED 12 is reflected to the light source 11 side. Can be suppressed.

伝熱部材26は、例えば、アルミニウム等の伝熱性を有する材料によってブロック状に形成されている。伝熱部材26を形成する材料としては、伝熱性が比較的高いアルミニウムが好ましいが、ステンレス等の金属材料、熱伝導率を高めるためにフィラーを混合した樹脂材料が用いられてもよい。   The heat transfer member 26 is formed in a block shape from a material having heat transfer properties such as aluminum. As the material for forming the heat transfer member 26, aluminum having a relatively high heat transfer property is preferable. However, a metal material such as stainless steel, or a resin material mixed with a filler in order to increase thermal conductivity may be used.

伝熱部材26は、光源11の基板13を支持する第1の支持部26aと、透光部材25の外周部を支持する第2の支持部26bと、を有する。第1の支持部26aには、基板13における、発光面の反対側の裏面、及び側面が接している。また、伝熱部材26は、断面矩形状の流路16の3つの内面を構成しており、断面U字状の部分を有する。   The heat transfer member 26 includes a first support portion 26 a that supports the substrate 13 of the light source 11, and a second support portion 26 b that supports the outer peripheral portion of the translucent member 25. The back surface and the side surface of the substrate 13 opposite to the light emitting surface are in contact with the first support portion 26a. Further, the heat transfer member 26 forms three inner surfaces of the channel 16 having a rectangular cross section, and has a U-shaped section.

また、伝熱部材26は、光源11から照射された紫外線を流路16内の流体へ反射する反射部としての第1の反射面27aが形成されている。第1の反射面27aは、LED12が発する紫外線を流路16へ照射するための間隙Aをあけて、LED12と流路16との間に設けられており、間隙Aを通った紫外線を流路16へ反射する。第1の反射面27aは、間隙Aが、LED12側から流路16側に向かって徐々に大きくなる形状を呈する。また、伝熱部材26には、流路16を形成する3つの内面に、光源11から照射された紫外線を流路16へ反射する別の第2の反射面27bが形成されている。   In addition, the heat transfer member 26 is formed with a first reflecting surface 27 a as a reflecting portion that reflects the ultraviolet rays irradiated from the light source 11 to the fluid in the flow path 16. The first reflecting surface 27a is provided between the LED 12 and the flow path 16 with a gap A for irradiating the flow path 16 with ultraviolet rays emitted from the LED 12, and the ultraviolet light passing through the gap A is flowed. 16 reflected. The first reflecting surface 27a has a shape in which the gap A gradually increases from the LED 12 side toward the channel 16 side. Further, the heat transfer member 26 is provided with another second reflection surface 27 b that reflects the ultraviolet rays irradiated from the light source 11 to the flow channel 16 on the three inner surfaces that form the flow channel 16.

本実施形態における第1の反射面27a及び第2の反射面27bは、伝熱部材26に鏡面加工等の表面処理を施すことで形成されている。なお、第1の反射面27a及び第2の反射面27bは、伝熱部材26に反射膜を成膜することで形成されてもよい。   The first reflecting surface 27a and the second reflecting surface 27b in the present embodiment are formed by subjecting the heat transfer member 26 to a surface treatment such as mirror finishing. The first reflecting surface 27a and the second reflecting surface 27b may be formed by forming a reflecting film on the heat transfer member 26.

なお、図6において、図示の便宜上、伝熱部材26を1つの部材として示すが、1つの伝熱部材26に限定するものではない。伝熱部材26は、複数の分割部材を組み合わせて構成されてもよい。この構成の場合、伝熱部材26が有する複数の分割部材は、例えばネジ等の締結部材を介して連結されてもよく、伝熱性を有する接着剤によって接合されてもよい。伝熱部材26が複数に分割することで、伝熱部材26の内部に光源11や透光部材25を容易に組み込むことが可能になる。   In FIG. 6, for convenience of illustration, the heat transfer member 26 is shown as one member, but is not limited to one heat transfer member 26. The heat transfer member 26 may be configured by combining a plurality of divided members. In the case of this configuration, the plurality of divided members included in the heat transfer member 26 may be connected via, for example, a fastening member such as a screw, or may be joined by an adhesive having heat transfer properties. By dividing the heat transfer member 26 into a plurality of parts, the light source 11 and the translucent member 25 can be easily incorporated into the heat transfer member 26.

(第2の実施形態における殺菌作用)
第2の実施形態の流体殺菌装置2では、図6に示すように、光源11の各LED12から照射された紫外線が、第1の反射面27aの間隙Aを通って、流路16内の流体に照射される。透光部材25において、LED12に対向する面で反射された紫外線は、第1の反射面27aによって反射され、流路16内の流体へ照射される。
(Bactericidal action in the second embodiment)
In the fluid sterilization apparatus 2 according to the second embodiment, as shown in FIG. 6, the ultraviolet rays irradiated from the respective LEDs 12 of the light source 11 pass through the gap A of the first reflecting surface 27a, and the fluid in the flow path 16 Is irradiated. In the translucent member 25, the ultraviolet light reflected by the surface facing the LED 12 is reflected by the first reflecting surface 27 a and is irradiated to the fluid in the flow path 16.

流路16に照射された紫外線の一部は、流路16内の3つの第2の反射面27bでそれぞれ反射され、流体へ照射される。さらに、第2の反射面27bで反射された後、透光部材25を通過した紫外線は、第1の反射面27aで反射され、再度、流路16内へ戻されて流体に照射される。   Part of the ultraviolet rays irradiated to the flow path 16 is reflected by the three second reflecting surfaces 27b in the flow path 16 and irradiated to the fluid. Furthermore, after being reflected by the second reflecting surface 27b, the ultraviolet light that has passed through the translucent member 25 is reflected by the first reflecting surface 27a, is returned again into the flow path 16, and is irradiated to the fluid.

光源11のLED12から照射された紫外線は、上述のように第1の反射面27a及び第2の反射面27bによって多重反射を繰り返すことで、流路16内の流体に効率良く照射される。このようにLED12の紫外線を流体に効率良く照射することで、流体中の細菌が効果的に殺菌される。   The ultraviolet rays irradiated from the LED 12 of the light source 11 are efficiently irradiated to the fluid in the flow path 16 by repeating multiple reflections by the first reflecting surface 27a and the second reflecting surface 27b as described above. Thus, the bacteria in the fluid are effectively sterilized by efficiently irradiating the fluid with the ultraviolet rays of the LED 12.

(伝熱部材の伝熱作用)
第2の実施形態では、光源11の基板13に生じた熱が、基板13から伝熱部材26の第1の支持部26aへ伝わり、伝熱部材26が流路16を形成する内面によって、流路16内の流体へ熱が伝わる。このように、伝熱部材26によって基板13の熱が流体に奪われることで、基板13の放熱性が高められ、LED12の温度の上昇が抑えられる。伝熱部材26は、流路16内の流体と内面が接触しているので、流体へ直接的に熱を効率良く伝える。
(Heat transfer action of heat transfer member)
In the second embodiment, the heat generated on the substrate 13 of the light source 11 is transferred from the substrate 13 to the first support portion 26 a of the heat transfer member 26, and the heat transfer member 26 flows by the inner surface forming the flow path 16. Heat is transferred to the fluid in the passage 16. As described above, the heat of the substrate 13 is taken away by the fluid by the heat transfer member 26, so that the heat dissipation of the substrate 13 is enhanced and the temperature rise of the LED 12 is suppressed. Since the heat transfer member 26 is in contact with the fluid inside the flow path 16 and the inner surface, the heat transfer member 26 efficiently transfers heat directly to the fluid.

上述のように第2の実施形態は、光源11の熱を流路16内の流体へ伝える伝熱部材26を備える。これにより、基板13に生じた熱が流路16内の流体に伝わることで、基板13の放熱性が高められ、LED12の温度の上昇を抑えることができる。すなわち、流体として水を用いた場合、光源11が、いわゆる水冷方式で冷却される構成となる。   As described above, the second embodiment includes the heat transfer member 26 that transfers the heat of the light source 11 to the fluid in the flow path 16. Thereby, the heat which generate | occur | produced in the board | substrate 13 is transmitted to the fluid in the flow path 16, and the heat dissipation of the board | substrate 13 is improved and the raise of the temperature of LED12 can be suppressed. That is, when water is used as the fluid, the light source 11 is cooled by a so-called water cooling method.

また、第2の実施形態においても、第1の実施形態と同様に、伝熱部材26に設けられた第1及び第2の反射面27a、27bによって紫外線を流路16内へ効率良く照射することが可能になり、光源11が有するLED12の温度の上昇を更に抑えることができる。したがって、第2の実施形態でも、紫外線照射効率の低下を抑制することができる。   Also in the second embodiment, similarly to the first embodiment, the first and second reflecting surfaces 27 a and 27 b provided on the heat transfer member 26 are efficiently irradiated with ultraviolet rays into the flow path 16. This makes it possible to further suppress an increase in the temperature of the LED 12 included in the light source 11. Therefore, also in 2nd Embodiment, the fall of ultraviolet irradiation efficiency can be suppressed.

さらに、第2の実施形態では、流路16の一部を形成する伝熱部材26によって、流路16内の流体に伝熱部材26から直接的に熱が伝わるので、基板13の放熱性を高めることができる。したがって、第2の実施形態は、伝熱部材26を用いて基板13の熱を流路16内の流体へ伝える効率において、他の実施形態よりも効果的である。   Furthermore, in the second embodiment, heat is directly transferred from the heat transfer member 26 to the fluid in the flow path 16 by the heat transfer member 26 that forms a part of the flow path 16. Can be increased. Therefore, the second embodiment is more effective than the other embodiments in the efficiency of transferring the heat of the substrate 13 to the fluid in the flow path 16 using the heat transfer member 26.

(第3の実施形態)
図7は、第3の実施形態の流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。第3の実施形態は、基板13と流路部材15の外周部とを連結する伝熱部材を有する点が、第2の実施形態と異なる。
(Third embodiment)
FIG. 7: is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer of 3rd Embodiment. The third embodiment is different from the second embodiment in having a heat transfer member that connects the substrate 13 and the outer peripheral portion of the flow path member 15.

図7に示すように、第3の実施形態の流体殺菌装置3は、紫外線を発する光源11と、光源11が発した紫外線が照射される流体が流れる流路16を有する管状の流路部材15と、光源11の基板13に生じる熱を流路16内の流体へ伝える伝熱部材36と、を備える。   As shown in FIG. 7, the fluid sterilizer 3 of the third embodiment includes a light source 11 that emits ultraviolet light, and a tubular flow path member 15 that has a flow path 16 through which fluid irradiated with ultraviolet light emitted from the light source 11 flows. And a heat transfer member 36 that transfers heat generated in the substrate 13 of the light source 11 to the fluid in the flow path 16.

伝熱部材36は、流路部材15の流路16を包囲して設けられている。伝熱部材36は、基板13と流路部材15の外周面とに接しており、基板13と流路16とを熱的に接続している。伝熱部材36は、基板13を支持する第1の支持部36aと、流路部材15の外周部を支持する第2の支持部36bと、を有する。また、伝熱部材36は、光源11から照射された紫外線を流路16内の流体へ反射する反射部としての第1の反射面37a及び第2の反射面37bを有する。   The heat transfer member 36 is provided so as to surround the flow path 16 of the flow path member 15. The heat transfer member 36 is in contact with the substrate 13 and the outer peripheral surface of the flow path member 15, and thermally connects the substrate 13 and the flow path 16. The heat transfer member 36 includes a first support portion 36 a that supports the substrate 13, and a second support portion 36 b that supports the outer peripheral portion of the flow path member 15. Further, the heat transfer member 36 includes a first reflection surface 37 a and a second reflection surface 37 b as a reflection portion that reflects the ultraviolet rays irradiated from the light source 11 to the fluid in the flow path 16.

第1の反射面37aは、LED12が発する紫外線を流路16へ照射するための間隙Aをあけて、LED12と流路16との間に設けられており、間隙Aを通った紫外線を流路16へ反射する。第1の反射面37aは、間隙Aが、LED12側から流路16側に向かって徐々に大きくなる形状を呈する。第2の反射面37bは、流路部材15の管軸方向から見たときに、第2の支持部36bの内面に、流路部材15の外周面に沿う断面半円状に形成されている。   The first reflection surface 37a is provided between the LED 12 and the flow path 16 with a gap A for irradiating the flow path 16 with ultraviolet rays emitted from the LED 12, and the ultraviolet light passing through the gap A is flowed. 16 reflected. The first reflecting surface 37a has a shape in which the gap A gradually increases from the LED 12 side toward the channel 16 side. The second reflecting surface 37 b is formed in a semicircular cross section along the outer peripheral surface of the flow path member 15 on the inner surface of the second support portion 36 b when viewed from the tube axis direction of the flow path member 15. .

(第3の実施形態における殺菌作用)
第3の実施形態の流体殺菌装置3では、図7に示すように、光源11の各LED12から照射された紫外線が、第1の反射面37aの間隙Aを通って、流路16内の流体に照射される。流路部材15において、LED12に対向する外周面で反射された紫外線は、第1の反射面37aによって反射され、流路16内の流体へ照射される。
(Bactericidal action in the third embodiment)
In the fluid sterilization apparatus 3 according to the third embodiment, as shown in FIG. 7, the ultraviolet rays irradiated from the respective LEDs 12 of the light source 11 pass through the gap A of the first reflecting surface 37a, and the fluid in the flow path 16 Is irradiated. In the flow path member 15, the ultraviolet light reflected by the outer peripheral surface facing the LED 12 is reflected by the first reflection surface 37 a and is irradiated to the fluid in the flow path 16.

流路16に照射された紫外線の一部は、流路部材15を通過して第2の反射面37bでそれぞれ反射され、再度、流路16内へ戻されて、流体に照射される。さらに、第2の反射面37bで反射されて流路部材15を通過した紫外線は、第1の反射面37aで反射され、再度、流路16内へ戻されて流体に照射される。   A part of the ultraviolet rays irradiated to the flow path 16 passes through the flow path member 15 and is reflected by the second reflecting surface 37b, returned to the flow path 16 again, and irradiated to the fluid. Furthermore, the ultraviolet rays reflected by the second reflecting surface 37b and passing through the flow path member 15 are reflected by the first reflecting surface 37a, and returned again into the flow path 16 to be irradiated with the fluid.

光源11のLED12から照射された紫外線は、上述のように第1の反射面37a及び第2の反射面37bによって多重反射を繰り返すことで、流路16内の流体に効率良く照射される。このようにLED12の紫外線を流体に効率良く照射することで、流体中の細菌が効果的に殺菌される。   The ultraviolet rays emitted from the LED 12 of the light source 11 are efficiently irradiated to the fluid in the flow path 16 by repeating multiple reflections by the first reflecting surface 37a and the second reflecting surface 37b as described above. Thus, the bacteria in the fluid are effectively sterilized by efficiently irradiating the fluid with the ultraviolet rays of the LED 12.

(伝熱部材の伝熱作用)
第3の実施形態では、光源11の基板13に生じた熱が、基板13から伝熱部材36の第1の支持部36aへ伝わり、伝熱部材36の第2の支持部36bから、流路部材15を介して、流路16内の流体へ熱が伝わる。このように、伝熱部材36によって基板13の熱が流体に奪われることで、基板13の放熱性が高められ、LED12の温度の上昇が抑えられる。
(Heat transfer action of heat transfer member)
In the third embodiment, heat generated on the substrate 13 of the light source 11 is transmitted from the substrate 13 to the first support portion 36 a of the heat transfer member 36, and from the second support portion 36 b of the heat transfer member 36 to the flow path. Heat is transferred to the fluid in the flow path 16 via the member 15. Thus, the heat of the board | substrate 13 is taken by the fluid by the heat-transfer member 36, and the heat dissipation of the board | substrate 13 is improved and the raise of the temperature of LED12 is suppressed.

上述のように第3の実施形態は、光源11の熱を流路16内の流体へ伝える伝熱部材36を備える。これにより、基板13に生じた熱が流路16内の流体に伝わることで、基板13の放熱性が高められ、LED12の温度の上昇を抑えることができる。すなわち、流体として水を用いた場合、第3の実施形態においても、第2の実施形態と同様に、光源11が、いわゆる水冷方式で冷却される構成となる。   As described above, the third embodiment includes the heat transfer member 36 that transfers the heat of the light source 11 to the fluid in the flow path 16. Thereby, the heat which generate | occur | produced in the board | substrate 13 is transmitted to the fluid in the flow path 16, and the heat dissipation of the board | substrate 13 is improved and the raise of the temperature of LED12 can be suppressed. That is, when water is used as the fluid, the light source 11 is also cooled by a so-called water cooling method in the third embodiment as in the second embodiment.

加えて、第3の実施形態は、流路部材15と伝熱部材36とが別体に構成されることで、パッキン部材等を用いることなく、流路16の密封性を容易に確保することができる。また、第3の実施形態は、流路16が流路部材15のみによって形成することで、流路16が金属材料で形成される構成と比べて、金属材料の腐食によって流体を汚染することが避けられる。   In addition, in the third embodiment, since the flow path member 15 and the heat transfer member 36 are configured separately, the sealing performance of the flow path 16 can be easily secured without using a packing member or the like. Can do. Further, in the third embodiment, the flow path 16 is formed only by the flow path member 15, so that the fluid is contaminated by corrosion of the metal material, compared to the configuration in which the flow path 16 is formed of the metal material. can avoid.

また、第3の実施形態においても、第1及び第2の実施形態と同様に、伝熱部材36に設けられた第1及び第2の反射面37a、37bによって紫外線を流路16内へ効率良く照射することが可能になり、光源11が有するLED12の温度の上昇を更に抑えることができる。したがって、第3の実施形態でも、紫外線照射効率の低下を抑制することができる。   Also in the third embodiment, similarly to the first and second embodiments, ultraviolet rays are efficiently introduced into the flow path 16 by the first and second reflecting surfaces 37a and 37b provided in the heat transfer member 36. It becomes possible to irradiate well, and the temperature rise of the LED 12 included in the light source 11 can be further suppressed. Therefore, also in 3rd Embodiment, the fall of ultraviolet irradiation efficiency can be suppressed.

(第4の実施形態)
図8は、第4の実施形態の流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。第4の実施形態は、流路部材15の外周面に形成された反射膜を有する点が、第3の実施形態と異なる。
(Fourth embodiment)
FIG. 8: is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer of 4th Embodiment. The fourth embodiment is different from the third embodiment in having a reflective film formed on the outer peripheral surface of the flow path member 15.

図8に示すように、第4の実施形態の流体殺菌装置4では、上述した伝熱部材36の第2の反射面37bの代わりに、流路部材15の外周面に反射膜43が形成されている。反射膜43としては、例えば、アルミニウム等の金属材料を用いて蒸着によって形成された薄膜や、石英粒子、硫酸バリウムによって形成された薄膜が用いられており、紫外線の反射率が高い反射膜が好ましい。   As shown in FIG. 8, in the fluid sterilization apparatus 4 of the fourth embodiment, a reflective film 43 is formed on the outer peripheral surface of the flow path member 15 instead of the second reflective surface 37 b of the heat transfer member 36 described above. ing. As the reflective film 43, for example, a thin film formed by vapor deposition using a metal material such as aluminum, or a thin film formed by quartz particles or barium sulfate is used, and a reflective film having a high ultraviolet reflectance is preferable. .

また、反射膜43は、流路16の内周面に設けられてもよい。流路16の内周面に設けられた反射膜43は、流路部材15の外周部に設けられた反射膜43に比べて、流路16内の流体に近づけられるので、相対的に効率良く紫外線を流体に照射することが可能になる。流路部材15の外周面または流路16の内周面に設けられる反射膜43は、流路部材15の外部から流路16内へ紫外線を通過させる開口を有していればよく、反射膜43が形成される領域が限定されるものではない。反射膜43は、例えば、断面円形状の流路16の管軸方向から見たときに、流路16内においてLED12に対向する半円部分の内面にわたって形成される。また、流路部材15の内周面に反射膜43が設けられることで、流路部材15の外周面と伝熱部材36との熱的な接触が、反射膜43によって妨げられることが抑制されるので、伝熱部材36から流路部材15への伝熱性が高められる。   Further, the reflective film 43 may be provided on the inner peripheral surface of the flow path 16. Since the reflective film 43 provided on the inner peripheral surface of the flow channel 16 can be brought closer to the fluid in the flow channel 16 than the reflective film 43 provided on the outer peripheral portion of the flow channel member 15, it is relatively efficient. It becomes possible to irradiate the fluid with ultraviolet rays. The reflection film 43 provided on the outer peripheral surface of the flow path member 15 or the inner peripheral surface of the flow path 16 may have an opening that allows ultraviolet light to pass from the outside of the flow path member 15 into the flow path 16. The region where 43 is formed is not limited. The reflective film 43 is formed over the inner surface of a semicircular portion facing the LED 12 in the flow channel 16 when viewed from the tube axis direction of the flow channel 16 having a circular cross section, for example. Further, the reflective film 43 is provided on the inner peripheral surface of the flow path member 15, so that the thermal contact between the outer peripheral surface of the flow path member 15 and the heat transfer member 36 is suppressed by the reflective film 43. Therefore, the heat transfer property from the heat transfer member 36 to the flow path member 15 is improved.

ところで、円管状の流路部材15の外周面は、寸法のばらつきや、表面の微小な凹凸を含んでいる。このため、伝熱部材36の第2の支持部36bに流路部材15の外周面が接触した状態で、第2の支持部36bと流路部材15の外周面との間に空気層が存在する。この空気層のバラツキに起因して、伝熱部材36による伝熱性、基板13の放熱性が変動するおそれがある。そこで、本実施形態では、流路部材15の外周面に形成された反射膜43と、第2の支持部36bとの間の隙間を埋める介在部材44が設けられている。介在部材44としては、例えばシリコングリースや熱伝導シート等が用いられており、伝熱部材36と流路部材15との接触性を高められている。   By the way, the outer peripheral surface of the tubular channel member 15 includes dimensional variations and minute irregularities on the surface. Therefore, an air layer exists between the second support portion 36 b and the outer peripheral surface of the flow path member 15 in a state where the outer peripheral surface of the flow path member 15 is in contact with the second support portion 36 b of the heat transfer member 36. To do. Due to the variation in the air layer, the heat transfer performance by the heat transfer member 36 and the heat dissipation performance of the substrate 13 may vary. Therefore, in the present embodiment, the interposition member 44 that fills the gap between the reflective film 43 formed on the outer peripheral surface of the flow path member 15 and the second support portion 36b is provided. As the interposition member 44, for example, silicon grease, a heat conduction sheet or the like is used, and the contact property between the heat transfer member 36 and the flow path member 15 is enhanced.

(第4の実施形態における殺菌作用)
第4の実施形態の流体殺菌装置4では、図8に示すように、光源11の各LED12から照射された紫外線が、第1の反射面37aの間隙Aを通って、流路16内の流体に照射される。流路部材15において、LED12に対向する外周面で反射された紫外線は、第1の反射面37aによって反射され、流路16内の流体へ照射される。
(Bactericidal action in the fourth embodiment)
In the fluid sterilizer 4 of the fourth embodiment, as shown in FIG. 8, the ultraviolet rays irradiated from the respective LEDs 12 of the light source 11 pass through the gap A of the first reflecting surface 37a, and the fluid in the flow path 16 Is irradiated. In the flow path member 15, the ultraviolet light reflected by the outer peripheral surface facing the LED 12 is reflected by the first reflection surface 37 a and is irradiated to the fluid in the flow path 16.

流路16に照射された紫外線の一部は、流路部材15を通過して反射膜43でそれぞれ反射され、再度、流路16内へ戻されて、流体に照射される。さらに、反射膜43で反射されて流路部材15を通過した紫外線は、第1の反射面37aで反射され、再度、流路16内へ戻されて流体に照射される。   A part of the ultraviolet rays irradiated to the flow path 16 passes through the flow path member 15 and is reflected by the reflection film 43, returned to the flow path 16 again, and irradiated to the fluid. Furthermore, the ultraviolet light reflected by the reflective film 43 and passed through the flow path member 15 is reflected by the first reflective surface 37a, and is returned again into the flow path 16 to be irradiated with the fluid.

光源11のLED12から照射された紫外線は、上述のように第1の反射面37a及び反射膜43によって多重反射を繰り返すことで、流路16内の流体に効率良く照射される。このようにLED12の紫外線を流体に効率良く照射することで、流体中の細菌が効果的に殺菌される。   The ultraviolet rays irradiated from the LED 12 of the light source 11 are efficiently irradiated to the fluid in the flow path 16 by repeating multiple reflections by the first reflecting surface 37a and the reflecting film 43 as described above. Thus, the bacteria in the fluid are effectively sterilized by efficiently irradiating the fluid with the ultraviolet rays of the LED 12.

(伝熱部材の伝熱作用)
第4の実施形態では、光源11の基板13に生じた熱が、基板13から伝熱部材36の第1の支持部36aへ伝わり、伝熱部材36の第2の支持部36bから介在部材44、流路部材15を介して、流路16内の流体へ熱が伝わる。このように、伝熱部材36によって基板13の熱が流体に奪われることで、基板13の放熱性が高められ、LED12の温度の上昇が抑えられる。
(Heat transfer action of heat transfer member)
In the fourth embodiment, the heat generated on the substrate 13 of the light source 11 is transmitted from the substrate 13 to the first support portion 36 a of the heat transfer member 36, and from the second support portion 36 b of the heat transfer member 36 to the interposition member 44. Heat is transferred to the fluid in the flow path 16 via the flow path member 15. Thus, the heat of the board | substrate 13 is taken by the fluid by the heat-transfer member 36, and the heat dissipation of the board | substrate 13 is improved and the raise of the temperature of LED12 is suppressed.

上述のように第4の実施形態においても、第3の実施形態と同様に、伝熱部材36によって、基板13に生じた熱が流路16内の流体に伝わることで、基板13の放熱性が高められ、LED12の温度の上昇を抑えることができる。加えて、第4の実施形態では、流路部材15と伝熱部材36の第2の支持部36bとの間に介在部材44が設けられたことで、伝熱部材36と流路部材15との接触性が高められる。このため、伝熱部材36から流路部材15を介して流体に伝わる伝熱性が高められ、基板13の放熱性を高めることができる。   As described above, also in the fourth embodiment, similarly to the third embodiment, heat generated in the substrate 13 is transmitted to the fluid in the flow path 16 by the heat transfer member 36, so that the heat dissipation of the substrate 13 is achieved. Is increased, and an increase in the temperature of the LED 12 can be suppressed. In addition, in the fourth embodiment, the interposition member 44 is provided between the flow path member 15 and the second support portion 36b of the heat transfer member 36, so that the heat transfer member 36, the flow path member 15, The contactability is improved. For this reason, the heat transfer property transmitted from the heat transfer member 36 to the fluid via the flow path member 15 is enhanced, and the heat dissipation property of the substrate 13 can be enhanced.

また、第4の実施形態においても、第1〜第3の実施形態と同様に、第1の反射面37a及び反射膜43によって紫外線を流路16内へ効率良く照射することが可能になり、光源11が有するLED12の温度の上昇を更に抑えることができる。したがって、第4の実施形態でも、紫外線照射効率の低下を抑制することができる。   Also in the fourth embodiment, similarly to the first to third embodiments, it becomes possible to efficiently irradiate ultraviolet rays into the flow path 16 by the first reflecting surface 37a and the reflecting film 43, An increase in the temperature of the LED 12 included in the light source 11 can be further suppressed. Therefore, also in 4th Embodiment, the fall of ultraviolet irradiation efficiency can be suppressed.

(第5の実施形態)
図9は、第5の実施形態の流体殺菌装置の要部のうち、流体が流れる方向に対して直交する断面を示す断面図である。第5の実施形態は、透光部材と伝熱部材とによって流路16が形成されると共に、流路16内に光触媒材料が設けられた点が、第1の実施形態と異なる。
(Fifth embodiment)
FIG. 9: is sectional drawing which shows the cross section orthogonal to the direction through which the fluid flows among the principal parts of the fluid sterilizer of 5th Embodiment. The fifth embodiment is different from the first embodiment in that a flow path 16 is formed by a translucent member and a heat transfer member, and a photocatalytic material is provided in the flow path 16.

図9に示すように、第5の実施形態の流体殺菌装置5は、紫外線を発する光源11と、LED12が発する紫外線を流路16に透過する透光部材55と、光源11の基板13に生じる熱を流路16内の流体へ伝える伝熱部材56と、を備える。そして、流体殺菌装置5では、透光部材55と伝熱部材56とが、流路16を有する流路部材として機能している。第5の実施形態における伝熱部材56は、第2の実施形態における伝熱部材26と類似しており、第1、3及び4の実施形態における流路部材15の一部を兼ねている。本実施形態における伝熱部材56は、流路部材15の流路16を構成する部分と、流路部材15と光源11の基板13を熱的に接続する部分と、を含む構成に相当する。   As shown in FIG. 9, the fluid sterilization apparatus 5 of the fifth embodiment is generated on the light source 11 that emits ultraviolet rays, the translucent member 55 that transmits the ultraviolet rays emitted by the LEDs 12 to the flow path 16, and the substrate 13 of the light source 11. And a heat transfer member 56 that transfers heat to the fluid in the flow path 16. In the fluid sterilizer 5, the translucent member 55 and the heat transfer member 56 function as a flow path member having the flow path 16. The heat transfer member 56 in the fifth embodiment is similar to the heat transfer member 26 in the second embodiment, and also serves as a part of the flow path member 15 in the first, third, and fourth embodiments. The heat transfer member 56 in the present embodiment corresponds to a configuration including a portion that configures the flow channel 16 of the flow channel member 15 and a portion that thermally connects the flow channel member 15 and the substrate 13 of the light source 11.

透光部材55は、紫外線透過性を有する材料によって断面半円状に形成されている。透光部材55は、断面矩形状の流路16の上半分の内面を構成している。透光部材55は、外周部が伝熱部材56に連結されている。透光部材55の外周部と伝熱部材56との接続部分には、図示しないパッキン部材が組み付けられており、パッキン部材によって流路16内が密封されている。   The translucent member 55 is formed in a semicircular cross section by a material having ultraviolet transparency. The translucent member 55 constitutes the inner surface of the upper half of the channel 16 having a rectangular cross section. The translucent member 55 has an outer peripheral portion connected to the heat transfer member 56. A packing member (not shown) is assembled at a connection portion between the outer peripheral portion of the light transmitting member 55 and the heat transfer member 56, and the inside of the flow path 16 is sealed by the packing member.

伝熱部材56は、光源11の基板13を支持する第1の支持部56aと、透光部材55の外周部が連結される第2の支持部56bと、を有する。第2の支持部56bは、断面円形状の流路16における下半分の内面を構成している。   The heat transfer member 56 includes a first support portion 56 a that supports the substrate 13 of the light source 11, and a second support portion 56 b to which the outer peripheral portion of the translucent member 55 is coupled. The second support portion 56b constitutes the inner surface of the lower half of the flow path 16 having a circular cross section.

また、伝熱部材56は、光源11から照射された紫外線を流路16内の流体へ反射する反射部としての反射面57aを有する。反射面57aは、LED12が発する紫外線を流路16へ照射するための間隙Aをあけて、LED12と流路16との間に設けられており、間隙Aを通った紫外線を流路16へ反射する。反射面57aは、間隙AがLED12側から流路16側に向かって徐々に大きくなる形状を呈する。   Further, the heat transfer member 56 has a reflection surface 57 a as a reflection portion that reflects the ultraviolet rays irradiated from the light source 11 to the fluid in the flow path 16. The reflection surface 57 a is provided between the LED 12 and the flow path 16 with a gap A for irradiating the flow path 16 with ultraviolet rays emitted from the LED 12, and reflects the ultraviolet light passing through the gap A to the flow path 16. To do. The reflective surface 57a has a shape in which the gap A gradually increases from the LED 12 side toward the channel 16 side.

また、第2の支持部56bの内面には、光触媒材料58が設けられている。光触媒材料58は、例えば、酸化チタン等の薄膜によって形成されている。光触媒材料58は、第2の支持部56bの内面の所定の領域全体にわたって設けられる、いわゆるベタ塗りされる構成に限定されるものではない。光触媒材料58は、例えば、流路16内に形成された反射面や、反射膜の上に部分的に設けられてもよい。これにより、光触媒の作用と、反射面または反射膜の反射作用とをそれぞれ得られる。   A photocatalytic material 58 is provided on the inner surface of the second support portion 56b. The photocatalytic material 58 is formed of a thin film such as titanium oxide, for example. The photocatalyst material 58 is not limited to the so-called solid-coated configuration provided over the entire predetermined region of the inner surface of the second support portion 56b. For example, the photocatalytic material 58 may be partially provided on a reflective surface formed in the flow path 16 or on the reflective film. Thereby, the effect | action of a photocatalyst and the reflection effect of a reflective surface or a reflecting film are each obtained.

(第5の実施形態における殺菌作用)
第5の実施形態の流体殺菌装置5では、図9に示すように、光源11の各LED12から照射された紫外線が、反射面57aの間隙Aを通って、流路16内の流体に照射される。透光部材55において、LED12に対向する外周面で反射された紫外線の一部は、反射面57aによって反射され、流路16内の流体へ照射される。流路16に照射された紫外線は、透光部材55を通過して、流体に照射されると共に、光触媒材料58に照射されることで、光触媒作用によって流体を殺菌する。
(Bactericidal action in the fifth embodiment)
In the fluid sterilization apparatus 5 of the fifth embodiment, as shown in FIG. 9, the ultraviolet rays irradiated from the respective LEDs 12 of the light source 11 are irradiated to the fluid in the flow path 16 through the gap A of the reflecting surface 57a. The In the translucent member 55, a part of the ultraviolet light reflected by the outer peripheral surface facing the LED 12 is reflected by the reflecting surface 57 a and irradiated to the fluid in the flow path 16. The ultraviolet rays irradiated to the flow path 16 pass through the translucent member 55 to irradiate the fluid and to the photocatalyst material 58 to sterilize the fluid by the photocatalytic action.

光源11のLED12から照射された紫外線は、上述のように反射面57aによって多重反射を繰り返すことで、流路16内の流体、及び光触媒材料58に効率良く照射される。このようにLED12の紫外線を流体及び光触媒材料58に効率良く照射することで、紫外線による殺菌作用と、光触媒材料58による殺菌作用との相乗効果により、流体中の細菌が更に効果的に殺菌される。   The ultraviolet rays irradiated from the LED 12 of the light source 11 are efficiently irradiated to the fluid in the flow path 16 and the photocatalytic material 58 by repeating multiple reflections by the reflecting surface 57a as described above. By efficiently irradiating the fluid and the photocatalyst material 58 with the ultraviolet rays of the LED 12 in this manner, bacteria in the fluid are more effectively sterilized by the synergistic effect of the sterilization action by the ultraviolet rays and the sterilization action by the photocatalyst material 58. .

(伝熱部材の伝熱作用)
第5の実施形態では、光源11の基板13に生じた熱が、基板13から伝熱部材56の第1の支持部56aへ伝わり、伝熱部材56の第2の支持部56bから、流路16内の流体へ熱が伝わる。このように、伝熱部材56によって基板13の熱が流体に奪われることで、基板13の放熱性が高められ、LED12の温度の上昇が抑えられる。
(Heat transfer action of heat transfer member)
In the fifth embodiment, the heat generated on the substrate 13 of the light source 11 is transmitted from the substrate 13 to the first support portion 56a of the heat transfer member 56, and from the second support portion 56b of the heat transfer member 56 to the flow path. Heat is transferred to the fluid in 16. As described above, the heat of the substrate 13 is taken away by the fluid by the heat transfer member 56, so that the heat dissipation of the substrate 13 is enhanced and the temperature rise of the LED 12 is suppressed.

上述のように第5の実施形態においても、第2〜第4の実施形態と同様に、伝熱部材56によって、基板13に生じた熱が流路16内の流体に伝わることで、基板13の放熱性が高められ、LED12の温度の上昇を抑えることができる。加えて、第5の実施形態では、流路16の内面に光触媒材料58が設けられたことで、紫外線による殺菌作用と、光触媒材料58による殺菌作用との相乗効果により、流体を更に効果的に殺菌することができる。   As described above, also in the fifth embodiment, similarly to the second to fourth embodiments, the heat generated in the substrate 13 is transmitted to the fluid in the flow path 16 by the heat transfer member 56, thereby causing the substrate 13. The heat dissipation of the LED 12 can be enhanced, and an increase in the temperature of the LED 12 can be suppressed. In addition, in the fifth embodiment, the photocatalyst material 58 is provided on the inner surface of the flow path 16, so that the fluid can be made more effective by the synergistic effect of the sterilization action by the ultraviolet rays and the sterilization action by the photocatalyst material 58. Can be sterilized.

また、第5の実施形態においても、第1〜第4の実施形態と同様に、反射面57aによって紫外線を流路16内へ効率良く照射することが可能になり、光源11が有するLED12の温度の上昇を更に抑えることができる。よって、第5の実施形態でも、紫外線照射効率の低下を抑制することができる。   Also in the fifth embodiment, similarly to the first to fourth embodiments, it is possible to efficiently irradiate ultraviolet rays into the flow path 16 by the reflecting surface 57a, and the temperature of the LED 12 included in the light source 11 is increased. Can be further suppressed. Therefore, also in 5th Embodiment, the fall of ultraviolet irradiation efficiency can be suppressed.

なお、本実施形態における光触媒材料58は、第1〜第4の実施形態における流路16の内面に設けられてもよく、流体の殺菌作用を高めることができる。また、紫外線透過性材料によって形成された流路部材15の内面に光触媒材料58が設けられる場合、流路部材15の外周面に反射膜43が形成されてもよい。光触媒材料58を透過した紫外線を反射膜43によって流路16内に反射し、流体への紫外線の照射効率が高められる。   In addition, the photocatalyst material 58 in this embodiment may be provided in the inner surface of the flow path 16 in the 1st-4th embodiment, and can improve the bactericidal action of the fluid. Further, when the photocatalytic material 58 is provided on the inner surface of the flow path member 15 formed of an ultraviolet light transmissive material, the reflective film 43 may be formed on the outer peripheral surface of the flow path member 15. The ultraviolet rays that have passed through the photocatalytic material 58 are reflected into the flow path 16 by the reflective film 43, and the irradiation efficiency of the ultraviolet rays onto the fluid is increased.

また、光源11の基板13に生じた熱を、流路16内の流体へ効率良く伝えて、基板13の放熱性を高める観点では、例えば、伝熱部材26、36、56が、流路16に連続する他の流路と熱的に接するように構成されてもよい。この構成の場合、伝熱部材26、36、56は、光源11の基板13に接する第1の支持部26a、36a、56aが延ばされると共に、流路16に連続する流路を有する他の流路部材23に連結される。これにより、基板13は、複数の流路を流れる流体へ熱を伝えることが可能になり、基板13の放熱性を高めると共に、流体への伝熱性を高めることができる。   Further, from the viewpoint of efficiently transferring the heat generated in the substrate 13 of the light source 11 to the fluid in the flow path 16 and improving the heat dissipation of the substrate 13, for example, the heat transfer members 26, 36, and 56 are connected to the flow path 16. It may be configured so as to be in thermal contact with another continuous flow path. In the case of this configuration, the heat transfer members 26, 36, and 56 are provided with other flow paths in which the first support portions 26 a, 36 a, and 56 a that are in contact with the substrate 13 of the light source 11 are extended and the flow paths are continuous with the flow paths 16. Connected to the road member 23. As a result, the substrate 13 can transmit heat to the fluid flowing through the plurality of flow paths, thereby improving the heat dissipation of the substrate 13 and improving the heat transfer to the fluid.

また、光源11の基板13に生じた熱を、流路16内の流体へ伝える熱のみでは流体の温度上昇が見られない場合や、流体の温度上昇が大きすぎて流体の使用に耐えられない場合に備えて、温調手段(図示しない)を有していてもよい。   Further, when the heat generated on the substrate 13 of the light source 11 is transmitted only to the fluid in the flow path 16, the temperature rise of the fluid is not observed, or the temperature rise of the fluid is too large to withstand the use of the fluid. In preparation for the case, you may have a temperature control means (not shown).

また、光源11の基板13に生じた熱を、流路16内の流体へロス無く伝えるため、例えば、伝熱部材26、36、56の外周を覆う保温層(図示しない)を有していてもよい。   Further, in order to transmit heat generated in the substrate 13 of the light source 11 to the fluid in the flow path 16 without loss, for example, a heat insulating layer (not shown) covering the outer periphery of the heat transfer members 26, 36, 56 is provided. Also good.

(歯科用医療機構の構成)
上述した各実施形態の流体殺菌装置のいずれかが適用された第6の実施形態の歯科用医療機器について簡単に説明する。図10は、第6の実施形態に係る歯科用医療機器6について示す模式図である。図10に示すように、第6の実施形態の歯科用医療機器6は、一例として、伝熱部材26を有する第2の実施形態の流体殺菌装置2と、流体殺菌装置2の流路16内を通過した液体を供給する供給部60と、を備える。
(Structure of dental medical mechanism)
A dental medical device according to the sixth embodiment to which any of the fluid sterilization apparatuses according to the above-described embodiments is applied will be briefly described. FIG. 10 is a schematic diagram showing the dental medical device 6 according to the sixth embodiment. As shown in FIG. 10, the dental medical device 6 of the sixth embodiment includes, as an example, the fluid sterilizer 2 of the second embodiment having a heat transfer member 26 and the flow path 16 of the fluid sterilizer 2. And a supply unit 60 for supplying the liquid that has passed through.

本実施形態の歯科用医療機器6の供給部60としては、例えば、口腔内へ水を供給するノズルを有する治療器具や、コップ等へ水を供給する水供給装置等が用いられる。流体殺菌装置2は、上述したように、基板13の熱を伝熱部材26によって流路16内の水へ放熱している。言い換えると、流体殺菌装置2は、伝熱部材26によって流路16内の水を温めている。このため、本実施形態の歯科用医療機器6によれば、流体殺菌装置2によって殺菌されると共に温められた水が、供給部60から口腔内へ供給することができる。このため、供給部60から供給する水が、歯科治療中に歯等の口腔内へ刺激を与えることを抑えることが可能になり、殺菌された清潔な水を、刺激が少ない温度で口腔内へ供給することができる。   As the supply unit 60 of the dental medical device 6 of the present embodiment, for example, a treatment instrument having a nozzle that supplies water into the oral cavity, a water supply device that supplies water to a cup, or the like is used. As described above, the fluid sterilizer 2 radiates the heat of the substrate 13 to the water in the flow path 16 by the heat transfer member 26. In other words, the fluid sterilizer 2 warms the water in the flow path 16 by the heat transfer member 26. For this reason, according to the dental medical device 6 of this embodiment, the water sterilized by the fluid sterilizer 2 and warmed can be supplied from the supply unit 60 into the oral cavity. For this reason, it becomes possible to suppress that the water supplied from the supply part 60 gives irritation | stimulation in oral cavity, such as a tooth | gear, during a dental treatment, and disinfects clean water into the oral cavity at a temperature with little irritation. Can be supplied.

なお、歯科用医療機器6は、殺菌した水が加熱される点で、伝熱部材26、36、56を有する第2〜第5の流体殺菌装置2、3、4、5を備える構成が好ましいが、殺菌した水を供給する点で、第1の実施形態の流体殺菌装置1が採用されてもよい。   The dental medical device 6 preferably includes the second to fifth fluid sterilizers 2, 3, 4, 5 having the heat transfer members 26, 36, 56 in that the sterilized water is heated. However, the fluid sterilization apparatus 1 of 1st Embodiment may be employ | adopted by the point which supplies the sterilized water.

本発明の実施形態を説明したが、実施形態は、例として提示したものであり、本発明の範囲を限定することを意図していない。実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、本発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although the embodiments of the present invention have been described, the embodiments are presented as examples and are not intended to limit the scope of the present invention. The embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The embodiments and modifications thereof are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalents thereof.

1 流体殺菌装置
11 光源
12 LED
13 基板
15 流路部材
16 流路
18 反射部材
19a 第1の反射面
19b 第2の反射面
26 伝熱部材
43 反射膜
58 光触媒材料
A 間隙
1 Fluid sterilizer 11 Light source 12 LED
13 Substrate 15 Channel member 16 Channel 18 Reflecting member 19a First reflecting surface 19b Second reflecting surface
26 Heat Transfer Member 43 Reflective Film 58 Photocatalytic Material A Gap

Claims (10)

紫外線を発する発光素子が実装された基板を有する光源と;
少なくとも一部が紫外線透過性を有する材料によって形成され、前記発光素子が発する紫外線が照射される筒状の流路部材と;
前記発光素子と前記流路部材との間に互いに間隙をあけて設けられる反射面を有し、前記間隙を通った紫外線を前記流路部材へ反射する反射部と;
を具備し、
前記発光素子の法線と前記反射面とがなす角度をθ (°)、前記発光素子の半値角度をθ (°)としたとき、θ ≦θ である、流体殺菌装置。
A light source having a substrate on which a light emitting element emitting ultraviolet rays is mounted;
A cylindrical flow path member that is formed of a material having at least a part that transmits ultraviolet rays and irradiated with ultraviolet rays emitted from the light emitting element;
A reflective portion having a reflective surface provided with a gap between the light emitting element and the flow path member, and reflecting the ultraviolet rays passing through the gap to the flow path member;
Equipped with,
The fluid sterilizer , wherein θ 1 ≦ θ 2, where θ 1 (°) is an angle formed between the normal line of the light emitting element and the reflecting surface, and θ 2 (°) is a half-value angle of the light emitting element .
前記流路部材の単位容積当たりに流れる流体の流量をQ(dm/min)、前記流路部材の、前記流体の流れる方向に直交する断面の断面積をA(mm)、前記流路部材における前記流体の流れる方向の長さをL(mm)としたとき、以下の式を満たす、請求項1に記載の流体殺菌装置。
Q/(A×L)<1.25×10−3(min−1
ただし、前記流路部材の最大内寸法をφ(mm)としたとき、φ<L。
The flow rate of the fluid flowing per unit volume of the flow path member is Q (dm 3 / min), the cross-sectional area of the cross section of the flow path member perpendicular to the fluid flow direction is A (mm 2 ), and the flow path The fluid sterilizer according to claim 1, wherein a length of the member in a direction in which the fluid flows is L (mm), and the following formula is satisfied.
Q / (A × L) <1.25 × 10 −3 (min −1 )
However, when the maximum inner dimension of the flow path member is φ (mm), φ <L.
前記流路部材は、前記基板の延びる方向と異なる方向に延びて形成されている、請求項1または2に記載の流体殺菌装置。 The channel member is formed to extend in a direction different from the direction of extension of the substrate, fluid disinfection apparatus according to claim 1 or 2. 前記流路部材の外面または前記流路部材の内面には、前記光源から照射された紫外線を前記流路部材の内面へ反射する別の反射面が設けられている、請求項1ないしのいずれか1項に記載の流体殺菌装置。 The inner surface of the outer surface or the flow path member of the flow path member, another reflection surface for reflecting the ultraviolet rays irradiated from the light source to the inner surface of the flow path member is provided, one of the claims 1 to 3 The fluid sterilizer according to claim 1. 前記流路部材の内面には、光触媒材料が設けられている、請求項1ないしのいずれか1項に記載の流体殺菌装置。 The fluid sterilizer according to any one of claims 1 to 4 , wherein a photocatalytic material is provided on an inner surface of the flow path member. 前記光源の少なくとも一部と前記流路部材とを連結し、前記光源の熱を前記流路部材の内面を流れる流体へ伝える伝熱部材を更に具備する、請求項1ないしのいずれか1項に記載の流体殺菌装置。 Connecting the at least a portion the flow path member of the light source, further comprising a heat transfer member for transferring heat of the light source to the inner surface of the flow path member to flow Ru flow body, any one of claims 1 to 5 The fluid sterilizer according to item 1. 前記伝熱部材は、前記基板と前記流路部材とに接している、請求項に記載の流体殺菌装置。 The fluid sterilizer according to claim 6 , wherein the heat transfer member is in contact with the substrate and the flow path member. 前記流路部材は、少なくとも一部が前記伝熱部材によって形成されている、請求項またはに記載の流体殺菌装置。 The fluid sterilizer according to claim 6 or 7 , wherein at least a part of the flow path member is formed by the heat transfer member. 請求項1ないしのいずれか1項に記載の流体殺菌装置と;
前記流体殺菌装置の前記流路部材を通過した液体を供給する供給部と;
を具備する、歯科用医療機器。
A fluid sterilizer according to any one of claims 1 to 8 ;
A supply unit for supplying liquid that has passed through the flow path member of the fluid sterilizer;
A dental medical device comprising:
紫外線を発する発光素子が実装された基板を有する光源から紫外線を照射し、
流路部材の内面を流れる流体へ紫外線を照射するための間隙を有して設けられる反射面によって、前記間隙を通過した紫外線を前記発光素子と前記流路部材の内面との間で前記流路部材へ反射し、前記流路部材内の流体へ紫外線を照射する、流体殺菌方法であって、
前記発光素子の法線と前記反射面とがなす角度をθ (°)、前記発光素子の半値角度をθ (°)としたとき、θ ≦θ とする、流体殺菌方法。
Irradiate ultraviolet rays from a light source having a substrate on which light emitting elements emitting ultraviolet rays are mounted,
The flow path between the light emitting element and the inner surface of the flow path member transmits the ultraviolet light that has passed through the gap by a reflection surface provided with a gap for irradiating the fluid flowing on the inner surface of the flow path member with ultraviolet light. A fluid sterilization method that reflects to a member and irradiates the fluid in the channel member with ultraviolet rays ,
The normal and the angle between the reflecting surface is formed of a light-emitting element θ 1 (°), when the half angle of the light emitting device was θ 2 (°), and θ 1 θ 2, the method fluid disinfection.
JP2016042366A 2016-03-04 2016-03-04 Fluid sterilizer, dental medical device, and fluid sterilization method Active JP6620604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016042366A JP6620604B2 (en) 2016-03-04 2016-03-04 Fluid sterilizer, dental medical device, and fluid sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016042366A JP6620604B2 (en) 2016-03-04 2016-03-04 Fluid sterilizer, dental medical device, and fluid sterilization method

Publications (2)

Publication Number Publication Date
JP2017154118A JP2017154118A (en) 2017-09-07
JP6620604B2 true JP6620604B2 (en) 2019-12-18

Family

ID=59807667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042366A Active JP6620604B2 (en) 2016-03-04 2016-03-04 Fluid sterilizer, dental medical device, and fluid sterilization method

Country Status (1)

Country Link
JP (1) JP6620604B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044880A (en) * 2017-10-23 2019-05-02 서울바이오시스 주식회사 Sterilization device
JP7109930B2 (en) * 2018-02-05 2022-08-01 日機装株式会社 Fluid sterilizer
JP2023096480A (en) * 2021-12-27 2023-07-07 ウシオ電機株式会社 Fluid treatment device
JP7474313B1 (en) 2022-12-16 2024-04-24 星和電機株式会社 Fluid Sterilization Device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057845A (en) * 2002-07-24 2004-02-26 Ishikawajima Harima Heavy Ind Co Ltd Method of sterilizing beverage and apparatus therefor
US9511344B2 (en) * 2007-12-18 2016-12-06 Ultraviolet Sciences, Inc. Ultraviolet light treatment chamber
US9592102B2 (en) * 2009-05-18 2017-03-14 Kavo Dental Technologies, Llc Dental hand tool with disinfection reactor
JP6625522B2 (en) * 2013-05-22 2019-12-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Biocidal purification reactor
JP2014233646A (en) * 2013-05-30 2014-12-15 日機装株式会社 Water purifier

Also Published As

Publication number Publication date
JP2017154118A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6620604B2 (en) Fluid sterilizer, dental medical device, and fluid sterilization method
JP7204485B2 (en) Heat dissipation device and method for UV-LED photoreactor
JP6224492B2 (en) Light irradiation device
JP6834664B2 (en) Fluid sterilizer
JP6458779B2 (en) Fluid sterilizer
JP6549456B2 (en) Fluid sterilizer
JP6891537B2 (en) Fluid sterilizer
US20180228928A1 (en) Fluid sterilization device and fluid sterilization method
EP2915546B1 (en) Ultraviolet sterilizer and sterilization method
JP6698496B2 (en) UV light irradiation device
TWI753132B (en) Fluid sterilization device
JP7011931B2 (en) Fluid sterilizer
JP6798327B2 (en) Fluid sterilizer
JP6710139B2 (en) Sterilizer
JP6885279B2 (en) Fluid sterilizer
JP6192679B2 (en) Liquid sterilization method and sterilizer
JP7370261B2 (en) Fluid sterilizer and fluid sterilizer unit
JP6939013B2 (en) Water heater
JP2021115298A5 (en)
JP2020000285A (en) Fluid sterilizer
CN208700633U (en) Fluid sterilizing unit
WO2021085143A1 (en) Fluid sterilization device
JP2022103883A (en) Sterilizer
JP2020103629A (en) Fluid sterilizing apparatus
JP2021049072A (en) Fluid sterilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R151 Written notification of patent or utility model registration

Ref document number: 6620604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151