JP6617957B2 - Copper removal material for electroless palladium plating solution - Google Patents

Copper removal material for electroless palladium plating solution Download PDF

Info

Publication number
JP6617957B2
JP6617957B2 JP2015202897A JP2015202897A JP6617957B2 JP 6617957 B2 JP6617957 B2 JP 6617957B2 JP 2015202897 A JP2015202897 A JP 2015202897A JP 2015202897 A JP2015202897 A JP 2015202897A JP 6617957 B2 JP6617957 B2 JP 6617957B2
Authority
JP
Japan
Prior art keywords
copper
plating solution
palladium plating
electroless palladium
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015202897A
Other languages
Japanese (ja)
Other versions
JP2017075355A (en
Inventor
昭典 河内
昭典 河内
一臣 菅原
一臣 菅原
良子 工藤
良子 工藤
森本 徹
徹 森本
由香 岩本
由香 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Unitika Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd, Unitika Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2015202897A priority Critical patent/JP6617957B2/en
Publication of JP2017075355A publication Critical patent/JP2017075355A/en
Application granted granted Critical
Publication of JP6617957B2 publication Critical patent/JP6617957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Chemically Coating (AREA)

Description

本発明は、無電解パラジウムめっき液の銅除去材、当該銅除去材を用いた無電解パラジウムめっき液中の銅除去方法、当該銅除去材を含む無電解パラジウムめっき液、当該銅除去材を用いて銅を除去した無電解パラジウムめっき液を用いる無電解パラジウムめっき方法、及び、当該銅除去材を用いて銅を除去した無電解パラジウムめっき液を用いて部材表面にパラジウムめっきを施す電子部品の製造方法に関する。   The present invention uses a copper removing material for an electroless palladium plating solution, a method for removing copper in an electroless palladium plating solution using the copper removing material, an electroless palladium plating solution containing the copper removing material, and the copper removing material. Electroless palladium plating method using an electroless palladium plating solution from which copper has been removed, and manufacture of electronic components in which palladium plating is performed on a member surface using an electroless palladium plating solution from which copper has been removed using the copper removing material Regarding the method.

パソコン、スマートフォン、デジタルカメラ等の多くのデジタル機器には、プリント基板やパッケージ基板等の電子部品が使われている。これらの電子部品は、種々の表面処理技術により設計、製造されている。その中で、配線接合部分、電気接点部品等においては、貴金属を用いた表面処理が行われている。従来、このような表面処理では、金めっきを施すことが主流であった。しかしながら、金は、導電性、ボンディング性に優れているものの、非常に高価であるため、近年、より安価なパラジウムを用いた無電解パラジウムめっきも開発され、採用されている。   Electronic parts such as printed boards and package boards are used in many digital devices such as personal computers, smartphones, and digital cameras. These electronic components are designed and manufactured by various surface treatment techniques. Among them, surface treatment using noble metals is performed on wiring junctions, electrical contact parts, and the like. Conventionally, gold plating has been the mainstream in such surface treatment. However, although gold is excellent in conductivity and bonding properties, it is very expensive, and in recent years, electroless palladium plating using less expensive palladium has been developed and adopted.

無電解パラジウムめっきを施す工程は、一般に、電子部品の製造ラインにおいて後段に位置し、その前段には、配線を形成する銅めっきや下地をつくるためのニッケルめっき等を施す工程が存在する。種々のめっき工程の間には、水洗工程が設けられており、連続的に生産される電子部品は、各めっき工程完了後に洗浄される。しかしながら、洗浄によっても、前のめっき工程の成分が次のめっき工程に持ち込まれることがある。無電解パラジウムめっきの工程では、前の銅めっき工程から銅が持ち込まれることがある。無電解パラジウムめっき工程においては、銅が極微量でも混入していると、パラジウムめっきの付き回りに大きく影響し、製品不良が発生する。このため、無電解パラジウムめっき液中に銅が混入してパラジウムの析出性が低下した場合には、めっき液の一部または全液を更新することが必要となり、コスト的に非常に不利となる。   The process of performing electroless palladium plating is generally located in the subsequent stage in the production line of electronic components, and there is a process of performing copper plating for forming wiring, nickel plating for forming a base, or the like in the preceding stage. A water washing process is provided between the various plating processes, and continuously produced electronic components are washed after each plating process is completed. However, the components of the previous plating process may be brought into the next plating process even by cleaning. In the electroless palladium plating process, copper may be brought in from the previous copper plating process. In the electroless palladium plating process, if a very small amount of copper is mixed, the influence of palladium plating is greatly affected, resulting in product defects. For this reason, when copper is mixed in the electroless palladium plating solution and the precipitation of palladium is lowered, it is necessary to renew a part or all of the plating solution, which is very disadvantageous in terms of cost. .

金めっき液中の重金属類の除去方法としては、キレート樹脂等のキレート剤を用いる方法が知られており、例えば、金めっき液中に不純物として混入している鉄、ニッケル、銅等の重金属類を除去するため、特定の化合物を金めっき中に添加して重金属類とキレート化合物を形成させ、分離、除去する方法が知られている(例えば、特許文献1参照。)。該文献によれば、活性炭を用いる方法等では重金属の除去は十分に行えないとする一方、該文献に記載の方法によれば、鉄、ニッケル、銅などの重金属類を簡単な操作で、かつ金をほとんど損失することなく効率よく除去することができるとされている。   As a method for removing heavy metals in a gold plating solution, a method using a chelating agent such as a chelate resin is known. For example, heavy metals such as iron, nickel, copper mixed as impurities in the gold plating solution In order to remove water, a method is known in which a specific compound is added to gold plating to form a heavy metal and a chelate compound, and separated and removed (see, for example, Patent Document 1). According to this document, it is said that heavy metals cannot be sufficiently removed by a method using activated carbon, etc., whereas according to the method described in this document, heavy metals such as iron, nickel and copper can be easily operated, and It is said that gold can be removed efficiently with almost no loss.

また、例えば、めっきに使用された金めっき液にキレート樹脂を接触させる金めっき液の再生処理方法が知られている(例えば、特許文献2参照)。該文献によれば、活性炭処理では、銅イオン、鉄イオン、ニッケルイオン、クロムイオン等の妨害金属イオンの除去は不十分という問題点があったとする一方、該文献に記載の再生処理方法によれば、金めっき液の金塩及び他の必須成分の吸着を影響がない範囲内に抑えることができ、かつ建浴当初の金めっき液から得られたものと実質的に変わらない結晶構造の皮膜を、生成処理されためっき液から析出させることが可能であるとされている。   Further, for example, a method for regenerating a gold plating solution in which a chelate resin is brought into contact with a gold plating solution used for plating is known (see, for example, Patent Document 2). According to the literature, the activated carbon treatment has a problem that the removal of interfering metal ions such as copper ions, iron ions, nickel ions, and chromium ions is insufficient. For example, it is possible to suppress the adsorption of the gold salt and other essential components of the gold plating solution within an unaffected range, and the film having a crystal structure substantially the same as that obtained from the gold plating solution at the beginning of the bath Can be deposited from the plating solution that has been generated.

一方、無電解パラジウムめっき液については、例えば、銅などの不純物が含まれた無電解パラジウムめっき液を用いる場合であっても、ニッケル皮膜上に安定してパラジウムめっき皮膜を析出させる方法として、パラジウム化合物及びヒドラジン類を含有する水溶液からなる活性化組成物により活性化処理をおこない、その後、無電解パラジウムめっきを行うめっき皮膜形成方法が知られている(例えば、特許文献3参照。)。該文献によれば、銅イオンについては、無電解パラジウムめっき液中に0.1mg/L程度の微量含まれるだけでもめっき反応が停止する場合があり、このような微量の不純物については、活性炭処理では完全には除去することは困難であるとする一方、該文献に記載の方法によれば、不純物として銅イオンを含む無電解パラジウムめっき液を用いた場合であっても、ニッケルめっき皮膜上に良好なパラジウムめっき皮膜を形成できるとされている。   On the other hand, as for the electroless palladium plating solution, for example, even when an electroless palladium plating solution containing impurities such as copper is used, as a method of stably depositing a palladium plating film on a nickel film, palladium is used. There is known a plating film forming method in which activation treatment is performed with an activation composition comprising an aqueous solution containing a compound and hydrazines, and then electroless palladium plating is performed (see, for example, Patent Document 3). According to the literature, for copper ions, the plating reaction may stop even if only a small amount of about 0.1 mg / L is contained in the electroless palladium plating solution. However, according to the method described in this document, even when an electroless palladium plating solution containing copper ions as impurities is used, the nickel plating film is formed on the nickel plating film. It is said that a good palladium plating film can be formed.

特開昭63−62900号公報JP-A 63-62900 特開2002−309400号公報JP 2002-309400 A 特開2008−184679号公報JP 2008-184679 A

例えば、特許文献1〜3に開示されているように、従来、金めっき液または無電解パラジウムめっき液中の銅は、活性炭処理では除去が困難であるというのが技術常識であった。また、例えば、特許文献1及び2に開示されているように、金めっき液の銅除去材としては、キレート剤を用いることが知られていた。しかしながら、本発明者等が検討した結果、無電解パラジウムめっき液の銅除去材として、特許文献1または2に開示されているキレート剤を用いた場合、銅除去効果が不十分であるという問題があることを知得した。   For example, as disclosed in Patent Documents 1 to 3, conventionally, it has been common technical knowledge that copper in a gold plating solution or an electroless palladium plating solution is difficult to remove by an activated carbon treatment. For example, as disclosed in Patent Documents 1 and 2, it has been known to use a chelating agent as a copper removing material for a gold plating solution. However, as a result of studies by the present inventors, when the chelating agent disclosed in Patent Document 1 or 2 is used as the copper removing material of the electroless palladium plating solution, there is a problem that the copper removing effect is insufficient. I knew that there was.

そこで、本発明は、上記問題を解決し、無電解パラジウムめっき液中の銅除去効果に優れた、無電解パラジウムめっき液の銅除去材を提供することを主な課題とする。   Then, this invention makes it a main subject to solve the said problem and to provide the copper removal material of the electroless palladium plating solution excellent in the copper removal effect in the electroless palladium plating solution.

本発明者等は、上記問題を解決すべく検討し、従来、金めっき液または無電解パラジウムめっき液中の銅の除去が困難であるということが技術常識であった活性炭に着目した。そして、本発明者等が鋭意検討した結果、上記技術常識に反し、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において、細孔直径10Å以上20Å以下の範囲の細孔容積が0.05cc/g以上という特定の繊維状活性炭を、無電解パラジウムめっき液の銅除去材として用いた場合は、該液中の銅除去に優れた効果を発揮することを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。   The present inventors have studied to solve the above problems, and have focused attention on activated carbon, which has conventionally been a common technical knowledge that it is difficult to remove copper from a gold plating solution or an electroless palladium plating solution. And as a result of intensive studies by the present inventors, contrary to the above-mentioned technical common sense, in the pore distribution obtained by the MP method using a nitrogen adsorption isotherm at a temperature of 77.4K, pores having a pore diameter in the range of 10 mm to 20 mm. It has been found that when a specific fibrous activated carbon having a volume of 0.05 cc / g or more is used as a copper removing material of an electroless palladium plating solution, it exhibits an excellent effect for removing copper in the solution. The present invention has been completed by further studies based on these findings.

すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において、細孔直径10Å以上20Å以下の範囲の細孔容積が、0.05cc/g以上である繊維状活性炭を含む、無電解パラジウムめっき液の銅除去材。
項2. 前記繊維状活性炭の比表面積が1000m2/g以上である、項1に記載の無電解パラジウムめっき液の銅除去材。
項3. 前記繊維状活性炭の全細孔容積が、0.4〜1.5cc/gである、項1又は2に記載の無電解パラジウムめっき液の銅除去材。
項4. 前記無電解パラジウムめっき液中のパラジウム化合物の濃度が、0.1〜30g/Lである、項1〜3のいずれか1項に記載の無電解パラジウムめっき液の銅除去材。
項5. 項1〜4のいずれか1項に記載の無電解パラジウムめっき液の銅除去材を用いる、無電解パラジウムめっき液中の銅除去方法。
項6. パラジウム化合物と、項1〜4のいずれか1項に記載の無電解パラジウムめっき液の銅除去材を含む、無電解パラジウムめっき液。
項7. 項1〜4のいずれか1項に記載の無電解パラジウムめっき液の銅除去材を用いて銅を除去した無電解パラジウムめっき液を用いる、無電解パラジウムめっき方法。
項8. 項1〜4のいずれか1項に記載の無電解パラジウムめっき液の銅除去材を用いて銅を除去した無電解パラジウムめっき液を用いて、部材表面にパラジウムめっきを施す工程を備える、電子部品の製造方法。
That is, this invention provides the invention of the aspect hung up below.
Item 1. In a pore distribution determined by the MP method using a nitrogen adsorption isotherm at a temperature of 77.4K, the pore volume in a range of pore diameters of 10 mm or more and 20 mm or less includes fibrous activated carbon having a volume of 0.05 cc / g or more. Copper removal material for electrolytic palladium plating solution.
Item 2. Item 2. The copper removing material for electroless palladium plating solution according to Item 1, wherein the fibrous activated carbon has a specific surface area of 1000 m 2 / g or more.
Item 3. Item 3. The copper removing material for electroless palladium plating solution according to Item 1 or 2, wherein the total pore volume of the fibrous activated carbon is 0.4 to 1.5 cc / g.
Item 4. Item 4. The copper removing material for electroless palladium plating solution according to any one of items 1 to 3, wherein the concentration of the palladium compound in the electroless palladium plating solution is 0.1 to 30 g / L.
Item 5. The copper removal method in the electroless palladium plating solution using the copper removal material of the electroless palladium plating solution of any one of claim | item 1-4.
Item 6. An electroless palladium plating solution comprising a palladium compound and a copper removing material of the electroless palladium plating solution according to any one of Items 1 to 4.
Item 7. The electroless palladium plating method using the electroless palladium plating solution which removed copper using the copper removal material of the electroless palladium plating solution of any one of claim | item 1-4.
Item 8. An electronic component comprising a step of performing palladium plating on a member surface using an electroless palladium plating solution obtained by removing copper using the copper removing material of the electroless palladium plating solution according to any one of items 1 to 4. Manufacturing method.

本発明の無電解パラジウムめっき液の銅除去材によれば、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において、細孔直径10Å以上20Å以下の範囲の細孔容積が0.05cc/g以上である繊維状活性炭を含むことから、無電解パラジウムめっき液中の銅が効果的に除去される。このため、前の銅めっき工程からの銅が、無電解パラジウムめっき液中に混入したとしても、本発明の銅除去材を用いることにより、当該めっき液中から銅が好適に除去される。また、本発明の銅除去材を用いることにより、無電解パラジウムめっき液を繰り返し再利用しやすくなる。よって、本発明の銅除去材によれば、無電解パラジウムめっきが施された電子部品の製造コストを効果的に低減することが可能となる。   According to the copper removing material of the electroless palladium plating solution of the present invention, in the pore distribution determined by the MP method using the nitrogen adsorption isotherm at a temperature of 77.4K, the pore volume in the range of the pore diameter of 10 mm or more and 20 mm or less is obtained. Since the fibrous activated carbon which is 0.05 cc / g or more is included, copper in the electroless palladium plating solution is effectively removed. For this reason, even if the copper from the previous copper plating process is mixed in the electroless palladium plating solution, the copper is suitably removed from the plating solution by using the copper removing material of the present invention. Moreover, it becomes easy to reuse an electroless palladium plating solution repeatedly by using the copper removal material of this invention. Therefore, according to the copper removing material of the present invention, it is possible to effectively reduce the manufacturing cost of an electronic component on which electroless palladium plating has been performed.

1.無電解パラジウムめっき液の銅除去材
本発明の無電解パラジウムめっき液の銅除去材は、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において、細孔直径10Å以上20Å以下の範囲の細孔容積が、0.05cc/g以上である繊維状活性炭を含むことを特徴とする。
1. Copper removing material of electroless palladium plating solution The copper removing material of the electroless palladium plating solution of the present invention has a pore diameter of 10 to 20 mm in a pore distribution determined by the MP method using a nitrogen adsorption isotherm at a temperature of 77.4K. It includes a fibrous activated carbon having a pore volume in the range of 0.05 cc / g or more.

本発明者等が検討したところ、上記構成を有する繊維状活性炭は、無電解パラジウムめっき液中の銅除去効果に優れるのに対し、上記構成を有しない繊維状活性炭や、粒状活性炭は、無電解パラジウムめっき液中の銅除去効果に劣ることが明らかとなった。   When the present inventors examined, the fibrous activated carbon which has the said structure is excellent in the copper removal effect in an electroless palladium plating solution, whereas the fibrous activated carbon which does not have the said structure, and granular activated carbon are electroless. It was revealed that the copper removal effect in the palladium plating solution was inferior.

すなわち、無電解パラジウムめっき液中において、パラジウムは、錯体などの比較的嵩高い状態で存在する一方、銅は比較的嵩低い状態で混入している。そこで、本発明者等は、銅を選択的に吸着させるには、パラジウムを吸着させずに銅を吸着させるサイズの細孔を有する繊維状活性炭を用いることにより、銅を効果的に吸着・除去できるのではないか、と推測した。そして、本発明者等がさらに鋭意検討した結果、金めっき液または無電解パラジウムめっき液中の銅は、活性炭処理では除去が困難であるという従来の技術常識(例えば、特許文献1〜3)に反し、細孔直径10Å以上20Å以下の範囲の細孔を0.05cc/g以上と多く含む繊維状活性炭を用いることにより、無電解パラジウムめっき液中の銅を効果的に除去し得ることを見出した。   That is, in the electroless palladium plating solution, palladium is present in a relatively bulky state such as a complex, while copper is mixed in a relatively bulky state. Therefore, the inventors of the present invention can selectively adsorb and remove copper by selectively using fibrous activated carbon having pores that adsorb copper without adsorbing palladium in order to selectively adsorb copper. I guessed it could be done. And as a result of further intensive studies by the present inventors, copper in the gold plating solution or electroless palladium plating solution is difficult to remove by activated carbon treatment (for example, Patent Documents 1 to 3). On the other hand, it has been found that copper in electroless palladium plating solution can be effectively removed by using fibrous activated carbon containing a large amount of pores in the range of pore diameters of 10 mm or more and 20 mm or less as 0.05 cc / g or more. It was.

一方、前記細孔容積が0.05cc/g未満である繊維状活性炭は、無電解パラジウムめっき液中の銅除去効果に劣っている。これは、銅を効果的に吸着し得る細孔直径10Å以上20Å以下の範囲の細孔が少ないことに起因しているものと推測される。   On the other hand, the fibrous activated carbon whose pore volume is less than 0.05 cc / g is inferior in the copper removal effect in the electroless palladium plating solution. This is presumed to be due to the fact that there are few pores having a pore diameter in the range of 10 to 20 mm that can effectively adsorb copper.

また、本発明において、粒状活性炭ではなく、繊維状活性炭を用いることによって、無電解パラジウムめっき液中の銅除去効果に優れる理由としては、次のように考えることができる。すなわち、繊維状活性炭の細孔構造は、所謂ミクロ孔及びメソ孔が活性炭表面に発達する構造であるのに対して、粒状活性炭の細孔構造は、活性炭表面に直径50nmを越える大きな孔、所謂マクロ孔が発達し、このマクロ孔の中にミクロ孔やメソ孔が発達する構造である。そうすると、粒状活性炭は、表面に存在するマクロ孔の細孔直径が大きいが故、該マクロ孔が無電解パラジウムめっき液に含まれる成分の何らかの影響により塞がれてしまうことで、銅を吸着するサイトが無くなり、結果、無電解パラジウムめっき液中の銅除去効果に劣ると推測される。一方、繊維状活性炭においては、銅を吸着するサイト(ミクロ孔及びメソ孔)がマクロ孔の中ではなく、繊維表面に位置するため、無電解パラジウムめっき液中の銅除去効果に優れていると考えられる。   Moreover, in this invention, it can be considered as a reason why it is excellent in the copper removal effect in an electroless palladium plating solution by using fibrous activated carbon instead of granular activated carbon. That is, the pore structure of fibrous activated carbon is a structure in which so-called micropores and mesopores develop on the surface of activated carbon, whereas the pore structure of granular activated carbon has large pores with a diameter exceeding 50 nm on the activated carbon surface, so-called It is a structure in which macropores develop and micropores and mesopores develop in the macropores. Then, since the activated carbon of the granular activated carbon has a large pore diameter on the surface, it adsorbs copper by being blocked by some influence of components contained in the electroless palladium plating solution. As a result, it is assumed that the copper removal effect in the electroless palladium plating solution is inferior. On the other hand, in the fibrous activated carbon, the sites (micropores and mesopores) that adsorb copper are located not on the macropores but on the fiber surface, so that the copper removal effect in the electroless palladium plating solution is excellent. Conceivable.

本発明の銅除去材に含まれる繊維状活性炭は、無電解パラジウムめっき液中の銅除去効果に優れつつ、めっき液中における繰り返し使用に対する強度に優れるという観点から、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において、細孔直径10Å以上20Å以下の範囲の細孔容積としては、0.05〜0.8cc/g程度が好ましく、0.05〜0.5cc/g程度がより好ましく、0.05〜0.1cc/g程度が特に好ましい。   The fibrous activated carbon contained in the copper removing material of the present invention is excellent in the copper removing effect in the electroless palladium plating solution, and is excellent in strength against repeated use in the plating solution, so that the nitrogen adsorption isotherm at a temperature of 77.4K. In the pore distribution determined by the MP method using a line, the pore volume in the range of the pore diameter of 10 to 20 cm is preferably about 0.05 to 0.8 cc / g, 0.05 to 0.5 cc / g The degree is more preferable, and about 0.05 to 0.1 cc / g is particularly preferable.

本発明の銅除去材に含まれる繊維状活性炭の比表面積(窒素を被吸着物質として用いたBET法(1点法)により測定される値)としては、無電解パラジウムめっき液中の銅除去効果に優れつつ、めっき液中における繰り返し使用に対する強度に優れるという観点から、好ましくは1000〜3500m2/g程度、より好ましくは1000〜2500m2/g程度、さらに好ましくは1000〜1800m2/g程度、特に好ましくは1000〜1400m2/g程度が挙げられる。 The specific surface area of the fibrous activated carbon contained in the copper removing material of the present invention (value measured by the BET method (one-point method) using nitrogen as an adsorbed substance) is the effect of removing copper in the electroless palladium plating solution. From the viewpoint of excellent strength against repeated use in the plating solution, it is preferably about 1000 to 3500 m 2 / g, more preferably about 1000 to 2500 m 2 / g, and still more preferably about 1000 to 1800 m 2 / g. Especially preferably, about 1000-1400 m < 2 > / g is mentioned.

本発明において、活性炭の細孔分布は、温度77.4Kにおいて窒素吸着等温線に基づいて算出されるものであり、具体的には次のようにして窒素吸着等温線が作成される。活性炭を温度77.4K(窒素の沸点)に冷却し、窒素ガスを導入して容量法により窒素ガスの吸着量V[cc/g]を測定する。このとき、導入する窒素ガスの圧力P[mmHg]を徐々に上げ、窒素ガスの飽和蒸気圧P0[mmHg]で除した値を相対圧力P/P0として、各相対圧力に対する吸着量をプロットすることにより窒素吸着等温線が作成される。窒素ガスの吸着量は、市販の自動ガス吸着量測定装置(商品名「AUTOSORB−6」(QUANTACHROME製)を用いて実施できる。本発明では、窒素吸着等温線に基づき、MP法に従って求めた細孔分布から細孔直径10Å以上20Å以下の範囲の細孔容積(cc/g)を算出することができる。この解析は、上記装置に付属する解析プログラム等のような公知の手段を用いることができる。そして、活性炭の全細孔容積は、上記の窒素ガスの吸着量の測定結果における窒素の最大吸着量から計算することができる。 In the present invention, the pore distribution of activated carbon is calculated based on the nitrogen adsorption isotherm at a temperature of 77.4K. Specifically, the nitrogen adsorption isotherm is created as follows. The activated carbon is cooled to a temperature of 77.4K (the boiling point of nitrogen), nitrogen gas is introduced, and the adsorption amount of nitrogen gas V [cc / g] is measured by a volumetric method. At this time, the pressure P [mmHg] of the nitrogen gas to be introduced is gradually increased, and the value obtained by dividing by the saturated vapor pressure P 0 [mmHg] of the nitrogen gas is set as the relative pressure P / P 0 , and the adsorption amount with respect to each relative pressure is plotted. By doing so, a nitrogen adsorption isotherm is created. The adsorption amount of nitrogen gas can be carried out using a commercially available automatic gas adsorption amount measuring device (trade name “AUTOSORB-6” (manufactured by QUANTACHROME)). From the pore distribution, the pore volume (cc / g) having a pore diameter in the range of 10 to 20 mm can be calculated using a known means such as an analysis program attached to the apparatus. The total pore volume of the activated carbon can be calculated from the maximum adsorption amount of nitrogen in the measurement result of the adsorption amount of nitrogen gas.

本発明の銅除去材に含まれる繊維状活性炭の全細孔容積としては、特に制限されないが、無電解パラジウムめっき液中の銅除去効果に優れつつ、めっき液中における繰り返し使用に対する強度に優れるという観点から、好ましくは0.4〜1.5cc/g程度、より好ましくは0.4〜1.2cc/g程度、さらに好ましくは0.4〜1.0cc/g程度、特に好ましくは0.4〜0.7cc/g程度が挙げられる。繊維状活性炭の全細孔容積は、前述の方法により測定した値である。   The total pore volume of the fibrous activated carbon contained in the copper removing material of the present invention is not particularly limited, but is excellent in copper removal effect in the electroless palladium plating solution and excellent in strength against repeated use in the plating solution. From the viewpoint, it is preferably about 0.4 to 1.5 cc / g, more preferably about 0.4 to 1.2 cc / g, still more preferably about 0.4 to 1.0 cc / g, and particularly preferably 0.4. About 0.7 cc / g is mentioned. The total pore volume of the fibrous activated carbon is a value measured by the method described above.

本発明の銅除去材に含まれる繊維状活性炭の平均細孔直径としては、無電解パラジウムめっき液中の銅除去効果に優れつつ、めっき液中における繰り返し使用に対する強度に優れるという観点から、好ましくは15〜50Å程度、より好ましくは15〜40Å程度、さらに好ましくは15〜35Å程度、特に好ましくは15〜20Å程度が挙げられる。なお、繊維状活性炭の平均細孔直径は、下記式1により求めた値である。   The average pore diameter of the fibrous activated carbon contained in the copper removing material of the present invention is preferably from the viewpoint of excellent strength for repeated use in the plating solution while being excellent in the copper removal effect in the electroless palladium plating solution. About 15 to 50 mm, more preferably about 15 to 40 mm, more preferably about 15 to 35 mm, and particularly preferably about 15 to 20 mm. The average pore diameter of the fibrous activated carbon is a value obtained by the following formula 1.

平均細孔直径(Å)
=4×全細孔容積(cc/g)/比表面積(m2/g)×104 (式1)
Average pore diameter (Å)
= 4 × total pore volume (cc / g) / specific surface area (m 2 / g) × 10 4 (Formula 1)

また、本発明の銅除去材において、全細孔容積(cc/g)に対する細孔直径10Å以上20Å以下の範囲の細孔容積(cc/g)の割合(細孔直径10Å以上20Å以下の範囲の細孔容積/全細孔容積)としては、好ましくは0.1以上が挙げられる。また、無電解パラジウムめっき液中の銅除去効果に優れつつ、めっき液中における繰り返し使用に対する強度に優れるという観点から、0.1〜0.7が好ましく、0.1〜0.6がより好ましく、0.1〜0.4がさらに好ましく、0.10〜0.15が特に好ましい。   Further, in the copper removing material of the present invention, the ratio of the pore volume (cc / g) in the range of pore diameters of 10 to 20 cm to the total pore volume (cc / g) (pore diameter of 10 to 20 cm). (Pore volume / total pore volume) is preferably 0.1 or more. Moreover, 0.1-0.7 are preferable and 0.1-0.6 are more preferable from a viewpoint of being excellent in the copper removal effect in an electroless palladium plating solution, and being excellent in the intensity | strength with respect to repeated use in a plating solution. 0.1 to 0.4 is more preferable, and 0.10 to 0.15 is particularly preferable.

温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において、細孔直径10Å以上20Å以下の範囲の細孔容積が、0.05cc/g以上である繊維状活性炭を製造する方法としては、特に限定されないが、例えば、次のような方法が挙げられる。すなわち、不融化処理した活性炭原料を、好ましくは水蒸気飽和窒素雰囲気下、雰囲気温度800〜1200℃で5〜120分間、より好ましくは900〜1100℃で10〜110分間、賦活処理をおこない、次いで、空気存在下室温まで冷却する方法が挙げられる。より具体的に、雰囲気温度800〜1200℃で賦活処理すると、まず約5Å程度の細孔が生じ、賦活処理をさらに進めるにつれて、直径約5Å程度の細孔が新たに生じつつ、一部の直径約5Åの細孔の直径が広がり、さらに直径が大きい細孔に発達していく。そして、5〜120分間程度賦活をおこなうことにより、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において細孔直径10Å以上20Å以下の範囲の細孔容積が0.05cc/g以上の活性炭を得ることが可能である。   A method for producing a fibrous activated carbon having a pore volume in a range of pore diameters of 10 mm or more and 20 mm or less in a pore distribution determined by an MP method using a nitrogen adsorption isotherm at a temperature of 77.4 K of 0.05 cc / g or more Although it does not specifically limit as, For example, the following methods are mentioned. That is, the activated carbon raw material subjected to infusibilization treatment is preferably subjected to an activation treatment at an atmospheric temperature of 800 to 1200 ° C. for 5 to 120 minutes, more preferably 900 to 1100 ° C. for 10 to 110 minutes, preferably in a steam saturated nitrogen atmosphere, The method of cooling to room temperature in presence of air is mentioned. More specifically, when the activation treatment is performed at an ambient temperature of 800 to 1200 ° C., pores having a diameter of about 5 mm are first generated. As the activation process is further advanced, pores having a diameter of about 5 mm are newly generated, and a part of the diameter is generated. The diameter of the pores of about 5 mm widens and further develops into pores with a larger diameter. Then, by performing the activation for about 5 to 120 minutes, the pore volume in the range of the pore diameter of 10 mm to 20 mm in the pore distribution determined by the MP method using the nitrogen adsorption isotherm at a temperature of 77.4 K is 0.05 cc / g or more of activated carbon can be obtained.

本発明の無電解パラジウムめっき液の銅除去材に含まれる繊維状活性炭の原料としては、特に制限されず、例えば、木材、おがくず、ヤシガラ、ポリアクリロニトリル系、セルロース系、フェノール樹脂系、石油系ピッチ、石炭系ピッチ等を用いることができる。所定の細孔直径の細孔をより生じやすくするという観点からは、石炭系ピッチが好ましい。繊維状活性炭の原料は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。   The raw material for the fibrous activated carbon contained in the copper removing material of the electroless palladium plating solution of the present invention is not particularly limited. For example, wood, sawdust, coconut husk, polyacrylonitrile, cellulose, phenolic resin, petroleum pitch Coal pitch can be used. From the viewpoint of facilitating generation of pores having a predetermined pore diameter, a coal-based pitch is preferable. The raw material of fibrous activated carbon may be used individually by 1 type, and may be used in combination of 2 or more types.

本発明の銅除去材に含まれる繊維状活性炭の平均繊維径としては、特に制限されないが、例えば、5〜30μm程度、好ましくは10〜25μm程度が挙げられる。なお、繊維状活性炭の平均繊維径は、画像処理繊維径測定装置(JIS K 1477に準拠)により観察して得られる画像に含まれる任意の70本の繊維状活性炭の繊維径の平均値である。   Although it does not restrict | limit especially as an average fiber diameter of the fibrous activated carbon contained in the copper removal material of this invention, For example, about 5-30 micrometers, Preferably about 10-25 micrometers is mentioned. In addition, the average fiber diameter of fibrous activated carbon is an average value of the fiber diameters of arbitrary 70 fibrous activated carbons included in an image obtained by observing with an image processing fiber diameter measuring device (conforming to JIS K 1477). .

本発明の銅除去材に含まれる繊維状活性炭の強度としては、めっき液中における繰り返し使用に対する形態安定性に優れるという観点から、好ましくは0.1〜0.4GPa程度、より好ましくは0.2〜0.4GPa程度、特に好ましくは0.25〜0.4GPa程度が挙げられる。繊維状活性炭の強度(引張強度)は、JIS K 1477 2007に規定に準拠した方法により測定した値である。   The strength of the fibrous activated carbon contained in the copper removing material of the present invention is preferably about 0.1 to 0.4 GPa, more preferably 0.2, from the viewpoint of excellent shape stability against repeated use in the plating solution. About 0.4 GPa, particularly preferably about 0.25 to 0.4 GPa. The strength (tensile strength) of the fibrous activated carbon is a value measured by a method in accordance with JIS K 1477 2007.

本発明の銅除去材において、繊維状活性炭の含有形態は、特に制限されない。例えば、繊維状活性炭を原綿のまま用いたり、繊維状活性炭を成型したりすることが挙げられる。また、繊維状活性炭を原綿のまま本発明の銅除去材としたり、繊維状活性炭の成型体を本発明の銅除去材とすることもできる。繊維状活性炭の成型体としては、公知のものが挙げられ、例えば、湿式抄紙法、乾式法等により得られる不織布、該不織布からなるシート、該不織布を捲回して得られる円筒状、円柱状等のフィルター、繊維状活性炭を含む水性スラリー中に吸引口を有する成形型を入れ、吸引口から吸引し成型される所謂湿式成型法により得られる円筒状、円柱状等のフィルター等が挙げられる。   In the copper removing material of the present invention, the form of the fibrous activated carbon is not particularly limited. For example, it is possible to use fibrous activated carbon as raw cotton or to form fibrous activated carbon. Moreover, fibrous activated carbon can be used as the copper removing material of the present invention as raw cotton, or a molded body of fibrous activated carbon can be used as the copper removing material of the present invention. Examples of the molded body of fibrous activated carbon include known ones. For example, a nonwoven fabric obtained by a wet papermaking method, a dry method, a sheet made of the nonwoven fabric, a cylindrical shape obtained by winding the nonwoven fabric, a columnar shape, etc. And a cylindrical or columnar filter obtained by a so-called wet molding method in which a molding die having a suction port is placed in an aqueous slurry containing fibrous activated carbon and sucked from the suction port and molded.

本発明の銅除去材は、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において、細孔直径10Å以上20Å以下の範囲の細孔容積が、0.05cc/g以上である繊維状活性炭以外の他の成分を含むことができる。例えば、粒状活性炭、粉末状活性炭、イオン交換樹脂、イオン交換繊維、天然石、セラミック、亜硫酸カルシウム、中空糸などが挙げられる。その他の成分を用いる場合、1種類だけ用いてもよいし、2種類以上を用いても構わない。さらに、フィルターの強度を向上させるため、バインダー成分(例えば、フィブリル化したバインダー繊維(アクリル繊維、アラミド繊維、レーヨン繊維等)などを添加してもよい。本発明の銅除去材中、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において細孔直径10Å以上20Å以下の範囲の細孔容積が0.05cc/g以上である繊維状活性炭の含有割合としては、例えば、70〜100質量%が挙げられ、90〜100質量%が好ましく挙げられる。   The copper removal material of the present invention has a pore volume in the range of pore diameters of 10 mm or more and 20 mm or less in a pore distribution determined by the MP method using a nitrogen adsorption isotherm at a temperature of 77.4 K at 0.05 cc / g or more. Other components than certain fibrous activated carbon can be included. Examples thereof include granular activated carbon, powdered activated carbon, ion exchange resin, ion exchange fiber, natural stone, ceramic, calcium sulfite, and hollow fiber. When other components are used, only one type may be used, or two or more types may be used. Furthermore, in order to improve the strength of the filter, a binder component (for example, a fibrillated binder fiber (acrylic fiber, aramid fiber, rayon fiber, etc.), etc.) may be added. The content ratio of the fibrous activated carbon having a pore volume in the range of 10 to 20 pores in the pore distribution determined by the MP method using a nitrogen adsorption isotherm at 4K is, for example, 70 cc / g or more. -100 mass% is mentioned, 90-100 mass% is mentioned preferably.

2.無電解パラジウムめっき液
本発明の銅除去材を適用する無電解パラジウムめっき液としては、特に制限されず、パラジウム化合物を含む公知の無電解パラジウムめっき液が挙げられる。
2. Electroless Palladium Plating Solution The electroless palladium plating solution to which the copper removing material of the present invention is applied is not particularly limited and includes known electroless palladium plating solutions containing a palladium compound.

無電解パラジウムめっき液中に含まれるパラジウム化合物としては、めっき液に可溶性であって、所定の濃度の水溶液が得られるものであれば特に限定なく使用できる。例えば、硫酸パラジウム、塩化パラジウム、酢酸パラジウム、ジクロロジエチンレジアミンパラジウム、テトラアンミンパラジウムジクロライド等の水溶性パラジウム化合物を用いることができる。また、パラジウム化合物として、パラジウムを溶液化した、いわゆるパラジウム溶液を使用することもできる。パラジウム溶液としては、例えば、ジクロロジエチレンジアミンパラジウム溶液やテトラアンミンパラジウムジクロライド溶液等も使用することができる。本発明のパラジウム化合物は、1種単独又は2種以上混合して用いることができる。めっき液中のパラジウム化合物の含有量は、パラジウムとして0.1〜30g/L程度とすることが好ましく、0.3〜10g/L程度とすることがより好ましい。   The palladium compound contained in the electroless palladium plating solution is not particularly limited as long as it is soluble in the plating solution and can obtain an aqueous solution having a predetermined concentration. For example, water-soluble palladium compounds such as palladium sulfate, palladium chloride, palladium acetate, dichlorodiethine rediamine palladium, and tetraammine palladium dichloride can be used. Further, as the palladium compound, a so-called palladium solution in which palladium is made into a solution can also be used. As the palladium solution, for example, a dichlorodiethylenediamine palladium solution or a tetraammine palladium dichloride solution can be used. The palladium compound of this invention can be used individually by 1 type or in mixture of 2 or more types. The content of the palladium compound in the plating solution is preferably about 0.1 to 30 g / L as palladium, and more preferably about 0.3 to 10 g / L.

無電解パラジウムめっき液中には、還元剤がさらに含まれていてもよい。還元剤としては、公知のものが使用でき、例えば、蟻酸、次亜リン酸、亜リン酸、これらの塩(ナトリウム塩、カリウム塩、アンモニウム塩等)等を用いることができる。これらの還元剤は、一種単独又は二種以上混合して用いることができる。還元剤の含有量は、0.1〜100g/L程度とすることが好ましく、1〜50g/Lとすることがより好ましい。   The electroless palladium plating solution may further contain a reducing agent. As the reducing agent, known ones can be used. For example, formic acid, hypophosphorous acid, phosphorous acid, salts thereof (sodium salt, potassium salt, ammonium salt, etc.) and the like can be used. These reducing agents can be used singly or in combination of two or more. The content of the reducing agent is preferably about 0.1 to 100 g / L, more preferably 1 to 50 g / L.

無電解パラジウムめっき液中には、錯化剤がさらに含まれていてもよい。錯化剤としては、公知のものが使用でき、例えば、エチレンジアミン、ジエチレントリアミン等のアミン類;エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸、これらのナトリウム塩、カリウム塩、アンモニウム塩等;グリシン、アラニン、イミノジ酢酸、ニトリロトリ酢酸、L−グルタミン酸、L−グルタミン酸2酢酸、L−アスパラギン酸、タウリン等のアミノ酸類、これらのナトリウム塩、カリウム塩、アンモニウム塩等;アミノトリメチレンホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、エチレンジアミンテトラメチレンホスホン酸、これらのナトリウム塩、カリウム塩、アンモニウム塩等を配合することができる。錯化剤は1種単独又は2種以上混合して用いることができる。錯化剤の含有量は、0.5〜100g/L程度とすることが好ましく、5〜50g/L程度とすることがより好ましい。   The electroless palladium plating solution may further contain a complexing agent. As the complexing agent, known ones can be used, for example, amines such as ethylenediamine and diethylenetriamine; aminopolycarboxylic acids such as ethylenediaminediacetic acid, ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid, sodium salts, potassium salts and ammonium thereof. Amino acids such as glycine, alanine, iminodiacetic acid, nitrilotriacetic acid, L-glutamic acid, L-glutamic acid diacetic acid, L-aspartic acid, taurine, sodium salts, potassium salts, ammonium salts thereof; aminotrimethylenephosphones Acid, 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetramethylenephosphonic acid, sodium salts, potassium salts, ammonium salts, and the like thereof can be blended. Complexing agents can be used alone or in combination of two or more. The complexing agent content is preferably about 0.5 to 100 g / L, more preferably about 5 to 50 g / L.

無電解パラジウムめっき液のpHとしては、特に制限されないが、2〜9程度であることが好ましく、3〜8程度であることがより好ましい。pH調整には、硫酸、リン酸等の無機酸、水酸化ナトリウム、アンモニア水等を使用することができる。また、温度としては、20〜80℃程度であることが好ましく、20〜70℃程度であることがより好ましい。   Although it does not restrict | limit especially as pH of an electroless palladium plating solution, It is preferable that it is about 2-9, and it is more preferable that it is about 3-8. For pH adjustment, inorganic acids such as sulfuric acid and phosphoric acid, sodium hydroxide, aqueous ammonia and the like can be used. Moreover, as temperature, it is preferable that it is about 20-80 degreeC, and it is more preferable that it is about 20-70 degreeC.

無電解パラジウムめっき液から除去される銅は、銅錯体、銅イオン、銅原子など、銅元素を含むいずれの形態であってもよい。   The copper removed from the electroless palladium plating solution may be in any form containing a copper element, such as a copper complex, a copper ion, or a copper atom.

また、無電解パラジウムめっき液中の銅の濃度としては、特に制限されない。例えば、プリント基板やパッケージ基板の製造工程において無電解パラジウムめっき液中に混入し得る銅の含有量としては、例えば、0.01〜100mg/L程度が挙げられ、無電解パラジウムめっき液の銅除去材の効果をより発揮しやすいという観点から、1〜10mg/L程度が好ましく挙げられる。   Further, the concentration of copper in the electroless palladium plating solution is not particularly limited. For example, the copper content that can be mixed in the electroless palladium plating solution in the manufacturing process of a printed circuit board or a package substrate includes, for example, about 0.01 to 100 mg / L, and the copper removal of the electroless palladium plating solution From the viewpoint of easily exhibiting the effect of the material, about 1 to 10 mg / L is preferable.

本発明の銅除去材を無電解パラジウムめっき液に適用する方法としては、例えば、後述の「3.無電解パラジウムめっき液中の銅除去方法」で説明する連続通液式やバッチ式等が挙げられる   Examples of the method for applying the copper removing material of the present invention to an electroless palladium plating solution include a continuous liquid passing method and a batch method described in “3. Method for removing copper in an electroless palladium plating solution” described later. Be

3.無電解パラジウムめっき液中の銅除去方法
本発明の無電解パラジウムめっき液中の銅除去方法は、前述の本発明の銅除去材を用いることを特徴とする。本発明の銅除去材が適用される無電解パラジウムめっき液としては、パラジウム化合物を含むものであれば特に制限されず、公知の無電解パラジウムめっき液が挙げられる。無電解パラジウムめっき液の具体例としては、前述の「1.無電解パラジウムめっき液の銅除去材」の項目で例示したものが挙げられる。
3. Method for removing copper in electroless palladium plating solution The method for removing copper in an electroless palladium plating solution of the present invention is characterized by using the copper removing material of the present invention described above. The electroless palladium plating solution to which the copper removing material of the present invention is applied is not particularly limited as long as it contains a palladium compound, and may be a known electroless palladium plating solution. Specific examples of the electroless palladium plating solution include those exemplified in the above-mentioned item “1. Copper removing material of electroless palladium plating solution”.

無電解パラジウムめっき液中の銅を除去する方法としては、無電解パラジウムめっき液と本発明の銅除去材とが接触する条件で用いる方法であれば、特に制限されないが、具体的な方法としては、本発明の銅除去材に対して、無電解パラジウムめっき液を連続的に通液する連続通液式や、無電解パラジウムめっき液中に本発明の銅除去材を一定時間浸漬させるバッチ式等が挙げられる。   The method for removing copper in the electroless palladium plating solution is not particularly limited as long as it is a method used under conditions in which the electroless palladium plating solution and the copper removing material of the present invention are in contact with each other. In addition, for the copper removing material of the present invention, a continuous liquid passing type in which an electroless palladium plating solution is continuously passed, a batch type in which the copper removing material of the present invention is immersed in an electroless palladium plating solution for a certain period of time, etc. Is mentioned.

上記連続通液式とする場合、無電解パラジウムめっき液を通液する空塔速度SVとしては、例えば、0.1〜50/hが挙げられ、0.1〜30/hが好ましく挙げられる。   In the case of the continuous liquid flow type, the superficial velocity SV through which the electroless palladium plating solution flows is, for example, 0.1 to 50 / h, and preferably 0.1 to 30 / h.

4.無電解パラジウムめっき方法及び電子部品の製造方法
本発明の無電解パラジウムめっき方法は、前述した本発明の銅除去材を用いて銅を除去した無電解パラジウムめっき液を用いることを特徴とする。本発明の無電解パラジウムめっき方法においては、無電解パラジウムめっき液中に含まれる銅が効果的に除去されたものを用いるため、パラジウムのめっき不良を効果的に抑制することができる。
4). Electroless Palladium Plating Method and Electronic Component Manufacturing Method The electroless palladium plating method of the present invention is characterized by using an electroless palladium plating solution obtained by removing copper using the copper removing material of the present invention described above. In the electroless palladium plating method of the present invention, since the one in which copper contained in the electroless palladium plating solution is effectively removed is used, it is possible to effectively suppress palladium plating defects.

また、本発明の電子部品の製造方法は、前述した本発明の銅除去材を用いて銅を除去した無電解パラジウムめっき液を用いて、部材表面にパラジウムめっきを施す工程を備えることを特徴とする。本発明の電子部品の製造方法においては、無電解パラジウムめっき液として、銅が効果的に除去されためっき液を用いるため、パラジウムのめっき不良が効果的に抑制された電子部品を製造することができる。なお、パラジウムめっきが施される電子部品としては、特に制限されず、プリント基板、パッケージ基板、コネクター、リードフレーム等が挙げられる。また、部材表面にパラジウムめっきを施す工程は、無電解パラジウムめっきを部材に接触させる公知の無電解めっき処理を行えばよい。   The method for producing an electronic component of the present invention comprises a step of performing palladium plating on a member surface using an electroless palladium plating solution obtained by removing copper using the copper removing material of the present invention described above. To do. In the method for manufacturing an electronic component according to the present invention, a plating solution from which copper is effectively removed is used as the electroless palladium plating solution. Therefore, it is possible to manufacture an electronic component in which palladium plating defects are effectively suppressed. it can. The electronic component to be subjected to palladium plating is not particularly limited, and examples thereof include a printed board, a package board, a connector, and a lead frame. Moreover, what is necessary is just to perform the well-known electroless-plating process which makes electroless palladium plating contact a member in the process of performing palladium plating on the member surface.

以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

(実施例1)
内径15mmΦのガラスカラムに、無電解パラジウムめっき液の銅除去材としての繊維状活性炭(株式会社アドール製商品名A−15、細孔直径10Å以上20Å以下の範囲の細孔容積=0.31cc/g、比表面積=1700m2/g、全細孔容積=0.8cc/g)を、層高50mmとなるように充填し(充填量1.3g)ポンプを用いて被処理水を通水させた。被処理水として、パラジウムめっき新液(奥野製薬工業株式会社製商品名パラトップLP、パラジウム濃度1000mg/L、pH7.1〜7.5、温度55〜65℃)に銅(ナカライテスク株式会社製商品名硫酸銅(II)五水和物)を添加した液を用いた。該被処理水のパラジウム濃
度は970mg/L、銅濃度は10mg/Lであった。被処理水を流量2.2mL/min、SV=15h-1で通水して、ガラスカラムより流出した処理水を50mL/回で5回採水し、採水した処理水のパラジウム濃度及び銅濃度を測定し、評価した。
Example 1
In a glass column with an inner diameter of 15 mmΦ, fibrous activated carbon (trade name A-15, manufactured by Adol Co., Ltd., pore volume in the range of 10 to 20 mm pore diameter = 0.31 cc / g, specific surface area = 1700 m 2 / g, total pore volume = 0.8 cc / g) is filled so that the layer height is 50 mm (filling amount 1.3 g), and the water to be treated is passed through using a pump. It was. As water to be treated, a new palladium plating solution (trade name Paratop LP manufactured by Okuno Pharmaceutical Co., Ltd., palladium concentration 1000 mg / L, pH 7.1 to 7.5, temperature 55 to 65 ° C.) and copper (manufactured by Nacalai Tesque Co., Ltd.) A solution to which copper (II) sulfate pentahydrate (trade name) was added was used. The palladium concentration of the water to be treated was 970 mg / L and the copper concentration was 10 mg / L. The treated water was passed at a flow rate of 2.2 mL / min, SV = 15 h −1 , and the treated water that flowed out of the glass column was sampled 5 times at 50 mL / time, and the palladium concentration and the copper concentration of the collected treated water were collected. Were measured and evaluated.

(実施例2)
無電解パラジウムめっき中の銅除去材として繊維状活性炭(株式会社アドール製商品名W−15W、細孔直径10Å以上20Å以下の範囲の細孔容積=0.62cc/g、比表面積=1300m2/g、全細孔容積=1.1cc/g)を用いたこと以外は、実施例1と同様にして測定・評価した。
(Example 2)
Fibrous activated carbon (trade name W-15W, manufactured by Adol Co., Ltd., pore volume in the range of pore diameters of 10 mm to 20 mm, 0.62 cc / g, specific surface area = 1300 m 2 / g, total pore volume = 1.1 cc / g), and measurement / evaluation was conducted in the same manner as in Example 1.

(実施例3)
無電解パラジウムめっき中の銅除去材として繊維状活性炭(株式会社アドール製商品名W−10W、細孔直径10Å以上20Å以下の範囲の細孔容積=0.42cc/g、比表面積=1100m2/g、全細孔容積=0.6cc/g)を用いたこと以外は、実施例1と同様にして測定・評価した。
Example 3
Fibrous activated carbon (trade name W-10W, manufactured by Adol Co., Ltd., pore volume in the range of pore diameters of 10 mm to 20 mm, 0.42 cc / g, specific surface area = 1100 m 2 / g, total pore volume = 0.6 cc / g), and measurement / evaluation was performed in the same manner as in Example 1.

(実施例4)
無電解パラジウムめっき中の銅除去材として繊維状活性炭(株式会社アドール製商品名A−10、細孔直径10Å以上20Å以下の範囲の細孔容積=0.07cc/g、比表面積=1300m2/g、全細孔容積=0.6cc/g)を用いたこと以外は、実施例1と同様にして測定・評価した。
Example 4
Fibrous activated carbon (trade name A-10, manufactured by Adol Co., Ltd., pore volume in the range of pore diameters of 10 to 20 cm, specific surface area = 1300 m 2 / g, total pore volume = 0.6 cc / g), and measurement / evaluation was performed in the same manner as in Example 1.

(実施例5)
無電解パラジウムめっき中の銅除去材として繊維状活性炭(株式会社アドール製商品名A−20、細孔直径10Å以上20Å以下の範囲の細孔容積=0.73cc/g、比表面積=2000m2/g、全細孔容積=1.1cc/g)を用いたこと以外は、実施例1と同様にして測定・評価した。
(Example 5)
Fibrous activated carbon (trade name A-20, manufactured by Adol Co., Ltd., pore volume in the range of pore diameter of 10 to 20 mm, 0.73 cc / g, specific surface area = 2000 m 2 / g, total pore volume = 1.1 cc / g), and measurement / evaluation was conducted in the same manner as in Example 1.

(実施例6)
内径15mmΦのガラスカラムに、無電解パラジウムめっき液の銅除去材としての繊維状活性炭(株式会社アドール製商品名A−15)を、層高50mmとなるように充填し(充填量1.3g)、ポンプを用いて被処理水を通水させた。被処理水はパラジウムめっき老化液(奥野製薬工業株式会社製商品名パラトップLP、パラジウム濃度1000mg/L、pH7.1〜7.5、温度55〜65℃を用い、銅めっき工程及びニッケルめっき工程を含む製造方法により無電解パラジウムめっきを行った後の使用液)に、さらに銅(ナカライテスク株式会社製商品名硫酸銅(II)五水和物)を添加した液を用いた。該被処理水のパラジウム濃度は850mg/L、銅濃度は8.5mg/Lであった。被処理水を流量2.2mL/min、SV=15h-1で通水して、ガラスカラムより流出した処理水を50mL/回で4回採水し、採水した処理水のパラジウム濃度及び銅濃度を測定し、評価した。
(Example 6)
Fill a glass column with an inner diameter of 15 mmΦ with fibrous activated carbon (trade name A-15, manufactured by Adol Co., Ltd.) as a copper remover of electroless palladium plating solution so that the layer height is 50 mm (filling amount 1.3 g). The water to be treated was passed through using a pump. Water to be treated was palladium plating aging solution (trade name Paratop LP, manufactured by Okuno Pharmaceutical Co., Ltd., palladium concentration 1000 mg / L, pH 7.1 to 7.5, temperature 55 to 65 ° C., copper plating process and nickel plating process. A solution obtained by further adding copper (trade name: copper (II) sulfate pentahydrate, manufactured by Nacalai Tesque Co., Ltd.) to a solution used after electroless palladium plating by a production method including the above. The palladium concentration of the water to be treated was 850 mg / L and the copper concentration was 8.5 mg / L. Water to be treated was passed at a flow rate of 2.2 mL / min and SV = 15 h −1 , and the treated water that flowed out of the glass column was sampled four times at 50 mL / time, and the palladium concentration and the copper concentration of the collected treated water were collected. Were measured and evaluated.

(比較例1)
内径15mmΦのガラスカラムに、無電解パラジウムめっき中の銅除去材として粒状活性炭(大阪ガスケミカル株式会社製 粒状活性炭 商品名粒状白鷺WH2c、細孔直径10Å以上20Å以下の範囲の細孔容積=0.57cc/g、比表面積=1700m2/g、全細孔容積=0.9cc/g)を、層高50mm充填し(充填量3.5g)、ポンプを用いて被処理水を通水させた。被処理水はパラジウムめっき新液(奥野製薬工業株式会社製商品名パラトップLP、パラジウム濃度1000mg/L、pH7.1〜7.5、温度55〜65℃)に銅(ナカライテスク株式会社製商品名硫酸銅(II)五水和物)を添加した液を用いた。該被処理水のパラジウム濃度は970mg/L、銅濃度は10mg/Lであった。被処理水を流量2.2mL/min、SV=15h-1で通水して、ガラスカラムより流出した処理水を50mL/回で4回採水し、採水した処理水のパラジウム濃度及び銅濃度を測定し、評価した。
(Comparative Example 1)
As a copper removing material during electroless palladium plating on a glass column with an inner diameter of 15 mmΦ, granular activated carbon (granular activated carbon, product name: granular white activated carbon WH2c, manufactured by Osaka Gas Chemical Co., Ltd., pore volume in the range of 10 to 20 mm pore diameter = 0. 57 cc / g, specific surface area = 1700 m 2 / g, total pore volume = 0.9 cc / g) was packed with a layer height of 50 mm (filling amount 3.5 g), and the water to be treated was passed through using a pump. . Water to be treated is a new palladium plating solution (trade name Paratop LP, manufactured by Okuno Pharmaceutical Co., Ltd., palladium concentration 1000 mg / L, pH 7.1 to 7.5, temperature 55 to 65 ° C.) and copper (product of Nacalai Tesque Co., Ltd.). A solution to which copper (II) sulfate pentahydrate) was added was used. The palladium concentration of the water to be treated was 970 mg / L and the copper concentration was 10 mg / L. The treated water was passed at a flow rate of 2.2 mL / min and SV = 15 h −1 , and the treated water flowing out from the glass column was sampled four times at 50 mL / time, and the palladium concentration and the copper concentration of the collected treated water were collected. Were measured and evaluated.

(比較例2)
無電解パラジウムめっき液の銅除去材としての繊維状活性炭(株式会社アドール製商品名A−7、細孔直径10Å以上20Å以下の範囲の細孔容積=0.03cc/g、比表面積=850m2/g、全細孔容積=0.4cc/g)を用いたこと以外は、実施例1と同様にして測定・評価した。
(Comparative Example 2)
Fibrous activated carbon as a copper removing material for electroless palladium plating solution (trade name A-7, manufactured by Adol Co., Ltd., pore volume in the range of pore diameters of 10 to 20 cm = 0.03 cc / g, specific surface area = 850 m 2 / G, total pore volume = 0.4 cc / g), measurement and evaluation were conducted in the same manner as in Example 1.

(比較例3)
内径15mmΦのガラスカラムに、無電解パラジウムめっき液の銅除去材としてのキレート樹脂(三菱化学株式会社製商品名ダイヤイオンCR11)を、層高50mmとなるように充填し(充填量2.4g)、ポンプを用いて被処理水を通水させた。被処理水はパラジウムめっき新液(奥野製薬工業株式会社製商品名パラトップLP、パラジウム濃度1000mg/L、pH7.1〜7.5、温度55〜65℃)に銅(ナカライテスク株式会社製商品名硫酸銅(II)五水和物)を添加した液を用いた。該被処理水のパラジウム濃度は970mg/L、銅濃度は10mg/Lであった。被処理水を流量2.2mL/min、SV=15h-1で通水して、ガラスカラムより流出した処理水を50mL/回で2回採水し、採水した処理水のパラジウム濃度及び銅濃度を測定し、評価した。
(Comparative Example 3)
A glass column having an inner diameter of 15 mmΦ is filled with a chelate resin (trade name Diaion CR11, manufactured by Mitsubishi Chemical Corporation) as a copper removing material for the electroless palladium plating solution so that the layer height is 50 mm (filling amount: 2.4 g). The water to be treated was passed through using a pump. Water to be treated is a new palladium plating solution (trade name Paratop LP, manufactured by Okuno Pharmaceutical Co., Ltd., palladium concentration 1000 mg / L, pH 7.1 to 7.5, temperature 55 to 65 ° C.) and copper (product of Nacalai Tesque Co., Ltd.). A solution to which copper (II) sulfate pentahydrate) was added was used. The palladium concentration of the water to be treated was 970 mg / L and the copper concentration was 10 mg / L. Water to be treated was passed at a flow rate of 2.2 mL / min, SV = 15 h −1 , and treated water that flowed out of the glass column was sampled twice at 50 mL / time, and the palladium concentration and copper concentration of the treated water collected were collected. Were measured and evaluated.

(比較例4)
内径15mmΦのガラスカラムに、無電解パラジウムめっき液の銅除去材としてのキレート樹脂(三菱化学株式会社製商品名ダイヤイオンCR11)を、層高50mm充填し(充填量2.4g)、ポンプを用いて被処理水を通水させた。被処理水はパラジウムめっき老化液(奥野製薬工業株式会社製商品名パラトップLP、パラジウム濃度1000mg/L、pH7.1〜7.5、温度55〜65℃を用い、銅めっき工程及びニッケルめっき工程を含む製造方法により無電解パラジウムめっきをおこなった後の使用液)に、さらに銅(ナカライテスク株式会社製商品名硫酸銅(II)五水和物)を添加した液を用いた。該被処理水のパラジウム濃度は850mg/L、銅濃度は8.5mg/Lであった。被処理水を流量2.2mL/min、SV=15h-1で通水して、ガラスカラムより流出した処理水を50mL/回で4回採水し、採水した処理水のパラジウム濃度及び銅濃度を測定し、評価した。
(Comparative Example 4)
A glass column having an inner diameter of 15 mmΦ is filled with a chelate resin (trade name: Diaion CR11, manufactured by Mitsubishi Chemical Corporation) as a copper removing material for an electroless palladium plating solution with a layer height of 50 mm (filling amount: 2.4 g), and a pump is used. The treated water was passed through. Water to be treated was palladium plating aging solution (trade name Paratop LP, manufactured by Okuno Pharmaceutical Co., Ltd., palladium concentration 1000 mg / L, pH 7.1 to 7.5, temperature 55 to 65 ° C., copper plating process and nickel plating process. A solution obtained by further adding copper (trade name: copper (II) sulfate pentahydrate manufactured by Nacalai Tesque Co., Ltd.) to the use solution after electroless palladium plating by a production method including The palladium concentration of the water to be treated was 850 mg / L and the copper concentration was 8.5 mg / L. Water to be treated was passed at a flow rate of 2.2 mL / min and SV = 15 h −1 , and the treated water that flowed out of the glass column was sampled four times at 50 mL / time, and the palladium concentration and the copper concentration of the collected treated water were collected. Were measured and evaluated.

(比較例5)
内径15mmΦのガラスカラムに、無電解パラジウムめっき液の銅除去材としてのイオン交換繊維(東洋紡株式会社製商品名NX−73U)を、層高50mmとなるように充填し(充填量1.3g)、ポンプを用いて被処理水を通水させた。被処理水はパラジウムめっき老化液(奥野製薬工業株式会社製商品名パラトップLP、パラジウム濃度1000mg/L、pH7.1〜7.5、温度55〜65℃を用い、銅めっき工程及びニッケルめっき工程を含む製造方法により無電解パラジウムめっきを行った後の使用液)に、さらに銅(ナカライテスク株式会社製商品名硫酸銅(II)五水和物)を添加した液を用いた。該被処理水のパラジウム濃度は850mg/L、銅濃度は8.5mg/Lであった。被処理水を流量2.2mL/min、SV=15h-1で通水して、ガラスカラムより流出した処理水を50mL/回で4回採水し、採水した処理水のパラジウム濃度及び銅濃度を測定し、評価した。
(Comparative Example 5)
An ion exchange fiber (trade name NX-73U, manufactured by Toyobo Co., Ltd.) as a copper removing material for an electroless palladium plating solution is packed in a glass column having an inner diameter of 15 mmΦ so that the layer height is 50 mm (filling amount: 1.3 g). The water to be treated was passed through using a pump. Water to be treated was palladium plating aging solution (trade name Paratop LP, manufactured by Okuno Pharmaceutical Co., Ltd., palladium concentration 1000 mg / L, pH 7.1 to 7.5, temperature 55 to 65 ° C., copper plating process and nickel plating process. A solution obtained by further adding copper (trade name: copper (II) sulfate pentahydrate, manufactured by Nacalai Tesque Co., Ltd.) to the liquid used after electroless palladium plating by a production method including the above. The palladium concentration of the water to be treated was 850 mg / L and the copper concentration was 8.5 mg / L. Water to be treated was passed at a flow rate of 2.2 mL / min and SV = 15 h −1 , and the treated water that flowed out of the glass column was sampled four times at 50 mL / time, and the palladium concentration and the copper concentration of the collected treated water were collected. Were measured and evaluated.

<処理水及び被処理水のパラジウム濃度の測定>
処理水及び被処理水のパラジウム濃度は、JIS K 0102 2013 5.5に準じ、試料10mlに硝酸5%を2.5ml加え、100℃×1時間の条件で加熱し、常温まで冷却後、超純水を加えて50mlとして前処理をおこない、JIS K 0102 2013 52.4に規定されるICP発光分光分析法に準じ、内標準液としてイットリウム溶液を用いて測定をおこなった。なお、パラジウム濃度が0.05ppm以下の場合であって、上記ICP発光分光分析法により測定不可の場合は、JIS K 0102 2013 52.5ICP質量分析法に準じ、内標準液としてイットリウム溶液を用いて測定をおこなった。
<Measurement of palladium concentration in treated water and treated water>
The palladium concentration of treated water and treated water was measured according to JIS K 0102 2013 5.5 by adding 2.5 ml of nitric acid to 10 ml of sample, heating at 100 ° C. for 1 hour, cooling to room temperature, Pure water was added to prepare a pretreatment of 50 ml, and measurement was performed using an yttrium solution as an internal standard solution in accordance with the ICP emission spectroscopic analysis method defined in JIS K 0102 2013 52.4. When the palladium concentration is 0.05 ppm or less and measurement is impossible by the ICP emission spectroscopic analysis method, an yttrium solution is used as an internal standard solution according to JIS K 0102 2013 52.5 ICP mass spectrometry. Measurements were made.

<処理水及び被処理水の銅濃度の測定>
処理水及び被処理水の銅濃度は、JIS K 0102 2013 5.5に準じ、試料40mlに硝酸5%を2.5ml加え、100℃×1時間の条件で加熱し、常温まで冷却後、超純水を加えて50mlとして前処理をおこない、JIS K 0102 2013 52.4に規定されるICP発光分光分析法に準じ、内標準液としてイットリウム溶液を用いて測定をおこなった。なお、銅濃度が0.01ppm以下の場合であって、上記ICP発光分光分析法により測定不可の場合は、JIS K 0102 2013 52.5ICP質量分析法に準じ、内標準液としてイットリウム溶液を用いて測定をおこなった。
<Measurement of copper concentration in treated water and treated water>
The copper concentration of treated water and treated water is in accordance with JIS K 0102 2013 5.5. 2.5 ml of nitric acid is added to 40 ml of sample, heated at 100 ° C. for 1 hour, cooled to room temperature, Pure water was added to prepare a pretreatment of 50 ml, and measurement was performed using an yttrium solution as an internal standard solution in accordance with the ICP emission spectroscopic analysis method defined in JIS K 0102 2013 52.4. In addition, when the copper concentration is 0.01 ppm or less and measurement is impossible by the ICP emission spectrometry, yttrium solution is used as an internal standard solution according to JIS K 0102 2013 52.5 ICP mass spectrometry. Measurements were made.

<細孔直径10Å以上20Å以下の範囲の細孔容積及び全細孔容積の測定>
前述の方法により測定、算出した。
<Measurement of pore volume and total pore volume in the range of 10 to 20 pore diameter>
It was measured and calculated by the method described above.

<活性炭の比表面積の測定>
窒素を被吸着物質として用いたBET法(1点法)で測定した。
<Measurement of specific surface area of activated carbon>
Measurement was performed by the BET method (one-point method) using nitrogen as an adsorbed substance.

<平均細孔直径の測定>
前述の方法により測定、算出した。
<Measurement of average pore diameter>
It was measured and calculated by the method described above.

<繊維状活性炭の強度>
繊維状活性炭の強度(引張強度)は、JIS K 1477 2007に規定に準拠した方法により測定した。
<Strength of fibrous activated carbon>
The strength (tensile strength) of the fibrous activated carbon was measured by a method based on JIS K 1477 2007.

各実施例、比較例の銅除去材の物性を表1に、処理水及び被処理水のパラジウム濃度、銅濃度を表2に示す。   Table 1 shows the physical properties of the copper removing materials of each Example and Comparative Example, and Table 2 shows the palladium concentration and copper concentration of treated water and treated water.

実施例1〜6の無電解パラジウムめっき液の銅除去材は、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において細孔直径10Å以上20Å以下の範囲の細孔容積が0.05cc/g以上である繊維状活性炭を含むことから、無電解パラジウムめっき液中の銅除去効果に優れるものであった。   The copper removing material of the electroless palladium plating solutions of Examples 1 to 6 has a pore volume in the range of 10 to 20 pores in the pore distribution determined by the MP method using a nitrogen adsorption isotherm at a temperature of 77.4K. Since it contained fibrous activated carbon of 0.05 cc / g or more, it was excellent in the copper removal effect in the electroless palladium plating solution.

実施例1〜6の中でも、4回目の通水終了時におけるガラスカラム中の繊維状活性炭の形態変化の度合いは、小さいものから実施例4>実施例1、6>実施例5>実施例3>実施例2であった。従って、実施例1〜6の中において、実施例4の無電解パラジウムめっき液の銅除去材が、最もめっき液中における繰り返し使用に対する強度に一層優れ、めっき液中における繰り返し使用に対する形態安定性により一層優れるものであった。   Among Examples 1 to 6, the degree of change in the shape of the fibrous activated carbon in the glass column at the end of the fourth water flow was as low as Example 4> Examples 1 and 6> Example 5> Example 3 > Example 2. Accordingly, in Examples 1 to 6, the copper removing material of the electroless palladium plating solution of Example 4 is more excellent in strength against repeated use in the plating solution, and is more stable in form against repeated use in the plating solution. It was even better.

一方、比較例1は、4回目の通水終了時におけるガラスカラム中の活性炭の形状変化はほとんど見られなかったが、上記繊維状活性炭を含まず、粒状活性炭を含むものであったことから、無電解パラジウムめっき液中の銅除去効果に劣るものであった。   On the other hand, in Comparative Example 1, almost no change in the shape of the activated carbon in the glass column at the end of the fourth water flow was found, but it did not contain the fibrous activated carbon, but contained granular activated carbon. The copper removal effect in the electroless palladium plating solution was poor.

比較例2は、4回目の通水終了時におけるガラスカラム中の活性炭の形状変化はほとんど見られなかったが、用いた繊維状活性炭が温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において細孔直径10Å以上20Å以下の範囲の細孔容積が0.05cc/g未満であったことから、無電解パラジウムめっき液中の銅除去効果に劣るものであった。   In Comparative Example 2, almost no change in the shape of the activated carbon in the glass column was observed at the end of the fourth water flow, but the fibrous activated carbon used was determined by the MP method using a nitrogen adsorption isotherm at a temperature of 77.4K. In the pore distribution, the pore volume in the range of 10 to 20 pore diameters was less than 0.05 cc / g, which was inferior to the copper removal effect in the electroless palladium plating solution.

比較例3〜5は、温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において細孔直径10Å以上20Å以下の範囲の細孔容積が0.05cc/g以上である繊維状活性炭を含まないものであったことから、実施例1〜6に比して無電解パラジウムめっき液中の銅除去効果に劣るものであった。   Comparative Examples 3 to 5 are fibrous materials having a pore volume in a range of pore diameters of 10 mm to 20 mm in a pore distribution determined by the MP method using a nitrogen adsorption isotherm at a temperature of 77.4 K of 0.05 cc / g or more. Since it was a thing which does not contain activated carbon, it was inferior to the copper removal effect in an electroless palladium plating solution compared with Examples 1-6.

Claims (8)

温度77.4Kにおける窒素吸着等温線によりMP法で求めた細孔分布において、細孔直径10Å以上20Å以下の範囲の細孔容積が、0.05cc/g以上である繊維状活性炭を含む、無電解パラジウムめっき液の銅除去材。   In a pore distribution determined by the MP method using a nitrogen adsorption isotherm at a temperature of 77.4K, the pore volume in a range of pore diameters of 10 mm or more and 20 mm or less includes fibrous activated carbon having a volume of 0.05 cc / g or more. Copper removal material for electrolytic palladium plating solution. 前記繊維状活性炭の比表面積が1000m2/g以上である、請求項1に記載の無電解パラジウムめっき液の銅除去材。 The copper removing material for electroless palladium plating solution according to claim 1, wherein the specific surface area of the fibrous activated carbon is 1000 m 2 / g or more. 前記繊維状活性炭の全細孔容積が、0.4〜1.5cc/gである、請求項1又は2に記載の無電解パラジウムめっき液の銅除去材。   The copper removal material of the electroless palladium plating solution according to claim 1 or 2, wherein the fibrous activated carbon has a total pore volume of 0.4 to 1.5 cc / g. 前記無電解パラジウムめっき液中のパラジウム化合物の濃度が、0.1〜30g/Lである無電解パラジウムめっき液に用いられる、請求項1〜3のいずれか1項に記載の無電解パラジウムめっき液の銅除去材。 The electroless palladium plating solution according to any one of claims 1 to 3, which is used for an electroless palladium plating solution having a concentration of a palladium compound in the electroless palladium plating solution of 0.1 to 30 g / L. Copper removal material. 請求項1〜4のいずれか1項に記載の無電解パラジウムめっき液の銅除去材を用いる、無電解パラジウムめっき液中の銅除去方法。   The copper removal method in the electroless palladium plating liquid using the copper removal material of the electroless palladium plating liquid of any one of Claims 1-4. パラジウム化合物と、請求項1〜4のいずれか1項に記載の無電解パラジウムめっき液の銅除去材を含む、無電解パラジウムめっき液。   An electroless palladium plating solution containing a palladium compound and a copper removing material of the electroless palladium plating solution according to any one of claims 1 to 4. 請求項1〜4のいずれか1項に記載の無電解パラジウムめっき液の銅除去材を用いて銅を除去した無電解パラジウムめっき液を用いる、無電解パラジウムめっき方法。   The electroless palladium plating method using the electroless palladium plating solution which removed the copper using the copper removal material of the electroless palladium plating solution of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の無電解パラジウムめっき液の銅除去材を用いて銅を除去した無電解パラジウムめっき液を用いて、部材表面にパラジウムめっきを施す工程を備える、電子部品の製造方法。   An electroless palladium plating solution obtained by removing copper using the copper removing material of the electroless palladium plating solution according to any one of claims 1 to 4, comprising a step of performing palladium plating on a member surface. A manufacturing method for parts.
JP2015202897A 2015-10-14 2015-10-14 Copper removal material for electroless palladium plating solution Active JP6617957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015202897A JP6617957B2 (en) 2015-10-14 2015-10-14 Copper removal material for electroless palladium plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202897A JP6617957B2 (en) 2015-10-14 2015-10-14 Copper removal material for electroless palladium plating solution

Publications (2)

Publication Number Publication Date
JP2017075355A JP2017075355A (en) 2017-04-20
JP6617957B2 true JP6617957B2 (en) 2019-12-11

Family

ID=58550910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202897A Active JP6617957B2 (en) 2015-10-14 2015-10-14 Copper removal material for electroless palladium plating solution

Country Status (1)

Country Link
JP (1) JP6617957B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185844B2 (en) 2018-07-31 2021-11-30 Toray Industries, Inc. Carrier for adsorbing organic matter

Also Published As

Publication number Publication date
JP2017075355A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5886383B2 (en) Activated carbon with excellent adsorption performance and method for producing the same
JP4596553B2 (en) Electroless palladium plating solution
Kumar et al. Comprehending the interaction between chitosan and ionic liquid for the adsorption of palladium
JP5921699B2 (en) Electroless palladium plating bath composition
WO2009099067A1 (en) Plated structure
WO2018116858A1 (en) Active carbon and production method thereof
JP6617957B2 (en) Copper removal material for electroless palladium plating solution
TW200808663A (en) Method of purifying aqueous alkali solution
Deliyanni et al. Adsorption of Pb2+ using mesoporous activated carbon and its effects on surface modifications
CN107868947B (en) Activating solution, preparation method thereof and palladium-free activated chemical nickel plating method
JP4885954B2 (en) Electroless pure palladium plating solution
CN103924224A (en) Hybrid liquid of high-speed chemical copper and preparation method of hybrid liquid
Cheng et al. Preparation and properties of phosphinic acid–functionalized polyacrylonitrile hollow fiber membrane for heavy metal adsorption
JP2011143359A (en) Compound gas adsorbent, compound gas adsorbent composition and adsorption filter using the adsorbent or composition
JP5648229B2 (en) Electroless plating metal film manufacturing method and plating coated substrate
JP2013108170A (en) Electroless palladium plating solution
CN113046733B (en) Palladium activation method for chemical nickel gold of PCB (printed circuit board)
JP6608266B2 (en) Platinum group metal colloidal particle recovery material, filter including the recovery material, and platinum group metal colloidal particle recovery method using the recovery material
CN103585959A (en) EDDS (ethylenediaminedisuccinic acid) modified engineering material and preparation method thereof
Guo et al. Selective removal of Pb (II) ions from aqueous solutions by acrylic acid/acrylamide comonomer grafted polypropylene fibers
JP3842063B2 (en) Recycling method of gold plating solution
JP6795821B2 (en) How to treat gold plating
WO2008069136A1 (en) Method for purifying chemical added with chelating agent
Vijaya et al. Column Adsorption and Desorption Studies of Fluoride on Perchloric Acid Cross‐Linked Calcium Alginate Beads
JP2004211191A (en) Chemical for producing nickel fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191031

R150 Certificate of patent or registration of utility model

Ref document number: 6617957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250